Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος."

Transcript

1 Τι είναι Επιχειρησιακή Έρευνα (Operations Research); Η επιστήμη που ασχολείται με τη βελτιστοποίηση της απόδοσης ενός συστήματος. Το σύνολο των τεχνικών (μαθηματικά μοντέλα) οι οποίες δημιουργούν μια ποσοτική και ορθολογιστική βάση για τη λήψη αποφάσεων που θα βελτιστοποιήσουν τη λειτουργία του συστήματος. Η Επιχειρησιακή Έρευνα είναι επιστήμη (Μαθηματικές Τεχνικές & Μεθοδολογία Επίλυσης Προβλημάτων) τέχνη (ανθρώπινος παράγοντας & η κατάλληλη λύση για το κατάλληλο πρόβλημα) 1/27

2 Η Επιχειρησιακή Έρευνα θεμελιώθηκε σαν παραπροϊόν του Β Παγκοσμίου Πολέμου (Do Research on Military Operations). Αγγλία ( ). Τοποθέτηση των radars για τον εντοπισμό των γερμανικών αεροπλάνων. Αγγλία (1940). Το τσίρκο του Blackett. H.Π.Α. (1942). αναπτύχθηκε με τη βιομηχανική επανάσταση που ακολούθησε στα χρόνια της ειρήνης (Management Science). τα προβλήματα που παρουσιάστηκαν λόγω του μεγέθους και της πολυπλοκότητας των διαφόρων εφαρμογών, εκμηδενίστηκαν με τη διάδοση των ηλεκτρονικών υπολογιστών στις δεκαετίες του 1950 και 60. 2/27

3 Βήματα Αναγνώριση Ορισμός του Προβλήματος Τεχνικές Επιχειρησιακής Έρευνας Ανατροφοδότηση Επανεκτίμηση Επαναπροσδιορισμός Ανάπτυξη του Μοντέλου Επίλυση του Μοντέλου Εφαρμογή & Αξιολόγηση Της Λύσης Πληροφορίες από το πραγματικό περιβάλλον 3/27

4 ΦΑΣΕΙΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ Ε.Ε. Ι. ΑΝΑΓΝΩΡΙΣΗ & ΔΙΑΤΥΠΩΣΗ του/των προβλημάτων. Το πρώτο βήμα για την εφαρμογή τεχνικών της Ε.Ε. στη μελέτη ενός συστήματος αφορά τη διαρκή προσπάθεια ανεύρεσης λειτουργικών προβλημάτων. (Σύστημα είναι ένα σύνολο αντικειμένων και υποκειμένων τα οποία σχετίζονται με τέτοιο τρόπο ώστε να αποτελούν μια οντότητα). ΙΙ. ΑΝΑΠΤΥΞΗ ενός μαθηματικού προτύπου (μοντέλου). Η πιο διαδεδομένη μέθοδος για τη θεωρητική παρατήρηση ενός συστήματος είναι αυτή της κατασκευής ενός μαθηματικού μοντέλου. (Το μοντέλο είναι μια προσομοίωση της φυσικής κατάστασης, όπου οι συσχετισμοί μεταξύ των πραγματικών στοιχείων έχουν αντικατασταθεί από ανάλογους συσχετισμούς ανάμεσα σε μαθηματικές οντότητες). βελτιστοποίηση κριτηρίου (maximize/minimize) κάτω από τις συνθήκες Ομογενή Μη-Ομογενή Προσδιοριστικά Αλγεβρικές Σχέσεις Διαφορικές εξισώσεις Στοχαστικά Πιθανολογικές Σχέσεις Προσομοίωση 4/27

5 Μεταβλητές ΕΙΣΟΔΟΣ Παράμετροι Μοντέλο Κριτήριο απόδοσης ΕΞΟΔΟΣ Περιορισμοί 5/27

6 ΙΙΙ. ΕΠΙΛΥΣΗ του μοντέλου. Πολλές έτοιμες τεχνικές-μοντέλα Βέλτιστες λύσεις / Παραδεκτές λύσεις Ανάλυση ευαισθησίας IV. ΕΦΑΡΜΟΓΗ & ΑΞΙΟΛΟΓΗΣΗ της λύσης.?? υπερ-απλουστεύσεις,?? παραλήψεις,?? λάθος εκτίμηση 6/27

7 Μοντέλο ΕΠΙΛΥΣΗ Συμπεράσματα μαθηματικός κόσμος πραγματικότητα ΑΠΛΟΠΟΙΗΣΗ (ΠΑΡΑΔΟΧΗ) Κρίση Αντίληψη ΕΡΜΗΝΕΙΑ Διοίκηση ΔΙΑΙΣΘΗΣΗ Αποφάσεις 7/27

8 Γραμμικός Προγραμματισμός (Linear Programming) Μια από τις πιο σπουδαίες μαθηματικές ανακαλύψεις των μέσων χρόνων του εικοστού αιώνα. Ιδιαίτερα δημοφιλής τεχνική. Μοντέλο ευρείας χρήσης για καθημερινά ζητήματα των περισσότερων μεσαίου και μεγάλου μεγέθους εμπορικών και βιομηχανικών μονάδων. Ο Γραμμικός Προγραμματισμός ασχολείται με το πρόβλημα της κατανομής των πεπερασμένων πόρων ενός συστήματος σε ανταγωνιζόμενες δραστηριότητες κατά τον καλύτερο δυνατό τρόπο. Αναζητά μεταξύ όλων των εναλλακτικών σχεδιασμών, εκείνον ( πρόγραμμα ) ο οποίος θα οδηγήσει στο άριστο αποτέλεσμα. Από μαθηματικής σκοπιάς, ο γραμμικός προγραμματισμός περιγράφει ένα μοντέλο, το οποίο αφορά τη μεγιστοποίηση ή ελαχιστοποίηση μιας γραμμικής συνάρτησης κάτω από κάποιους γραμμικούς περιορισμούς. 8/27

9 Αν και παρόμοιες εφαρμογές είχαν μελετηθεί πριν την καθιέρωση του όρου, η συστηματική μελέτη καθώς επίσης και μια μαθηματική διαδικασία λύσης τέτοιας μορφής προβλημάτων, η μέθοδος Simplex, οφείλεται στον G.B. Dantig στα 1947, περίοδος στην οποία ήταν επικεφαλής του Air Force Statistical Control s Combat Analysis Branch στο Πεντάγωνο των Η.Π.Α. Το έργο στο οποίο απασχολούνταν με την ομάδα του, είχε την ονομασία SCOOP (Scientific Computation of Optimum Programs) και στόχευε στην εγκαθίδρυση βέλτιστων μηχανισμών εκπαίδευσης, ανάπτυξης και συντήρησης του όλου μηχανισμού. Τα σχέδια τα οποία εκπονούσαν τα αποκαλούσαν προγράμματα, και μπορούσαν να εκφραστούν μαθηματικά με τη βοήθεια συστημάτων γραμμικών ανισοτήτων. Εξ ου και ο όρος Γραμμικός Προγραμματισμός. Πρόβλημα μεταφοράς Hitchcok 1941, Koopmans 1949 Πρόβλημα δίαιτας Stigler /27

10 Εφαρμογές του Γραμμικού Προγραμματισμού Ι. Product Mix Problem (Επιλογή συνδυασμού παραγωγής προϊόντων). Μια επιχείρηση εκμεταλλεύεται τους παραγωγικούς πόρους που έχει στη διάθεσή της για να παράγει διάφορα προϊόντα. Οι πόροι δεν είναι ανεξάντλητοι και η άριστη απόφαση εντοπίζει το πλήθος των τεμαχίων που πρέπει να κατασκευαστούν από το κάθε προϊόν ώστε να μεγιστοποιείται το κέρδος. ΙΙ. Diet Problem (Το πρόβλημα της δίαιτας). Αναζητείται η βέλτιστη κατανομή τροφίμων ώστε να παράγεται ένα διαιτολόγιο το οποίο να πληροί συγκεκριμένες διατροφικές προδιαγραφές με το ελάχιστο κόστος. III. Blending Problem (Το πρόβλημα μίξης υλικών). Έχει τις ρίζες του στη βιομηχανία διύλισης όπου είναι επιθυμητό να εντοπιστεί ένα άριστο σχέδιο μίξης διαφορετικών πρώτων υλών για την παραγωγή καυσίμων με συγκεκριμένες προδιαγραφές. Το ερώτημα αφορά την εύρεση της συνταγής η οποία θα δώσει το ζητούμενο μίγμα με το ελάχιστο κόστος. 10/27

11 IV. Portfolio Selection (Επιλογή χαρτοφυλακίου). Αφορά την κατάρτιση ενός βέλτιστου σχεδίου επενδύσεων σε μετοχές, ομόλογα, αμοιβαία κεφάλαια, κτλ. Το σχέδιο πρέπει να οδηγεί σε μεγάλα κέρδη ικανοποιώντας περιορισμούς που στοχεύουν στην ελαχιστοποίηση του κινδύνου. V. Production and Inventory Planning (Πολυσταδιακά προβλήματα παραγωγής και διατήρησης αποθεμάτων). Κατάρτιση ενός βέλτιστου σχεδίου παραγωγής και διατήρησης αποθεμάτων σε σχέση με τις προβλέψεις της ζήτησης, την παραγωγική δυναμικότητα, τους αποθηκευτικούς χώρους, κτλ. Η επιχείρηση θα πρέπει να είναι σε θέση να καλύψει τη ζήτηση για τα προϊόντα της για τις επόμενες περιόδους με το ελάχιστο κόστος παραγωγής, διατήρησης αποθεμάτων κτλ. VI. Transportation Problem (Το πρόβλημα της μεταφοράς). Αναζήτηση του οικονομικότερου τρόπου διακίνησης προϊόντων από διαφορετικές πηγές-προελεύσεις (παραγωγικές μονάδες, αποθήκες, κέντρα διανομής, κτλ.) σε ορισμένους σταθμούς προορισμού (σημεία πώλησης, αποθήκες, κτλ.) 11/27

12 Media Selection (Κατάρτιση διαφημιστικών σχεδίων). Assignment Problem (Καταμερισμός εργασίας). The Make-or-Buy Problem. Σχεδίαση Παραγωγικών Μονάδων. Επιλογή Τοποθεσίας Εγκατάστασης. Δρομολόγηση μεταφορικών μέσων (λεωφορεία, αεροπλάνα). 12/27

13 Η ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΣΚΕΥΗΣ ΕΝΟΣ ΜΟΝΤΕΛΟΥ Το κύριο μέρος κάθε τεχνικής στην Επιχειρησιακή Έρευνα είναι η μοντελοποίηση. Η λύση, ανεξάρτητα από το πόσο λεπτομερής ή εξεζητημένη είναι, έχει απλά έναν υποστηρικτικό ρόλο. Για να διαμορφώσουμε το μαθηματικό πρότυπο (μοντέλο) ενός προβλήματος θα πρέπει να ορίσουμε: τις μεταβλητές (αγνώστους) του προβλήματος, έναν αντικειμενικό στόχο που θα πρέπει να επιτευχθεί, τους περιορισμούς που θα πρέπει να ενσωματώσουμε στις μεταβλητές ώστε να ικανοποιούνται οι συνθήκες του προβλήματος. 13/27

14 Οι μεταβλητές είναι τα δομικά στοιχεία του προβλήματος που μπορεί να επηρεάσει ο αναλυτής. Για το λόγο αυτό συχνά αναφέρονται και ως μεταβλητές ελέγχου ή μεταβλητές απόφασης (decision variables). Ας πάρουμε για παράδειγμα μια βιομηχανία γάλακτος που προετοιμάζει την ημερήσια γραμμή παραγωγής της. Πολλές είναι οι μεταβλητές που υπάρχουν σ ένα τέτοιο πρόβλημα. Μεταξύ τους, εύκολα μπορούμε να αναφέρουμε την ποσότητα των διαφόρων τύπου γάλακτος, τυριού και γιαουρτιού που θα παρασκευαστούν: x 1 = η ποσότητα (lit) πλήρους γάλακτος, x 2 = η ποσότητα (lit) άπαχου γάλακτος, x 3 = η ποσότητα (kg) τυριού φέτας, x 4 = (χρησιμοποιούμε συνήθως το γράμμα x για να παραστήσουμε μια μεταβλητή και με έναν δείκτη i = 1, 2, 3, επιτυγχάνουμε τη μεταξύ τους διάκριση). 14/27

15 Το πρόβλημα αφορά βέβαια τον εντοπισμό τιμής για την κάθε μεταβλητή απόφασης ώστε να Χρειαζόμαστε δηλαδή έναν αντικειμενικό στόχο. Ο στόχος αυτός μπορεί να αφορά τη μεγιστοποίηση του κέρδους, την καλύτερη αξιοποίηση του εργατικού δυναμικού, ή την ελαχιστοποίηση του κόστους, της υπερωριακής απασχόλησης, κτλ. Ψάχνουμε να βρούμε εκείνες τις τιμές των μεταβλητών ελέγχου οι οποίες θα βελτιστοποιήσουν το κριτήριο απόδοσης που ορίζουμε σ αυτό το στάδιο της μοντελοποίησης. Στο παράδειγμα της γαλακτοβιομηχανίας που αναφέρθηκε πιο πάνω, θα μπορούσαμε να ορίσουμε ως στόχο την ημερήσια μεγιστοποίηση των κερδών κι επομένως να αναζητήσουμε έναν τρόπο έκφρασης του συνολικού κέρδους ως συνάρτηση των μεταβλητών απόφασης (προϊόντων που παρασκευάζονται) εκτιμώντας τη συνεισφορά του καθενός χωριστά. 15/27

16 Ο αντικειμενικός στόχος που θα οριστεί θα πρέπει να επιτευχθεί κάτω από τις συνθήκες λειτουργίας του συστήματος που μελετάμε. Περιορισμοί, όπως η ανεπάρκεια των πόρων του συστήματος (π.χ. πρώτων υλών, εργατικού δυναμικού), η απορροφητικότητα της αγοράς, οι συμφωνίες με προμηθευτές και αγοραστές, οι χρόνοι παράδοσης των παραγόμενων προϊόντων, κτλ. δημιουργούν αυτές τις συνθήκες. Αν η προαναφερόμενη βιομηχανία γάλακτος ήταν σε θέση να εξασφαλίσει απεριόριστη πρώτη ύλη και παραγωγική δυναμικότητα καθώς επίσης και μονοπωλιακή παρουσία στην αγορά θα εκτόξευε τα κέρδη της στο άπειρο. Τα πράγματα βέβαια είναι εντελώς διαφορετικά. Στο στάδιο αυτό της μοντελοποίησης, καλούμαστε να εντοπίσουμε και να καταγράψουμε ως συνάρτηση των μεταβλητών απόφασης, εκτιμώντας την απαίτηση που έχει η καθεμία στους διαθέσιμους πόρους, τους παράγοντες οι οποίοι επιβάλλουν όρια στις τιμές τους (των μεταβλητών) και συνεπώς και στην τιμή της αντικειμενικής συνάρτησης. 16/27

17 Ανακεφαλαιώνοντας, τα κύρια συστατικά ενός προβλήματος, διαμορφωμένου ως μαθηματικού μοντέλου είναι οι μεταβλητές απόφασης, οι περιορισμοί που θα πρέπει να ενσωματώσουμε στις μεταβλητές ώστε να ικανοποιούνται οι συνθήκες του προβλήματος κι ένας αντικειμενικός στόχος που θα πρέπει να επιτευχθεί. Στο πρότυπο του προβλήματος γραμμικού προγραμματισμού (π.γ.π.) τόσο ο αντικειμενικός στόχος, όσο και οι περιορισμοί εκφράζονται με γραμμικές συναρτήσεις των μεταβλητών απόφασης. Γνωστές (ή εκτιμημένες) εκ των προτέρων ποσότητες όπως για παράδειγμα το ανά μονάδα προϊόντος κέρδος, η διαθεσιμότητα των πρώτων υλών, η απαιτούμενη κατανάλωση του κάθε πόρου ανά μονάδα προϊόντος που παράγεται, η πρόβλεψη ζήτησης της αγοράς κτλ. αποτελούν επίσης συστατικά στοιχεία, του υπο-κατασκευή μοντέλου κι ονομάζονται παράμετροι του προβλήματος. Οι τιμές των παραμέτρων σ ένα π.γ.π. παραμένουν αμετάβλητες για όλη τη διάρκεια του ζητούμενου προγραμματισμού. 17/27

18 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές συσκευασίες παγωτού κρέμας με άρωμα πραγματικής βανίλιας (προϊόν Α) και παγωτού με πραγματική σοκολάτα (προϊόν Β). Αν και είναι φανερό ότι η παραγωγική διαδικασία είναι αρκετά πολύπλοκη, θα θεωρήσουμε εδώ ότι για την παραγωγή αυτών των προϊόντων η εταιρεία δεσμεύει ανά εβδομάδα ένα μικρό μέρος των παραγωγικών της συντελεστών: γάλα (βασική πρώτη ύλη), εργασία (παραλαβή πρώτων υλών, ποιοτικός έλεγχος, συσκευασία, διανομή, κτλ.), καθώς επίσης και διαθεσιμότητα στη μονάδας παστερίωσης και ψύξης. Στον πίνακα που ακολουθεί βλέπουμε τα δεδομένα του προβλήματος που έχουν προσδιοριστεί κι αφορούν την παραγωγή ενός τεμαχίου του κάθε προϊόντος: Προϊόν Α Προϊόν Β Διαθεσιμότητα Γάλα (lit) Εργασία (min) Επεξεργασία (min) Μέγιστη ζήτηση 400 Απεριόριστη Κέρδος/τεμάχιο 150 χ.μ. 200 χ.μ. Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει το συνολικό κέρδος. 18/27

19 Οι μεταβλητές απόφασης Ποια στοιχεία του προβλήματος επηρεάζουν το κριτήριο απόδοσης του συστήματος; (στην περίπτωσή μας) Από τι εξαρτάται το κέρδος της εταιρείας; Σε ποια στοιχεία του προβλήματος μπορούμε να έχουμε έλεγχο και ποια δεδομένα δεν επιδέχονται μεταβολές; Ορίζουμε να είναι: x 1 τα τεμάχια του προϊόντος Α που παράγονται εβδομαδιαία x 2 τα τεμάχια του προϊόντος Β που παράγονται εβδομαδιαία 19/27

20 Ο αντικειμενικός στόχος Η μεγιστοποίηση του συνολικού εβδομαδιαίου κέρδους από την πώληση των δύο προϊόντων παγωτού. Προκύπτει ως το άθροισμα των επί μέρους κερδών: Εβδομαδιαίο Συνολικό Κέρδος = Εβδομ.Κέρδος από την πώληση του παγωτού βανίλια + Εβδομ.Κέρδος από την πώληση του παγωτού σοκολάτα = (κέρδος/τεμάχιο παγ_βανίλιας) * (τεμάχια παγ_βανίλιας) + (κέρδος/τεμάχιο παγ_σοκολ) * (τεμάχια παγ_σοκολ) = 150x x 2 (χ.μ.) Συνεπώς ενδιαφερόμαστε να maximize (150x x 2 ) 20/27

21 Οι περιορισμοί του προβλήματος Προφανώς όσα πιο πολλά τόσο πιο καλά. Τι την εμποδίζει την εταιρεία να θεωρήσει ως βέλτιστες τις τιμές εκείνες που θα οδηγήσουν το κέρδος στο άπειρο; (εβδομ_καταν_γάλακτος) (διαθ_ποσότ_γάλακτος_εβδομ) (εβδομ_καταν_γάλακτος για παγ_βανίλιας) + (εβδομ_καταν_γάλακτος για παγ_σοκολ) (διαθ_ποσότ_γάλακτος_εβδομ) = (γάλα/τεμάχιο παγ_βανίλιας) * (τεμάχια παγ_βανίλιας) + (γάλα/τεμάχιο παγ_σοκολ) * (τεμάχια παγ_σοκολ) (διαθ_ποσότ_γάλακτος_εβδομ) = 1x 1 + 1x (lit) 21/27

22 Όμοια: (εβδομ_ανάγκη_εργασίας) (διαθ_εργασία_εβδομ) = 1x 1 + 3x (min) (εβδομ_ανάγκη_δυναμικ) (διαθ_δυναμ_εβδομ) = 2x 1 + 5x (min) (εβδομ_παραγωγή_παγωτ_βανίλιας) (εβδομ_απορροφητ) = x Επιπλέον, (Λογικοί) Περιορισμοί Μη Αρνητικότητας x 1, x /27

23 Ανακεφαλαιώνοντας το μαθηματικό πρότυπο για το πρόβλημα της εταιρείας είναι το εξής: maximize z = (150x x 2 ) κάτω από τους περιορισμούς: x 1 + x (διαθέσιμο γάλα, lit) x 1 + 3x x 1 + 5x (χρόνος εργασίας, min) (διαθεσιμότητα μονάδων, min) x (ζήτηση αγοράς) x 1, x 2 0 Είναι π.γ.π. διότι ο αντικειμενικό στόχος είναι μια γραμμική συνάρτηση των μεταβλητών απόφασης, οι περιορισμοί είναι ένα σύστημα γραμμικών ανισοτήτων των μεταβλητών απόφασης. 23/27

24 Μη ελεγχόμενα στοιχεία του προβλήματος (παράμετροι) Για να παραχθεί ένα τεμάχιο προϊόντος Α απαιτούνται 1 lit γάλακτος, 1 min εργασίας και 2 min στη μονάδα παστερίωσης και ψύξης. Για να παραχθεί ένα τεμάχιο προϊόντος Β απαιτούνται 1 lit γάλακτος, 3 min εργασίας και 5 min στη μονάδα παστερίωσης και ψύξης. Υπάρχουν διαθέσιμα Το κέρδος από ένα τεμάχιο x 1 τεμάχια προϊοντ_α x 2 τεμάχια προϊόντ_β maximize z = (150x x 2 ) κάτω από τους περιορισμούς: x 1 + x (διαθέσιμο γάλα, lit) x 1 + 3x (χρόνος εργασίας, min) 2x 1 + 5x (διαθεσιμότητα μονάδων, min) x (ζήτηση αγοράς) x 1, x 2 0 Συνολικό Κέρδος = x 1 = 325 x 2 = 225 Ελεγχόμενα στοιχεία (μεταβλητές) Μαθηματικό μοντέλο Αποτέλεσμα 24/27

25 Ένα πρόβλημα βελτιστοποίησης χαρακτηρίζεται ως πρόβλημα γραμμικού προγραμματισμού (π.γ.π.) όταν i) Αφορά τη μεγιστοποίηση ή ελαχιστοποίηση μιας γραμμικής συνάρτησης των αγνώστων (μεταβλητών). Η συνάρτηση αυτή ονομάζεται αντικειμενική συνάρτηση. ii) Οι τιμές των αγνώστων (μεταβλητών) ικανοποιούν ένα σύνολο περιορισμών. Κάθε περιορισμός πρέπει να είναι μια γραμμική εξίσωση ή ανισότητα. iii) Κάθε μεταβλητή είναι μη αρνητική (x i 0) ή δεν έχει περιορισμό στο πρόσημο (x i ). ΕΠΙΠΛΕΟΝ θα πρέπει να ικανοποιείται η υπόθεση της αναλογικότητας υπόθεση της προσθετικότητας υπόθεση της διαιρετότητας υπόθεση της προσδιοριστικότητας 25/27

26 Αναλογικότητα (Proportionality). ΝΙΚΟΣ ΤΣΑΝΤΑΣ Αν απαιτούνται 5 μονάδες πρώτης ύλης για την παραγωγή μιας μονάδας του προϊόντος Π η πώληση της οποίας αποφέρει 100 χ.μ. τότε 5x 1 μονάδες πρώτης ύλης απαιτούνται για την παραγωγή x 1 μονάδων του προϊόντος αυτού, η πώληση των οποίων θα αποφέρουν 100x 1 χ.μ Σε ότι αφορά την αντικειμενική συνάρτηση αυτό σημαίνει ότι η συνεισφορά στη συνολική τιμή του z από μία μεταβλητή απόφασης είναι (γραμμικά) ανάλογη της τιμής που παίρνει η εν λόγω μεταβλητή. Από την άλλη πλευρά, σχετικά με τους περιορισμούς, η αναλογικότητα σημαίνει ότι η κατανάλωση ενός πόρου για την παραγωγή ενός προϊόντος είναι ευθέως ανάλογη των τεμαχίων που παράγονται. Προσθετικότητα (Additivity). Αν απαιτούνται 3x 1 μονάδες πρώτης ύλης Υ για την παραγωγή x 1 μονάδων του προϊόντος Π 1 η πώληση των οποίων θα αποφέρει 100x 1 χ.μ. και 5x 2 μονάδες πρώτης ύλης Υ για την παραγωγή x 2 μονάδων του προϊόντος Π 2 η πώληση των οποίων θα αποφέρει 150x 2 χ.μ., τότε 3x 1 +5x 2 μονάδες πρώτης ύλης Υ απαιτούνται για την παραγωγή x 1 μονάδων του προϊόντος Π 1 και x 2 μονάδων του προϊόντος Π 2 η πώληση των οποίων θα αποφέρει 100x x 2 χ.μ. Σε ότι αφορά την αντικειμενική συνάρτηση αυτό σημαίνει ότι η συνεισφορά κάθε μεταβλητής απόφασης στην τιμή του z είναι ανεξάρτητη από τις τιμές που παίρνουν οι άλλες μεταβλητές. Από την άλλη πλευρά, σχετικά με τους περιορισμούς, η προσθετικότητα σημαίνει ότι η κατανάλωση ενός πόρου για την παραγωγή ενός προϊόντος, είναι ανεξάρτητη από την κατανάλωση του πόρου για την παραγωγή κάποιου άλλου προϊόντος. 26/27

27 Διαιρετότητα (Divisibility). Η υπόθεση της διαιρετότητας εξασφαλίζει νόημα στην ύπαρξη κλασματικών τιμών στις μεταβλητές του προβλήματος (ακόμη κι όταν αυτό φαίνεται περίεργο, π.χ. άνθρωποι, τεμάχια κάποιου προϊόντος, κτλ.) Προσδιοριστικότητα (Certainty). Σύμφωνα με την υπόθεση αυτή, όλες οι τιμές των παραμέτρων ενός π.γ.π. είναι γνωστές σταθερές. Σε πραγματικό περιβάλλον είναι μάλλον αδύνατο να ισχύει κάτι τέτοιο. Χρησιμοποιούμε τις προβλέψεις ή εκτιμήσεις σαν να είναι γνωστές σταθερές. Η Ανάλυση Ευαισθησίας πρέπει να ακολουθεί οπωσδήποτε τη λύση ενός π.γ.π. ώστε να διερευνάται η ευαισθησία των παραμέτρων, δηλαδή κατά πόσο μικρές ή μεγάλες μεταβολές στις τιμές τους επηρεάζουν την άριστη λύση που βρέθηκε. 27/27

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων

ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων ΤΕΙ Χαλκίδας Σχολή Διοίκησης και Οικονομίας Τμήμα Διοίκησης Επιχειρήσεων Επιχειρησιακή Έρευνα Τυπικό Εξάμηνο: Δ Αλέξιος Πρελορέντζος Εισαγωγή Ορισμός 1 Η συστηματική εφαρμογή ποσοτικών μεθόδων, τεχνικών

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2.

Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης ΚΕΦΆΛΆΙΟ 1 Ο ρόλος της επιχειρησιακής έρευνας στη λήψη αποφάσεων ΚΕΦΆΛΆΙΟ 2. Περιεχόμενα Πρόλογος 5ης αναθεωρημένης έκδοσης... 11 Λίγα λόγια για βιβλίο... 11 Σε ποιους απευθύνεται... 12 Τι αλλάζει στην 5η αναθεωρημένη έκδοση... 12 Το βιβλίο ως διδακτικό εγχειρίδιο... 14 Ευχαριστίες...

Διαβάστε περισσότερα

The Product Mix Problem

The Product Mix Problem Προσδιοριστικές Μέθοδοι Επιχειρησιακής Έρευνας 1 The Product Mix Problem Τα προβλήματα αυτά αναφέρονται σε συστήματα τα οποία εκμεταλλευόμενα τους περιορισμένους πόρους που έχουν στη διάθεσή του, παράγουν

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING)

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Γ.Π.).) (LINEAR PROGRAMMING) Δρ. Βασιλική Καζάνα Αναπλ. Καθηγήτρια ΤΕΙ Καβάλας, Τμήμα Δασοπονίας & Διαχείρισης Φυσικού Περιβάλλοντος Δράμας Εργαστήριο Δασικής Διαχειριστικής

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014

ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ. Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Μάθημα: Επιχειρησιακή Έρευνα. Ακαδημαϊκό Έτος 2013-2014 ΤΕΙ ΣΤΕΡΑΣ ΕΛΛΑΔΑΣ Τμήμα Εμπορίας και Διαφήμισης ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος 2013-2014 Διδάσκων: Δρ. Χρήστος Γενιτσαρόπουλος Άμφισσα, 2013 Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

ιαµόρφωση Προβλήµατος

ιαµόρφωση Προβλήµατος Γραµµικός Προγραµµατισµός ιαµόρφωση Προβλήµατος Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Γενικά Στοιχεία Γραµµικού

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 3

Asset & Liability Management Διάλεξη 3 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη 3 Cash-flow matching Μιχάλης Ανθρωπέλος anthropel@unipi.gr http://web.xrh.unipi.gr/faculty/anthropelos

Διαβάστε περισσότερα

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200

ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν.

Διαβάστε περισσότερα

PANEPISTHMIO AIGAIOU GRAMMIKOS PROGRAMMATISMOS

PANEPISTHMIO AIGAIOU GRAMMIKOS PROGRAMMATISMOS PANEPISTHMIO AIGAIOU SQOLH JETIKWN EPISTHMWN TMHMA MAJHMATIKWN Shmei seic gia to mˆjhma GRAMMIKOS PROGRAMMATISMOS Jeodìshc Dhmhtrˆkoc E-mail: dimitheo@aegean.gr DhmiourgÐa kai epimèleia tou hlektronikoô

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη των Αποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο. Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη των Αποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο. Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη των Αποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο ηµήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών Ορισµός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

Βασικά σημεία διάλεξης. λογιστική. Χρηματοοικονομική λογιστική (ΧΛ) ιοικητική Λογιστική. Λογιστική και Χρηματοοικονομική (Π.Μ.Σ.)

Βασικά σημεία διάλεξης. λογιστική. Χρηματοοικονομική λογιστική (ΧΛ) ιοικητική Λογιστική. Λογιστική και Χρηματοοικονομική (Π.Μ.Σ.) Λογιστική και Χρηματοοικονομική (Π.Μ.Σ.) ιοικητική Λογιστική Εισαγωγή στη διοικητική λογιστική Βασικά σημεία διάλεξης Τι είναι η διοικητική λογιστική Ο ρόλος του διοικητικού ού λογιστή Χρηματοοικονομική

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ I ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Λέκτορας Ι. Γιαννατσής Καθηγητής Π. Φωτήλας ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ Οικονομική Επιστήμη: Η κοινωνική επιστήμη που ερευνά την οικονομική δραστηριότητα

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΦΑΡΜΟΓΕΣ ΔΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Dr. Christos D. Tarantilis Associate Professor in Operations Research & Management Science http://tarantilis.dmst.aueb.gr/ ΕΦΑΡΜΟΓΕΣ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Ι - 1- ΣΥΝΔΥΑΣΤΙΚΗΔΟΜΗ:

Διαβάστε περισσότερα

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Προγραµµατισµός τεσσάρων διαφορετικών προϊόντων Σιτάρι, σόγια, βρώµη καικαλαµπόκι Μέγιστη συνολική έκταση 1.500 στρέµµατα Ακριβώς 100 στρέµµατα

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10 2. Βασικές Έννοιες Γραμμικού Προγραμματισμού 89 ΠΑΡΑΔΕΙΓΜΑ 2.10 Η TRACPRO, γνωστή αυτοκινητοβιομηχανία, προσπαθεί να εντοπίσει το εβδομαδιαίο σχέδιο παραγωγής τρακτέρ και γερανών με τα μεγαλύτερα κέρδη:

Διαβάστε περισσότερα

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες ΠΡΟΒΛΗΜΑ 1 Η ετήσια ζήτηση ενός σημαντικού εξαρτήματος που χρησιμοποιείται στη μνήμη υπολογιστών desktops εκτιμήθηκε σε 10.000 τεμάχια. Η αξία κάθε μονάδας είναι 8, το κόστος παραγγελίας κάθε παρτίδας

Διαβάστε περισσότερα

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Όπως έχουμε τονίσει, η κατανόηση του τρόπου με τον οποίο προσδιορίζεται η τιμή ενός αγαθού απαιτεί κατανόηση των δύο δυνάμεων της αγοράς, δηλαδή της ζήτησης

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΒΑΣΙΚΟΙ ΤΟΜΕΙΣ ΑΝΑΦΟΡΑΣ ΕΝΟΣ BUSINESS PLAN. Εισαγωγή

ΒΑΣΙΚΟΙ ΤΟΜΕΙΣ ΑΝΑΦΟΡΑΣ ΕΝΟΣ BUSINESS PLAN. Εισαγωγή ΒΑΣΙΚΟΙ ΤΟΜΕΙΣ ΑΝΑΦΟΡΑΣ ΕΝΟΣ BUSINESS PLAN Εισαγωγή Η κατάρτιση ενός Επιχειρηματικού Σχεδίου αποτελεί ένα εργαλείο στο οποίο καταγράφεται ουσιαστικά το «Πλάνο Δράσης» της επιχείρησης, τα βήματα που θα

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

Μοντελοποίηση και Τεχνικοοικονομική Ανάλυση Εφοδιαστικής Αλυσίδας Βιοκαυσίμων

Μοντελοποίηση και Τεχνικοοικονομική Ανάλυση Εφοδιαστικής Αλυσίδας Βιοκαυσίμων Μοντελοποίηση και Τεχνικοοικονομική Ανάλυση Εφοδιαστικής Αλυσίδας Βιοκαυσίμων Αιμ. Κονδύλη, Ι. Κ. Καλδέλλης, Χρ. Παπαποστόλου ΤΕΙ Πειραιά, Τμήμα Μηχανολογίας Απρίλιος 2007 Στόχοι της εργασίας Η τεχνική

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑ.Λ. (ΟΜΑ Α Β ) 2010 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση

Διαβάστε περισσότερα

Ένα σηµαντικό χαρακτηριστικό γνώρισµα των τελευταίων ετών αλλά και αυτών που ακολουθούν είναι οι αλλαγές που σηµειώνονται στο χώρο των επιχειρήσεων.

Ένα σηµαντικό χαρακτηριστικό γνώρισµα των τελευταίων ετών αλλά και αυτών που ακολουθούν είναι οι αλλαγές που σηµειώνονται στο χώρο των επιχειρήσεων. Atlantis MRP & MRP II MRP I Ένα σηµαντικό χαρακτηριστικό γνώρισµα των τελευταίων ετών αλλά και αυτών που ακολουθούν είναι οι αλλαγές που σηµειώνονται στο χώρο των επιχειρήσεων. Στις προβλέψεις αναφέρεται

Διαβάστε περισσότερα

Εισαγωγικές Έννοιες Επιχειρηματικότητας

Εισαγωγικές Έννοιες Επιχειρηματικότητας Εισαγωγικές Έννοιες Επιχειρηματικότητας Μάθημα 2 1 Εισαγωγή Χαρακτηριστικά στοιχεία της επιχείρησης ως οργανισμού Συστατικά μέρη και το περιβάλλον της επιχείρησης Διάφορες μορφές επιχειρήσεων που λειτουργούν

Διαβάστε περισσότερα

Homework 1. 2. Πρόκειται για ατομικές ασκήσεις οι οποίες συνεισφέρουν το 25% του τελικού σας βαθμού.

Homework 1. 2. Πρόκειται για ατομικές ασκήσεις οι οποίες συνεισφέρουν το 25% του τελικού σας βαθμού. ΠΜΣ: Μαθηματικά των Υπολογιστών και των Αποφάσεων. Μάθημα: Επιχειρησιακή Έρευνα Ακαδημαϊκό Έτος: 2012-13 Διδάσκων: Ν. Τσάντας Homework 1 1. Ασκήσεις: δείτε τις σελίδες 2-6 του παρόντος. 2. Πρόκειται για

Διαβάστε περισσότερα

Οικονομικό Πρόβλημα &

Οικονομικό Πρόβλημα & Οικονομικό Πρόβλημα & Οικονομική Επιστήμη Ανεπάρκεια Σπανιότητα Οικονομική επιστήμη Πως κατανέμονται οι διαθέσιμοι πόροι για την ικανοποίηση των αναγκών Περιορισμένοι Εργασία Κεφάλαιο Απεριόριστες Πρώτες

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 6: Εφαρμογές Γραμμικού Προγραμματισμού (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΔΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΕΦΑΡΜΟΓΕΣ ΔΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΕΦΑΡΜΟΓΕΣ ΔΥΝΑΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Ουζούνης Παναγιώτης ΜΑΡΤΙΟΣ 008 ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ Γεροντίδης Ιωάννης Εκπονηθείσα πτυχιακή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 010-011 Δεύτερη Γραπτή Εργασία Επιχειρησιακά Μαθηματικά

Διαβάστε περισσότερα

Διαχείριση Εφοδιαστικής Αλυσίδας

Διαχείριση Εφοδιαστικής Αλυσίδας Διαχείριση Εφοδιαστικής Αλυσίδας 1 η Διάλεξη: Βασικές Έννοιες στην Εφοδιαστική Αλυσίδα - Εξυπηρέτηση Πελατών 2015 Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Ατζέντα Εισαγωγή στη Διοίκηση

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα ΕΜΠ - Τοµέας Προγραµµατισµού & ιαχείρισης Τεχνικών Έργων

Επιχειρησιακή Έρευνα ΕΜΠ - Τοµέας Προγραµµατισµού & ιαχείρισης Τεχνικών Έργων 1.1. Σύντοµη Ιστορική Αναδροµή Ο όρος (Operations Research) χρησιµοποιείται ευρέως για να περιγράψει την επιστήµη που ασχολείται µε τη βελτιστοποίηση (optimization) της απόδοσης ενός συστήµατος (Τσαντάς

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού

ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Γραφική λύση προβλημάτων Γραμμικού Προγραμματισμού Πρόγραμμα Γενικό γραμμικό πρόβλημα με πολύγωνη περιοχή εφικτών λύσεων Να λυθεί το παρακάτω γραμμικό πρόγραμμα: ma z μ. π. 4

Διαβάστε περισσότερα

Operations Management Διοίκηση Λειτουργιών

Operations Management Διοίκηση Λειτουργιών Operations Management Διοίκηση Λειτουργιών Διδάσκων: Δρ. Χρήστος Ε. Γεωργίου xgr@otenet.gr 3 η εβδομάδα μαθημάτων 1 Το περιεχόμενο της σημερινής ημέρας Συστήµατα προγραµµατισµού, ελέγχου και διαχείρισης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. I. Μάνατζµεντ - Ορισµοί. H Εξέλιξη του Μάνατζµεντ Οι Λειτουργίες του Μάνατζµεντ

ΜΑΘΗΜΑ 3ο. I. Μάνατζµεντ - Ορισµοί. H Εξέλιξη του Μάνατζµεντ Οι Λειτουργίες του Μάνατζµεντ ΜΑΘΗΜΑ 3ο Μάνατζµεντ - Ορισµοί H Εξέλιξη του Μάνατζµεντ Οι Λειτουργίες του Μάνατζµεντ I. Μάνατζµεντ - Ορισµοί... η τέχνη να φέρνεις εις πέρας κάθε έργο µε τη στήριξη και την συµµετοχή ατόµων οργανωµένων

Διαβάστε περισσότερα

ΘΕΜΑ : ΤΕΧΝΟΛΟΓΙΚΗ ΕΡΕΥΝΑ. ΔΙΑΡΚΕΙΑ: 1 περίοδος

ΘΕΜΑ : ΤΕΧΝΟΛΟΓΙΚΗ ΕΡΕΥΝΑ. ΔΙΑΡΚΕΙΑ: 1 περίοδος ΘΕΜΑ : ΤΕΧΝΟΛΟΓΙΚΗ ΕΡΕΥΝΑ ΔΙΑΡΚΕΙΑ: 1 περίοδος Στο μάθημα μας θα ασχοληθούμε, με τις πιο κάτω τεχνολογικές έρευνες. Έρευνες που διερευνούν: 1. Τις στάσεις των ανθρώπων έναντι τεχνολογικών έργων, συσκευών

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

ΠΙΝΑΚΑΣ 3-1 Προσομοιωση και Βελτιστοποιηση Συστηματος (Haimes, 1977) ΠΡΑΓΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΦΥΣΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ 3 ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ 3.1 Εισαγωγη ΣΥΣΤΗΜΑΤΩΝ Τα συστηματα εφαρμοζονται σε αναπτυξιακα προγραμματα, σε μελετες σχεδιασμου εργων, σε προγραμματα διατηρησης ή προστασιας περιβαλλοντος και υδατικων πορων και

Διαβάστε περισσότερα

ΠΟΙΟΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΟΦΙΜΩΝ ΕΙΣΑΓΩΓΙΚΑ

ΠΟΙΟΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΟΦΙΜΩΝ ΕΙΣΑΓΩΓΙΚΑ ΠΟΙΟΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΟΦΙΜΩΝ ΕΙΣΑΓΩΓΙΚΑ 1 Ποιότητα και Ποιοτικός Έλεγχος Ο όρος «ποιότητα» συχνά χρησιµοποιείται χωρίς την πραγµατική της έννοια. ηλαδή δεν προσδιορίζεται αν το προϊόν στο οποίο αναφέρεται

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑ 1: ΓΙΑΤΙ ΝΑ ΥΠΑΡΧΕΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ?

ΕΡΩΤΗΜΑ 1: ΓΙΑΤΙ ΝΑ ΥΠΑΡΧΕΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ? ΕΡΩΤΗΜΑ 1: ΓΙΑΤΙ ΝΑ ΥΠΑΡΧΕΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ? ΕΠΕΙΔΗ: Η ΧΩΡΕΣ ΔΙΑΦΕΡΟΥΝ ΜΕΤΑΞΥ ΤΟΥΣ ΕΙΤΕ (Α) ΣΤΗΝ ΠΑΡΑΓΩΓΙΚΗ ΤΟΥΣ ΙΚΑΝΟΤΗΤΑ ΝΑ ΠΑΡΑΓΑΓΟΥΝ ΤΑ ΔΙΑΦΟΡΑ ΑΓΑΘΑ, ΕΙΤΕ (Β) ΣΤΙΣ ΚΑΤΑΝΑΛΩΤΙΚΕΣ ΤΟΥΣ ΠΡΟΤΙΜΗΣΕΙΣ ΓΙ

Διαβάστε περισσότερα

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 ΟΜΑ Α Α Στις προτάσεις, από Α.1. µέχρι και Α.6, να γράψετε τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό την ένδειξη Σωστό, αν η πρόταση είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1. Εισαγωγή

ΚΕΦΑΛΑΙΟ 1. Εισαγωγή ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΠΕΡΙΕΧΟΜΕΝΑ 1.1 Επίλυση προβλημάτων και λήψη αποφάσεων 1.2 Ποσοτική ανάλυση και λήψη αποφάσεων 1.3 Ποσοτική ανάλυση Ανάπτυξη μοντέλου Προετοιμασία δεδομένων Επίλυση μοντέλου Δημιουργία

Διαβάστε περισσότερα

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Στις προτάσεις, από Α.1. µέχρι και Α.6, να γράψετε τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό την ένδειξη Σωστό, αν η

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος Οργάνωση και Διοίκηση Εργοστασίων Σαχαρίδης Γιώργος Πρόβλημα 1 Μία εταιρεία έχει μία παραγγελία για την παραγωγή κάποιου προϊόντος. Με τις 2 υπάρχουσες βάρδιες (40 ώρες την εβδομάδα η καθεμία) μπορούν

Διαβάστε περισσότερα

Κατανοώντας την επιχειρηματική ευκαιρία

Κατανοώντας την επιχειρηματική ευκαιρία Η Επιχειρηματική Ευκαιρία Κατανοώντας την επιχειρηματική ευκαιρία Υπάρχουν έρευνες οι οποίες δείχνουν ότι στους περισσότερους επιχειρηματίες που ξεκινούν για πρώτη φορά μια επιχείρηση, τελειώνουν τα χρήματα

Διαβάστε περισσότερα

Θα μπορούσατε να μας περιγράψετε για την παραγωγική διαδικασία και να μας πείτε περισσότερα τους αυτοματισμούς?

Θα μπορούσατε να μας περιγράψετε για την παραγωγική διαδικασία και να μας πείτε περισσότερα τους αυτοματισμούς? Μικρές οικογενειακές τυροκομικές μονάδες Μπορεί κάποιος να δημιουργήσει τη δική του οικογενειακή τυροκομική μονάδα? Τι είναι το οικογενειακό τυροκομείο και πως λειτουργεί? (συνέντευξη από τον διευθυντή

Διαβάστε περισσότερα

«Παρουσίαση Κατεύθυνσης

«Παρουσίαση Κατεύθυνσης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ «Παρουσίαση Κατεύθυνσης Επιχειρησιακών Λειτουργιών» Χίος, Δεκέμβριος 2013 Εισαγωγή Η Διοίκηση Λειτουργιών (operations management)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΓΡΑΜΜΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΓΡΑΜΜΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ ΣΤΟ ΓΡΑΜΜΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Περίληψη Ο Γραμμικός Προγραμματισμός (Linear Programming) ή Γραμμική Βελτιστοποίηση (Linear Optimization) μελετάει ένα από τα πιο εφαρμοσμένα προβλήματα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:

Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ

ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ 3 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Προβλήµατα Ακέραιου Προγραµµατισµού Ι Τα προβλήµατα Ακέραιου Προγραµµατισµού, ανήκουν γενικά σε 3

Διαβάστε περισσότερα

Βασικές έννοιες κι ερµηνεία του Γραµµικού Προγραµµατισµού. Γραφική επίλυση προβληµάτων Γραµµικού Προγραµµατισµού. Παραδείγµατα.

Βασικές έννοιες κι ερµηνεία του Γραµµικού Προγραµµατισµού. Γραφική επίλυση προβληµάτων Γραµµικού Προγραµµατισµού. Παραδείγµατα. Στο κεφάλαιο αυτό επιχειρούµε µια πρώτη προσέγγιση στην µελέτη και διερεύνηση προβληµάτων του Γραµµικού Προγραµµατισµού (Γ.Π., Linear Programming, L.P) και τις µεταβολές τους. Ταυτόχρονα, παρουσιάζουµε

Διαβάστε περισσότερα

Αλγοριθµική Επιχειρησιακή Ερευνα. Χειµερινό Εξάµηνο 2013-2014. Ασκήσεις. 1. Ενα διυλιστήριο µπορεί να επεξεργαστεί τρία είδη ακατέργαστου πετρελαίου :

Αλγοριθµική Επιχειρησιακή Ερευνα. Χειµερινό Εξάµηνο 2013-2014. Ασκήσεις. 1. Ενα διυλιστήριο µπορεί να επεξεργαστεί τρία είδη ακατέργαστου πετρελαίου : Αλγοριθµική Επιχειρησιακή Ερευνα Χειµερινό Εξάµηνο 2013-2014 Ασκήσεις 1. Ενα διυλιστήριο µπορεί να επεξεργαστεί τρία είδη ακατέργαστου πετρελαίου : - το πρώτο προερχόµενο από την Αφρική, το οποίο ονοµάζεται

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2015 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΟΙ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΟΙ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕΘΟΔΟΙ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του ΠΑΠΑΔΟΠΟΥΛΟΥ ΑΝΤΩΝΙΟΥ Επιβλέπων

Διαβάστε περισσότερα

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

1 ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Παραδείγματα προβλημάτων γραμμικού προγραμματισμού Τα προβλήματα γραμμικού προγραμματισμού ασχολούνται με καταστάσεις όπου ένας αριθμός πλουτοπαραγωγικών πηγών, όπως άνθρωποι,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Το συνολικό προϊόν παίρνει την μέγιστη τιμή

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εισαγωγή... 17. Κεφάλαιο 1 Εισαγωγή... 23. Κεφάλαιο 2 Εισαγωγή στον γραμμικό προγραμματισμό... 63

ΠΕΡΙΕΧΟΜΕΝΑ. Εισαγωγή... 17. Κεφάλαιο 1 Εισαγωγή... 23. Κεφάλαιο 2 Εισαγωγή στον γραμμικό προγραμματισμό... 63 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή..................................................................... 17 Κεφάλαιο 1 Εισαγωγή..................................................................... 23 1.1 Επίλυση προβλημάτων

Διαβάστε περισσότερα

Τεχνικές αριστοποίησης

Τεχνικές αριστοποίησης ΚΕΦΑΛΑΙΟ 9 Τεχνικές αριστοποίησης Εισαγωγή Τα µοντέλα αριστοποίησης, ευρέως γνωστά ως µοντέλα µαθηµατικού προγραµµατισµού, είναι αναµφίβολα η δηµοφιλέστερη τεχνική λήψης αποφάσεων στο χώρο της Επιχειρησιακής

Διαβάστε περισσότερα

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του

Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του ΣΥΜΒΟΛΙΣΜΟΙ - ΕΝΝΟΙΕΣ Q ή q : Ποσότητα (Quantity) προϊόντος ρ, Ρ : τιμή (Price) προϊόντος ανά μονάδα προϊόντος. Συνάρτηση τηςζητησης; Η ζήτηση ενός προϊόντος εξαρτάται από την τιμή του. Δηλαδή Qd = f(p).

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ

ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΕΡΙΒΑΛΛΟΥΣΑΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ(DEA) Η ανάλυση DEA είναι πολύ ισχυρή και ιδιαίτερα διαδεδοµένη µέθοδο,

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός

Κεφάλαιο 5ο: Ακέραιος προγραμματισμός Κεφάλαιο 5ο: Ακέραιος προγραμματισμός 5.1 Εισαγωγή Ο ακέραιος προγραμματισμός ασχολείται με προβλήματα γραμμικού προγραμματισμού στα οποία μερικές ή όλες οι μεταβλητές είναι ακέραιες. Ένα γενικό πρόβλημα

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

2 ο Κ Ε Φ Α Λ Α Ι Ο Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ

2 ο Κ Ε Φ Α Λ Α Ι Ο Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ 2 ο Κ Ε Φ Α Λ Α Ι Ο Η ΕΠΙΣΤΗΜΗ ΤΗΣ ΙΟΙΚΗΣΗΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ Α. ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Ερωτήσεις της µορφής «σωστό λάθος» Να χαρακτηρίσετε µε Σ (σωστό) ή µε Λ (λάθος) καθεµιά από τις παρακάτω προτάσεις.

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-7 Τέταρτη Γραπτή Εργασία στην Επιχειρησιακή Έρευνα

Διαβάστε περισσότερα

ες πράσινο ΤΕΙ Δυτικής Μακεδονίας Τμήμα Βιομηχανικού Σχεδιασμού Εργαστήριο C www.c3.teiwm.gr 14/12/20112011

ες πράσινο ΤΕΙ Δυτικής Μακεδονίας Τμήμα Βιομηχανικού Σχεδιασμού Εργαστήριο C www.c3.teiwm.gr 14/12/20112011 Εργαλεία και μεθοδολογίυ σχεδιασμού συσκευασιών ΤΕΙ Δυτικής Μακεδονίας Τμήμα Βιομηχανικού Σχεδιασμού Εργαστήριο C 3 www.c3.teiwm.gr 1 Αειφορία Περιεχόμενα Εργαλεία πράσινου σχεδιασμού Αξιολόγηση κύκλου

Διαβάστε περισσότερα

Γεώργιος Φίλιππας 23/8/2015

Γεώργιος Φίλιππας 23/8/2015 MACROWEB Προβλήματα Γεώργιος Φίλιππας 23/8/2015 Παραδείγματα Προβλημάτων. Πως ορίζεται η έννοια πρόβλημα; Από ποιους παράγοντες εξαρτάται η κατανόηση ενός προβλήματος; Τι εννοούμε λέγοντας χώρο ενός προβλήματος;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ

ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ Μια εταιρεία αλουμινίου έχει αποθέματα βωξίτη στην περιοχή G, στην S και στην A. Επίσης, υπάρχουν εργοστάσια μετάλλου, όπου ο βωξίτης

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

Εισαγωγή στο Παίγνιο Διοίκησης Επιχειρήσεων (business game)

Εισαγωγή στο Παίγνιο Διοίκησης Επιχειρήσεων (business game) Γιώργος Μαυρωτάς Επικ. Καθηγητής Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Σχολή Χημικών Μηχανικών, Ε.Μ.Π. Εισαγωγή στο Παίγνιο Διοίκησης Επιχειρήσεων (business game) 2o Θερινό Σχολείο Νεανικής

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Εργασία ΔΕΟ 11. www.arnos.gr www.oktonia.com www.uni-learn.gr

Εργασία ΔΕΟ 11. www.arnos.gr www.oktonia.com www.uni-learn.gr Εργασία ΔΕΟ 11 1.1 Προγραμματισμός είναι η λειτουργία του προσδιορισμού των αντικειμενικών στόχων ενός οικονομικού οργανισμού και των μέσων που απαιτούνται για την υλοποίησή τους. Ενώ ο σχεδιασμός αφορά

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα