Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora)."

Transcript

1 UVOD U TEORIJU BROJEVA Drugo predavanje Prosti brojevi Denicija 1.4. Prirodan broj p > 1 zove se prost ako nema niti jednog djelitelja d takvog da je 1 < d < p. Ako prirodan broj a > 1 nije prost, onda kaºemo da je sloºen. Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora). Koristimo matemati ku indukciju. Broj 2 je prost. Pretpostavimo da je n > 2 i da tvrdnja teorema vrijedi za svaki prirodni broj m, takav da je 2 m < n. Dokaºimo da se i n moºe prikazati kao umnoºak prostih faktora. Ako je n prost, nemamo ²to dokazivati. Ako nije, onda vrijedi n = n 1 n 2, gdje je 1 < n 1 < n i 1 < n 2 < n. Po pretpostavci indukcije, n 1 i n 2 su umno²ci prostih brojeva pa slijedi da i n ima to svojstvo. Iz Teorema 1.8 slijedi da svaki prirodan broj n moºemo prikazati u obliku n = p α 1 1 p α 2 2 p αr r, gdje su p 1,..., p r razli iti prosti brojevi, a α 1,..., α r prirodni brojevi. Ovakav prikaz broja n zvat emo kanonski rastav broja n na proste faktore. Propozicija 1.9. Ako je p prost broj i p ab, onda p a ili p b. Op enitije, ako p a 1 a 2...a n, onda p dijeli barem jedan faktor a i. Neka p ab i p a. Dakle, (p, a) = 1, pa postoje cijeli brojevi x i y takvi da je ax + py = 1. Pomnoºimo li tu jednakost s b, dobivamo abx + pby = b pa, kako p ab, slijedi da p b. Op enitiju tvrdnju dokazujemo indukcijom. Pretpostavimo da tvrdnja vrijedi za umno²ke s manje od n faktora. Sada, ako p a 1 (a 2 a n ), onda p a 1 ili p a 2 a n. Ako p a 2 a n, onda po pretpostavci indukcije p a i za neki i = 2,..., n. 1

2 Teorem (Osnovni teorem aritmetike) Faktorizacija svakog prirodnog broja n > 1 na proste faktore jedinstvena je do na poredak prostih faktora. Pretpostavimo suprotno, da n ima dvije razli ite faktorizacije. Nakon dijeljenja s prostim brojevima koji su zajedni ki objema faktorizacijama, dobivamo jednakost oblika p 1 p 2 p r = q 1 q 2 q s, gdje su p i za i = 1,..., r i q j za j = 1,..., s prosti brojevi, ne nuºno razli iti, ali takvi da se niti jedan prost broj s lijeve strane ne pojavljuje na desnoj strani jednakosti, tj. p i q j za sve i, j. Iz toga slijedi da p 1 q 1 q 2 q s pa Propozicija 1.9. povla i da p 1 dijeli barem jedan q j. Kako se radi o prostim brojevima, moralo bi vrijediti p 1 = q j. Dakle, dobili smo kontradikciju. Analogon Teorema ne vrijedi za cijele brojeve u (nekim) kvadratnim poljima. (O tome emo detaljnije kada se budemo bavili kvadratnim poljima.) Primjer nejednozna ne faktorizacije na proste faktore u prstenu Z[ 6] = {a + b 6 : a, b Z} su dvije razli ite faktorizacije broja 10. Naime, vrijedi 10 = 2 5 = (2 + 6)(2 6). Radi jednostavnosti, esto emo prirodan broj a pisati u obliku a = p p α(p), gdje je α(p) 0. Pritom podrazumijevamo da je α(p) = 0, za skoro sve proste brojeve p. Posebno, ako je a = 1 onda je α(p) = 0 za svaki p. Ako je a = p pα(p), b = p pβ(p), c = p pγ(p) i ab = c, iz Teorema slijedi da je α(p) + β(p) = γ(p) za sve p. Dakle, ako a c, tada je α(p) γ(p) za svaki p. Obratno, ako je α(p) γ(p) za svaki p, onda moºemo denirati prirodan broj b = p pβ(p) sa β(p) = γ(p) α(p). Tada je ab = c pa a c. Iz prethodnog razmatranja zaklju ujemo da vrijedi a c α(p) γ(p), (1) za svaki p. Iz (1) dalje slijedi sljede a vaºna formula (a, b) = p p min{α(p),β(p)}. (2) 2

3 Uvedimo sada jo² jedan pojam. Denicija 1.5. Neka su a 1, a 2,..., a n cijeli brojevi razli iti od 0. Najmanji prirodan broj c za koji vrijedi da a i c za sve i = 1, 2,..., n zove se najmanji zajedni ki vi²ekratnik brojeva a 1, a 2,..., a n. Ozna avamo ga s [a 1,..., a n ]. Iz (1) slijedi da je [a, b] = p p max{α(p),β(p)}. (3) Propozicija Vrijedi (a, b) [a, b] = ab. Po deniciji su (a, b), [a, b] N pa je to razlog zbog kojeg se na desnoj strani jednakosti koju moramo dokazati stavlja apsolutna vrijednost. Po Teoremu 1.10 i formulama (2) i (3), dovoljno je provjeriti da za sve nenegativne cijele brojeve x, y vrijedi min{x, y} + max{x, y} = x + y. Ako je najprije x y, onda vrijedi min{x, y} + max{x, y} = x + y. Ako je pak x > y, onda je min{x, y} + max{x, y} = y + x = x + y. Za prirodan broj a re i emo da je (potpun) kvadrat ako se moºe zapisati u obliku n 2, za neki n N. Iz Teorema 1.10 slijedi da je a potpun kvadrat ako i samo ako su svi eksponenti α(p) parni. Kaºemo da je a kvadratno slobodan ako je 1 najve i kvadrat koji dijeli a. Dakle, a je kvadratno slobodan ako i samo ako su svi eksponenti α(p) jednaki 0 ili 1. Ako je p prost, onda je p k a ekvivalentno s k = α(p). Primjer: Dokaºite da svaki sloºen broj n ima prost faktor p n. 3

4 Rje²enje: Neka je p najmanji prost faktor od n. Dakle, postoji m N, takav da je n = p m i vrijedi m p. Pomnoºimo li tu nejednakost s p, dobivamo n p 2 pa, kako su n, p N, slijedi n p. Ovaj primjer moºemo iskoristiti za generiranje tablice prostih brojeva tzv. Eratostenovim sitom. Na primjer, ºelimo napraviti tablicu prostih brojeva 200. Napi²emo sve prirodne brojeve od 2 do 200. Prekriºimo sve prave vi²ekratnike broja 2, pa broja 3, pa broja 5. U svakom koraku, prvi neprekriºeni broj je prost te u idu em koraku kriºamo njegove prave vi²ekratnike. Prvi novoprekriºeni broj biti e njegov kvadrat, jer su svi manji vi²ekratnici ve prekriºeni. U na²em slu aju, nakon kriºanja vi²ekratnika od 7, 11 i 13, tablica je gotova (jer je 17 > 200). Teorem (Euklid) Skup svih prostih brojeva je beskona an. Pretpostavimo suprotno, da su p 1, p 2,..., p k svi prosti brojevi. Promotrimo broj n = 1 + p 1 p 2 p k. Broj n nije djeljiv niti s p 1, niti s p 2,..., niti s p k (da je, iz prethodne jednakosti dobili bi kontradikciju da taj p i dijeli 1 za i {1,..., k}). Dakle, svaki prosti faktor od n je razli it od p 1,..., p k. Budu i da je n ili prost ili ima prosti faktor, u svakom slu aju dobili smo prost broj razli it od p 1,..., p k, ²to je kontradikcija. Primjer: Dokaºite da, ako je broj 2 k + 1 prost, tada je k = 0 ili je k = 2 n za neki cijeli broj n 0. Rje²enje: Neka je 2 k +1 prost broj. Najmanji prosti broj 2 dobivamo za k = 0. Sljede i prost broj 3 dobivamo za n = 0, odnosno k = 1. Pretpostavimo suprotno, da k ima neki neparan prosti faktor p, odnosno da je k = p m, gdje je m prirodan broj. Tada je broj 2 k + 1 = (2 m ) p + 1 p = (2 m + 1)((2 m ) p 1 (2 m ) p ) djeljiv s 2 m + 1 pa nije prost. Dakle, dobili smo kontradikciju. (Ovdje smo koristili genearliziranu jednakost za zbroj potencija a 2n+1 + b 2n+1 = (a + b)(a 2n a 2n 1 b +... ab 2n 1 + b 2n ), gdje je n N.) 4

5 Brojevi oblika f n = 2 2n + 1, gdje je n nenegativan cijeli broj, zovu se Fermatovi brojevi. Fermat je smatrao da su svi takvi brojevi prosti. Neki od njih i jesu, pr. f 0 = 3, f 1 = 5, f 2 = 17, f 3 = 257, f 4 = Mežutim, s nekoliko transformacija pokazat emo da f 5 = nije prost. Naime, vrijedi pa slijedi da 641 f = = ( ) = = (641 1) =... = 641( ) Do danas nije dokazana slutnja da je samo kona no mnogo Fermatovih brojeva prosto. Primjer: Dokaºite da, ako je broj 2 n 1 (gdje je n prirodan broj) prost, tada je i broj n prost. Rje²enje: Pretpostavimo da je broj n sloºen, odnosno da je n = ab, gdje su a > 1, b > 1. Sada je broj 2 n 1 = (2 a ) b 1 b djeljiv s 2 a 1 pa nije prost. Dakle, dobili smo kontradikciju. (Ovdje koristimo generaliziranu jednakost za razliku potencija a n b n = (a b)(a n 1 +a n 2 b+...+ab n 2 +b n 1 ), gdje je n N). Brojevi oblika M p = 2 p 1, gdje je p prost broj, zovu se Mersennovi brojevi. Neki od njih, kao na primjer M 7 = 127 su prosti, a neki su sloºeni, kao na primjer M 11 = 2047 = Do danas nije dokazana slutnja da Mersennovih brojeva koji su prosti ima beskona no mnogo. Najve i danas poznat Mersennov prost broj je M

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 1

ELEMENTARNA MATEMATIKA 1 Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A

Διαβάστε περισσότερα

Uvod u teoriju brojeva

Uvod u teoriju brojeva Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Prosti brojevi. Uvod

Prosti brojevi. Uvod MLADI NADARENI MATEMATIČARI Marin Getaldic Prosti brojevi 20.12.2015. Uvod Definicija 1. Kažemo da je prirodan broj p prost broj ako ima točno dva (različita) djelitelja (konkretno, to su 1 i p). U suprotnom

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

b = k a. Govorimo jošda a dijeli b ipišemo a b.

b = k a. Govorimo jošda a dijeli b ipišemo a b. 1 DJELJIVOST 1.1. Djeljivost. Prosti brojevi Količnik dvaju prirodnih brojeva nije uvijek prirodni broj. Tako na primjer, broj 54 8 nije prirodan, jer 54 nije djeljiv s 8. Broj 221 jest prirodan, jer 221

Διαβάστε περισσότερα

3. ELEMENTARNA TEORIJA BROJEVA Dokaži dajebroj djeljivs Dokažidajebroj djeljiv Dokaži dajebroj djeljiv

3. ELEMENTARNA TEORIJA BROJEVA Dokaži dajebroj djeljivs Dokažidajebroj djeljiv Dokaži dajebroj djeljiv 3. ELEMENTARNA TEORIJA BROJEVA 3.. djeljivost 65. Dokaži da je produkt tri uzastopna broja, od kojih je srednji kub prirodnog broja, djeljiv s 504. 652. Ako su a, b cijeli brojevi, dokaži da je broj ab(a

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 8 Pojam funkcije, grafa i inverzne funkcije Poglavlje 1 Funkcije Neka su X i Y dva neprazna skupa. Ako je po nekom pravilu, ozna imo ga

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Mjera i Integral Vjeºbe

Mjera i Integral Vjeºbe Mjera i Integral Vjeºbe September 8, 2015 Chapter 1 σ-algebre 1.1 Osnovna svojstva i prvi primjeri Najprije uvodimo pojmove algebre i σ-algebre 1 skupova. Za skup, familiju svih njegovih podskupova zovemo

Διαβάστε περισσότερα

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.yu/mii Математика и информатика 1 (3) (2009), 19-24 KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) JMBAG IM I PZIM BOJ BODOVA MJA I INTGAL 2. kolokvij 30. lipnja 2017. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (ukupno 6 bodova) Neka je (, F, µ) prostor mjere i neka je (

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE Ivana Baranović Miroslav Jerković Lekcije i Limesi i derivacije Poglavlje Limesi i derivacije.0. Limesi Limes funkcije f kada teºi nekoj to ki a ovdje a moºe ozna avati i ± moºemo

Διαβάστε περισσότερα

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo

Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola. Hasan Jamak Prirodno-matematički fakultet Sarajevo Teorija brojeva Okvirni program rada sa nadarenim učenicima osnovnih škola Hasan Jamak Prirodno-matematički fakultet Sarajevo January 24, 2012 Uvod U Bosni i Hercegovini već pedesetak godina se organizuju

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα

Slučajni procesi Prvi kolokvij travnja 2015.

Slučajni procesi Prvi kolokvij travnja 2015. Zadatak Prvi kolokvij - 20. travnja 205. (a) (3 boda) Neka je (Ω,F,P) vjerojatnosni prostor, neka je G σ-podalgebra od F te neka je X slučajna varijabla na (Ω,F,P) takva da je X 0 g.s. s konačnim očekivanjem.

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Nelinearni dinami ki sustavi

Nelinearni dinami ki sustavi Nelinearni dinami ki sustavi 1 Osnovne denicije Diskretni dinami ki sustav px, f q sastoji se od nepraznog skupa X i preslikavanja f : X Ñ X. Skup X jo² se zove i fazni prostor, a preslikavanje f fazno

Διαβάστε περισσότερα

REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc.

REKURZIVNE FUNKCIJE PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK. Diplomski rad. Voditelj rada: Doc.dr.sc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Brigita Švec REKURZIVNE FUNKCIJE Diplomski rad Voditelj rada: Doc.dr.sc. Zvonko Iljazović Zagreb, Rujan, 2014. Ovaj diplomski

Διαβάστε περισσότερα

Lokalni ekstremi funkcije vi²e varijabla

Lokalni ekstremi funkcije vi²e varijabla VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 9 Lokalni ekstremi funkcije više varijabla Poglavlje 1 Lokalni ekstremi funkcije vi²e varijabla Denicija 1.0.1 Za funkciju f dviju varijabli

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum 16 Lokalni ekstremi Važna primjena Taylorovog teorema odnosi se na analizu lokalnih ekstrema (minimuma odnosno maksimuma) relanih funkcija (više varijabli). Za n = 1 i f : a,b R ako funkcija ima lokalni

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

Teorija brojeva i kriptografija

Teorija brojeva i kriptografija Slobodan Vujoševic Teorija brojeva i kriptografija Iz nepregledne literature iz teorije brojeva i aritmetike, kao veoma sadržajnu i duhovito napisanu monografiju, koja uglavnom pokriva i delom dopunjava

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija 18.02006. Prvi razred A kategorija Dokazati da kruжnica koja sadrжi dva temena i ortocentar trougla ima isti polupreqnik kao i kruжnica opisana oko tog trougla. Na i najve i prirodan broj koji je maƭi

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Sadrºaj. 1 Vektorska algebra 1. 2 Analiti ka geometrija 2. 3 Analiti ka geometrija u ravni 3. 4 Analiti ka geometrija u prostoru 4

Sadrºaj. 1 Vektorska algebra 1. 2 Analiti ka geometrija 2. 3 Analiti ka geometrija u ravni 3. 4 Analiti ka geometrija u prostoru 4 Sadrºaj Sadrºaj i 1 Vektorska algebra 1 2 Analiti ka geometrija 2 3 Analiti ka geometrija u ravni 3 4 Analiti ka geometrija u prostoru 4 5 Ispitivanje jedna ina drugog reda u R 2 5 5.1 Krive sa centrom.........................

Διαβάστε περισσότερα

Diofantske jednadžbe. Andrej Dujella

Diofantske jednadžbe. Andrej Dujella Diofantske jednadžbe Andrej Dujella Poslijediplomski kolegij 2006/2007 Sadržaj 1 Pellovske jednadžbe 2 1.1 Jednadžbe x 2 dy 2 = ±1,±4................. 2 1.2 Verižni razlomci i Pellova jednadžbe..............

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Jedan dokaz iracionalnosti broja e p

Jedan dokaz iracionalnosti broja e p Osječki matematički list 12(212), 29 44 29 Jedan dokaz iracionalnosti broja e p Nenad Stojanović Zoran Mitrović Sažetak. U prvom dijelu rada izloženi su osnovni pojmovi i tvrdnje koji su vezani uz algebarske

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1 skripta za nastavni ke studije na PMF-MO. Zrinka Franu²i, Juraj iftar

LINEARNA ALGEBRA 1 skripta za nastavni ke studije na PMF-MO. Zrinka Franu²i, Juraj iftar LINEARNA ALGEBRA 1 skripta za nastavni ke studije na PMF-MO Zrinka Franu²i, Juraj iftar Sadrºaj 1 Vektorski prostori 2 11 Osnovne algebarske strukture 4 111 Binarna operacija Grupoid 4 112 Grupa 6 113

Διαβάστε περισσότερα

Metode dokazivanja nejednakosti

Metode dokazivanja nejednakosti IMO/MEMO pripreme 2016. Aleksandar Bulj, 8. 6. 2016. Uvod Metode dokazivanja nejednakosti Cilj ovoga predavanja je prikazati razne tehnike za dokazivanje nejednakosti. U prvom će poglavlju kroz nekoliko

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike. Pellove jednadžbe i problem stoke

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike. Pellove jednadžbe i problem stoke Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Dajana Borojević Pellove jednadžbe i problem stoke Završni rad Osijek, 207. Sveučilište J. J. Strossmayera u

Διαβάστε περισσότερα

algebarski zatvara Polje Ω je algebarski zatvara potpolja F ako je algebarski zatvoreno (vidi deniciju) i algebarsko nad F.

algebarski zatvara Polje Ω je algebarski zatvara potpolja F ako je algebarski zatvoreno (vidi deniciju) i algebarsko nad F. algebarski element Neka je F polje i E neko pro²irenje tog polja. Za element α E kaºemo da je algebarski nad F ako postoji nenul polinom f F [X] takav da je f(α) = 0. Pro²irenje polja E/F je algebarsko

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

LEKCIJE IZ MATEMATIKE 1

LEKCIJE IZ MATEMATIKE 1 LEKCIJE IZ MATEMATIKE 1 Ivica Gusić Lekcija 1 Realni i kompleksni brojevi Lekcije iz Matematike 1. 1. Realni i kompleksni brojevi I. Naslov i obja²njenje naslova U lekciji se ponavljaju osnovna svojstva

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LIMES NIZOVA LIMES MONOTONIH NIZOVA GEOMETRIJSKOG REDA LIMES FUNKCIJA 1 2.4. LIMES NIZA I TEOREMI O LIMESIMA 2.4.1. Definicija limesa i konvergentnog niza 2.4.1.1 Riješeni

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

1 Limesi, asimptote i neprekidnost funkcija

1 Limesi, asimptote i neprekidnost funkcija Slika Limesi, asimptote i neprekidnost funkcija. Limesi funkcija Zajedni ko svim varijantama esa funkcije je da se opisuju (procjenjuju) vrijednosti zadane funkcije u okolini neke vrijednost varijable.

Διαβάστε περισσότερα

Seminar 11 (Ispitivanje domene i globalnih svojstava funkcije)

Seminar 11 (Ispitivanje domene i globalnih svojstava funkcije) Seminar 11 (Ispitivanje domene i globalnih svojstava funkcije) Prvo ponoviti/nau iti sadrºaje na sljede oj stani, a zatim rije²iti zadatke na ovoj stranici. Priprema Ove zadatke moºete rije²iti koriste

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα