Να οδηγηθούμε σε μια αρχιτεκτονική που έχει μεγάλο αριθμό καταχωρητών και να εφαρμόσουμε τεχνική ελαχιστοποίησης καταχωρητών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Να οδηγηθούμε σε μια αρχιτεκτονική που έχει μεγάλο αριθμό καταχωρητών και να εφαρμόσουμε τεχνική ελαχιστοποίησης καταχωρητών"

Transcript

1 Folding

2 Να καθορίσουμε συστηματικά τα κυκλώματα ελέγχου μιας DSP αρχιτεκτονικής χρησιμοποιώντας folding μετασχηματισμό ώστε να πραγματοποιούμε πολλαπλές αλγοριθμικές πράξεις σε ένα λειτουργικό στοιχείο με ένα πολυπλεγμένο στο χρόνο μηχανισμό. Να μειώσουμε τον αριθμό των hardware λειτουργικών στοιχείων functional units (FUs) κατά ένα παράγοντα N αυξάνοντας τον χρόνο υπολογισμών κατά αντίστοιχο παράγοντα N. Να οδηγηθούμε σε μια αρχιτεκτονική που έχει μεγάλο αριθμό καταχωρητών και να εφαρμόσουμε τεχνική ελαχιστοποίησης καταχωρητών

3 Λειτουργικό Στοιχείο Functional Unit (FU)

4 Μια συστηματική τεχνική ώστε να σχεδιάζουμε hardware κυκλώματα ελέγχου (συνήθως) όπου αρκετές αλγοριθμικές λειτουργίες πραγματοποιούνται στο ίδιο λειτουργικό στοιχείο με ένα πολυπλεγμένο στο χρόνο μηχανισμό. U, V: κόμβοι (λειτουργίες) του αρχικού DFG H U, H V : κόμβοι (λειτουργικά στοιχεία) του folded DFG W (x) : x-th επανάληψη του κόμβου W U e V: μια ακμή e από τον κόμβο U στον V w(e): αριθμός στοιχείων καθυστέρησης στην ακμή e Παράγοντας Folding N Ο αριθμός των λειτουργιών που πραγματοποιούνται χρησιμοποιώντας ένα FU Folding Σύνολο Ένα ταξινομημένο σύνολο από λειτουργίες που θα εκτελούνται στο ίδιο FU H θέση της λειτουργίας U στο folding σύνολο λέμε ότι είναι η folding τάξη του U Το folding σύνολο αναπαριστά τον χρησιμοποιούμενο folding μετασχηματισμό

5 P U : αριθμός pipeline επιπέδων του H U. P U = 0 σημαίνει ότι H U δεν είναι pipelined. e D F (U V): (folding εξίσωση) αριθμός κύκλων για τους οποίους το αποτέλεσμα του H U πρέπει να είναι αποθηκευμένο D F (U V ) = [N(l + w(e))] + v] [Nl + P U + u] = Nw(e) P U + v u Αρνητική τιμή στην folding εξίσωση D F είναι δυνατή πριν από retiming των folding εξισώσεων κόμβοι (λειτουργικά στοιχεία) e Lan-Da Van VL

6 Ο Folding Μετασχηματισμός U (l) w(e) V (l+w(e)) N folded N folded H U (Nl+u) P U +D F H V (N(l+w(e))+v) Lan-Da Van VLSI - DSP- 6-6

7 Folding factor N = 4 Folding Σύνολο S 1 = {4, 2, 3, 1}, S 2 = {5, 8, 6, 7}, όπου S 1 αναφέρεται σε όλες τις προσθέσεις και S 2 αναφέρεται σε όλους τους πολλαπλασιασμούς. Υποθέτω ότι Πρόσθεση: 1 u.t. Πολλαπλασιασμός: 2 u.t. Lan-Da Van Χρησιμοποιώ αθροιστές 1-επιπέδου πολλ/στες 2-επιπέδων pipeline

8 Folding Retimed Biquad Φίλτρο folding εξισώσεις e D F (U V ) = [N(l + w(e))] + v] [Nl + P+ u] = Nw(e) P U + v u Για να είναι εφικτό το folding πρέπει D F (U V ) 0 για όλες τις ακμές

9 Lan-Da Van VLSI- DSP- 6-9

10 Είναι μια διαδικασία ώστε να υπολογίζω τον ελάχιστο αριθμό καταχωρητών που χρειάζονται στην υλοποίηση ενός DSP αλγορίθμου σε υλικό. Γραμμική Ανάλυση Χρόνου Ζωής Κυκλική Ανάλυση Χρόνου Ζωής Υπολογίζεται ο αριθμός των ενεργών μεταβλητών σε κάθε χρονικό unit Ο μέγιστος αριθμός των ενεργών μεταβλητών προσδιορίζεται Τεχνική κατανομής καταχωρητών Forward-backward Lan-Da Van VLSI- DSP- 6-10

11 Μεταβλητές {a, b, c} max {0,1,2,2,2,2,2,2}=2 Έμμεση περιοδικότητα Τρείς επαναλήψεις με N=6

12 a b c d e f g h i Ανάστροφος a d g b e h c f i i h g f e d c b a Matrix Transpose i f c h e b g d a

13 VLSI Digital Signal Processing Systems T zlout = zero-latency χρόνος εξόδου T diff = T zlout T input T output = T zlout + max{-t diff }

14 Γραμμικό Lifetime διάγραμμα Κυκλικό Lifetime διάγραμμα Ο ελάχιστος αριθμός καταχωρητών είναι 4.

15 Βήμα 1: Βρίσκω τον ελάχιστο αριθμό καταχωρητών με lifetime ανάλυση. Βήμα 2: Βάζω κάθε μεταβλητή εισόδου στο χρονικό βήμα που αντιστοιχεί στην αρχή της διάρκειας ζωής της Βήμα 3: Κάθε μεταβλητή κατανέμεται με forward τρόπο μέχρι να απενεργοποιηθεί (να είναι νεκρή) ή να φτάσει τον τελευταίο καταχωρητή. Βήμα 4: Μια και η κατανομή είναι περιοδική, η κατανομή της συγκεκριμένης επανάληψης θα επαναλαμβάνεται και στις μελλοντικές επαναλήψεις. Άρα αρκεί να κατανήμουμε τις θέσεις των καταχωρητών στα πλαίσια μιας περιόδου N. Βήμα 5: Αν μια μεταβλητή που φτάσει στον τελευταίο καταχωρητή είναι ακόμα ενεργή, τότε αυτή η μεταβλητή κατανέμεται σε καταχωρητή με backward τρόπο. Βήμα 6: Επαναλαμβάνω τα βήματα 4 και 5 όσες φορές χρειάζεται μέχρι η κατανομή ολοκληρωθεί.

16

17 Βήμα 1: Κάνω retiming για την folded αρχιτεκτονική Βήμα 2 Γράφω τις folding εξισώσεις Βήμα 3: Χρησιμοποιώ τις folding εξισώσεις για να φτιάξω το τον lifetime πίνακα Βήμα 4: Φτιάχνω το lifetime διάγραμμα και καθορίζω τον αριθμό των απαραίτητων καταχωρητών Βήμα 5: Κάνω forward-backward κατανομή καταχωρητών Βήμα 6: σχεδιάζω την folded αρχιτεκτονική με τον ελάχιστο αριθμό καταχωρητών

18

19

20 Step 1: Retiming Retiming Invalid folding: DF(1 2) = -3 DF(6 4) = -4 DF(8 4) = -3 DF(7 3) = -3

21 Step 2: Folding Equations D F (U V) = Nw(e) P u + v u D F (1 2) = 4(1) = 1 D F (1 5) = 4(1) = 0 Step 3: Construct the lifetime table D F (1 6) = 4(1) = 2 D F (1 7) = 4(1) = 3 D F (1 8) = 4(2) = 5 D F (3 1) = 4(0) = 0 D F (4 2) = 4(0) = 0 D F (5 3) = 4(0) = 0 D F (6 4) = 4(1) = 4 D F (7 3) = 4(1) = 1 D F (8 4) = 4(1) = 1 T input T output = u + P u = u + P u + max v {D F (U V) }

22 Step 4: Draw the Lifetime Chart Folding Factor = 4 Step 5: Register Allocation Ο ελάχιστος Αριθμός των καταχωρητών είναι 2.

23 Step 6: Folded Architecture VLSI Digital Signal Processing Systems

24 Step 1: Retiming Retiming Invalid folding: DF(3 1) = -3 DF(4 1) = -2

25 Step 2: Folding Equations Step 3: Construct the lifetime table D F (U V) = Nw(e) P u + v - u D F (1 2) = 4(1) = 0 D F (2 3) = 4(1) = 5 D F (2 4) = 4(1) = 2 D F (3 1) = 4(1) = 1 D F (4 1) = 4(2) = 0 T input T output = u + P u = u + P u + max v {D F (U V) }

26 Step 4: Draw the Lifetime Chart Step 5: Register Allocation Folding Factor = 2 The minimum number of registers is 3.

27 Step 6: Folded Architecture

Pipelining και Παράλληλη Επεξεργασία

Pipelining και Παράλληλη Επεξεργασία Pipelining και Παράλληλη Επεξεργασία Εισαγωγή Σωλήνωση - Pipelining Βασισμένη στην ιδέα σωλήνα που στέλνει νερό χωρίς να περιμένει το νερό που μπαίνει σε ένα σωλήνα να τελειώσει water pipe Μπορεί να οδηγήσει

Διαβάστε περισσότερα

Το ολοκληρωμένο κύκλωμα μιας ΚΜΕ. «Φέτα» ημιαγωγών (wafer) από τη διαδικασία παραγωγής ΚΜΕ

Το ολοκληρωμένο κύκλωμα μιας ΚΜΕ. «Φέτα» ημιαγωγών (wafer) από τη διαδικασία παραγωγής ΚΜΕ Το ολοκληρωμένο κύκλωμα μιας ΚΜΕ Η Κεντρική Μονάδα Επεξεργασίας (Central Processing Unit -CPU) ή απλούστερα επεξεργαστής αποτελεί το μέρος του υλικού που εκτελεί τις εντολές ενός προγράμματος υπολογιστή

Διαβάστε περισσότερα

Κάθε functional unit χρησιμοποιείται μια φορά σε κάθε κύκλο: ανάγκη για πολλαπλό hardware = κόστος υλοποίησης!

Κάθε functional unit χρησιμοποιείται μια φορά σε κάθε κύκλο: ανάγκη για πολλαπλό hardware = κόστος υλοποίησης! Single-cyle υλοποίηση: Διάρκεια κύκλου ίση με τη μεγαλύτερη εντολή-worst case delay (εδώ η lw) = χαμηλή απόδοση! Αντιβαίνει με αρχή: Κάνε την πιο απλή περίπτωση γρήγορη (ίσως και εις βάρος των πιο «σύνθετων»

Διαβάστε περισσότερα

Στοιχεία αρχιτεκτονικής μικροεπεξεργαστή

Στοιχεία αρχιτεκτονικής μικροεπεξεργαστή Στοιχεία αρχιτεκτονικής μικροεπεξεργαστή Αριθμός bit δίαυλου δεδομένων (Data Bus) Αριθμός bit δίαυλου διευθύνσεων (Address Bus) Μέγιστη συχνότητα λειτουργίας (Clock Frequency) Τύποι εντολών Αριθμητική

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

Πρότυπο περιφερειακής ολίσθησης για ψηφιακά. Std ) Δημήτρης Νικολός, Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής, Παν.

Πρότυπο περιφερειακής ολίσθησης για ψηφιακά. Std ) Δημήτρης Νικολός, Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής, Παν. Πρότυπο περιφερειακής ολίσθησης για ψηφιακά κυκλώματα (Digital boundary scan, IEEE Std. 1149.1) Δημήτρης Νικολός, Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής, Παν. Πατρών Περίγραμμα παρουσίασης

Διαβάστε περισσότερα

ιαµέριση - Partitioning

ιαµέριση - Partitioning ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 2 Βασικά μέρη συστήματος ΨΕΣ Φίλτρο αντι-αναδίπλωσης

Διαβάστε περισσότερα

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Περιεχόμενα Μεταβατικό Κλείσιμο Συνεκτικές συνιστώσες Συντομότερα μονοπάτια Breadth First Spanning

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Ανάλυση Ακολουθιακών Κυκλωμάτων Ανάλυση: Ο καθορισμός μιας κατάλληλης περιγραφής η οποία επιδεικνύει

Διαβάστε περισσότερα

Σχεδίαση υψηλών επιδόσεων pipelining παράλληλη επεξεργασία

Σχεδίαση υψηλών επιδόσεων pipelining παράλληλη επεξεργασία Σχεδίαση υψηλών επιδόσεων pipelining παράλληλη επεξεργασία Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Φθινόπωρο 2008 ΗΥ220 1 Περιεχόμενα μαθήματος Ρυθμός εκτέλεσης εργασιών

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Διακριτού Χρόνου Σειρές Fourier Περιοδική Επέκταση Σήµατος Πεπερασµένης Χρονικής Διάρκειας.

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Περιεχόμενα minimum weight spanning tree connected components transitive closure shortest paths

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 i: Καταχωρητές Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές Ολίσθησης Σειριακή Φόρτωση Σειριακή Ολίσθηση Καταχωρητές Ολίσθησης Παράλληλης Φόρτωσης

Διαβάστε περισσότερα

Μετρικές & Επιδόσεις. Κεφάλαιο V

Μετρικές & Επιδόσεις. Κεφάλαιο V Μετρικές & Επιδόσεις Κεφάλαιο V Χρόνος εκτέλεσης & επιτάχυνση Σειριακός χρόνος εκτέλεσης: Τ (για τον καλύτερο σειριακό αλγόριθμο) Παράλληλος χρόνος εκτέλεσης: (με επεξεργαστές) Επιτάχυνση (speedup): S

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών Απόδοση ΚΜΕ. (Μέτρηση και τεχνικές βελτίωσης απόδοσης)

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών Απόδοση ΚΜΕ. (Μέτρηση και τεχνικές βελτίωσης απόδοσης) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2016-17 Απόδοση ΚΜΕ (Μέτρηση και τεχνικές βελτίωσης απόδοσης) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Κεντρική Μονάδα Επεξεργασίας

Διαβάστε περισσότερα

Κάθε functional unit χρησιµοποιείται µια φορά σε κάθε κύκλο: ανάγκη για πολλαπλό hardware = κόστος υλοποίησης!

Κάθε functional unit χρησιµοποιείται µια φορά σε κάθε κύκλο: ανάγκη για πολλαπλό hardware = κόστος υλοποίησης! Single-cyle υλοποίηση: ιάρκεια κύκλου ίση µε τη µεγαλύτερη εντολή-worst case delay (εδώ η lw) = χαµηλή απόδοση! Αντιβαίνει µε αρχή: Κάνε την πιο απλή περίπτωση γρήγορη (ίσως και εις βάρος των πιο «σύνθετων»

Διαβάστε περισσότερα

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός (ΓΠ)

Γραµµικός Προγραµµατισµός (ΓΠ) Γραµµικός Προγραµµατισµός (ΓΠ) Περίληψη Επίλυση δυσδιάστατων προβληµάτων Η µέθοδος simplex Τυπική µορφή Ακέραιος Προγραµµατισµός Προγραµµατισµός Παραγωγής Προϊόν Προϊόν 2 Παραγωγική Δυνατότητα Μηχ. 4 Μηχ.

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

i Throughput: Ο ρυθμός ολοκλήρωσης έργου σε συγκεκριμένο χρόνο

i Throughput: Ο ρυθμός ολοκλήρωσης έργου σε συγκεκριμένο χρόνο Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 6-7 Απόδοση ΚΜΕ (Μέτρηση και τεχνικές βελτίωσης απόδοσης) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Κεντρική Μονάδα Επεξεργασίας

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Μάθημα 4: Κεντρική Μονάδα Επεξεργασίας

Μάθημα 4: Κεντρική Μονάδα Επεξεργασίας Μάθημα 4: Κεντρική Μονάδα Επεξεργασίας 4.1 Γενικά Ο υπολογιστής επεξεργάζεται δεδομένα ακολουθώντας βήμα βήμα, τις εντολές ενός προγράμματος. Το τμήμα του υπολογιστή, που εκτελεί τις εντολές και συντονίζει

Διαβάστε περισσότερα

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Μηχανές Πεπερασμένων Καταστάσεων

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Μηχανές Πεπερασμένων Καταστάσεων «Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Μηχανές Πεπερασμένων Καταστάσεων Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 8//28 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Σχεδιασμός Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα

Διαβάστε περισσότερα

Συστήματα VLSI. Εισαγωγή. Γιώργος Δημητρακόπουλος. Δημοκρίτειο Πανεπιστήμιο Θράκης. Άνοιξη 2014

Συστήματα VLSI. Εισαγωγή. Γιώργος Δημητρακόπουλος. Δημοκρίτειο Πανεπιστήμιο Θράκης. Άνοιξη 2014 Συστήματα VLSI Εισαγωγή Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Άνοιξη 2014 Συστήματα VLSI 1 Τα ολοκληρωμένα κυκλώματα από «μέσα» Συστήματα VLSI 2 Τα εργαλεία της σχεδίασης Algorithms-Applications

Διαβάστε περισσότερα

Digital Image Processing

Digital Image Processing Digital Image Processing Φιλτράρισμα στο πεδίο των Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Φίλτρο: μια διάταξη ή

Διαβάστε περισσότερα

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί Κατηγορίες προβλημάτων (σε μια διάσταση) Εισαγωγικές έννοιες Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Το πρόβλημα

Διαβάστε περισσότερα

Υλοποιήσεις Ψηφιακών Φίλτρων

Υλοποιήσεις Ψηφιακών Φίλτρων Ψηφιακή Επεξεργασία Σηµάτων 10 Υλοποιήσεις Ψηφιακών Φίλτρων Α. Εισαγωγή Οποιοδήποτε γραµµικό χρονικά αµετάβλητο σύστηµα διακριτού χρόνου χαρακτηρίζεται πλήρως από τη συνάρτηση µεταφοράς του η οποία έχει

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων HM Ανάλυση Ηλεκτρικών Κυκλωμάτων Δρ. Σταύρος Ιεζεκιήλ iezekiel@ucy.ac.cy reen Park, Γραφείο Τηλ. 899 Διάλεξη 4 Από την προηγούμενη διάλεξη Πραγματικές πηγές τάσης και πραγματικές πηγές ρεύματος έχουν εσωτερική

Διαβάστε περισσότερα

Σήματα και Συστήματα ΙΙ

Σήματα και Συστήματα ΙΙ Σήματα και Συστήματα ΙΙ Ενότητα 3: Διακριτός και Ταχύς Μετασχηματισμός Fourier (DTF & FFT) Α. Ν. Σκόδρας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Επιμέλεια: Αθανάσιος Ν. Σκόδρας, Καθηγητής

Διαβάστε περισσότερα

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης

Διαβάστε περισσότερα

Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ

Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ 1.Σ, 2.Σ, 3. Λ, 4.Σ, 5.Σ Στο α) ανήκουν: 1,2,5,6,7 Στο β) ανήκουν: 3,4,8,9,10 1.-Λ, 2.-Λ, 3.-Σ, 4.-Σ, 5.-Σ 1. -Πραγματικός, 2. -Αρφαριθμητικός, 3.-Αλφαριθμητικός,

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

Θέματα Διπλωματικών Εργασιών

Θέματα Διπλωματικών Εργασιών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Εργαστήριο Μικροϋπολογιστών & Ψηφιακών Συστημάτων Τηλ.: 210 772-2500, Γραμμ.: 210 772-3548,

Διαβάστε περισσότερα

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής Κεφάλαιο 4 ο Ο Προσωπικός Υπολογιστής Μάθημα 4.3 Ο Επεξεργαστής - Εισαγωγή - Συχνότητα λειτουργίας - Εύρος διαδρόμου δεδομένων - Εύρος διαδρόμου διευθύνσεων - Εύρος καταχωρητών Όταν ολοκληρώσεις το μάθημα

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων 15/11/2010. Σχεδιασμός Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων 15/11/2010. Σχεδιασμός Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ 20: Σχεδιασμός Ψηφιακών Συστημάτων 5//200 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σχεδιασμός Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Σχεδιασμός Ακολουθιακών Κυκλωμάτων Αρχή: Μια λίστα/περιγραφή

Διαβάστε περισσότερα

Κεφάλαιο 2.4 Matrix Algorithms

Κεφάλαιο 2.4 Matrix Algorithms Κεφάλαιο 2.4 Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική Κατασκευή ΝxNxN Mesh of trees (1/3) Στον ΝxNxN κύβο προσθέτω τους εξής κόμβους:

Διαβάστε περισσότερα

Μάθημα 3.2: Κεντρική Μονάδα Επεξεργασίας

Μάθημα 3.2: Κεντρική Μονάδα Επεξεργασίας Κεφάλαιο 3 ο Αρχιτεκτονική Υπολογιστών Μάθημα 3.: Κεντρική Μονάδα Επεξεργασίας Όταν ολοκληρώσεις το κεφάλαιο θα μπορείς: Να σχεδιάζεις την εσωτερική δομή της ΚΜΕ και να εξηγείς τη λειτουργία των επιμέρους

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ (Τμήματα Υπολογιστή) ΕΚΠΑΙΔΕΥΤΗΣ:ΠΟΖΟΥΚΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΜΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ Κάθε ηλεκτρονικός υπολογιστής αποτελείται

Διαβάστε περισσότερα

Ψευδοκώδικας. November 7, 2011

Ψευδοκώδικας. November 7, 2011 Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε

Διαβάστε περισσότερα

Minimum Spanning Tree: Prim's Algorithm

Minimum Spanning Tree: Prim's Algorithm Minimum Spanning Tree: Prim's Algorithm 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph. 2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Δοκιμή Έλεγχος Αλγορίθμου Για να

Διαβάστε περισσότερα

Αλγόριθµοι Εκτίµησης Καθυστέρησης και

Αλγόριθµοι Εκτίµησης Καθυστέρησης και Αλγόριθµοι Εκτίµησης Καθυστέρησης και Βελτιστοποίησης Εισαγωγή Το κύριο πρόβληµα στην σχεδίαση κυκλωµάτων είναι η επίτευξη της µέγιστης απόδοσης για την δεδοµένη τεχνολογία. Μεγιστοποίηση απόδοσης: (α)

Διαβάστε περισσότερα

Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL

Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL Διδάσκoντες: Δρ. Γιώργος Ζάγγουλοςκαι Δρ. Παναγιώτα Δημοσθένους Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα Βάζοντας την εντολή αυτή σε οποιοδήποτε αντικείμενο μπορούμε να αλλάζουμε

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ Γρήγορος Μετασχηματισμός Fourier Το ζεύγος εξισώσεων που ορίζουν το

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ ΣΗΜΕΡΑ Ιστορική αναδρομή Υπολογιστικές μηχανές

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ ΣΗΜΕΡΑ Ιστορική αναδρομή Υπολογιστικές μηχανές ΠΕΡΙΕΧΟΜΕΝΑ 1 ΚΕΦΑΛΑΙΟ 1... 11 ΟΙ ΥΠΟΛΟΓΙΣΤΕΣ ΑΠΟ ΤΗΝ ΑΡΧΑΙΟΤΗΤΑ ΜΕΧΡΙ... 11 ΣΗΜΕΡΑ... 11 1.1 Ιστορική αναδρομή... 13 1.1.1 Υπολογιστικές μηχανές στην αρχαιότητα... 13 1.1.2 17ο έως τον 19ο... 14 1.1.3

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων

Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Με τον όρο ανάλυση ενός κυκλώματος εννοούμε τον προσδιορισμό της συμπεριφοράς του κάτω από συγκεκριμένες συνθήκες λειτουργίας. Έτσι, για ένα συνδυαστικό κύκλωμα,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Εισαγωγικές έννοιες για σχεδιασμό με τη VHDL

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Εισαγωγικές έννοιες για σχεδιασμό με τη VHDL Περιγραφή Κυκλωμάτων με χρήση της VHDL Εισαγωγικές έννοιες για σχεδιασμό με τη VHDL Οργάνωση Παρουσίασης VHDL εισαγωγικές έννοιες Ροή και επίπεδα σχεδιασμού ψηφιακών κυκλωμάτων Μοντελοποίηση Καθυστερήσεων

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΗΜΥ 213 Εργαστήριο Οργάνωσης Υπολογιστών και Μικροεπεξεργαστών

ΗΜΥ 213 Εργαστήριο Οργάνωσης Υπολογιστών και Μικροεπεξεργαστών ΗΜΥ 213 Εργαστήριο Οργάνωσης Υπολογιστών και Μικροεπεξεργαστών Διδάσκοντες: Νικόλας Στυλιανίδης Γιώργος Ζάγγουλος Email: nstylianides@gmail.com zaggoulos.george@ucy.ac.cy Εισαγωγή στους Μικροεπεξεργαστές

Διαβάστε περισσότερα

4. ΔΙΚΤΥΑ

4. ΔΙΚΤΥΑ . ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #5: Διαγράμματα ροής (Flow Charts), Δομές επανάληψης Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Διαγράμματα ροής (Flow Charts), Δομές επανάληψης

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

1 η εξεταστική περίοδος από 20/10/2013 έως 17/11/2013. γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ

1 η εξεταστική περίοδος από 20/10/2013 έως 17/11/2013. γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Τάξη: Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: ΒΛΙΣΙΔΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Α1. Να αναφέρετε τους λόγους για τους οποίους

Διαβάστε περισσότερα

Το υλικό του υπολογιστή. Υλικό (hardware) είναι οτιδήποτε έχει μια υλικήφυσική υπόσταση σε ένα υπολογιστικό σύστημα.

Το υλικό του υπολογιστή. Υλικό (hardware) είναι οτιδήποτε έχει μια υλικήφυσική υπόσταση σε ένα υπολογιστικό σύστημα. Το υλικό του υπολογιστή Υλικό (hardware) είναι οτιδήποτε έχει μια υλικήφυσική υπόσταση σε ένα υπολογιστικό σύστημα. Αρχιτεκτονική του υπολογιστή H δομή και η συμπεριφορά του υλικού ονομάζεται αρχιτεκτονική

Διαβάστε περισσότερα

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα.

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Είδαμε τι είναι πρόβλημα, τι είναι αλγόριθμος και τέλος τι είναι πρόγραμμα. Πρέπει να μπορείτε να ξεχωρίζετε αυτές τις έννοιες και να αντιλαμβάνεστε

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Αρχιτεκτονική Eckert-von Neumann. Πως λειτουργεί η ΚΜΕ; Κεντρική μονάδα επεξεργασίας [3] ΕΠΛ 031: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Αρχιτεκτονική Eckert-von Neumann. Πως λειτουργεί η ΚΜΕ; Κεντρική μονάδα επεξεργασίας [3] ΕΠΛ 031: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Αρχιτεκτονική Eckert-von Neumann εισόδου μεταφορά δεδομένων από έξω προς τον Η/Υ εξόδου μεταφορά δεδομένων από τον Η/Υ προς τα έξω ΕΠΛ 031: ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Κύκλος Μηχανής κεντρικός έλεγχος/πράξεις

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα

Μαθηματικά: Αριθμοί, επίπεδο 2 και άνω. εξερευνώντας τους αριθμούς: Μεγαλύτερο από, Μικρότερο από

Μαθηματικά: Αριθμοί, επίπεδο 2 και άνω. εξερευνώντας τους αριθμούς: Μεγαλύτερο από, Μικρότερο από 8η Δραστηριότητα Νίκησε τον χρόνο Δίκτυα ταξινόμησης Περίληψη Αν και οι υπολογιστές είναι γρήγοροι, υπάρχει ένα όριο στο πόσο γρήγορα μπορούν να επιλύουν τα προβλήματα. Ένας τρόπος για να επιταχύνουμε

Διαβάστε περισσότερα

Μάριος Αγγελίδης Ενότητες βιβλίου: 2.1, 2.3, 6.1 (εκτός ύλης αλλά χρειάζεται για την συνέχεια) Ώρες διδασκαλίας: 1

Μάριος Αγγελίδης Ενότητες βιβλίου: 2.1, 2.3, 6.1 (εκτός ύλης αλλά χρειάζεται για την συνέχεια) Ώρες διδασκαλίας: 1 Ενότητα 1 Ενότητες βιβλίου: 2.1, 2.3, 6.1 (εκτός ύλης αλλά χρειάζεται για την συνέχεια) Ώρες διδασκαλίας: 1 Τι είναι αλγόριθμος Σύμφωνα με το σχολικό βιβλίο: Ορισμός: Μια πεπερασμένη σειρά ενεργειών, αυστηρά

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. 6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή

Διαβάστε περισσότερα

Σχεδίαση Ψηφιακών Συστημάτων

Σχεδίαση Ψηφιακών Συστημάτων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 6: Σύγχρονα Ακολουθιακά Κυκλώματα Κυριάκης Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Α Γενικού Λυκείου (Μάθημα Επιλογής)

ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. Α Γενικού Λυκείου (Μάθημα Επιλογής) ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Α Γενικού Λυκείου (Μάθημα Επιλογής) Σύγχρονα Υπολογιστικά Συστήματα τους υπερυπολογιστές (supercomputers) που χρησιμοποιούν ερευνητικά εργαστήρια τα μεγάλα συστήματα (mainframes)

Διαβάστε περισσότερα

ς Ποιότητα ξιολόγηση Α

ς Ποιότητα ξιολόγηση Α Αξιολόγηση Ποιότητας Μέτρα Αξιολόγησης Τα µέτρα αξιολόγησης είναι απαραίτητα κατά την διαδικασία της σύνθεσης. Τα ακριβή µέτρα καθορίζουν την ποιότητα του τελικού κυκλώµατος και εντοπίζουν προβλήµατα.

Διαβάστε περισσότερα

O επεξεργαστής: Η δίοδος δεδομένων (datapath) και η μονάδα ελέγχου (control)

O επεξεργαστής: Η δίοδος δεδομένων (datapath) και η μονάδα ελέγχου (control) O επεξεργαστής: Η δίοδος δεδομένων (datapath) και η μονάδα ελέγχου (control) 4 κατηγορίες εντολών: Σχεδίαση datapath Αριθμητικές-λογικές εντολές (add, sub, slt κλπ) R Type Εντολές αναφοράς στη μνήμη (lw,

Διαβάστε περισσότερα

1. Περιοδικά Φαινόμενα Απλή Αρμονική Ταλάντωση

1. Περιοδικά Φαινόμενα Απλή Αρμονική Ταλάντωση Περιοδικά φαινόμενα: 1. Περιοδικά Φαινόμενα Απλή Αρμονική Ταλάντωση Περιοδικά φαινόμενα ονομάζονται τα φαινόμενα που εξελίσσονται και επαναλαμβάνονται αναλλοίωτα σε σταθερά χρονικά διαστήματα. Τέτοια φαινόμενα

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Εντολές γλώσσας μηχανής

Εντολές γλώσσας μηχανής Εντολές γλώσσας μηχανής Στον υπολογιστή MIPS η εντολή πρόσθεσε τα περιεχόμενα των καταχωρητών 17 και 20 και τοποθέτησε το αποτέλεσμα στον καταχωρητή 9 έχει την μορφή: 00000010001101000100100000100000 Πεδία

Διαβάστε περισσότερα

Συστήματα σε Ολοκληρωμένα Κυκλώματα

Συστήματα σε Ολοκληρωμένα Κυκλώματα Συστήματα σε Ολοκληρωμένα Κυκλώματα Κεφάλαιο 4: Αρχιτεκτονική των Embedded Μικροεπεξεργαστών Διδάσκων: Καθηγητής Οδυσσέας Κουφοπαύλου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΕΙΣΑΓΩΓΗ Παρουσιάζεται

Διαβάστε περισσότερα

Πληροφορική ΙΙ Ενότητα 1

Πληροφορική ΙΙ Ενότητα 1 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή

Διαβάστε περισσότερα

O επεξεργαστής: Η δίοδος δεδομένων (datapath) και η μονάδα ελέγχου (control)

O επεξεργαστής: Η δίοδος δεδομένων (datapath) και η μονάδα ελέγχου (control) O επεξεργαστής: Η δίοδος δεδομένων (datapath) και η μονάδα ελέγχου (control) 4 κατηγορίες εντολών: Σχεδίαση datapath Αριθμητικές-λογικές εντολές (add, sub, slt κλπ) R Type Εντολές αναφοράς στη μνήμη (lw,

Διαβάστε περισσότερα

Το κείμενο που ακολουθεί αποτελεί επεξεργασία του πρωτότυπου κειμένου του Α. Κάστωρ για την επίλυση των παραδειγμάτων κρίσιμης αλυσίδας που

Το κείμενο που ακολουθεί αποτελεί επεξεργασία του πρωτότυπου κειμένου του Α. Κάστωρ για την επίλυση των παραδειγμάτων κρίσιμης αλυσίδας που Το κείμενο που ακολουθεί αποτελεί επεξεργασία του πρωτότυπου κειμένου του Α. Κάστωρ για την επίλυση των παραδειγμάτων κρίσιμης αλυσίδας που παρουσιάστηκαν στις 19/11/2015 και 3/12/2015 στις διαλέξεις του

Διαβάστε περισσότερα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα

ΕΝΤΟΛΕΣ. 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα 7.1 Εισαγωγικό μέρος με επεξήγηση των Εντολών : Επεξήγηση των εντολών που θα ΕΝΤΟΛΕΣ χρησιμοποιηθούν παρακάτω στα παραδείγματα Βάζοντας την εντολή αυτή σε οποιοδήποτε χαρακτήρα μπορούμε να αλλάζουμε όψεις

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Συστήµατα και Βάσεις Πολυµέσων. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας

Συστήµατα και Βάσεις Πολυµέσων. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Συστήµατα και Βάσεις Πολυµέσων Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Ενότητα : Μετασχηµατισµός/Κβαντοποίηση Δρ. Μαρία Κοζύρη Συστήµατα & Βάσεις Πολυµέσων Ενότητα 2 Διαδικαστικά Παράδοση:

Διαβάστε περισσότερα