Física P.A.U. ÓPTICA 1 ÓPTICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Física P.A.U. ÓPTICA 1 ÓPTICA"

Transcript

1 Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10 cm. Sabendo que o índice de refracción do vidro é 1,50 e o do aire 1,00: a) Enuncia as leis da refracción e debuxa a marcha dos raios no aire e no interior da lámina de vidro. b) Calcula a lonxitude de onda da luz no aire e no vidro, e a lonxitude percorrida polo raio no interior da lámina. c) Acha o ángulo que forma o raio de luz coa normal cando emerxe de novo ao aire. Dato: c = 3,00 10⁸ m/s (P.A.U. Set. 14) Rta.: b) λ(aire) = 600 nm; λ(vidro) = 400 nm; L = 10,6 cm; c) θ ₂ = Un raio de luz pasa da auga (índice de refracción n = 4/3) ao aire (n = 1). Calcula: a) O ángulo de incidencia se os raios reflectido e refractado son perpendiculares entre si. b) O ángulo límite. c) Hai ángulo límite se a luz incide do aire á auga? (P.A.U. Xuño 13) Rta.: a) θ = 36,9 ; b) λ = 48,6 3. Sobre un prisma equilátero de ángulo 60 (ver figura), incide un raio luminoso monocromático que forma un ángulo de 50 coa normal á cara AB. Sabendo que no interior do prisma o raio é paralelo á base AC: a) Calcula o índice de refracción do prisma. b) Determina o ángulo de desviación do raio ao saír do prisma, debuxando a traxectoria que segue o raio. A C c) Explica se a frecuencia e a lonxitude de onda correspondentes ao raio luminoso son distintas, ou non, dentro e fóra do prisma. Dato: n(aire) = 1 (P.A.U. Set. 11) Rta.: a) nₚ = 1,5; b) θ ₂ = 50 B ESPELLOS 1. Un espello cóncavo ten 50 cm de radio. Un obxecto de 5 cm colócase a 20 cm do espello: a) Debuxa a marcha dos raios. b) Calcula a posición, tamaño e natureza da imaxe. c) Debuxa unha situación na que non se forme imaxe do obxecto. (P.A.U. Xuño 14) Rta.: b) sʹ = 1,00 m; yʹ = 25 cm; imaxe virtual, dereita e maior. 2. Un obxecto de 1,5 cm de altura está situado a 15 cm dun espello esférico convexo de radio 20 cm. Determina a posición, tamaño e natureza da imaxe: a) Graficamente. b) Analiticamente. c) Pódense obter imaxes reais cun espello convexo? (P.A.U. Set. 09) Rta.: b) sʹ = +6,0 cm; yʹ = 6,0 mm 3. Un obxecto de 5 cm de altura está situado a unha distancia x do vértice dun espello esférico cóncavo, de 1 m de radio de curvatura. Calcula a posición e tamaño da imaxe: a) Se x = 75 cm b) Se x = 25 cm

2 Física P.A.U. ÓPTICA 2 Nos dous casos debuxa a marcha dos raios. (P.A.U. Set. 04) Rta.: a) sʹ = -1,5 m; yʹ = -10 cm; b) sʹ = 0,5 m; yʹ = 10 cm. 4. Un espello esférico cóncavo ten un radio de curvatura de 0,5 m. Determina analítica e graficamente a posición e aumento da imaxe dun obxecto de 5 cm de altura situado en dúas posicións diferentes: a) A 1 m do espello. b) A 0,30 m do espello. (P.A.U. Set. 05) Rta.: a) sʹ = -0,33 m; A L = -0,33; b) sʹ = -1,5 m; A L = -5,0 5. Dado un espello esférico de 50 cm de radio e un obxecto de 5 cm de altura situado sobre o eixe óptico a unha distancia de 30 cm do espello, calcula analítica e graficamente a posición e tamaño da imaxe: a) Se o espello é cóncavo. b) Se o espello é convexo. (P.A.U. Xuño 06) Rta.: a) sʹ₁ = -1,5 m; yʹ₁ = -0,25 m; b) sʹ₂ = 0,14 m; yʹ₂ = 0,023 m 6. Un obxecto de 3 cm está situado a 8 cm dun espello esférico cóncavo e produce unha imaxe a 10 cm á dereita do espello: a) Calcula a distancia focal. b) Debuxa a marcha dos raios e obtén o tamaño da imaxe. c) En que posición do eixe hai que colocar o obxecto para que non se forme imaxe? (P.A.U. Xuño 08) Rta.: a) f = 0,40 m; b) yʹ = 3,8 cm LENTES 1. Un obxecto de 1,5 cm de altura sitúase a 15 cm dunha lente diverxente que ten unha focal de 10 cm. Determina a posición, tamaño e natureza da imaxe: a) a) Graficamente. b) Analiticamente. c) Pódense obter imaxes reais cunha lente diverxente? (P.A.U. Set. 09) Rta.: b) sʹ = -6,0 cm; yʹ = 6,0 mm 2. Un obxecto de 3 cm de altura sitúase a 75 cm dunha lente delgada converxente e produce unha imaxe a 37,5 cm á dereita da lente: a) Calcula a distancia focal. b) Debuxa a marcha dos raios e obtén o tamaño da imaxe. c) En que posición do eixe hai que colocar o obxecto para que non se forme imaxe? (P.A.U. Xuño 08) Rta.: a) f = 0,25 m; b) yʹ = -1,5 cm 3. Unha lente diverxente de distancia focal 10 cm forma unha imaxe de 2 cm de altura. Se o tamaño do obxecto é 10 cm: a) Calcula la distancia á que se atopa o obxecto da lente. b) Debuxa a marcha dos raios. c) A miopía é un defecto visual. Explica como se pode corrixir. (P.A.U. Set. 16) Rta.: a) s = 0,40 m 4. Unha lente converxente proxecta sobre unha pantalla a imaxe dun obxecto. O aumento é de 10 e a distancia do obxecto á pantalla é de 2,7 m. a) Determina as posicións da imaxe e do obxecto. b) Debuxa a marcha dos raios. c) Calcula a potencia da lente. (P.A.U. Set. 12)

3 Física P.A.U. ÓPTICA 3 Rta.: a) s = -0,245 m; sʹ = 2,45 m; c) P = 4,48 dioptrías 5. Un obxecto de 3 cm de altura colócase a 20 cm dunha lente delgada de 15 cm de focal. Calcula analítica e graficamente a posición e tamaño da imaxe: a) Se a lente é converxente. b) Se a lente é diverxente. (P.A.U. Set. 06) Rta.: a) sʹ = 0,60 m; yʹ = -9,0 cm; b) sʹ = -0,086 m; yʹ = 1,3 cm 6. Un obxecto de 3 cm sitúase a 20 cm dunha lente cuxa distancia focal é 10 cm: a) Debuxa a marcha dos raios si a lente é converxente. b) Debuxa a marcha dos raios si a lente é diverxente. c) En ambos os casos calcula a posición e o tamaño da imaxe. Rta.: c) sʹ = 0,20 m; yʹ = -3,0 cm; d) sʹ = -0,067 m; yʹ = 1,0 cm (P.A.U. Xuño 12) 7. Qérese formar unha imaxe real e de dobre tamaño dun obxecto de 1,5 cm de altura. Determina: a) A posición do obxecto si úsase un espello cóncavo de R = 15 cm. b) A posición do obxecto si úsase unha lente converxente coa mesma distancia focal que o espello. c) Debuxa a marcha dos raios para os dous apartados anteriores. (P.A.U. Xuño 11) Rta.: a) sₑ = -11 cm; b) sₗ = -11 cm CUESTIÓNS DIOPTRIO PLANO. 1. Cando un raio de luz monocromática pasa desde o aire á auga prodúcese un cambio: A) Na frecuencia. B) Na lonxitude de onda. C) Na enerxía. Dato: n(auga) = 4/3 (P.A.U. Set. 10) 2. Cando a luz incide na superficie de separación de dous medios cun ángulo igual ao ángulo límite iso significa que: A) O ángulo de incidencia e o de refracción son complementarios. B) Non se observa raio refractado. C) O ángulo de incidencia é maior que o de refracción. (P.A.U. Set. 05) 3. Un raio de luz incide desde o aire (n = 1) sobre unha lámina de vidro de índice de refracción n = 1,5. O ángulo límite para a reflexión total deste raio é: A) 41,8 B) 90 C) Non existe. (P.A.U. Set. 08) 4. O ángulo límite na refracción auga/aire é de 48,61. Se se posúe outro medio no que a velocidade da luz sexa v(medio) = 0,878 v(auga), o novo ángulo límite (medio/aire) será: A) Maior. B) Menor. C) Non se modifica. (P.A.U. Xuño 04) 5. Un raio de luz láser propágase nun medio acuoso (índice de refracción n = 1,33) e incide na superficie de separación co aire (n = 1). O ángulo límite é:

4 Física P.A.U. ÓPTICA 4 A) 36,9 B) 41,2 C) 48,8 (P.A.U. Xuño 15) a) Se o índice de refracción do diamante é 2,52 e o do vidro 1,27. A) A luz propágase con maior velocidade no diamante. B) O ángulo límite entre o diamante e o aire é menor que entre o vidro e o aire. C) Cando a luz pasa de diamante ao vidro o ángulo de incidencia é maior que o ángulo de refracción. (P.A.U. Xuño 05) 6. Cando un raio de luz incide nun medio de menor índice de refracción, o raio refractado: A) Varía a súa frecuencia. B) Achégase á normal. C) Pode non existir raio refractado. (P.A.U. Set. 07) 7. No fondo dunha piscina hai un foco de luz. Observando a superficie da auga veríase luz: A) En toda a piscina. B) Só no punto encima do foco. C) Nun círculo de radio R ao redor do punto encima do foco. (P.A.U. Set. 10) ESPELLOS. 1. A imaxe formada nos espellos é: A) Real se o espello é convexo. B) Virtual se o espello é cóncavo e a distancia obxecto é menor que a focal. C) Real se o espello é plano. (P.A.U. Set. 06) 2. Se cun espello quérese obter unha imaxe maior que o obxecto, haberá que empregar un espello: A) Plano. B) Cóncavo. C) Convexo. (P.A.U. Set. 08) 3. Se un espello forma unha imaxe real invertida e de maior tamaño que o obxecto, trátase dun espello: A) Cóncavo e o obxecto está situado entre o foco e o centro da curvatura. B) Cóncavo e o obxecto está situado entre o foco e o espello. C) Convexo co obxecto en calquera posición. (P.A.U. Xuño 12) 4. Para obter unha imaxe na mesma posición na que está colocado o obxecto, que tipo de espello e en que lugar ten que colocarse o obxecto?: A) Cóncavo e obxecto situado no centro de curvatura. B) Convexo e obxecto situado no centro de curvatura. C) Cóncavo e obxecto situado no foco. (P.A.U. Set. 11) 5. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: A) Un espello convexo. B) Unha lente converxente. C) Un espello cóncavo. (P.A.U. Xuño 13)

5 Física P.A.U. ÓPTICA 5 6. Un espello cóncavo ten 80 cm de radio de curvatura. A distancia do obxecto ao espello para que a súa imaxe sexa dereita e 4 veces maior é: A) 50 cm. B) 30 cm. C) 60 cm. (P.A.U. Set. 13) 7. Qeremos ver unha imaxe da nosa cara para afeitarnos ou maquillarnos. A imaxe debe ser virtual, dereita e ampliada 1,5 veces. Se colocamos a cara a 25 cm do espello. Qe tipo de espello debemos empregar?: A) Convexo. B) Cóncavo. C) Plano. (P.A.U. Xuño 16) 8. Dous espellos planos están colocados perpendicularmente entre si. Un raio de luz que se despraza nun terceiro plano perpendicular aos dous, reflíctese sucesivamente nos dous espellos. O raio reflectido no segundo espello, con respecto ao raio orixinal: A) É perpendicular. B) É paralelo. C) Depende do ángulo de incidencia. (P.A.U. Set. 04) LENTES. 1. Nas lentes diverxentes a imaxe sempre é: A) Dereita, maior e real. B) Dereita, menor e virtual. C) Dereita, menor e real. (P.A.U. Xuño 06) 2. Se se desexa formar unha imaxe virtual, dereita e de menor tamaño que o obxecto, débese utilizar: A) Un espello cóncavo. B) Unha lente converxente. C) Unha lente diverxente. (P.A.U. Xuño 07) 3. Para obter unha imaxe virtual, dereita e de maior tamaño que o obxecto se usa: A) Unha lente diverxente. B) Unha lente converxente. C) Un espello convexo. (P.A.U. Xuño 10, Xuño 09) ONDAS LUMINOSAS 1. Tres colorees da luz visible, o azul, o amarelo e o vermello, coinciden en que: A) Posúen a mesma enerxía. B) Posúen a mesma lonxitude de onda. C) Propáganse no baleiro coa mesma velocidade. (P.A.U. Xuño 04) 2. A luz visible abarca un rango de frecuencias que van desde (aproximadamente) 4,3 10¹⁴ Hz (vermello) até 7,5 10¹⁴ Hz (ultravioleta). Cal das seguintes afirmacións é correcta? A) A luz vermella ten menor lonxitude de onda que a ultravioleta. B) A ultravioleta é a máis enerxética do espectro visible. C) Ambas aumentan a lonxitude de onda nun medio con maior índice de refracción que aire.

6 Física P.A.U. ÓPTICA 6 (P.A.U. Xuño 10) 3. Nunha onda de luz: A) Os campos eléctrico E e magnético B vibran en planos paralelos. B) Os campos E e B vibran en planos perpendiculares entre si. C) A dirección de propagación é a de vibración do campo eléctrico. (Debuxa a onda de luz). (P.A.U. Xuño 14) LABORATORIO 1. Fai un esquema da práctica de óptica, situando o obxecto, a lente e a imaxe, debuxando a marcha dos raios. (P.A.U. Set. 15) 2. Na práctica de óptica, púidose determinar a distancia focal da lente? Como? (P.A.U. Xuño 14, Set. 06) s(cm) 39,0 41,9 49,3 59,9 68,5 3. Medíronse no laboratorio os seguintes valores para a distancia obxecto-imaxe dunha lente converxente: s (cm) 64,3 58,6 48,8 40,6 37,8 a) Calcula o valor da potencia da lente. b) Explica a montaxe experimental utilizado. (P.A.U. Set. 16) 4. No laboratorio traballas con lentes converxentes e recolles nunha pantalla as imaxes dun obxecto. Explica o que sucede, axudándoche do diagrama de raios, cando sitúas o obxecto a unha distancia da lente inferior á súa distancia focal. (P.A.U. Set. 14) 5. Na práctica da lente converxente debuxa a marcha dos raios e a imaxe formada dun obxecto cando: a) Sitúase no foco. b) Sitúase entre o foco e o centro óptico. (P.A.U. Xuño 10) 6. Na práctica da lente converxente explica se hai algunha posición do obxecto para a que a imaxe sexa virtual e dereita, e outra para a que a imaxe sexa real e invertida e do mesmo tamaño que o obxecto. (P.A.U. Xuño 04) 7. Disponse dun proxector cunha lente delgada converxente, e deséxase proxectar unha transparencia de forma que a imaxe sexa real e invertida e maior que o obxecto. Explica como facelo. (Fai un debuxo mostrando a traxectoria dos raios) (P.A.U. Xuño 05) 8. Na práctica da lente converxente, fai un esquema da montaxe experimental seguido no laboratorio, explicando brevemente a misión de cada un dous elementos empregados. (P.A.U. Set. 05) 9. Cun banco óptico de lonxitude l, obsérvase que a imaxe producida por unha lente converxente é sempre virtual. Como se pode interpretar isto? (P.A.U. Set. 10, Xuño 07) 10. Fai un esquema da práctica de óptica, situando o obxecto, a lente e a imaxe, e debuxando a marcha dos raios para obter unha imaxe dereita e de maior tamaño que o obxecto. (P.A.U. Set. 07) 11. Debuxa a marcha dos raios nunha lente converxente, cando a imaxe producida é virtual. (P.A.U. Set. 08)

7 Física P.A.U. ÓPTICA Se na práctica de óptica xeométrica a lente converxente ten unha distancia focal imaxe de +10 cm, a que distancias da lente podes situar o obxecto para obter imaxes sobre a pantalla, se se cumpre que s + sʹ = 80 cm? Debuxa a marcha dos raios. (P.A.U. Set. 13) Cuestións e problemas das Probas de Acceso á Universidade (P.A.U.) en Galicia. Respostas e composición de Alfonso J. Barbadillo Marán.

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

Exercicios de Física 04. Óptica

Exercicios de Física 04. Óptica Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: RECTAS E PLANOS

EXERCICIOS DE REFORZO: RECTAS E PLANOS EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

A LUZ. ÓPTICA XEOMÉTRICA

A LUZ. ÓPTICA XEOMÉTRICA A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

PAU Xuño 2011 FÍSICA OPCIÓN A

PAU Xuño 2011 FÍSICA OPCIÓN A PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais

ONDAS. segundo a dirección de vibración. lonxitudinais. transversais PROGRAMACIÓN DE AULA MAPA DE CONTIDOS propagan enerxía, pero non materia clasifícanse ONDAS exemplos PROGRAMACIÓN DE AULA E magnitudes características segundo o medio de propagación segundo a dirección

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio. Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

1. Formato da proba [CS.PE.B03]

1. Formato da proba [CS.PE.B03] 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: tres cuestións. Problema 2: dúas cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

ELECTROMAGNETISMO Problemas PAAU

ELECTROMAGNETISMO Problemas PAAU ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 138 Definición Elementos dun poliedro 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2

ELECTROTECNIA. BLOQUE 1: ANÁLISE DE CIRCUÍTOS (Elixir A ou B) A.- No circuíto da figura determinar o valor da intensidade na resistencia R 2 36 ELECTROTECNIA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción (A ou B ) de cada bloque. Todos os problemas puntúan igual, é dicir,

Διαβάστε περισσότερα

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES

RADIACIÓNS ÓPTICAS ARTIFICIAIS INCOHERENTES Nº 33 - www.issga.es FRANCISCO JAVIER COPA RODRÍGUEZ Técnico superior en Prevención de Riscos Laborais Instituto Galego de Seguridade e Saúde Laboral Edita: Instituto Galego de Seguridade e Saúde Laboral

Διαβάστε περισσότερα

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS

SATÉLITES TERRESTRES E AS SÚAS ÓRBITAS INTRODUCIÓN O carácter da Física como ciencia experimental fai que as prácticas de laboratorio sexan un complemento imprescindible no ensino desta disciplina. As actividades prácticas poñen aos estudantes

Διαβάστε περισσότερα

Áreas de corpos xeométricos

Áreas de corpos xeométricos 9 Áreas de corpos xeométricos Obxectivos Nesta quincena aprenderás a: Antes de empezar 1.Área dos prismas....... páx.164 Área dos prismas Calcular a área de prismas rectos de calquera número de caras.

Διαβάστε περισσότερα

PAU XUÑO 2013 FÍSICA

PAU XUÑO 2013 FÍSICA PAU XUÑO 2013 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

ENERXÍA, TRABALLO E POTENCIA

ENERXÍA, TRABALLO E POTENCIA NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente

Διαβάστε περισσότερα

EQUILIBRIO QUÍMICO PROBLEMAS FASE GAS

EQUILIBRIO QUÍMICO PROBLEMAS FASE GAS Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO PROBLEMAS FASE GAS 1. A 670 K, un recipiente de 2 dm³ contén unha mestura gasosa en equilibrio de 0,003 moles de hidróxeno, 0,003 moles de iodo e

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA OPCIÓN A

PAU XUÑO 2016 FÍSICA OPCIÓN A PAU Código: 25 XUÑO 2016 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás

Διαβάστε περισσότερα

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles.

Obxectivos. Resumo. titor. corpos xeométricos. Calcular as. súas áreas volumes. Terra. deles. 8 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Distinguir as clases de corpos xeométricos. Construíloss a partir do seu desenvolvemento plano. Calcular as súas áreas e volumes. Localizar

Διαβάστε περισσότερα

Trigonometría. Obxectivos. Antes de empezar.

Trigonometría. Obxectivos. Antes de empezar. 7 Trigonometría Obxectivos Nesta quincena aprenderás a: Calcular as razóns trigonométricas dun ángulo. Calcular todas as razóns trigonométricas dun ángulo a partir dunha delas. Resolver triángulos rectángulos

Διαβάστε περισσότερα

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo.

CADERNO Nº 11 NOME: DATA: / / Estatística. Representar e interpretar gráficos estatísticos, e saber cando é conveniente utilizar cada tipo. Estatística Contidos 1. Facer estatística Necesidade Poboación e mostra Variables 2. Reconto e gráficos Reconto de datos Gráficos Agrupación de datos en intervalos 3. Medidas de centralización e posición

Διαβάστε περισσότερα

O SOL E A ENERXÍA SOLAR

O SOL E A ENERXÍA SOLAR O SOL E A ENERXÍA SOLAR Resumo: Cos exercicios que se propoñen nesta unidade preténdese que os alumnos coñezan o Sol un pouco mellor. Danse as ferramentas necesarias para calcular a enerxía solar que se

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA

Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA Química P.A.U. TERMOQUÍMICA 1 TERMOQUÍMICA PROBLEMAS TERMOQUÍMICA 1. Para o proceso Fe 2O 3 (s) + 2 Al (s) Al 2O 3 (s) + 2 Fe (s), calcule: a) A entalpía da reacción en condicións estándar e a calor desprendida

Διαβάστε περισσότερα

Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice de aluminio.

Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice de aluminio. HCH HCT HCH HCT Ventiladores helicoidales murales o tubulares, de gran robustez Ventiladores helicoidales murales o tubulares, versión PL equipados con hélice de plástico y versión AL equipados con hélice

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα

x 2 6º- Achar a ecuación da recta que pasa polo punto medio do segmento de extremos

x 2 6º- Achar a ecuación da recta que pasa polo punto medio do segmento de extremos º- Dados os puntos A(,, ), B(, 4), C( 5,, ) EXERCICIOS XEOMETRÍA Acha as coodenadas dun cuato punto D coa condición que o cuadiláteo ABCD sexa un paalelogamo º- Escibi as ecuacións paaméticas, na foma

Διαβάστε περισσότερα

Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO

Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO PROBLEMAS FASE GAS 1. A 670 K, un recipiente de 2 dm 3 contén unha mestura gasosa en equilibrio de 0,003 moles de hidróxeno, 0,003 moles de iodo e

Διαβάστε περισσότερα

Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES

Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES Química P.A.U. ÁCIDOS E BASES 1 ÁCIDOS E BASES PROBLEMAS ÁCIDO/BASE DÉBIL 1. Unha disolución de amoníaco de concentración 0,01 mol/dm 3 está ionizada nun 4,2%. a) Escriba a reacción de disociación e calcule

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEIS DE KEPLER 1. O peíodo de otación da Tea aedo do Sol é un ano e o aio da óbita é 1,5 10¹¹ m. Se Xúpite ten un peíodo de apoximadamente 12 anos, e se

Διαβάστε περισσότερα

Expresións alxébricas

Expresións alxébricas Expresións alxébricas Contidos 1. Expresións alxébricas Que son? Como as obtemos? Valor numérico 2. Monomios Que son? Sumar e restar Multiplicar 3. Polinomios Que son? Sumar e restar Multiplicar por un

Διαβάστε περισσότερα

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación

As Mareas INDICE. 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación As Mareas INDICE 1. Introducción 2. Forza das mareas 3. Por que temos dúas mareas ó día? 4. Predición de marea 5. Aviso para a navegación Introducción A marea é a variación do nivel da superficie libre

Διαβάστε περισσότερα

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl

S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA EXTRACCIÓN DO ADN EXTRACCIÓN DO ADN CUANTIFICACIÓN. 260 280 260/280 ng/µl CUANTIFICACIÖN 26/VI/2013 S1301005 A REACCIÓN EN CADEA DA POLIMERASA (PCR) NA INDUSTRIA ALIMENTARIA - ESPECTROFOTÓMETRO: Cuantificación da concentración do ADN extraido. Medimos a absorbancia a dúas lonxitudes

Διαβάστε περισσότερα

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( )

a) Calcula m de modo que o produto escalar de a( 3, 2 ) e b( m, 5 ) sexa igual a 5. ( ) .. MATEMÁTICAS I PENDENTES (º PARTE) a) Calcula m de modo que o produto escalar de a(, ) e b( m, 5 ) sea igual a 5. b) Calcula a proección de a sobre c, sendo c,. ( ) 5 Se (, ) e y,. Calcula: a) Un vector

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio 3 Polinomios Obxectivos Nesta quincena aprenderás a: Achar a expresión en coeficientes dun polinomio e operar con eles. Calcular o valor numérico dun polinomio. Recoñecer algunhas identidades notables,

Διαβάστε περισσότερα

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA

CiUG COMISIÓN INTERUNIVERSITARIA DE GALICIA CiUG COMSÓN NTERUNVERSTARA DE GALCA PAAU (LOXSE) XUÑO 200 Código: 36 ELECTROTECNA O exame consta de dez problemas, debendo o alumno elixir catro, un de cada bloque. Non é necesario elixir a mesma opción

Διαβάστε περισσότερα

1 Experimento aleatorio. Espazo de mostra. Sucesos

1 Experimento aleatorio. Espazo de mostra. Sucesos V. PROBABILIDADE E ESTATÍSTICA 1 Experimento aleatorio. Espazo de mostra. Sucesos 1 Experimento aleatorio. Concepto e exemplos Experimentos aleatorios son aqueles que ao repetilos nas mesmas condicións

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

CRITERIOS DE AVALIACIÓN/CORRECCIÓN

CRITERIOS DE AVALIACIÓN/CORRECCIÓN CRITERIOS DE AVALIACIÓN/CORRECCIÓN BLOQUE A: Valorarase cada cuestión arcada correctaente con 0,5 puntos, sen necesidade de xustificación. Non se terán en conta as cuestións al respondidas. BLOQUE B: Só

Διαβάστε περισσότερα

MECÁNICA CUÁNTICA 2. ORIXES DA TEORÍA CUÁNTICA: RADIACIÓN DO CORPO NEGRO. HIPÓTESE DE PLANCK

MECÁNICA CUÁNTICA 2. ORIXES DA TEORÍA CUÁNTICA: RADIACIÓN DO CORPO NEGRO. HIPÓTESE DE PLANCK MECÁNICA CUÁNTICA 1. INTRODUCIÓN No tema anterior vimos como a busca dun sistema de referencia privilexiado, en repouso absoluto, chocou de cheo cos postulados da Física Clásica e como os intentos de solucionalo

Διαβάστε περισσότερα

Indución electromagnética

Indución electromagnética Indución electromagnética 1 Indución electromagnética 1. EXPERIECIA DE FARADAY E HERY. A experiencia de Oersted (1820) demostrou que unha corrente eléctrica crea ao seu redor un campo magnético. Como consecuencia

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial

Ámbito científico tecnolóxico. Xeometría. Unidade didáctica 2. Módulo 3. Educación a distancia semipresencial Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 2 Xeometría Índice 1. Introdución... 3 1.1 Descrición da unidade

Διαβάστε περισσότερα

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1

Profesor: Guillermo F. Cloos Física e química 1º Bacharelato Estrutura atómica 2 1 As leis ponderais e volumétricas, estudadas no anterior tema, analizadas á luz da teoría atómica que hoxe manexamos resultan ser unha consecuencia lóxica da mesma, pero non debemos esquecer que historicamente

Διαβάστε περισσότερα

1.- Movemento Ondulatorio. Clases de onda! Ondas Harmónias. Función de onda unidimensional! Enerxía! 5

1.- Movemento Ondulatorio. Clases de onda! Ondas Harmónias. Función de onda unidimensional! Enerxía! 5 1.- Moeento Ondulatorio. Clases de onda!.- Ondas Harónias. Función de onda unidiensional! 3 3.- Enerxía! 5 3.1.- Absorción!... 6 4.- Principio de HUYGENS! 6 4.1.- Reflexión!... 6 4..- Refracción!... 7

Διαβάστε περισσότερα

Números reais. Obxectivos. Antes de empezar.

Números reais. Obxectivos. Antes de empezar. 1 Números reais Obxectivos Nesta quincena aprenderás a: Clasificar os números reais en racionais e irracionais. Aproximar números con decimais ata unha orde dada. Calcular a cota de erro dunha aproximación.

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

ENLACE QUÍMICO CUESTIÓNS ENLACE IÓNICO. 1. Considerando o elemento alcalinotérreo do terceiro perquíodo e o segundo elemento do grupo dos halóxenos.

ENLACE QUÍMICO CUESTIÓNS ENLACE IÓNICO. 1. Considerando o elemento alcalinotérreo do terceiro perquíodo e o segundo elemento do grupo dos halóxenos. QQuímica P.A.U. ELACE QUÍMICO 1 ELACE QUÍMICO CUESTIÓS ELACE IÓICO 1. Considerando o elemento alcalinotérreo do terceiro perquíodo e o segundo elemento do grupo dos halóxenos. a) Escribe as súas configuracións

Διαβάστε περισσότερα