Mαθηματικά E Δημοτικού Tετράδιο εργασιών β~ τεύχος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Mαθηματικά E Δημοτικού Tετράδιο εργασιών β~ τεύχος"

Transcript

1 Mαθηματικά E Δημοτικού Tετράδιο εργασιών β~ τεύχος

2 ΣYΓΓPAΦEIΣ Χριστόδουλος Κακαδιάρης, Εκπαιδευτικός Νατάσσα Μπελίτσου, Εκπαιδευτικός Γιάννης Στεφανίδης, Εκπαιδευτικός Γεωργία Χρονοπούλου, Εκπαιδευτικός KPITEΣ-AΞIOΛOΓHTEΣ Μιχαήλ Μαλιάκας, Καθηγητής του Πανεπιστημίου Αθηνών Θεόδωρος Γούπος, Σχολικός Σύμβουλος Παναγιώτης Χαλάτσης, Εκπαιδευτικός EIKONOΓPAΦHΣH ΦIΛOΛOΓIKH EΠIMEΛEIA YΠEYΘYNOΣ TOY MAΘHMATOΣ KATA TH ΣYΓΓPAΦH KAI YΠEYΘYNOΣ TOY YΠOEPΓOY EΞΩΦYΛΛO ΠPOEKTYΠΩTIKEΣ EPΓAΣIEΣ Γεώργιος Σγουρός, Σκιτσογράφος-Εικονογράφος Εριέττα Τζοβάρα, Φιλόλογος Γεώργιος Τύπας, Μόνιμος Πάρεδρος του Παιδαγωγικού Ινστιτούτου Σαράντης Καραβούζης, Εικαστικός Καλλιτέχνης ACCESS Γραφικές Tέχνες A.E. Γ Κ.Π.Σ. / ΕΠΕΑΕΚ ΙΙ / Ενέργεια.. / Κατηγορία Πράξεων...α: «Αναμόρφωση των προγραμμάτων σπουδών και συγγραφή νέων εκπαιδευτικών πακέτων» ΠΑΙΔΑΓΩΓΙΚO ΙΝΣΤΙΤOΥΤO Μιχάλης Αγ. Παπαδόπουλος Oμότιμος Καθηγητής του Α.Π.Θ. Πρόεδρος του Παιδαγωγικού Ινστιτούτου Πράξη με τίτλο: «Συγγραφή νέων βιβλίων και παραγωγή υποστηρικτικού εκπαιδευτικού υλικού με βάση το ΔΕΠΠΣ και τα ΑΠΣ για το Δημοτικό και το Nηπιαγωγείο» Επιστημονικός Υπεύθυνος Έργου Γεώργιος Τύπας Mόνιμος Πάρεδρος του Παιδαγωγικού Ινστιτούτου Αναπληρωτής Επιστημονικός Υπεύθυνος Έργου Γεώργιος Oικονόμου Mόνιμος Πάρεδρος του Παιδαγωγικού Ινστιτούτου Έργο συγχρηματοδοτούμενο 7% από το Ευρωπαϊκό Κοινωνικό Ταμείο και % από εθνικούς πόρους.

3 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Χριστόδουλος Κακαδιάρης Νατάσσα Μπελίτσου Γιάννης Στεφανίδης Γεωργία Χρονοπούλου ANAΔOXOΣ ΣYΓΓPAΦHΣ: Mαθηματικά E Δημοτικού Tετράδιο εργασιών β~ τεύχος ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩΝ «ΔΙΟΦΑΝΤΟΣ»

4 Γνωστικές Περιοχές Eπαναληπτικά A Περίοδος Ενότητα 4 6 ο ο αριθμοί αριθμοί και πράξεις γεωμετρία μετρήσεις στατιστική μοτίβα πρόβλημα Yπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση 6-7 Yπενθύμιση - Oι αριθμοί μέχρι το Στην ιχθυόσκαλα -9 Oι αριθμοί μέχρι το Oι Έλληνες της Διασποράς 0- Aξία θέσης ψηφίου στους μεγάλους αριθμούς Παιχνίδι με κάρτες - Yπολογισμοί με μεγάλους αριθμούς Oι αριθμοί μεγαλώνουν 4- Eπίλυση προβλημάτων Στον κινηματογράφο 6-7 ΕΠΑΝΑΛΗΠΤΙΚΟ -9 Ενότητα Δεκαδικά κλάσματα - Δεκαδικοί αριθμοί Στο εργαστήρι Πληροφορικής 0- Δεκαδικοί αριθμοί - Δεκαδικά κλάσματα Mετράμε με ακρίβεια - Aξία θέσης ψηφίων στους δεκαδικούς αριθμούς Παιχνίδια σε ομάδες 4- Προβλήματα με δεκαδικούς Στο λούνα παρκ 6-7 H έννοια της στρογγυλοποίησης Στο εστιατόριο -9 Πολλαπλασιασμός δεκαδικών αριθμών Στην Kαλλονή της Λέσβου 0- Διαίρεση ακεραίου με ακέραιο με πηλίκο δεκαδικό αριθμό H προσφορά - ΕΠΑΝΑΛΗΠΤΙΚΟ 4- Ενότητα ο Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 0, 00,.000 Διαβάζουμε τον άτλαντα 6-7 Aναγωγή στη δεκαδική κλασματική μονάδα (,, ) Φιλοτελισμός -9 Kλασματικές μονάδες Kατασκευές με γεωμετρικά σχήματα 0- Iσοδύναμα κλάσματα Eκλογές στην τάξη - Mετατροπή κλάσματος σε δεκαδικό Kλάσματα και δεκαδικοί αριθμοί 4- Στρατηγικές διαχείρισης αριθμών Διαλέγουμε την πιο οικονομική συσκευασία 6-7 Διαχείριση αριθμών Στην αγορά -9 Στατιστική - Mέσος όρος O δημοτικός κινηματογράφος 0- ΕΠΑΝΑΛΗΠΤΙΚΟ - B Περίοδος Ενότητα ο Έννοια του ποσοστού Στην περίοδο των εκπτώσεων 4- Προβλήματα με ποσοστά Διαλέγουμε τι τρώμε 6-7 Γεωμετρικά σχήματα - Περίμετρος Kαρέτα καρέτα -9 Iσοεμβαδικά σχήματα Το τάγκραμ 0- Eμβαδόν τετραγώνου, ορθ. παραλ/μου, ορθ. τριγώνου Tετράγωνα ή τρίγωνα; - Πολλαπλασιασμός κλασμάτων - Aντίστροφοι αριθμοί Προετοιμασία για θεατρική παράσταση 4- Διαίρεση μέτρησης σε ομώνυμα κλάσματα H βιβλιοθήκη 6-7 Σύνθετα προβλήματα - Eπαλήθευση Λύνω προβλήματα με εποπτικό υλικό -9 ΕΠΑΝΑΛΗΠΤΙΚΟ

5 Ενότητα 0 4 ο Mονάδες μέτρησης μήκους: μετατροπές (α) Σωματομετρία 6-7 Mονάδες μέτρησης μήκους: μετατροπές (β) Bουνά και θάλασσες -9 Mονάδες μέτρησης επιφάνειας: μετατροπές Tο τετραγωνικό μέτρο 0- Προβλήματα γεωμετρίας (α) Oι χαρταετοί - Διαίρεση ακεραίου και κλάσματος με κλάσμα Γάλα με δημητριακά 4- Στρατηγικές επίλυσης προβλημάτων Πολλαπλασιασμός ή διαίρεση; 6-7 ΕΠΑΝΑΛΗΠΤΙΚΟ -9 Γ Περίοδος Ενότητα Eίδη γωνιών Oι βεντάλιες - Eίδη τριγώνων ως προς τις γωνίες Eπίσκεψη στην έκθεση (α) 4- Eίδη τριγώνων ως προς τις πλευρές Eπίσκεψη στην έκθεση (β) 6-7 Kαθετότητα, ύψη τριγώνου Σχολικοί αγώνες -9 Διαίρεση γεωμετρικών σχημάτων - Συμμετρία Xαρτοδιπλωτική 40-4 Ενότητα 6 7ο ΕΠΑΝΑΛΗΠΤΙΚΟ ο Διαιρέτες και πολλαπλάσια Παιχνίδι με μουσικά όργανα 0- Kριτήρια διαιρετότητας του, του και του 0 Στο πατρινό καρναβάλι - Kοινά Πολλαπλάσια, E.K.Π. Στην Eγνατία οδό 4- Πρόσθεση και αφαίρεση ετερώνυμων κλασμάτων Πηγές ενημέρωσης 6-7 Διαχείριση πληροφορίας - Σύνθετα προβλήματα Σχολικές δραστηριότητες -9 ΕΠΑΝΑΛΗΠΤΙΚΟ 0- Ενότητα Aξιολόγηση πληροφοριών σε ένα πρόβλημα Παιχνίδια στον υπολογιστή 6-7 Σύνθετα προβλήματα - Συνδυάζοντας πληροφορίες (α) Πτήσεις με... ανταπόκριση -9 Aξιολόγηση πληροφοριών - Διόρθωση προβλήματος Γόρδιος δεσμός 0- Σύνθετα προβλήματα - Συνδυάζοντας πληροφορίες (β) Στο μάθημα της Πληροφορικής - Σμίκρυνση - Mεγέθυνση Γεωγραφία και μαθηματικά 4- ο ΕΠΑΝΑΛΗΠΤΙΚΟ 6-7 Ενότητα 9 4 9ο Mονάδες μέτρησης χρόνου - Μετατροπές H ελιά του Πλάτωνα -9 Προβλήματα με συμμιγείς H ημερομηνία γέννησης 0- O κύκλος Φτιάχνουμε κύκλους - Προβλήματα γεωμετρίας (β) Στο χωράφι 4- Γνωριμία με τους αριθμούς και άνω Στο Πλανητάριο 6-7 ΕΠΑΝΑΛΗΠΤΙΚΟ -9

6 4 Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 0, 00,.000 α. Τα παιδιά ενός σχολείου πλήρωσαν για την εκδρομή τους 0. Πόσο κόστισε το εισιτήριο για κάθε παιδί αν πάρουν μέρος στην εκδρομή συνολικά 00 παιδιά; Εκτιμώ: Υπολογίζω με ακρίβεια: β. Ποιοι αριθμοί είναι; Eξηγώ πώς σκέφτηκα κάθε φορά. αν πολλαπλασιάσουμε τον αν διαιρέσουμε τον με 0, παίρνουμε 00 εκατ. με το 00, παίρνουμε εκατ. το του 0 είναι 0 εκατ. το του.000 είναι γ. Βρίσκω το λάθος. Εξηγώ κάνοντας δίπλα τους σωστούς υπολογισμούς., εκ. x 00 = εκ. 0, εκ. : 0 = 0,0 εκ. 0, εκ. x 0 =, εκ. 0,400 εκ. x.000 = 400,000 εκ. Σύντομος πολλαπλασιασμός και διαίρεση δεκαδικών με 0, 00,.000. Στρογγυλοποίηση/βαθμός σφάλματος. 6

7 Eνότητα δ. Αν κιλό αυγά οξύρρυγχου (χαβιάρι) κοστίζει.000, πόσο κοστίζουν: τα 0 γραμμ.; τα 00 γραμμ.; τα 0 κιλά; ο τόνος; Αν τόνος πατάτες κοστίζει 00, πόσο κοστίζουν: πατάτα βάρους 00 γραμμ.; κιλό πατάτες; 0 κιλά πατάτες; ε. Ποιος αριθμός είναι; : 00 =, μ. : 00 =,0 ευρώ. : 00 = γραμμ. : 00 = 4, εκ. : 00 =,0 τόνοι. στ. Αντιστοιχίζω όσα είναι ίσα:, : 00 0,00 x.000, : 0 0,0 x 00 0,0 x 0 0,00 x 0 Eξηγώ πώς σκέφτηκα. Συζητάμε στην τάξη: Ποιοι υπολογισμοί ήταν οι πιο δύσκολοι; 7

8 Aναγωγή στη δεκαδική κλασματική μονάδα ( 0,, ) α. Ποιο ζώο είναι βαρύτερο; Eκτιμώ: Τα 0,7 του βάρους μου είναι.0 γραμμ. Τα του βάρους μου 0 είναι κιλά. 7 β. Αγοράσαμε κ. πορτοκάλια για να φτιάξουμε χυμό. O χυμός που φτιάξαμε ήταν τα του 0 βάρους των πορτοκαλιών που στύψαμε. Πόσα γραμμάρια χυμό φτιάξαμε; γ. Πόση είναι όλη η επιφάνεια του παραλληλόγραμμου; Τα που φαίνονται είναι τα της συνολικής επιφάνειας. 0 Η συνολική επιφάνεια έχει. Εξηγώ: δ. Φτιάχνουμε ένα πρόβλημα με αναγωγή στη μονάδα χρησιμοποιώντας τα παρακάτω δεδομένα. 0,0 κιλό 0 Στρατηγικές επίλυσης προβλήματος: Αναγωγή στη δεκαδική κλασματική μονάδα (έννοια και υπολογισμός).

9 Eνότητα ε. Τα παιδιά αποφάσισαν να φτιάξουν σε έναν τοίχο της αίθουσας την ταυτότητα των μαθητών της τάξης. Το καθένα ετοίμασε το γενεαλογικό του δέντρο. Oι γονείς της Θεοδώ ρας της έδωσαν τα παρακάτω στοιχεία. Τη βοηθώ να συμπληρώσει ό,τι λείπει: Μαρία-γιαγιά Κωνσταντίνος-παππούς Αναστασία-γιαγιά Μιχάλης-παππούς. ετών-δασκάλα. ετών-βιβλιοπώλης. ετών-οικιακά. ετών-συνταξιούχος Eιρήνη-μητέρα. ετών-δασκάλα Στέφανος-πατέρας. ετών-μηχανικός Δίδυμα Πέτρος. ετών-μαθητής Η Θεοδώρα είναι έναν χρόνο μικρότερη από το άθροισμα των ηλικιών των δίδυμων αδερφών της. O πατέρας της έχει τη διπλάσια ηλικία από το άθροισμα των ηλικιών των παιδιών του. Η ηλικία του Πέτρου είναι το της ηλικίας της γιαγιάς Μαρίας. 0 Η μητέρα της Θεοδώρας έχει τη μισή ηλικία του δικού της πατέρα. Το άθροισμα των ηλικιών τους είναι 96 έτη. Η ηλικία της Θεοδώρας είναι το Η γιαγιά Αναστασία έχει ηλικία τα 7 Νικόλας. ετών-μαθητής της ηλικίας του παππού Μιχάλη. 7 0 του αιώνα. Θεοδώρα ετών-μαθήτρια + Με τη βοήθεια των δικών μου γονέων ετοιμάζω το γενεαλογικό μου δέντρο. 9

10 6 Kλασματικές μονάδες α. Αν τσίχλες κοστίζουν 40 λ., πόσο κοστίζει η τσίχλα; β. Αν η μονάδα είναι: Χρωματίζω κόκκινο το. 0 Χρωματίζω μπλε το. 0 Τι σχέση έχει το της μονάδας με το της μονάδας; γ. Στο πορτοφόλι του κυρ Hλία υπάρχει το της αξίας των χρημάτων που βλέπουμε: Τα χρήματα που έχει στο πορτοφόλι είναι.. Αν ξόδεψε το των χρημάτων, πόσα χρήματα θα έχει τότε; δ. Παρατηρώ και μετά χρωματίζω: Mε κόκκινο το της μονάδας κάθε φορά. 4 Τι μέρος της μονάδας έμεινε αχρωμάτιστο κάθε φορά;. Μπορώ να χρωματίσω το Mε πράσινο το της μονάδας κάθε φορά. με διαφορετικό τρόπο; Τι μέρος της μονάδας έμεινε αχρωμάτιστο κάθε φορά;. Μπορώ να χρωματίσω το με διαφορετικό τρόπο; Τοποθετώ στην αριθμογραμμή τα κλάσματα και. Ποιο είναι το μεγαλύτερο;.. 0 0, Με το εκφράζω κάθε κλάσμα σε δεκαδικό αριθμό όπως το παράδειγμα: =: = Σύγκριση-διάταξη κλασματικών μονάδων. Σύνθεση μονάδας αναφοράς. Χρήση ομώνυμων και ετερώνυμων. 0

11 Eνότητα ε. Φτιάχνω διαφορετικά κλάσματα, μικρότερα του, παίρνοντας κάθε φορά δύο από τις παρακάτω κάρτες με τους αριθμούς: 0 4 Βάζω στην αριθμογραμμή τα παραπάνω κλάσματα: 0 Διατάσσω τα κλάσματα από το μικρότερο στο μεγαλύτερο: στ. Συμπληρώνω: + = + = + = + = 0 7 Ποιο από τα παραπάνω κλάσματα που πρότεινα είναι πιο μεγάλο; Eξηγώ πώς σκέφτηκα: ζ. Εκτιμώ ποιο άθροισμα είναι μεγαλύτερο. Σημειώνω τα σύμβολα της ανισότητας: Eξηγώ στην τάξη πώς σκέφτηκα:

12 7 Iσοδύναμα κλάσματα α. Βάζω 9 στο σωστό: = το του πενταγώνου = τα του πενταγώνου 0 Εξηγώ: Αν η περίμετρος του πενταγώνου είναι 0 εκ., πόσα εκατοστόμετρα είναι κάθε πλευρά; β. Παρατηρώ και συμπληρώνω τον πίνακα:.. = ή.. ή.. ή ή = ή.. ή.. ή ή γ. Φτιάχνω ισοδύναμα κλάσματα με τα αρχικά. Δείχνω πώς τα δημιούργησα: x x 0 6 = = 6 0 x x = = = = 4 4 Ισοδύναμα κλάσματα: Αναγνώριση και δημιουργία. Η έννοια της απλοποίησης.

13 Eνότητα δ. Ποια κλάσματα είναι ισοδύναμα; Τα κυκλώνω είναι ισοδύναμο με:,,, είναι ισοδύναμο με:,,, ε. Ποια κλάσματα εκφράζουν την ίδια ποσότητα (είναι ισοδύναμα); Τα κυκλώνω. Η διαδρομή σπίτι - σχολείο είναι: Tο ψωμί ζυγίζει: Eλέγχω με μ. μ..00 μ ή.,. μ. ή.,. μ. ή.,. μ. 7 κ. 70 κ. 7, κ ή.,. κ. ή.,. κ. ή.,. κ. τις μετατροπές των κλασμάτων σε δεκαδικούς αριθμούς. στ. Βρίσκω δύο διαφορετικά κλάσματα για τους αριθμούς:..,6 0,0 7,7 =.. Eλέγχω με.. =.... τις μετατροπές των δεκαδικών σε κλάσματα. =.. ζ. Σπαζοκεφαλιά! Βρίσκω 4 ψηφία ώστε να ισχύει η ισότητα (χρησιμοποιώ κάθε ψηφίο όσες φορές θέλω): 0, 6 = ή Εξηγώ πώς σκέφτηκα. Επαληθεύω με το κομπιουτεράκι.

14 Mετατροπή κλάσματος σε δεκαδικό α. Ποιο παιδί έφαγε περισσότερη πίτσα; O Μίλτος έφαγε τα 4 της πίτσας. Έχει μείνει: Εκτιμώ:.. Εξηγώ παίρνοντας υπόψη μου πόση πίτσα έμεινε. O Tάσος έφαγε τα 4 της πίτσας. Έχει μείνει: Εξηγώ μετατρέποντας τα κλάσματα σε δεκαδικούς αριθμούς ή σε ισοδύναμα κλάσματα. β. Βρίσκω με διαίρεση τα δεκαδικά κλάσματα που είναι ισοδύναμα με τα παρακάτω κλάσματα: = : = 0,... ή Επαληθεύω με το κομπιουτεράκι. 9 = = = Tοποθετώ τα κλάσματα στην αριθμογραμμή: 0,00 γ. Ποιο κλάσμα είναι μεγαλύτερο και ποιο μικρότερο; Εκτιμώ: μεγαλύτερο είναι το..., γιατί μικρότερο είναι το..., γιατί.. 7 ή ή 9 9 Μετατροπή κλάσματος σε δεκαδικό αριθμό, σύγκριση, διάταξη. Tο κλάσμα ως διαίρεση. 4

15 Eνότητα Διατάσσω τα κλάσματα με εκτίμηση.... <... <... <... Επαληθεύω την εκτίμησή μου μετατρέποντας τα κλάσματα σε δεκαδικούς κάνοντας κάθετη διαίρεση Βάζω σε σειρά από το μικρότερο στο μεγαλύτερο τις ποσότητες που είναι εκφρασμένες: με δεκαδικούς... <... <... <... ή με κλάσματα... < < < δ. Στους παρακάτω υπολογισμούς υπάρχει λάθος: : = 0,6 Εξηγώ με δύο διαφορετικούς τρόπους γιατί είναι λάθος. Χρησιμοποιώντας ισοδύναμα με γινόμενο δεκαδικά κλάσματα : 40 = 0, Μπορούμε να προτείνουμε άλλη στρατηγική για να εξηγήσουμε ότι υπάρχει λάθος; Βρίσκω το σωστό αποτέλεσμα με κάθετη διαίρεση. Επαληθεύω το αποτέλεσμα με γινόμενο. Μπορούμε να προτείνουμε άλλη στρατηγική για να επαληθεύσουμε το αποτέλεσμα;

16 9 Στρατηγικές διαχείρισης αριθμών α. Η Άννα έφτιαξε ένα βραχιόλι με χρωματιστές χάντρες. Τα από το βραχιόλι της 9 ήταν 4 κόκκινες χάντρες. Oι πράσινες ήταν περισσότερες από τις κόκκινες και οι μπλε περισσότερες από τις πράσινες. Πόσες κόκκινες, μπλε και πράσινες χάντρες χρησιμοποίησε; Παρατηρώ τον πίνακα και βρίσκω: 9 Όλες οι χάντρες Κόκκινες χάντρες Πράσινες χάντρες Μπλε χάντρες 9 = 4, = = = Ζωγραφίζω το βραχιόλι με τις χάντρες: β. Στη γιορτή του Νίκου, τα παιδιά πήγαν στο λούνα παρκ. Παρατηρώ τις εικόνες και απαντώ: Aν έμειναν μετά τη βολή όρθια τα Aν έμειναν όρθια τα των κουτιών, έπεσαν... κουτιά. Συνολικά δηλαδή είχαν στηθεί. κουτιά. Στη συνέχεια τα παιδιά έστησαν τα διπλάσια κουτιά. Μετά την πρώτη βολή έμειναν: Όρθια πάλι τα των κουτιών. H Zωή πόσα κουτιά έριξε;... Πόσα έμειναν όρθια;... Διαφορετικοί αλγεβρικοί τρόποι έκφρασης μιας ποσότητας. Μεικτοί αριθμοί. Απλοποίηση. 6 των κουτιών, τα 7 κουτιά που έπεσαν είναι... Συνολικά δηλαδή είχαν στηθεί. κουτιά. Όρθια πάλι τα των κουτιών. 7 O Mίλτος πόσα κουτιά έριξε;... Πόσα έμειναν όρθια;...

17 Eνότητα γ. Παρατηρώ και συμπληρώνω τον πίνακα: Tα είναι: Σχεδιάζω για να σχηματίσω το ολόκληρο: Πόσο είναι το μισό των ; Tο σχεδιάζω: Yπάρχουν άλλες λύσεις; Yπάρχουν άλλες λύσεις; το μισό Σχεδιάζω για να σχηματίσω το ολόκληρο: Πόσο είναι το Tο σχεδιάζω: του μισού; δ. Στο νερό χάνουμε τα του βάρους μας λόγω της άνωσης. Στη Σελήνη χάνουμε τα του βάρους μας λόγω της μικρότερης βαρύτητας. 6 Αν ο Νικόλας ζυγίζει στο νερό κιλά, βρίσκω το βάρος του στην ξηρά πάνω στη Γη και πάνω στη Σελήνη. Óˆ Πάνω ÛÙË στη Ë: Γη: Óˆ ÛÙË ÂÏ ÓË: Πάνω στη Σελήνη: ε. Αν με της κανάτας γεμίζουμε ίδια ποτήρια, με, κανάτα πόσα λίτρο τέτοια ποτήρια γεμίζουμε; 7

18 0 Διαχείριση αριθμών α. Βρίσκω το μισό και το διπλάσιο της ποσότητας. Η ποσότητα είναι: Το μισό της ποσότητας είναι: μονάδα μονάδα μονάδα μονάδα της μονάδας + 6 της μονάδας 6 η ποσότητα είναι: + = της μονάδας 6 6 ή + = ή + ή, της μονάδας + της μονάδας + = της μονάδας ή της μονάδας ή = της μονάδας ή 0, της μονάδας 00 Το διπλάσιο της αρχικής ποσότητας είναι: Με κλάσμα: Με δεκαδικό: β. Βρίσκω τους αριθμούς που λείπουν = + = + = + = = 0 4 _ = 4 γ. Παρατηρώ και συμπληρώνω. _ 6 = Διαχείριση διαφορετικών μορφών αριθμών: Mετατροπές από τη μια μορφή στην άλλη, νοεροί υπολογισμοί, αθροιστική ανάλυση.

19 Eνότητα δ. Συμπληρώνω τους αριθμούς που λείπουν.,,,7,,7 7,7 7,7 (6 x ) , 00 : 0, (7 x ) : ε. Βρίσκω τους αριθμούς που λείπουν. + =, < x < =,0 + < < + = 4 στ. Η ηλικία της Γεωργίας είναι τα Η αδερφή της η Λαμπρινή είναι τα Ποιο κορίτσι έχει τη μεγαλύτερη ηλικία; Αν η γιαγιά έχει ηλικία τα και ποια της Λαμπρινής; 4 της ηλικίας της γιαγιάς της. 0 της ηλικίας της γιαγιάς. του αιώνα (00 χρόνια), ποια είναι η ηλικία της Γεωργίας 9

20 Στατιστική Mέσος Όρος α. Γιατί υπάρχει η ένδειξη στο ασανσέρ; Γιατί επιτρέπεται η είσοδος μέχρι άτομα; β. Τα παρακάτω ραβδογράμματα δείχνουν τις θερμοκρασίες που μέτρησε η Ε.Μ.Υ. μια ημέρα σε δύο ελληνικές πόλεις. Ποια πόλη ήταν η πιο ζεστή εκείνη την ημέρα; ΛAPIΣA :00 :00 4:00 7:00 0:00 Πόση είναι η μέση θερμοκρασία κάθε πόλης τη συγκεκριμένη ημέρα; Χαράζω σε κάθε γραφική παράσταση τη μέση θερμοκρασία με μια κόκκινη ευθεία γραμμή παράλληλη στον άξονα που δείχνει τις ώρες των μετρήσεων. Γράφω παρατηρήσεις που κάναμε στην ομάδα για τον μέσο όρο σε κάθε γράφημα:.... Συζητάμε στην τάξη για την αύξηση της θερμοκρασίας στον πλανήτη και το φαινόμενο του θερμοκηπίου IΩANNINA :00 :00 4:00 7:00 0:00 H έννοια του μέσου όρου, η αξιοποίησή του στη διαδικασία πρόβλεψης. 0

21 Eνότητα γ. Αν ο μέσος όρος βροχόπτωσης ανά μήνα την άνοιξη στο οροπέδιο του Λασιθίου είναι χιλιοστά, πόση προβλέπεται να είναι η βροχόπτωση τον Μάιο, αν ξέρουμε τις τιμές για τον Μάρτιο και τον Απρίλιο; Μάρτιος: 7 χιλ. Απρίλιος: χιλ. Μάιος:. χιλιοστά. Μπορούμε προκαταβολικά να προβλέψουμε αν ο Μάιος είναι λιγότερο ή περισσότερο βροχερός από τους δύο άλλους μήνες; δ. Ένας εκδοτικός οίκος αποφάσισε να δωρίσει λογοτεχνικά βιβλία για τα παιδιά που πηγαίνουν στην Στ τάξη σε σχολεία της Χίου και της Λέσβου. O υπάλληλος πρότεινε να δώσουν τον ίδιο αριθμό βιβλίων σε όλα τα σχολεία, γι αυτό και ζήτησε τον Μ.O. των παιδιών που φοιτούν στην Στ τάξη στα σχολεία αυτά. ο ο ο Ποιος είναι ο Μ.O. των μαθητών της Στ τάξης στα παραπάνω σχολεία; 4ο ο 6ο 7ο Πόσα βιβλία θα στείλουν τελικά σε κάθε σχολείο αν βασιστούν στον Μ.O.; ο ΜΑΘΗΤΕΣ ΣΤ ΤΑΞΗΣ Μερικοί μαθητές σχολίασαν ότι δεν ήταν δίκαιος ο τρόπος που δώρισαν τα βιβλία. Το κριτήριο του Μ.O. με το οποίο μοίρασαν τα βιβλία ήταν το κατάλληλο; Εξηγώ: ε. O Μ.O. είναι ο ίδιος σε όλες τις σειρές. Συμπληρώνω ό,τι λείπει: Μ.O. σειρά η, 0, 0,,.. σειρά η σειρά η 4 0,....

22 Kεφάλαια 4- α. Συζητάμε με την ομάδα μας... Πώς χρησιμοποιούμε τη στρατηγική της αναγωγής στη μονάδα στην καθημερινή ζωή; Δίνουμε ένα παράδειγμα. Πότε χρησιμοποιούμε τον μέσο όρο; Δίνουμε παραδείγματα. Πώς τον υπολογίζουμε; β. Τι μέρος της συνολικής επιφάνειας είναι χρωματισμένο; Βάζω 9 στο σωστό Ποιος δεκαδικός αριθμός αντιστοιχεί κάθε φορά; Βάζω 9 στο σωστό. 0,,07 = : ή = : 0 ή,0 0,7 Ποια διάταξη κλασμάτων δεν είναι σωστή; Eξηγώ με όποιον τρόπο θέλω: < < < < < < γ. Συμπληρώνω ό,τι λείπει. + + = = 0 4 = < < + = 6 + = 0 0 = > > δ. Υπολογίζω κάθε φορά το αποτέλεσμα. Βάζω 9 στο σωστό. Με εκτίμηση Με ακρίβεια 4 6 x 0 0 (4 x ) + 6 ( x ) 0 6 (6 : ) + :,, 64 ( : ) 4 7,0 x (7 x 9) + (0,0 x 9) 64 6, 7,90 : 9, (7 : 9) + (0,90 : 9),0,0 Εμπέδωση - επέκταση των γνώσεων και δεξιοτήτων που διδάχτηκαν στην ενότητα.

23 ε. Συμπληρώνω τους αριθμούς που λείπουν: + 4, : 0 0,7 + 9 : 7 + 0, 0,0 x, 4,0 : στ. Τα 0 των χρημάτων του Στέφανου είναι 4. Πόσα χρήματα έχει συνολικά; ζ. Bρίσκω με όποιον τρόπο θέλω πόσο χυμό ήπιαν συνολικά τα παιδιά. Ηρώ: 0 του λίτρου πορτοκαλάδα και του λίτρου χυμό ανανά. Ρούλα: του λίτρου πορτοκαλάδα και του λίτρου χυμό ανανά. 6 Ποιο παιδί ήπιε περισσότερο χυμό; Eξηγώ. η. Πόσο κοστίζει το κουτί γάλα σε κάθε περίπτωση; κουτιά γάλα κουτιά γάλα 6 κουτιά γάλα (+ δώρο),4,40 (α) (β) (γ) (α) (β) (γ) Εκτιμώ: Yπολογίζω με ακρίβεια:

24 Έννοια του ποσοστού α. Τα δύο τμήματα της Ε τάξης έχουν συνολικά 0 μαθητές. Έκαναν ψηφοφορία για να αποφασίσουν πού θα πάνε εκπαιδευτική επίσκεψη την επόμενη εβδομάδα. Η έρευνα έδειξε τα εξής: Προορισμός Ποσοστό Αν τα παιδιά Τα παιδιά των μαθητών ήταν 00 είναι 0 Πλανητάριο % Nαυτικό μουσείο 0% Παιδικό στέκι γλυπτικής και ζωγραφικής 40% Mουσείο των τρένων % Πού αποφάσισε η πλειοψηφία των παιδιών να πάνε εκδρομή; β. Αντιστοιχίζω όπως στο παράδειγμα: b ή ή % ή..., b b b b ή ή % ή..., ή ή ή 0, ή ή 0% ή...,... ή 4% ή 0,4 Πρώτη προσέγγιση της έννοιας του ποσοστού. Μετατροπή του από και σε δεκαδικό αριθμό και δεκαδικό κλάσμα. 4

25 Eνότητα 4 γ. Συμπληρώνω τα κενά: έκπτωση: % όφελος:.. τελική τιμή: έκπτωση: % όφελος:... τελική τιμή:. έκπτωση: % όφελος:.. τελική τιμή:. δ. Ψάχνοντας στις εκπτώσεις, η Νεφέλη βρήκε το ίδιο ζευγάρι παπούτσια σε διαφορετικές τιμές: ο 40 ο 0 ο 0 κατάστημα έκπ. 0% κατάστημα έκπ. 0% κατάστημα έκπ. 0% Η Νεφέλη πιστεύει ότι το ο κατάστημα προσφέρει την καλύτερη τιμή. Συμφωνείτε; Συζητάμε στην τάξη τις στρατηγικές μας. ε. O αέρας που αναπνέουμε αποτελείται σε ποσοστό 76% από άζωτο, % από διάφορα άλλα αέρια και το υπόλοιπο από οξυγόνο. Πόσο είναι το ποσοστό σε οξυγόνο που περιέχει ο αέρας; Συζητάμε στην τάξη για το νέφος στις μεγάλες πόλεις. στ. Παρατηρώ προσεκτικά και αντιστοιχίζω: 76 Μικρότερο από 76% ή ή 0, ,4 0,9 7 0,0 0, Μεγαλύτερο από 76% ή 76 ή 0,

26 Προβλήματα με ποσοστά α. Η Άννα είχε: Πλήρωσε και έδωσε το 0% της αξίας των χρημάτων της. Πόσα χρήματα της έμειναν; β. Ποσοστό περιεκτικότητας νερού στο ανθρώπινο σώμα: 00% 70% 6% 0% Πόσα κιλά είναι το νερό στο συνολικό βάρος του Κωνσταντίνου; Πόσα κιλά είναι το νερό στο δικό μου βάρος; Στρατηγικές επίλυσης προβλημάτων με ποσοστά. 6

27 Eνότητα 4 γ. Στην επίσκεψή τους στις αλυκές του Μεσολογγίου τα παιδιά έμαθαν πως η περιεκτικότητα του θαλασσινού νερού σε αλάτι είναι περίπου 4%. Πόσα λίτρα θαλασσινό νερό χρειάστηκαν για την κάθε συσκευασία; κ 400 γραμ. λίτρο θαλασσινό νερό έχει βάρος περίπου κιλό ή.000 γραμμάρια. δ. Η Ελένη φτιάχνει ένα βραχιόλι με χάντρες. Ως τώρα έχει φτιάξει το 0% από το βραχιόλι με χάντρες. Πόσες χάντρες θα έχει όλο το βραχιόλι; ε. Το 60% των μαθητών του σχολείου του Αλτάν είναι Έλληνες και το υπόλοιπο πρόσφυγες από άλλες χώρες του κόσμου (αλλοδαποί μαθητές). Αν όλοι οι μαθητές είναι 0, πόσοι είναι Έλληνες και πόσοι αλλοδαποί; Αν στη μέση της χρονιάς ήρθαν 0 αλλοδαποί μαθητές και 0 Έλληνες, τι ποσοστό αποτελούν στο σύνολο τώρα: οι Έλληνες; οι αλλοδαποί; στ. O Oρφέας πήρε από τον πατέρα του 0 χαρτζιλίκι. Αν αυτά τα χρήματα είναι το 40% από το χαρτζιλίκι του μήνα, πόσο χαρτζιλίκι παίρνει κάθε μήνα ο Oρφέας; 7

28 4 Γεωμετρικά σχήματα Περίμετρος α. Παρατηρώ προσεκτικά τα παρακάτω ισοπεριμετρικά σχήματα (δηλαδή σχήματα με ίση περίμετρο). Πόση είναι η περίμετρός τους; Υπολογίζω τις πλευρές που λείπουν σε κάθε γεωμετρικό σχήμα: εκ. εκ. εκ. εκ. εκ. 4, εκ. εκ. εκ. εκ. εκ. εκ., εκ. εκ. 6 εκ. εκ. Προτείνω και εγώ δυο γεωμετρικά σχήματα που έχουν την ίδια περίμετρο (ισοπεριμετρικά). β. Φτιάχνω το ίδιο σχήμα με το αρχικό και με μήκος περιμέτρου: το μισό μήκος της περιμέτρου του αρχικού σχήματος αρχικό σχήμα το διπλάσιο μήκος της περιμέτρου του αρχικού σχήματος Αναγνώριση και κατασκευή γεωμετρικών σχημάτων. Έννοια και υπολογισμός της περιμέτρου.

29 Eνότητα 4 γ. Ποιο από τα παρακάτω σχήματα έχει τη μεγαλύτερη περίμετρο; Eκτιμώ:.. α. β. Eξηγώ στην τάξη τον τρόπο που σκέφτηκα. γ. Ελέγχω την εκτίμησή μου με τη βοήθεια του χάρακα. δ. Η Θεοδώρα θα φτιάξει με τον αδερφό της μια κορνίζα για την αγαπημένη της αφίσα. Χρειάζονται χαρτόνι με διαστάσεις 60 εκ. και 0 εκ. Από ποια πηχάκια θα διαλέξουν για να τη φτιάξουν; Eκτιμώ:,0 μ. 90 εκ. 0 εκ.,0 το ένα το ένα 0 λ. το ένα Από τα πηχάκια που διάλεξαν πόσα εκ. θα τους περισσέψουν συνολικά; Yπολογίζω με ακρίβεια: Πόσα θα πληρώσουν; Υπάρχει πιο οικονομική λύση; 9

30 Iσοεμβαδικά σχήματα α. Yπολογίζω το εμβαδόν των γεωμετρικών σχημάτων. Εκτιμώ τι σχέση έχει το εμβαδόν: του τετραγώνου με το εμβαδόν του τριγώνου; του τετραγώνου με το εμβαδόν του ορθογώνιου παραλληλόγραμμου; του τριγώνου με το εμβαδόν του ορθογώνιου παραλληλόγραμμου; α β γ Συζητάμε στην τάξη για τον τρόπο που σκεφτήκαμε. β. Χρησιμοποιώντας όλα τα κομμάτια από δύο τάγκραμ, φτιάχνουμε ένα τραπέζιο. Yπολογίζουμε το εμβαδόν του σε σχέση: με το εμβαδόν του πιο μεγάλου τριγώνου από τα κομμάτια του τάγκραμ:. με το εμβαδόν του πιο μικρού τριγώνου από τα κομμάτια του τάγκραμ: + Διαχείριση σύνθετων γεωμετρικών σχημάτων. Ανάλυση και διατύπωση υποθέσεων. Εμβαδόν. Ισοεμβαδικά σχήματα. 0

31 Eνότητα 4 γ. Γ A B Δ E K I H Z Θ Ποιο είναι το εμβαδόν που καλύπτουν: τα τετράγωνα; τ.εκ. τα τρίγωνα; τ.εκ. όλο το γεωμετρικό σχήμα;.. τ.εκ. Πόση είναι η περίμετρος του ΑΕΖΚ; εκ. Σχεδιάζω δίπλα ένα ορθογώνιο παραλληλόγραμμο χρησιμοποιώντας τα τρίγωνα και τα τετράγωνα του παραπάνω γεωμετρικού σχήματος: Φτιάχνω ένα γεωμετρικό σχήμα με εμβαδόν διπλάσιο από αυτό του προηγούμενου σχήματος, χρησιμοποιώντας φορές τα τρίγωνα και φορές τα τετράγωνά του: Ποιο είναι το εμβαδόν που καλύπτουν στο σχήμα που έφτιαξα: τα τετράγωνα;. τ.εκ. τα τρίγωνα;.. τ.εκ. όλο το γεωμετρικό σχήμα;. εκ. δ. Βρίσκω την περίμετρο και το εμβαδόν του παρακάτω πολυγώνου: H 4 εκ. Θ Υπολογίζω: την περίμετρο: Λ εκ. M 4, εκ. K 6 εκ. I το εμβαδόν: Προτείνουμε μια διαφορετική στρατηγική για να υπολογίσουμε την περίμετρο και το εμβαδόν του σχήματος.

32 6 Eμβαδόν τετραγώνου, ορθ. παραλληλόγραμμου, ορθ. τριγώνου α. Υπολογίζω πόσα τ.εκ. περίπου είναι η επιφάνεια που καλύπτει μία κόλλα Α4. β. Σχεδιάζω: τετράγωνο με εμβαδόν τ.εκ. ορθογώνιο παραλληλόγραμμο με εμβαδόν 4 τ.εκ. ορθογώνιο τρίγωνο με εμβαδόν 7 τ.εκ. γ. Το παρακάτω ορθογώνιο παραλληλόγραμμο (α) είναι το ενός μεγαλύτερου ορθογώνιου παραλληλόγραμμου. α Σχεδιάζω ολόκληρο το ορθογώνιο παραλληλόγραμμο. Το εμβαδόν του είναι τ. εκ. Εμβαδόν τετραγώνου, ορθογώνιου παραλληλόγραμμου και ορθογώνιου τριγώνου.

33 Eνότητα 4 δ. Αντιστοιχίζω τα γεωμετρικά σχήματα με το εμβαδόν που πιστεύω ότι έχουν. εκ. x εκ. = τ.εκ. εκ. x 4 εκ. = 4 τ.εκ. ( εκ. x εκ.) : = τ.εκ. εκ. x εκ. = τ.εκ. ε. Αν το εμβαδόν ενός ορθογώνιου τριγώνου είναι τ.εκ., ποιες μπορεί να είναι οι κάθετες πλευρές του; Το σχεδιάζω. Αν το χρησιμοποιήσω 6 φορές, τι σχήματα μπορώ να φτιάξω; Bρίσκω το εμβαδόν τους.

34 7 Πολλαπλασιασμός κλασμάτων Aντίστροφοι αριθμοί α. Το γινόμενο x της μονάδας είναι μεγαλύτερο ή μικρότερο από τη μονάδα; 4 Εκτιμώ: Βρίσκω με ακρίβεια: 4 x της μονάδας = x της μονάδας = 4 Ελέγχω με τη ζωγραφική. Εκφράζω το γινόμενο x με δεκαδικούς αριθμούς και βρίσκω το αποτέλεσμα 4 β. Τι μέρος της μονάδας παίρνω αν χωρίσω το της μονάδας σε δέκα ίσα μέρη ( : 0) ; x = της μονάδας ή 0,.. 0 Ελέγχω στο διπλανό σχήμα: Χρωματίζω με κόκκινο το x 0 0 της μονάδας. μονάδα γ. Συμπληρώνω τους αριθμούς που λείπουν και στη συνέχεια ελέγχω με το αποτέλεσμα. x = x = x = ή 0, x 0,6 = ή 0, x = x = H έννοια του γινομένου κλασμάτων. Χρήση γεωμετρικού μοντέλου και τεχνικών πολλαπλασιασμού. 4

35 Eνότητα 4 δ. Βάζω το σύμβολο της ισότητας ή της ανισότητας όπου ταιριάζει: α) x 0 β) x 4 γ) x δ) x 60 0 Βρίσκω με ακρίβεια και στη συνέχεια ελέγχω τα αποτελέσματα με. α) ή, γ) ή, β) ή..., δ) ή, ε. Στο μάθημα της γυμναστικής ο Μίλτος και ο Γιάννης διαγωνίζονται στην αναρρίχηση με σχοινί. Το συνολικό ύψος του σχοινιού είναι 4 μ. Μετά από λεπτά αγώνα ο Μίλτος αναρριχήθηκε σε ύψος όσο τα του σχοινιού. Την 6 ίδια στιγμή ο Γιάννης είχε αναρριχηθεί σε ύψος όσο τα 9 του ύψους που 0 έφτασε ο Μίλτος. Πόσα μέτρα αναρριχήθηκε ο Γιάννης; Τι μέρος του συνολικού σχοινιού κάλυψε με την αναρρίχησή του ο Γιάννης; στ. Στο σχολείο της Σοφίας τα παιδιά της Ε και της Στ τάξης αποφάσισαν να «υιοθετήσουν» τον Σαμίρ από τη Ρουάντα μέσω της «Action Aid» (www.actionaid.org). Κάθε χρόνο το ποσό που αντιστοιχεί στην υιοθεσία είναι. Κάθε μήνα δίνουν το του συνολικού ποσού. Από αυτά το δίνει η Ε τάξη και τα η Στ τάξη. Τι μέρος του συνολικού ποσού δίνει κάθε μήνα η Ε τάξη και τι μέρος η Στ τάξη; Πόσα χρήματα δίνει κάθε τάξη τον χρόνο;

36 Διαίρεση μέτρησης σε ομώνυμα κλάσματα α. Πριν κάνω τις διαιρέσεις, εξηγώ με λόγια τι σημαίνει κάθε διαίρεση. του : του = χωράει... φορές 6 της ώρας : της ώρας : ή = χωράει... φορές 4 φορές του κιλού : του κιλού του μέτρου : του μέτρου του : του 4 του χμ. : του χμ. 00 β. Βρίσκω «πόσες φορές χωράει»... Eπαληθεύω. 0, : 0, : 0 0 0,4 : 0, 4 : 0 0 = χωράει φορά γιατί 0, x = 0, ή = χωράει.. 0 x = 0 0,40 : 0, = :,0 : 0, = : Η διαίρεση μέτρησης σε ομώνυμα κλάσματα. 6

37 Eνότητα 4 γ. Στη Βυτίνα η Δώρα βοηθάει τη γιαγιά της να φτιάξει γιαούρτι. Με ένα κιλό γιαούρτι θα γεμίσουν πήλινα δοχεία, δηλαδή = του κιλού. Πόσα πήλινα δοχεία θα γεμίσουν με, κιλά γιαούρτι; δ. Βρίσκω τους αριθμούς που λείπουν κάθε φορά. Εξηγώ (επαλήθευση)., : 0, : 0 0 = χωράει 7 φορές γιατί 7 x 0, ή 7 x = 0 0 9,9 :,. 99 : 0 0 = χωράει 9 φορές γιατί 0,0 :. : 0 0 = χωράει φορές γιατί,0 : 0, = χωράει φορές γιατί 0 : ε. Ποιοι αριθμοί (ακέραιοι, δεκαδικοί ή κλάσματα), αν διαιρεθούν μεταξύ τους, δίνουν τα παρακάτω αποτελέσματα; Eξηγώ στην τάξη πώς σκέφτηκα. : = : = : = : = μισό 60 : 0 = : = : = : = μισό...,... :...,... =...,... :...,... =...,... :...,... =,4 : 0, = μισό 4, :, =...,... :...,... =...,... :...,... =...,... :...,... = μισό 60 0 : 0 0 = : = : = 4.. : = μισό 7

38 9 Σύνθετα προβλήματα Eπαλήθευση α. Η Μαρίνα κάνει προπόνηση με την ομάδα στίβου του αθλητικού συλλόγου της περιοχής της. O προπονητής τής ζήτησε να τρέξει τουλάχιστον.400 μ. Αν γύρος του σταδίου είναι 400 μ., πόσους γύρους πρέπει να τρέξει; Εκτιμώ: περίπου Yπολογίζω με ακρίβεια: Επαληθεύω τη λύση που έδωσα με άλλο τρόπο. β. Η απόσταση από το σπίτι του Μιχάλη στο σπίτι του Κωνσταντίνου είναι χμ. 6 μ. Στα της απόστασης συναντάμε την είσοδο του πάρκου. Πόση είναι η απόσταση από την είσοδο του πάρκου ως το σπίτι του Κωνσταντίνου; Εκτιμώ: περίπου Βρίσκω με ακρίβεια: Επαληθεύω τη λύση που έδωσα με άλλο τρόπο. γ. Αν κοστίζουν,60, πόσο κοστίζουν τα, κιλά; Εκτιμώ: περίπου Yπολογίζω με ακρίβεια: Επαληθεύω τη λύση που έδωσα. Διδακτική επίλυσης προβλήματος Επαλήθευση.

39 Eνότητα 4 δ. O οδηγός του φορτηγού μετέφερε χαλίκι σε μια οικοδομή. Έκανε 4 δρομολόγια με πλήρες φορτίο και δρομολόγιο με τα του επιτρεπόμενου φορτίου. Πόσο χαλίκι με τέφερε 0 συνολικά; Εκτιμώ: περίπου Βρίσκω με ακρίβεια: Επαληθεύω τη λύση που έδωσα. Επιτρεπόμενο φορτίο: τόνοι 9 ε. Το μεγάλο δοχείο περιέχει του κιλού ζάχαρη. Θέλουμε να μοιράσουμε 0 τη ζάχαρη σε δοχεία α β γ ποσότητα ζάχαρης, χωρίς να χρησιμοποιήσω ζυγαριά.. Σε κάθε δοχείο πρέπει να βάλω την ίδια Ποιες κινήσεις θα κάνω χρησιμοποιώντας τα βοηθητικά δοχεία περιεκτικότητας Ζάχαρη 9 κ. κ. κ. 0 κ. το πρώτο και κ. το δεύτερο για να τα καταφέρω; Καταγράφω τις κινήσεις που έκανα στο. Επαληθεύω τη λύση που έδωσα με όποιον τρόπο θέλω. 9

40 4 Kεφάλαια -9 α. Συζητάμε με την ομάδα μας και εξηγούμε: Πώς μπορούμε να συμβολίσουμε το % με: διαίρεση, κλάσμα, δεκαδικό αριθμό. Πώς ένα τρίγωνο μπορεί να έχει ίσο εμβαδόν με ένα τετράγωνο. Μπορούμε να πολλαπλασιάσουμε αριθμούς και το αποτέλεσμα να είναι ένας αριθμός μικρότερος και από τους δύο; β. Τι μέρος της συνολικής επιφάνειας κάθε σχήματος είναι χρωματισμένο; τ.εκ. Το εκφράζω με κλάσμα: α). β). γ) 6. και με ποσοστό:.. α). % β). % γ). % γ. Βάζω 9 στο σωστό αποτέλεσμα. x = 6 x = 4 Με ποια από τις παρακάτω πράξεις θα βρω πόσο χωράνε τα στα 9 της ίδιας μονάδας; Βάζω 9 στο σωστό αποτέλεσμα : 9 4 : 4 9 : 4 Ποιo είναι το αποτέλεσμα της διαίρεσης;.. Εμπέδωση- επέκταση των γνώσεων και δεξιοτήτων που διδάχτηκαν στην ενότητα. 40

41 δ. Κάθε γεμάτο ποτηράκι είναι το μιας γεμάτης κανάτας με χυμό. Πόσα ποτηράκια παίρνουμε με τα της κανάτας; Βρίσκουμε με την ομάδα μας δύο διαφορετικούς τρόπους για να λύσουμε το πρόβλημα: ε. Δείχνω τον πολλαπλασιασμό x = στο πλέγμα: 4 Βρίσκω τους αντίστροφους αριθμούς: 0 = x = x = x στ. O κυρ Μιχάλης είναι έμπορος ηλεκτρικών ειδών. Αγόρασε τηλεοράσεις Πούλησε τα των τηλεοράσεων % ακριβότερα. Πόσα χρήματα εισέπραξε; 7 9 Την περίοδο των εκπτώσεων πούλησε σε τιμή ίση με τα της τιμής αγοράς τις 0 υπόλοιπες. Πόσα χρήματα εισέπραξε από τις πωλήσεις; Πόσα χρήματα κέρδισε συνολικά; ζ. Στο μάθημα της Τοπικής Ιστορίας τα παιδιά αποφάσισαν να ερευνήσουν την ιστορία του σχολείου τους. Είδαν ότι, όταν το σχολείο τους λειτούργησε πρώτη φορά το 99, γράφτηκαν 00 παιδιά. Το 00 τα παιδιά του σχολείου ήταν 4% περισσότερα από το99. Πόσα παιδιά φοιτούσαν στο σχολείο το 00; η. Πόσο είναι το εμβαδόν του τριγώνου ΑΒΓ σε κάθε περίπτωση; Γ A A B Εξηγώ πώς το βρήκα: B Γ 4

42 εκ. χ εκ. Kεφάλαια, 7,,,, 6 4

43 4 Kεφάλαια 7, 6

44 Βάσει του ν. 966/0 τα διδακτικά βιβλία του Δημοτικού, του Γυμνασίου, του Λυκείου, των ΕΠΑ.Λ. και των ΕΠΑ.Σ. τυπώνονται από το ΙΤΥΕ - ΔΙΟΦΑΝΤΟΣ και διανέμονται δωρεάν στα Δημόσια Σχολεία. Τα βιβλία μπορεί να διατίθενται προς πώληση, όταν φέρουν στη δεξιά κάτω γωνία του εμπροσθόφυλλου ένδειξη «ΔΙΑΤΙΘΕΤΑΙ ΜΕ ΤΙΜΗ ΠΩΛΗΣΗΣ». Κάθε αντίτυπο που διατίθεται προς πώληση και δεν φέρει την παραπάνω ένδειξη θεωρείται κλεψίτυπο και ο παραβάτης διώκεται σύμφωνα με τις διατάξεις του άρθρου 7 του νόμου 9 της / Μαρτίου 946 (ΦΕΚ 946, 0, Α ). Απογορεύεται η αναπαραγωγή οποιουδήποτε τμήματος αυτού του βιβλίου που καλύπτεται από δικαιώματα (copyright), ή η χρήση του σε οποιαδήποτε μορφή, χωρίς τη γραπτή άδεια του Υπουργείου Παιδείας και Θρησκευμάτων, Πολιτισμού και Αθλητισμού / ΙΤΥΕ - ΔΙΟΦΑΝΤΟΣ.

Mαθηματικά E Δημοτικού Tετράδιο εργασιών α~ τεύχος

Mαθηματικά E Δημοτικού Tετράδιο εργασιών α~ τεύχος Mαθηματικά E Δημοτικού Tετράδιο εργασιών α~ τεύχος 10-0124-02.indd 1 27/2/2013 9:26:16 πµ ΣYΓΓPAΦEIΣ Χριστόδουλος Κακαδιάρης, Εκπαιδευτικός Νατάσσα Μπελίτσου, Εκπαιδευτικός Γιάννης Στεφανίδης, Εκπαιδευτικός

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Mαθηµατικά. E ηµοτικού

Mαθηµατικά. E ηµοτικού Mαθηµατικά E ηµοτικού ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚΔΟΣΗΣ ΣYΓΓPAΦEIΣ Χριστόδουλος Κακαδιάρης, Εκπαιδευτικός Νατάσσα Μπελίτσου, Εκπαιδευτικός Γιάννης Στεφανίδης, Εκπαιδευτικός Γεωργία Χρονοπούλου, Εκπαιδευτικός KPITEΣ-AΞIOΛOΓHTEΣ

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Περιεχόμενα Κεφάλαιο : Θυμάμαι ό,τι έμαθα από την Γ Τάξη... 5 Κεφάλαιο : Διαχειρίζομαι αριθμούς ως το 0.000... 8 Κεφάλαιο

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ Δημοτικό σχολείο Σκύδρας ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια 1 ΜΑΘΗΜΑ 1 Ο Κλάσµατα Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια Όπως φαίνεται όµως ο Σάκης έφαγε 1 κοµµάτι από τα 8 Το κοµµάτι

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της

Διαβάστε περισσότερα

Mαθηματικά Δ Δημοτικού

Mαθηματικά Δ Δημοτικού 10-0096_MATH_CTEUX_D DHMOT_C TEUXOS 1/9/13 11:31 AM Page 1 Mαθηματικά Δ Δημοτικού Tετράδιο Eργασιών γ τεύχος 10-0096_MATH_CTEUX_D DHMOT_C TEUXOS 1/9/13 11:31 AM Page 2 ΣΥΓΓΡΑΦΕΙΣ ΚΡΙΤΕΣ-ΑΞΙΟΛΟΓΗΤΕΣ ΕΙΚΟΝΟΓΡΑΦΗΣΗ

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4%

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4% Ποσοστά: Τα Μαθηματικά της Αγοράς ===================================================================================== Κώστας Γ. Σάλαρης - Μάνια Κ. Σάλαρη Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

APA EI MA 1. B ÛÈÎ ÛËÌ ıâˆú. Πολλές φορές είναι απαραίτητο να συγκρίνουµε δύο µεγέθη και να µελετήσουµε

APA EI MA 1. B ÛÈÎ ÛËÌ ıâˆú. Πολλές φορές είναι απαραίτητο να συγκρίνουµε δύο µεγέθη και να µελετήσουµε 30 Λόγος δύο µεγεθών B ÛÈÎ ÛËÌ ıâˆú Πολλές φορές είναι απαραίτητο να συγκρίνουµε δύο µεγέθη και να µελετήσουµε τη σχέση τους. Tο αποτέλεσµα της σύγκρισης των δύο µεγεθών που εκφράζεται ως κλάσµα ονοµάζεται

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

ÓfiÙËÙ 1 ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô

ÓfiÙËÙ 1 ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ÓfiÙËÙ ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô Ì Ì È: ÀappleÂÓı ÌÈÛË ã T ÍË È Ó ÂappleÈÏ ÛÔ ÌÂ Ó appleúfi ÏËÌ, ÙÔ È Ô ÌÂ appleúôûâîùèî ÒÛÙÂ Ó Î Ù ÓÔ ÛÔ - ÌÂ ÙÈ appleïëúôêôú

Διαβάστε περισσότερα

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς 0-0059MATHIMATIKAGDIMOTIKOU3_0 MAΘHTHΣ MAΘHM Γ 3/2/203 4:3 μμ Page 6 η ενότητα Εισαγωγή στους δεκαδικούς αριθμούς 33 34 35 36 37 38 Κεφάλαιο 33 : Πολλαπλασιασμός και διαίρεση με το 0, το 00 και το.000

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας;

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; 2. ºÙÈ Óˆ ÚÈıÌÔ Ì ÚÈ ÙÔ 100 Î È ÙÔ Û ÁÎÚ Óˆ ΜΑΘΑΙΝΩ ΠΩΣ ΝΑ ΛΥΝΩ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ Ú Êˆ Ó Ó ÚÈıÌfi Ì ËÊ Î È ÌÂ Ï ÍÂÈ 2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; ΛΥΣΗ Στη ράβδο του άβακα που δείχνει

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ΤΑ ΠΟΣΟΣΤΑ 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ν 100 80 Από συνήθεια λέµε «80 τοις εκατό» και γράφουµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις Συγγραφή: Ομάδα Υποστήριξης

Διαβάστε περισσότερα

ΠΕΔΙΟ ΔΡΑΣΗΣ ΚΑΘΗΜΕΡΙΝΟΤΗΤΑ

ΠΕΔΙΟ ΔΡΑΣΗΣ ΚΑΘΗΜΕΡΙΝΟΤΗΤΑ i^^i^^^^^^^^^^^j^y^^^^y^^m^^n ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΚΠΑΙΛΕΥΣΗΣ ΕΝΗΛΙΚΩΝ ΤΙΤΟΥΤΟ ΑΙΑΡΚΟΥΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΝΗΛΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΟΙΚΟΓΕΝΕΙΑΚΟΣ ΑΡΙΟΜΗΤΙΣΜΟΣ ΠΕΔΙΟ ΔΡΑΣΗΣ

Διαβάστε περισσότερα

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ Τα κλάσµατα ανέκαθεν ταν ένα δύσκολο κοµµάτι κάθε µαθητ. Μπως όµως απλά έχουµε παρεξηγσει κάποια πράγµατα; Ας περιπλανηθούµε µαζί στον «παράξενο» κόσµο των κλασµάτων, µε τη βοθεια

Διαβάστε περισσότερα

Mαθηματικά. Δʹ Δημοτικού

Mαθηματικά. Δʹ Δημοτικού 10-0093_MATHIMATIKA_BM_D DHMOT_math 2/5/13 1:33 PM Page 1 Mαθηματικά Δʹ Δημοτικού 10-0093_MATHIMATIKA_BM_D DHMOT_math 2/5/13 1:33 PM Page 2 ΣΥΓΓΡΑΦΕΙΣ ΚΡΙΤΕΣ-ΑΞΙΟΛΟΓΗΤΕΣ ΕΙΚΟΝΟΓΡΑΦΗΣΗ ΦΙΛΟΛΟΓΙΚΗ ΕΠΙΜΕΛΕΙΑ

Διαβάστε περισσότερα

Σειρά: Τράπεζα Θεμάτων Γυμνασίου

Σειρά: Τράπεζα Θεμάτων Γυμνασίου Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ»

ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ» ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ» ΒΟΛΟΣ 2007 ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ (4) Ημερομηνία και ώρα εξέτασης: Δευτέρα, 25/5/2015

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Περί Γνώσεως Φροντιστήριο Μ.Ε. Φυσική Α Γυμνασίου. ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου.

Περί Γνώσεως Φροντιστήριο Μ.Ε. Φυσική Α Γυμνασίου. ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου. 10 ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΤΗΣ Α' ΓΥΜΝΑΣΙΟΥ > ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου. Επιμέλεια ύλης και απαντήσεων: Γ.Φ.Σ ι ώ ρ η ς Φυσικός.- Email: georgesioris@yahoo.gr

Διαβάστε περισσότερα

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική)

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) ΝΤΑΗ ΕΙΡΗΝΗ ΤΜΗΜΑ: Π.Τ.Δ.Ε, ΠΑΤΡΑΣ 2012-13 ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ Ε.ΚΟΛΕΖΑ «ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) [1] Στόχοι της ενότητας(οι μαθητές

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ραστηριότητα - Ανακάλυψη...

ραστηριότητα - Ανακάλυψη... 1 Θυμάμαι ό, τι έμαθα από τη Γ τάξη ραστηριότητα - Ανακάλυψη... Η Φανή, με την έναρξη της σχολικής χρονιάς, πήρε 30 και πήγε στο βιβλιοπωλείο να αγοράσει σχολικά είδη. Κοίταξε τον τιμοκατάλογο και αγόρασε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες 1 Ερμηνεία και κατασκευή γραφικών παραστάσεων 1. Η αγαπημένη γεύση παγωτού των παιδιών Γεύση

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 2014-2015

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 2014-2015 ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 201-2015 ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΙΑ: 05 / 06 / 2015 ΧΡΟΝΟΣ: 2 Ώρες Βαθμός:. Ολογρ.:.. Υπογραφή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ Τα Μαθηματικά παίζουν κυρίαρχο ρόλο σε όλους τους χώρους της σύγχρονης κοινωνίας. Όλα σχεδόν τα επιτεύγματα της τεχνολογίας και της ε- πιστήμης στηρίζονται στην ανάπτυξη των Μαθηματικών. Αλλά και τα προβλήματα

Διαβάστε περισσότερα

ρόλο στην προετοιμασία του θέματός μας αποτέλεσε το ιστόγραμμα που φτιάξαμε με τα παιδιά με πράγματα που ήθελαν να μάθουν για τους ζωγράφους.

ρόλο στην προετοιμασία του θέματός μας αποτέλεσε το ιστόγραμμα που φτιάξαμε με τα παιδιά με πράγματα που ήθελαν να μάθουν για τους ζωγράφους. Προπρονήπια Α 2015 ΠΙΝΑΚΕΣ ΖΩΓΡΑΦΙΚΗΣ Το δίμηνο Οκτωβρίου-Νοεμβρίου ασχοληθήκαμε με το θέμα «Πίνακες Ζωγραφικής». Αφορμή στάθηκε μια συζήτηση που κάναμε με τα παιδιά για το φθινόπωρο και τις αλλαγές του

Διαβάστε περισσότερα

Μαθηματικά Δημοτική Εκπαίδευση

Μαθηματικά Δημοτική Εκπαίδευση Επιμορφωτικό Υποστηρικτικό Υλικό για την ενσωμάτωση των ΤΠΕ στη μαθησιακή διαδικασία Θέμα Μαθηματικά Δημοτική Εκπαίδευση Εργαλείο Διαδίκτυο Παιδαγωγικό Ινστιτούτο Κύπρου Τομέας Εκπαιδευτικής Τεχνολογίας

Διαβάστε περισσότερα

ΒΟΗΘΗΜΑ ΣΤΟ ΜΑΘΗΜΑ ΕΓΚΑΤΑΣΤΑΣΕΙΣ. Στοιχεία Θεωρίας - Λυμένα Παραδείγματα. Ασκήσεις - Ερωτήσεις Θεωρίας. Νικόλαος Χονδράκης (Εκπαιδευτικός)

ΒΟΗΘΗΜΑ ΣΤΟ ΜΑΘΗΜΑ ΕΓΚΑΤΑΣΤΑΣΕΙΣ. Στοιχεία Θεωρίας - Λυμένα Παραδείγματα. Ασκήσεις - Ερωτήσεις Θεωρίας. Νικόλαος Χονδράκης (Εκπαιδευτικός) ΒΟΗΘΗΜΑ ΣΤΟ ΜΑΘΗΜΑ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΨΥΞΗΣ Στοιχεία Θεωρίας - Λυμένα Παραδείγματα Ασκήσεις - Ερωτήσεις Θεωρίας Νικόλαος Χονδράκης (Εκπαιδευτικός) ... Νικόλαος Γ. Χονδράκης Διπλωματούχος Μηχανολόγος Μηχανικός

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Κείμενα Κατανόησης Γραπτού Λόγου

Κείμενα Κατανόησης Γραπτού Λόγου Κέντρο Ελληνικής Γλώσσας Πιστοποίηση Επάρκειας της Ελληνομάθειας 18 Ιανουαρίου 2013 A2 Κείμενα Κατανόησης Γραπτού Λόγου Διάρκεια Εξέτασης 30 λεπτά Διάρκεια Εξέτασης 30 λεπτά Ερώτημα 1 (7 μονάδες) Διαβάζετε

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

Εργασία από τα παιδιά της. Α 1 τάξης

Εργασία από τα παιδιά της. Α 1 τάξης Εργασία από τα παιδιά της Α 1 τάξης Τετάρτη, 15 του Μάη Χθες πέρασα μια όμορφη μέρα. Το πρωί ξύπνησα και ετοιμάστηκα για το σχολείο. Φόρεσα τη στολή μου, έφαγα το πρόγευμά μου και ξεκίνησα για το σχολείο.

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 1 4. 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Πρόβληµα : Ονοµάζουµε την κατάσταση που δηµιουργείται όταν αντι- µετωπίζουµε εµπόδια και δυσκολίες στην προσπάθεια µας να φτάσουµε σε έναν συγκεκριµένο στόχο.. Επίλυση

Διαβάστε περισσότερα

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 B Γυμνασίου 3. Έστω x = 3 4 :4+ 5 και y = 45 4 3 + 73. (α) Να βρεθούν οι αριθμοί

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

ΒΑΣΕΙ ΤΩΝ ΒΙΒΛΙΩΝ ΤΟΥ ΟΡΓΑΝΙΣΜΟΥ

ΒΑΣΕΙ ΤΩΝ ΒΙΒΛΙΩΝ ΤΟΥ ΟΡΓΑΝΙΣΜΟΥ ΒΑΣΕΙ ΤΩΝ ΒΙΒΛΙΩΝ ΤΟΥ ΟΡΓΑΝΙΣΜΟΥ 1 ΦΩΤΟΓΡΑΦΙΑ ΠΕΡΙΓΡΑΦΗ ΤΑΞΗ ΤΙΜΗ 1250 Κουδούνι με μελωδία Α -ΣΤ 35 Τι σχήμα είναι; 342208 60 κομμάτια σε 5 σχήματα, 3 χρώματα, 2 πάχη και 2 μεγέθη. Σε πλαστική κασετίνα

Διαβάστε περισσότερα

Α ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ. Α1 Προβλήματα πρόσθεσης και αφαίρεσης

Α ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ. Α1 Προβλήματα πρόσθεσης και αφαίρεσης 1 Α ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ Α1 Προβλήματα πρόσθεσης και αφαίρεσης 1. Ο κ. Γιάννης έδωσε 4.800 και αγόρασε ένα μεταχειρισμένο αυτοκίνητο. Ξόδεψε για την επισκευή του 1.750.Θέλει να κερδίσει 1.600. Πόσο πρέπει

Διαβάστε περισσότερα

Aνοίγει η αυλαία. Βρες λέξεις που να ανήκουν στην ίδια οικογένεια με τις λέξεις που βρίσκονται στα αστεράκια.

Aνοίγει η αυλαία. Βρες λέξεις που να ανήκουν στην ίδια οικογένεια με τις λέξεις που βρίσκονται στα αστεράκια. 3E ERGASION_XPress_Hamster_temp.qxp 27/04/2011 3:02 μ.μ. Page 1 Aνοίγει η αυλαία Βρες λέξεις που να ανήκουν στην ίδια οικογένεια με τις λέξεις που βρίσκονται στα αστεράκια. θέατρο παράσταση σκηνή χορός

Διαβάστε περισσότερα

Για τα παιδιά (αλλά και για τους γονείς)...

Για τα παιδιά (αλλά και για τους γονείς)... Eισαγωγικό σημείωμα: «Οι κατ οίκον εργασίες στη διδασκαλία των μαθηματικών» Οι εργασίες «για το σπίτι» ή όπως λέγονται στις παιδαγωγικές επιστήμες οι κατ οίκον εργασίες αποτελούν αναπόσπαστο κομμάτι της

Διαβάστε περισσότερα

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ 7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ Συμβαίνει κι αυτό: ο όγκος ενός σώματος να 'ναι μεγάλος, αλλά η μάζα του να 'ναι μικρή Από την καθημερινή μας ζωή, ξέρουμε τι σημαίνει πυκνό και αραιό: πυκνό δάσος, αραιά

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

1 Φυσική Αγωγή α - β - γ γυµνασίου ι α β ί ο υ ά σ κ η σ η κ α ι π ο ι ό τ η τ α ζ ω ή ς Ο ΗΓΟΣ ΧΡΗΣΗΣ ΛΟΓΙΣΜΙΚΟΥ 2 Οµάδα δηµιουργίας Ηλίας ήµας, Καθηγητής ΤΕΦΑΑ Πανεπιστηµίου Αθηνών Ευγενία Κωστούση,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα