Το «λάθος» στη διδασκαλία και μάθηση των Μαθηματικών. Ε. Κολέζα Παν. Πάτρας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το «λάθος» στη διδασκαλία και μάθηση των Μαθηματικών. Ε. Κολέζα Παν. Πάτρας"

Transcript

1 Το «λάθος» στη διδασκαλία και μάθηση των Μαθηματικών Ε. Κολέζα Παν. Πάτρας 1

2 Λάθος, λανθασµένη αντίληψη,παρανόηση, παράβλεψη,. Όπως και να το ονοµάσουµε όταν εµφανίζεται προκαλεί αρνητικά συναισθήµατα Στον εκπαιδευτικό/τάση για αυτοκριτικήεπαναπροσδιορισµό διδακτικής πρακτικής στο µαθητή /άγχος-αρνητικά συναισθήµατα στους γονείς/ανησυχία-αναζήτηση λύσης 2

3 3

4 Που οφείλονται τα λάθη; Αδυναµία σκέψης, Έλλειψη γνώσεων, Αστοχία, Απροσεξία, Διδασκαλία, Συναισθηµατικοί παράγοντες; Πως τα αντιµετωπίζουµε; Σε συναισθηµατικό και διδακτικό επίπεδο Μπορούµε να τα προβλέψουµε;ναι, στις περισσότερες περιπτώσεις Γιατί κάποια λάθη «επιµένουν» ακόµα και σε µεγαλύτερες ηλικίες; (πχ λανθασµένη χρήση του συµβόλου της ισότητας) Γιατί οι µαθητές κάνουν λάθη ακόµα και µετά απο µια πολύ καλή διδασκαλία; 4

5 Πάντα µιλούσαµε γι αυτά; Ναι, αλλά µε διαφορετικό κάθε φορά τρόπο. Σήµερα, µέσα απο τις έρευνες στο χώρο της Μαθηµατικής Εκπαίδευσης έγινε κατανοητό ότι τα λάθη των µαθητών έχουν σαφείς και συγκεκριµένες αιτίες αποτελούν ευκαιρίες για βαθύτερη κατανόηση των µαθηµατικών εννοιών και διαδικασιών 5

6 Ο τρόπος αντιµετώπισης των λαθών σχετίζεται άµεσα µε τους στόχους της Μαθηµατικής Εκπαίδευσης. Στη δεκαετία του -60 η εστίαση του ενδιαφέροντος των ερευνητών ήταν το περιεχόµενο του ΠΣ: Τι έπρεπε να διδαχθεί, µε ποιά σειρά και µε τι είδους υποστηρικτικό υλικό. Στη δεκαετία του -70, το ενδιαφέρον µετατοπίσθηκε στο πως πρέπει να διδάσκονται τα Μαθηµατικά. Επικράτησαν σταδιακά µια στρουκτουραλιστική αντίληψη (:δοµή, αναπαραστάσεις) µια µετατόπιση προς την επίλυση προβλήµατος 6

7 Στη δεκαετία του -80, (ενώ τα ζητήµατα του περιεχοµένου και του τρόπου διδασκαλίας παρέµεναν ανοιχτά), ερευνητές και εκπαιδευτικοί άρχισαν να συνειδητοποιούν ότι υπάρχουν και άλλοι παράγοντες που επηρεάζουν τη µαθησιακή διαδικασία και διερεύνουν την αντίληψή µας για το πως µαθαίνουµε Μαθηµατικά, ή για το γιατί δεν µαθαίνουµε Μαθηµατικά Ενδεικτικά, άρχισαν να διερευνώνται: Οι στάσεις και συναισθήµατα µαθητών και δασκάλων απέναντι στα Μαθηµατικά και στη διαδικασία µάθησης των Μαθηµατικών Ο ρόλος των άτυπων µηνυµάτων των µαθητών και των πρακτικών λόγου µέσα στην τάξη των Μαθηµατικών Η ανάγκη επαναπροσδιορισµού της εκπαίδευσης και κατάρτησης των εκπαιδευτικών Ο ρόλος των εξωσχολικών παραµέτρων στη σχολική διαδικασία Σε αυτή τη χρονική περίοδο άρχισε να εκδηλώνεται το ενδιαφέρον για τη διερεύνηση των λαθών 7

8 Στη δεκαετία του -90 δεν δίνεται πλέον έµφαση στη µάθηση κανόνων, τύπων και διαδικασιών, αλλά στην ανάπτυξη σηµαντικών γνωστικών διεργασιών όπως: Διατύπωση και επίλυση προβληµάτων κυρίως µε την έννοια της µοντελοποίησης (:επιλογή του κατάλληλου µαθηµατικού µοντέλου που θα επιλύσει ένα πραγµατικό πρόβληµα) Δηµιουργία σύνδεσεων µέσα στα Μαθηµατικά και µέσω των Μαθηµατικών Συλλογισµός και επικοινωνία µε χρήση της γλώσσας και του τρόπου σκέψης των Μαθηµατικών κλπ 8

9 Στη δεκαετία του 2000 Η Μαθηµατική Εκπαίδευση φάνηκε να επηρεάζεται έντονα απο κοινωνικο-οικονοµικούς παράγοντες και παρατηρήθηκε µια στροφή προς τον Μαθηµατικό Γραµµατισµό. Συγχρόνως νέες θεωρίες ερµηνείας του τρόπου σκέψης (και κατά προέκταση των παρανοήσεων και λαθών) των µαθητών διατυπώθηκαν. Απο τη Γνωστική Ψυχολογία στις Νευροεπιστήµες 9

10 Σήµερα, σε σχέση µε τα λάθη Αντιµετωπίζονται ως ευκαιρίες για µάθηση και διερεύνηση Θεωρητικά... Αλλά στην πραξη; Οι περισσότεροι εκπαιδευτικοί, δεν µιλούν γι αυτά, τα βλέπουν ως «symptoms of a disease», ως «bugs», και προσπαθούν να τα εξαφανίσουν. Οι περισσότεροι µαθητές τα συνδέουν µε την αποτυχία, την απόρριψη, το άγχος και τελικώς...µε µια αρνητική στάση απέναντι στα Μαθηµατικά. Επειδή, όµως µας φοβίζει συνήθως αυτό που δεν κατανοούµε... ας προσπαθήσουµε να δούµε το ζήτηµα των λαθών πιο αναλυτικά. 10

11 Κατ αρχήν, έχει ενδιαφέρον να θυµηθούµε ότι µεγάλοι µαθηµατικοί, έκαναν λάθη. Kline (1980) Mathematics: The Loss of Certainty, Lakatos' (1976) Proofs and Refutations, Dupont (1982) Appunti di storia dell'analisi infinitesimale. Η ιστορία δείχνει ότι Τα Μαθηµατικά δεν είναι ένα παιχνίδι σκακιού, αλλά µια ηµι-εµπειρική επιστήµη που προχωρά µέσα απο «Αποδείξεις και Ανασκευές» (Lakatos). Τα Μαθηµατικά εξελίχτηκαν µέσα απο τη διερεύνηση και ανασκευή των λαθών. Τα λάθη των µαθητών µας είναι πολύ συχνά «µικρογραφίες» λαθών που εµφανίστηκαν στην ιστορία των Μαθηµατικών. 11

12 Που οφείλονται τα λάθη; οντογενετικής προέλευσης διδακτικής προέλευσης επιστηµολογικής προέλευσης (πχ Cardano 15ος ρίζα αρνητικών) 12

13 Ένας τρόπος να αναλύσουµε τα λάθη, είναι να τα ταξινοµήσουµε στηριζόµενοι σε συµπεριφορές των µαθητών: Μια πρώτη ταξινόµηση: Χρησιµοποιώντας το γνωστικό µοντέλο επεξεργασίας της πληροφορίας (cognitive information-processing mode) ο Radatz (1979) απέδωσε τα λάθη στα Μαθηµατικά σε (1) δυσκολίες κατανόησης και χρήσης της γλώσσας: Τα Μαθηµατικά είναι για τους αρχάριους µια ξένη γλώσσα. Λάθη προκαλούνται απο την ελλιπή κατανόηση της σηµασιολογίας της γλώσσας των Μαθηµατικών. (2) δυσκολίες διαχείρισης αναπαραστάσεων της µαθηµατικής γνώσης (3) έλλειψη γνώσεων (αρχές, διαδικασίες, έννοιες) (4) λανθασµένη εφαρµογή κανόνων-συνήθως υπεργενίκευση 13

14 Ο Watson(1980) προσπάθησε να εντοπίσει σε ποιό στάδιο της διαδικασίας επίλυσης προβλήµατος (:ανάγνωσηκατανόηση, µετασχηµατισµός, διαδικασίες, κωδικοποίηση) παρατηρούνται τα περισσότερα λάθη. Βρήκε ότι οι καλοί µαθητές συνηθίζουν να κάνουν λάθη στο πρώτο βήµα: ανάγνωση-κατανόηση του προβλήµατος, ενώ οι λιγότερο καλοί µαθητές κάνουν περισσότερα λάθη στην επιλογή και εφαρµογή µαθηµατικών διαδικασιών. 14

15 Οι µαθητές κάνουν λάθη. Γεγονός! Αν δεν απαντήσουµε στο ερώτηµα «γιατί κάνουν λάθη;» δεν µπορούµε να κάνουµε τίποτα. Για να απαντήσουµε στο ερώτηµα χρειαζόµαστε µια θεωρία. Μια θεωρία µάθησης. Άλλωστε, όλοι µας ως δάσκαλοι, έστω και υποσυνείδητα εφαρµόζουµε µια θεωρία όταν διδάσκουµε. Μια θεωρία για το πως τα παιδιά µαθαίνουν Μαθηµατικά. Στη βάση αυτής της θεωρίας οργανώνουµε τη διδασκαλία µας και αντιµετωπίζουµε τα λάθη. Μήπως το γεγονός ότι τα λάθη παραµένουν οφείλεται στην µη κατάλληλη επιλογή θεωρίας; 15

16 Δυο εναλλακτικές θεωρίες θα µπορούσαν να εξηγήσουν τα λάθη: 1) Η µπιχεβιοριστική θεωρία: κάθε γνώση προκύπτει απο την εµπειρία και η γνώση µπορεί να µεταφερθεί απο το ένα άτοµο στο άλλο. Τα λάθη είναι «faulty byte» στη µνήµη του υπολογιστή. Αν δεν µας αρέσει κάτι, το σβύνουµε. Λέµε, δηλαδή, στο µαθητή το σωστό και συνεχίζουµε (Gagne, 1983) 16

17 2) Κονστρουκτιβισµός/Εποικοδοµισµός (Piaget, 1970; Skemp,1979) Η ικανότητα του παιδιού να µάθει και αυτό που µαθαίνει τελικά απο την εµπειρία εξαρτάται άµεσα απο τις ιδέες που έχει ήδη. Από τα ήδη υπάρχοντα νοητικά σχήµατα. Η γνώση προκύπτει απο την αλληλεπίδραση της εµπειρίας και των ήδη υπαρχόντων νοητικών δοµών. Εποµένως, δεν µπορεί να µεταφερθεί απο το ένα άτοµο στο άλλο. 17

18 Η διδασκαλία επηρεάζει τη µάθηση, αλλά δεν την καθορίζει, γιατί το παιδί συµµετέχει ενεργά (µε τις προυπάρχουσες γνώσεις του) στην κατασκευή της νέας γνώσης. Οι νέες ιδέες που του παρουσιάζονται ερµηνεύονται κάτω απο το πρίσµα αυτών που ξέρει. Αν οι νέες ιδέες ταιριάζουν µε τις παλιές, απλά προστίθενται αυξάνοντας τη γνώση (: διαδικασία αφοµοίωσης). Αν όµως διαφέρουν απο τα ήδη υπάρχοντα νοητικά σχήµατα, για να υπάρξει γνώση πρέπει τα σχήµατα αυτά να τροποποιηθούν κατάλληλα (: διαδικασία προσαρµογής) 18

19 Κατανοώ µια ιδέα όταν µπορώ να την ενσωµατώσω σε ένα προυπάρχον νοητικό σχήµα. Η ένταξη της νέας πληροφορίας σε ένα υπάρχον σχήµα γίνεται είτε προσθετικά (αφοµοίωση), είτε µε προσαρµογή του αρχικού σχήµατος. Στη βάση αυτής της θεωρίας, οι παρανοήσεις είναι λανθασµένα νοητικά σχήµατα-συνήθως υπεργενικεύσεις αρχικών σχηµάτων- που αν εφαρµοστούν σε νέες καταστάσεις θα προκύψουν λάθη. Οι παρανοήσεις συχνά ονοµάζονται «εναλλακτικά πλαίσια» alternative frameworks, γιατί είναι µεν «σωστές» αντιλήψεις, αλλά σε άλλα πλαίσια. 19

20 «Όταν οι µαθητές δίνουν µια λανθασµένοι απάντηση, δεν σηµαίνει ότι κάνουν λάθος µε την έννοια ότι δεν ξέρουν. Απλά, απαντούν σε µια διαφορετική ερώτηση. Η δουλειά του εκπαιδευτικού είναι να προσπαθήσει να καταλάβει σε ποιά ερώτηση απαντούν» (Bruner). «Αν έπρεπε να συνοψίσω όλη την εκπαιδευτική ψυχολογία σε µια αρχή, θα έλεγα µόνον αυτό: ο πιο σηµαντικός παράγοντας που επηρεάζει τη µάθηση είναι αυτό που ο µαθητής ξέρει ήδη. Εντόπισέ το και δίδαξέ τον αναλόγως» Ausubel (1968) 20

21 Παράδειγµα 1 (Ισραήλ, Αµερική Γαλλία Resnick 1989; Nesher,1987) Ποιός αριθµός είναι µεγαλύτερος; 0,62 (38%), 0,532(29% µακρύτερος), 0,4 (25% δέκατα µεγαλύτερα απο τα εκατοστά άρα 0,4 µεγαλ. απο 0,62) Το χειρότερο είναι ότι οι λανθασµένες αιτιολογήσεις συχνά δίνουν σωστά αποτελέσµατα, αποκρύπτοντας την παρανόηση!! Όταν ο µαθητής µαθαίνει δεκαδικούς, είναι απαραίτητο να «χτίσει» το σχήµα των δεκαδικών και να το συσχετίσει µε τα προηγούµενα σχήµατα των ακεραίων, δεκαδικών κλασµάτων και µέτρησης. (Δυστυχώς) Η διδασκαλία µας σχεδόν πάντα εστιάζει στην αλγοριθµική ικανότητα και όχι στην εννοιολογική κατανόηση. (πχ για τους δεκαδικούς πολλαπλασίασε όπως στους ακεραίους και για την υποδιαστολή...) 21

22 e+f=8 e+f+g=; Παραδειγµα 2 (Olivier, η γυµνασίου) 58% έδωσαν συγκεκριµένη αριθµητική απάντηση: 12(4+4+4), 15(3+5+7), 15 (8+7-g το 7 ο γράµµα της αλφαβήτου) Αριθµητικό σχήµα: «Προστίθενται µόνον αριθµοί». «Η απάντηση σε ένα σχολικό πρόβληµα είναι µοναδική» 22

23 Χ 2-5χ+6=0 (χ-3)(χ-2)=0 Χ-3=0, ή χ-2=0 Παράδειγµα 3(Υπεργενίκευση) Χ 2-10χ+21=12 (χ-7) (χ-3)=12 Χ-7=12, ή χ-3=12 Στη συγκεκριµένη (πρώτη) εξίσωση οι αριθµοί 3, και 2 δεν είναι σηµαντικοί, αλλά ο αριθµός 0, ΕΙΝΑΙ. Οι µαθητές χειρίζονται και τους τρεις αριθµούς στο ίδιο επίπεδο σηµαντικότητας. Παράδειγµα 4 Υπεργενίκευση της αντιµεταθετικότητας. Ενισχύετα και απο την λεκτική περιγραφή: «Η διαφορά µεταξύ 3 και 8 είναι 5»

24 Παράδειγµα 5 (Bell, 1981;1984) (Α)Ένα λίτρο βενζίνη κοστίζει 1,69. Πόσο κοστίζουν τα 3 λίτρα; (Β)...τα 0,53 λίτρα; 63% πρώτης γυµνασίου έκαναν διαίρεση 1,69:0,53. Ήξεραν ότι έπρεπε να βρουν αριθµό µικρότερο του 1,69, και εφάρµοσαν το «σχήµα»: Η διαίρεση µικραίνει. Γιατί οι µαθητές δεν κάνουν τις κατάλληλες προσαρµογές σχηµάτων; Γιατί κατά τη διδασκαλία δίνεται έµφαση στην τυποποίηση και στις διαδικασίες! 24

25 Παράδειγµα 6 (Fischbein, 1985) (Α) Από 1 κιλό σιτάρι παίρνουµε 0,75 κιλά αλεύρι. Πόσο αλεύρι παίρνουµε απο 15 κιλά σιτάρι;(79%) Σχήµα: 15Χ0,75 που προκύπτει απο, 0,75+0,75+0,75 (Β) Ένα κιλό καθαριστικής πρώτης ύλης χρησιµοποιείται για να φτιαχτεί 15 κιλά σαπούνι. Πόσο σαπούνι φτιάχνουµε µε 0,75 κιλά καθαριστικής ύλης; (27%, απο το οποίο 45% έκαναν διαίρεση) ΙΔΙΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΣΤΑ ΔΥΟ ΠΡΟΒΛΗΜΑΤΑ Εντούτοις: Οι µαθητές κάνουν λάθος στο (Β) γιατί εφαρµόζουν το «σχήµα» του (Α): Στο (Α), ΔΕΝ ΕΧΕΙ ΝΟΗΜΑ ο πολλαπλασιασµός 0,75Χ15, γιατί δεν συνδέεται µε την πρόσθεση! 25

26 Παράδειγµα 7 (Olivier, 1984) Σε ένα γυµνάσιο υπάρχουν 6 φορές περισσότεροι µαθητές απο ότι καθηγητές. Χρησιµοποιείστε το σύµβολο µ για τους µαθητές και κ για τους καθηγητές και γράψτε την εξίσωση. Απάντηση (58%): 6µ=κ Αυτό σηµαίνει ότι χρησιµοποιούν το σύµβολο ως συντόµευση της λέξης µαθητής και όχι ως τον αριθµό των µαθητών. 26

27 Λάθη στις Γραµµικές Εξισώσεις Πολλές φορές αιτία λάθους αποτελεί το γεγονός ότι µοιάζουν συντακτικά 2 καταστάσεις - εξισώσεις, που στην πραγµατικότητα είναι σηµαντικά διαφορετικές, όπως π.χ. 4x+12=4(x+3) και 3x+3=2x+7. Αυτή η δυσκολία σχετίζεται µε τη λεγόµενη διττή φύση του συµβόλου ίσον (=) Συγκεκριµένα, όταν οι µαθητές µελετούν για πρώτη φορά µια δοθείσα εξίσωση, συνήθως προσπαθούν να εργαστούν έχοντας στο µυαλό τους ότι κάθε γραµµή αποτελεί και µια ταυτότητα- µοντέλο της ζυγαριάς (πράγµα το οποίο παρατηρείται στην 1 η και όχι στην 2 η εξίσωση). 27

28 28

29 Λάθος αντιστρόφου Π.χ.: 4x=1 x=4-1 ή 3x=3+x 3x-3=0 29

30 Λάθη Ανακατανοµής Και Εξάλειψης Προσθετέων Λάθη ανακατανοµής π.χ. : x+35=150 Θεωρείται ίδια µε την x+35-10= Λάθη εξάλειψης προσθετέων π.χ. : x+35=150 x=

31 Λάθη Μετάθεσης π.χ. : x/2+3=5 άρα x+3=10 ή 5+x/2=2 5+x=4 Δηλαδή,στην προσπάθεια τους να απαλείψουν τους παρανοµαστές υπεργενικεύουν την x/2=3 τότε x=6 31

32 Αλγεβρικές Παραστάσεις/Εξισώσεις Αρκετά συχνά παρατηρείται σύγχυση κατά την διάκριση της εξίσωσης από την αλγεβρική παράσταση. Γενικά οι µαθητές έχουν την τάση να βάζουν (=0) στο τέλος µια αλγεβρικής παράστασης µε αποτέλεσµα να την µετατρέπουν σε εξίσωση αντί να επιτυγχάνουν την απλοποίηση της, που ήταν ο αρχικός τους στόχος. Για παράδειγµα: 2α+α+3=... 3α+3=0 3α=-3 α=-1 32

33 Δύο εξηγήσεις: 1) Λάθος δηµιουργία «σχήµατος» (schema) µεταβλητής λόγω διδασκαλίας. 2) Μπορεί να υπάρχει το «σωστό» σχήµα, αλλά κατά την ανάκληση επικρατεί το παλαιότερο που ενδεχοµένως είναι πιο οικείο ή πιο ισχυρό. Πχ 2 3 =2χ3=6 (Το σχήµα των δυνάµεων "χτίστηκε» πάνω στο σχήµα του πολλαπλασιασµού) 3χ/χ=2χ (το σχήµα της διαίρεσης «χτίστηκε» πάνω στο σχήµα της επαναλαµβανόµενη αφαίρεσης) 33

34 Οι παρανοήσεις και τα λάθη είναι µέρος της διαδικασίας µάθησης του ανθρώπου. Δεν πρέπει να ενοχοποιούµε τους µαθητές µας γι αυτά. Δεν µπορούµε να τα αποφύγουµε. Ακόµα και αν διδάξουµε το σωστό, η παρανόηση θα έλθει κάποια στιγµή στην επιφάνεια. Το µόνο που µπορούµε να κάνουµε είναι να τα προβλέψουµε και να τα εκµεταλλευτούµε κατάλληλα. ΠΩΣ;; 34

35 Δηµιουργώντας µέσα απο κατάλληλες ερωτήσεις ή δραστηριότητες, γνωστική σύγκρουση: σύγκρουση της νέας πληροφορίας µε τις αρχικές θεωρίες των µαθητών. Η σύγκρουση προκαλεί αναδιοργάνωση του ισχύοντος εννοιολογικού πλαισίου, δηλαδή εννοιολογική αλλαγή Οι δραστηριότητες που θα επιλέξουµε πρέπει να αναδεικνύουν την ανεπάρκεια των προηγουµένων «σχηµάτων», οπότε οι µαθητές να τα εγκαταλείψουν. 35

36 Βασικό συµπέρασµα Πυρήνας της µαθησιακής διαδικασίας: Η σωστή επιλογή δραστηριοτήτων! 36

37 Ποιά είναι τα χαρακτηριστικά µιας καλής δραστηριότητας που οδηγεί στη µάθηση, και Ποιές είναι οι βασικές αρχές σχεδιασµού της;;;;... 37

THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION

THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION E F R A I M F I S C H B E I N, T E L - A V I V U N I V E R S I T Y M A R I A D E R I, U N I V E R S I T Y O F P I S

Διαβάστε περισσότερα

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών

Διαβάστε περισσότερα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα

Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά. Ε. Κολέζα Θεωρητικές αρχές σχεδιασµού µιας ενότητας στα Μαθηµατικά Ε. Κολέζα Α. Θεωρητικές αρχές σχεδιασµού µιας µαθηµατικής ενότητας: Βήµατα για τη συγγραφή του σχεδίου Β. Θεωρητικό υπόβαθρο της διδακτικής πρότασης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους

ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ Και οι απαντήσεις τους Ποια είναι η διαφορά ανάμεσα στο «παλιό» και στο «σύγχρονο» μάθημα των Μαθηματικών; Στο μάθημα παλαιού τύπου η γνώση παρουσιάζεται στο μαθητή από τον διδάσκοντα

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Από το δάσκαλο που εφαρµόζει, στο δάσκαλο που σχεδιάζει. Ε. Κολέζα

Από το δάσκαλο που εφαρµόζει, στο δάσκαλο που σχεδιάζει. Ε. Κολέζα Από το δάσκαλο που εφαρµόζει, στο δάσκαλο που σχεδιάζει Ε. Κολέζα «στο δάσκαλο που σχεδιάζει» Τι; Ένα «καλύτερο» σχολείο 3 βασικές διαστάσεις του σχεδιασµού: Κοινωνική διάσταση: Ο κοινωνικός ρόλος του

Διαβάστε περισσότερα

Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία

Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία Παιδαγωγικό Τµήµα Νηπιαγωγών Εισαγωγή στην ανάπτυξη της έννοιας του αριθμού στην προσχολική ηλικία Ενότητα 1: Εισαγωγή Κωνσταντίνος Π. Χρήστου Παιδαγωγικό Τμήμα Νηπιαγωγών ένα απλό πρόβλημα Η οικογένεια

Διαβάστε περισσότερα

Περιεχόμενα. Προλογικό Σημείωμα 9

Περιεχόμενα. Προλογικό Σημείωμα 9 Περιεχόμενα Προλογικό Σημείωμα 9 1 ο ΚΕΦΑΛΑΙΟ 1.1. Εισαγωγή 14 1.2 Τα βασικά δεδομένα των Μαθηματικών και οι γνωστικές απαιτήσεις της κατανόησης, απομνημόνευσης και λειτουργικής χρήσης τους 17 1.2.1. Η

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Μαθηματικών

Αναλυτικό Πρόγραμμα Μαθηματικών Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,

Διαβάστε περισσότερα

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά

Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά Καργιωτάκης Γιώργος, Μπελίτσου Νατάσσα Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά στις τάξεις Β, Δ και Ε (μιας διδακτικής ώρας). ΣΤΟΧΟΣ ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ ΕΝΕΡΓΕΙΕΣ Αρχική αξιολόγηση επιπέδου

Διαβάστε περισσότερα

ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ

ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΔΟΜΕΣ Δομή Ομάδας Σύνολο Α και μια πράξη η πράξη είναι κλειστή ισχύει η προσεταιριστική ιδότητα υπάρχει ουδέτερο στοιχείο υπάρχει αντίστροφο στοιχείο ισχύει η αντιμεταθετική

Διαβάστε περισσότερα

Εξελικτική Ψυχολογία: Κοινωνικο-γνωστική ανάπτυξη

Εξελικτική Ψυχολογία: Κοινωνικο-γνωστική ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εξελικτική Ψυχολογία: Κοινωνικο-γνωστική ανάπτυξη Ενότητα 9 Θεωρίες Αναδιοργάνωσης των Γνώσεων σε Ειδικούς τομείς Ελευθερία Ν. Γωνίδα

Διαβάστε περισσότερα

Στοιχείαδιδακτικής. Στόχοι μαθήματος φύλλα εργασίας ΒΙΟΛΟΓΙΑ. Γεωργάτου Μάνια ΣχολικήΣύμβουλοςΠΕ04

Στοιχείαδιδακτικής. Στόχοι μαθήματος φύλλα εργασίας ΒΙΟΛΟΓΙΑ. Γεωργάτου Μάνια ΣχολικήΣύμβουλοςΠΕ04 Στοιχείαδιδακτικής Στόχοι μαθήματος φύλλα εργασίας ΒΙΟΛΟΓΙΑ Γεωργάτου Μάνια ΣχολικήΣύμβουλοςΠΕ04 Βασικά χαρακτηριστικά ενός μαθήματος: Να έχει συγκεκριμένους και ξεκάθαρους στόχους. Ερώτηση: Τιδιδάσκω;

Διαβάστε περισσότερα

Μαθηµατική. Μοντελοποίηση

Μαθηµατική. Μοντελοποίηση Μαθηµατική Μοντελοποίηση Μοντελοποίηση Απαιτητική οικονοµία και αγορά εργασίας Σύνθετες και περίπλοκες προβληµατικές καταστάσεις Μαθηµατικές και τεχνολογικές δεξιότητες Επίλυση σύνθετων προβληµάτων Μαθηµατικοποίηση

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα

Διαβάστε περισσότερα

Η Καινοτοµία στη Διδασκαλία των Μαθηµατικών. Ε. Κολέζα

Η Καινοτοµία στη Διδασκαλία των Μαθηµατικών. Ε. Κολέζα Η Καινοτοµία στη Διδασκαλία των Μαθηµατικών Ε. Κολέζα Κάτω υπό ποιες προϋποθέσεις το σχολείο θα αποτελέσει κέντρο δράσης και δηµιουργικότητας; 1. Εκπαίδευση των µαθητών µέσα από τη δηµιουργία «µαθησιακών

Διαβάστε περισσότερα

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη

Σχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ

Διαβάστε περισσότερα

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα

Διαφοροποιημένη Διδασκαλία. Ε. Κολέζα Διαφοροποιημένη Διδασκαλία Ε. Κολέζα Τι είναι η διαφοροποιημένη διδασκαλία; Είναι μια θεώρηση της διδασκαλίας που βασίζεται στην προϋπόθεση ότι οι δάσκαλοι πρέπει να προσαρμόσουν τη διδασκαλία τους στη

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές

Διαβάστε περισσότερα

ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Τι είναι Μαθηματικά; Ποια είναι η αξία τους καθημερινή ζωή ανάπτυξη λογικής σκέψης αισθητική αξία και διανοητική απόλαυση ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών

ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ Εισαγωγή ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών 1.1.: Η θέση των νοερών υπολογισμών στο σύγχρονο διδακτικό

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Y404. ΔΙΜΕΠΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΣΜΟΥ ΜΕ ΜΑΘΗΤΗ ΔΙΔΑΣΚΩΝ: ΧΑΡΑΛΑΜΠΟΣ ΛΕΜΟΝΙΔΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΗΜΗΤΡΙΑΔΗΣ ΗΡΑΚΛΗΣ ΑΕΜ: 3734 Περιεχόμενα

Διαβάστε περισσότερα

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης

Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

το σύστηµα ελέγχει διαρκώς το µαθητή,

το σύστηµα ελέγχει διαρκώς το µαθητή, Α/Α Τύπος Εκφώνηση Απαντήσεις Ένας νηπιαγωγός, προκειµένου να διδάξει σε παιδιά προσχολικής ηλικίας το λεξιλόγιο των φρούτων Σωστό και λαχανικών που συνδέονται µε τις διατροφικές συνήθειες µας, δε ζητάει

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Διδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο

Διδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο Διδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας Αντικείμενο και Αναγκαιότητα Μετασχηματισμός της φυσικοεπιστημονικής γνώσης στη σχολική της εκδοχή.

Διαβάστε περισσότερα

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών

Διαβάστε περισσότερα

άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου

άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου άλγεβρα από την επίλυση εξισώσεων στη μελέτη των μεταβολών, των σχέσεων, των κανονικοτήτων και δομών, σε ένα περιβάλλον αναλυτικού συμβολικού συλλογισμού με

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14 Μιχαηλίδου Αγγελική Λάλας Γεώργιος Περιγραφή Πλαισίου Σχολείο: 2 ο Πρότυπο Πειραματικό Γυμνάσιο Αθηνών Τμήμα: Β 3 Υπεύθυνος καθηγητής: Δημήτριος Διαμαντίδης Συνοδός: Δημήτριος Πρωτοπαπάς

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

Παιδαγωγικό Υπόβαθρο ΤΠΕ. Κυρίαρχες παιδαγωγικές θεωρίες

Παιδαγωγικό Υπόβαθρο ΤΠΕ. Κυρίαρχες παιδαγωγικές θεωρίες Παιδαγωγικό Υπόβαθρο ΤΠΕ Κυρίαρχες παιδαγωγικές θεωρίες Θεωρίες μάθησης για τις ΤΠΕ Συμπεριφορισμός (behaviorism) Γνωστικές Γνωστικής Ψυχολογίας (cognitive psychology) Εποικοδομητισμός (constructivism)

Διαβάστε περισσότερα

Απόστολος Μιχαλούδης

Απόστολος Μιχαλούδης ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΠΡΟΣΟΜΟΙΩΣΕΩΝ Ανάπτυξη και εφαρμογή διδακτικών προσομοιώσεων Φυσικής σε θέματα ταλαντώσεων και κυμάτων Απόστολος Μιχαλούδης υπό την επίβλεψη του αν. καθηγητή Ευριπίδη Χατζηκρανιώτη

Διαβάστε περισσότερα

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες

Διαβάστε περισσότερα

Κάθε επιλογή, κάθε ενέργεια ή εκδήλωση του νηπιαγωγού κατά τη διάρκεια της εκπαιδευτικής διαδικασίας είναι σε άμεση συνάρτηση με τις προσδοκίες, που

Κάθε επιλογή, κάθε ενέργεια ή εκδήλωση του νηπιαγωγού κατά τη διάρκεια της εκπαιδευτικής διαδικασίας είναι σε άμεση συνάρτηση με τις προσδοκίες, που ΕΙΣΑΓΩΓΗ Οι προσδοκίες, που καλλιεργούμε για τα παιδιά, εμείς οι εκπαιδευτικοί, αναφέρονται σε γενικά κοινωνικά χαρακτηριστικά και παράλληλα σε ατομικά ιδιοσυγκρασιακά. Τέτοια γενικά κοινωνικο-συναισθηματικά

Διαβάστε περισσότερα

Η Εκπαίδευση στην εποχή των ΤΠΕ

Η Εκπαίδευση στην εποχή των ΤΠΕ Η Εκπαίδευση στην εποχή των ΤΠΕ «Ενσωμάτωση και αξιοποίηση των εννοιολογικών χαρτών στην εκπαιδευτική διαδικασία μέσα από μία δραστηριότητα εποικοδομητικού τύπου» Δέγγλερη Σοφία Μουδατσάκη Ελένη Λιόβας

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας

Διαβάστε περισσότερα

Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών. Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε.

Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών. Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε. Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε. Στάσεις απέναντι στα Μαθηματικά Τι σημαίνουν τα μαθηματικά για εσάς; Τι σημαίνει «κάνω μαθηματικά»;

Διαβάστε περισσότερα

Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη

Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη Διδακτική οργάνωση και διαχείριση του μαθηματικού περιεχομένου και της διαπραγμάτευσης των δραστηριοτήτων στην τάξη Φαινόμενα Εμπειρίες φαινομένων Οργάνωση φαινομένων Νοούμενα (πρώτες μαθηματικές έννοιες

Διαβάστε περισσότερα

ΤΑΞΗ: ΣΤ. Προτείνεται να μην αξιοποιηθούν διδακτικά από το Βιβλίο Μαθητή τα παρακάτω: 1 ο σελ. 7, 4 η άσκηση, σελ. 8, 2 ο πρόβλημα

ΤΑΞΗ: ΣΤ. Προτείνεται να μην αξιοποιηθούν διδακτικά από το Βιβλίο Μαθητή τα παρακάτω: 1 ο σελ. 7, 4 η άσκηση, σελ. 8, 2 ο πρόβλημα ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά ΣΤ Δημοτικού, 2015, ένα τεύχος Τετράδιο εργασιών, Μαθηματικά ΣΤ Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά ΣΤ Δημοτικού, 2015, β τεύχος Τετράδιο

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

ΓΝΩΣΤΙΚΟ ΜΟΝΤΕΛΟ ΜΑΘΗΣΗΣ

ΓΝΩΣΤΙΚΟ ΜΟΝΤΕΛΟ ΜΑΘΗΣΗΣ ΓΝΩΣΤΙΚΟ ΜΟΝΤΕΛΟ ΜΑΘΗΣΗΣ Θεωρία και Πράξη στη διδασκαλία τεχνικών γνώσεων 1 ΕΙΣΑΓΩΓΗ Ευρωπαϊκές εξελίξεις Ποια παιδαγωγική για το νέο ΕΛ; Σε ποια θεωρία στηρίζεται; Πώς εφαρμόζεται στην πράξη; 2 Ατζέντα

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία

Διαβάστε περισσότερα

Ο δυναμικός χαρακτήρας ενός προγράμματος σπουδών: Ζητήματα που αναδεικνύονται από τη φάση του σχεδιασμού και της εφαρμογής του. Δέσποινα Πόταρη, ΕΚΠΑ

Ο δυναμικός χαρακτήρας ενός προγράμματος σπουδών: Ζητήματα που αναδεικνύονται από τη φάση του σχεδιασμού και της εφαρμογής του. Δέσποινα Πόταρη, ΕΚΠΑ Ο δυναμικός χαρακτήρας ενός προγράμματος σπουδών: Ζητήματα που αναδεικνύονται από τη φάση του σχεδιασμού και της εφαρμογής του Δέσποινα Πόταρη, ΕΚΠΑ Τι είναι το ΠΣ; Ο δυναμικός χαρακτήρας του ΠΣ Το ΠΣ

Διαβάστε περισσότερα

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Οι μαθηματικές έννοιες και γενικότερα οι μαθηματικές διαδικασίες είναι αφηρημένες και, αρκετές φορές, ιδιαίτερα πολύπλοκες. Η κατανόηση

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall

Διαβάστε περισσότερα

Μαθηματικά: θεωρίες μάθησης. Διαφορετικές σχολές Διαφορετικές υποθέσεις

Μαθηματικά: θεωρίες μάθησης. Διαφορετικές σχολές Διαφορετικές υποθέσεις Μαθηματικά: θεωρίες μάθησης Διαφορετικές σχολές Διαφορετικές υποθέσεις Τι είναι μάθηση; Συμπεριφορισμός: Aλλαγή συμπεριφοράς Γνωστική ψυχολογία: Aλλαγή νοητικών δομών Κοινωνικοπολιτισμικές προσεγγίσεις:

Διαβάστε περισσότερα

Δημήτρης Ρώσσης, Φάνη Στυλιανίδου Ελληνογερμανική Αγωγή. http://www.creative-little-scientists.eu

Δημήτρης Ρώσσης, Φάνη Στυλιανίδου Ελληνογερμανική Αγωγή. http://www.creative-little-scientists.eu Τι έχουμε μάθει για την προώθηση της Δημιουργικότητας μέσα από τις Φυσικές Επιστήμες και τα Μαθηματικά στην Ελληνική Προσχολική και Πρώτη Σχολική Ηλικία; Ευρήματα για την εκπαίδευση στην Ελλάδα από το

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

Μ. Κλεισαρχάκης (Μάρτιος 2017)

Μ. Κλεισαρχάκης (Μάρτιος 2017) Μ. Κλεισαρχάκης (Μάρτιος 2017) Οι Γνωστικές θεωρίες μάθησης αναγνωρίζουν ότι τα παιδιά, πριν ακόμα πάνε στο σχολείο διαθέτουν γνώσεις και αυτό που χρειάζεται είναι να βοηθηθούν ώστε να οικοδομήσουν νέες

Διαβάστε περισσότερα

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της

Διαβάστε περισσότερα

Η προβληματική κατάσταση Χρήστος Πανούτσος

Η προβληματική κατάσταση Χρήστος Πανούτσος Η προβληματική κατάσταση Χρήστος Πανούτσος Η Τζούλι και η μαμά της έχουν βγει για να αγοράσουν ένα τζιν για το σχολείο. Παρατηρούν έναν πάγκο με την εξής ταμπέλα πάνω: 40% έκπτωση των τιμών στις ετικέτες

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη

Διαβάστε περισσότερα

Ενότητα 1: Παρουσίαση μαθήματος. Διδάσκων: Βασίλης Κόμης, Καθηγητής

Ενότητα 1: Παρουσίαση μαθήματος. Διδάσκων: Βασίλης Κόμης, Καθηγητής Διδακτική της Πληροφορικής: Ερευνητικές προσεγγίσεις στη μάθηση και τη διδασκαλία Μάθημα επιλογής B εξάμηνο, Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

Κασιμάτη Αικατερίνη Αναπληρώτρια Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ

Κασιμάτη Αικατερίνη Αναπληρώτρια Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ Κασιμάτη Αικατερίνη Αναπληρώτρια Καθηγήτρια Παιδαγωγικού Τμήματος ΑΣΠΑΙΤΕ Σύγχρονες θεωρητικές αντιλήψεις Ενεργή συμμετοχή μαθητή στην oικοδόμηση - ανάπτυξη της γνώσης (θεωρία κατασκευής της γνώσης-constructivism).

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης. Η πραγματικότητα έχει την ίδια σημασία για όλους. Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές

Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης. Η πραγματικότητα έχει την ίδια σημασία για όλους. Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές Ο συμπεριφορισμός ή το μεταδοτικό μοντέλο μάθησης Βασικές παραδοχές : Η πραγματικότητα έχει την ίδια σημασία για όλους Διδάσκω με τον ίδιο τρόπο όλους τους μαθητές Αυτοί που δεν καταλαβαίνουν είναι ανίκανοι,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση )

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) Ι ΑΚΤΙΚΟ ΣΥΜΒΟΛΑΙΟ,ΕΙΚΟΝΕΣ ΚΑΙ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Η ΕΠΙ ΡΑΣΗ ΤΩΝ ΕΙΚΟΝΩΝ ΣΤΗΝ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

(π.χ. Thompson, 1999, McIntosh, 1990, Reys, 1984, Wandt & Brown, 1957). Οι βασικές αιτίες για αυτήν την αλλαγή στη θεώρηση των δύο ειδών υπολογισμού

(π.χ. Thompson, 1999, McIntosh, 1990, Reys, 1984, Wandt & Brown, 1957). Οι βασικές αιτίες για αυτήν την αλλαγή στη θεώρηση των δύο ειδών υπολογισμού ΕΙΣΑΓΩΓΗ Τα Μαθηματικά της Φύσης και της Ζωής, που αναφέρονται στοn τίτλο του βιβλίου αυτού, αποτελούν την επωνυμία της ομάδας των επιστημόνων που εργάζονται για τον εκσυγχρονισμό της διδασκαλίας των μαθηματικών

Διαβάστε περισσότερα

ΟΙ ΑΡΙΘΜΟΙ ΣΤΟ ΛΥΚΕΙΟ

ΟΙ ΑΡΙΘΜΟΙ ΣΤΟ ΛΥΚΕΙΟ Συνέδριο για τα Μαθηματικά στα Π.Π.Σ. 2014 ΟΙ ΑΡΙΘΜΟΙ ΣΤΟ ΛΥΚΕΙΟ Μπακέττα Βασιλική, Πετροπούλου Γεωργία Πρότυπο Πειραματικό Λύκειο Αγίων Αναργύρων Θεσμικό πλαίσιο στα ΠΠΣ Πειραματική εφαρμογή προγραμμάτων

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Με τις ερωτήσεις του τύπου αυτού καλείται ο εξεταζόμενος να επιλέξει την ορθή απάντηση από περιορισμένο αριθμό προτεινόμενων απαντήσεων ή να συσχετίσει μεταξύ

Διαβάστε περισσότερα

Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού

Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Πέτρος Κλιάπης kliapis@sch.gr 1 Ο Ρόλος του εκπαιδευτικού Αξιολογεί την αρχική μαθηματική κατάσταση κάθε παιδιού, ομαδοποιεί τα παιδιά σύμφωνα με

Διαβάστε περισσότερα

Γνωριμία και παιχνίδι με το δυαδικό σύστημα

Γνωριμία και παιχνίδι με το δυαδικό σύστημα Γνωριμία και παιχνίδι με το δυαδικό σύστημα Δότσος Παύλος, Σπανουδάκη Αργυρώ dotsos_1@hotmail.com, argspan25@yahoo.gr Καθηγητής Πληροφορικής Μέσης Εκπαίδευσης, Καθηγήτρια Πληροφορικής Μέσης Εκπαίδευσης

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην

ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην ΤΑΞΗ: Γ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Γ Δημοτικού, 2015, ένα τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, β τεύχος Τετράδιο

Διαβάστε περισσότερα

Ενότητα 11: Θέματα Διδακτικής Προγραμματισμού: βασικές δομές (μεταβλητή, επανάληψη, επιλογή)

Ενότητα 11: Θέματα Διδακτικής Προγραμματισμού: βασικές δομές (μεταβλητή, επανάληψη, επιλογή) Διδακτική της Πληροφορικής: Ερευνητικές προσεγγίσεις στη μάθηση και τη διδασκαλία Μάθημα επιλογής B εξάμηνο, Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική

Διαβάστε περισσότερα

ΚΑΠΟΙΕΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ

ΚΑΠΟΙΕΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΠΟΙΕΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Οι εκπαιδευόμενοι χρειάζεται να δουν και να χρησιμοποιήσουν ποικίλα μοντέλα του κλάσματος, εστιάζοντας αρχικά στα οικία κλάσματα όπως είναι το μισό, τα τέταρτα, πέμπτα,

Διαβάστε περισσότερα

ΤΑΞΗ Α ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ:

ΤΑΞΗ Α ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: ΤΑΞΗ Α ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Α Δημοτικού, 2015, α τεύχος Βιβλίο μαθητή, Μαθηματικά Α Δημοτικού, 2015, β τεύχος Τετράδιο εργασιών, Μαθηματικά Α Δημοτικού, 2015, α τεύχος Τετράδιο

Διαβάστε περισσότερα

Ελένη Μοσχοβάκη Σχολική Σύμβουλος 47ης Περιφέρειας Π.Α.

Ελένη Μοσχοβάκη Σχολική Σύμβουλος 47ης Περιφέρειας Π.Α. Ελένη Μοσχοβάκη Σχολική Σύμβουλος 47ης Περιφέρειας Π.Α. Τι θα Δούμε. Γιατί αλλάζει το Αναλυτικό Πρόγραμμα Σπουδών. Παιδαγωγικό πλαίσιο του νέου Α.Π.Σ. Αρχές του νέου Α.Π.Σ. Μαθησιακές περιοχές του νέου

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 6.5.1. Οι γνώσεις υποψηφίων δασκάλων για την υπολογιστική εκτίμηση Σε μια έρευνα των Lemonidis

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ)

ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΕΜΒΑΣΕΙΣ ΣΤΙΣ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 6 ΟΥ ΕΞΑΜΗΝΟΥ 19-03-2015 (5 Ο ΜΑΘΗΜΑ) Αντιμετώπιση των ΜΔ δια των ΣΤΡΑΤΗΓΙΚΩΝ Σωτηρία

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

των βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών μοντέλων.

των βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών μοντέλων. Θεωρίες Μάθησης και ιδακτικές Στρατηγικές Εισαγωγή γή στις βασικές έννοιες 11/4/2011 Σκοπός του 3 ου μαθήματος Η συνοπτική παρουσίαση των βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα

Διαβάστε περισσότερα

Τροχιές μάθησης. learning trajectories. Διδάσκων: Κωνσταντίνος Π. Χρήστου. Παιδαγωγικό Τµήµα Νηπιαγωγών. επ. Κωνσταντίνος Π.

Τροχιές μάθησης. learning trajectories. Διδάσκων: Κωνσταντίνος Π. Χρήστου. Παιδαγωγικό Τµήµα Νηπιαγωγών. επ. Κωνσταντίνος Π. Παιδαγωγικό Τµήµα Νηπιαγωγών Τροχιές μάθησης learning trajectories Διδάσκων: Κωνσταντίνος Π. Χρήστου επ. Κωνσταντίνος Π. Χρήστου τι είναι η τροχιά μάθησης Η μάθηση των μαθηματικών ακολουθεί μία τροχιά

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την 1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

των θετικών µαθηµάτων Ηµερήσιου και Εσπερινού Γυµνασίου για το σχ.

των θετικών µαθηµάτων Ηµερήσιου και Εσπερινού Γυµνασίου για το σχ. Παραγοντοποίηση του τριωνύµου αx + βx + γ (α ) ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ3 e-mail@p-theodoropoulos.gr Πρόλογος Η παραγοντοποίηση ενός πολυωνύµου είναι µία από τις πιο βασικές

Διαβάστε περισσότερα

Αξιολόγηση του Εκπαιδευτικού Προγράμματος. Εκπαίδευση μέσα από την Τέχνη. [Αξιολόγηση των 5 πιλοτικών τμημάτων]

Αξιολόγηση του Εκπαιδευτικού Προγράμματος. Εκπαίδευση μέσα από την Τέχνη. [Αξιολόγηση των 5 πιλοτικών τμημάτων] Αξιολόγηση του Εκπαιδευτικού Προγράμματος Εκπαίδευση μέσα από την Τέχνη [Αξιολόγηση των 5 πιλοτικών τμημάτων] 1. Είστε ικανοποιημένος/η από το Πρόγραμμα; Μ. Ο. απαντήσεων: 4,7 Ικανοποιήθηκαν σε απόλυτο

Διαβάστε περισσότερα

άλγεβρα και αλγεβρική σκέψη στην πρώτη σχολική περίοδο (Νηπιαγωγείο Δημοτικό) μαρία καλδρυμίδου

άλγεβρα και αλγεβρική σκέψη στην πρώτη σχολική περίοδο (Νηπιαγωγείο Δημοτικό) μαρία καλδρυμίδου άλγεβρα και αλγεβρική σκέψη στην πρώτη σχολική περίοδο (Νηπιαγωγείο Δημοτικό) μαρία καλδρυμίδου κάποια ερωτήματα τι είναι η άλγεβρα; τι περιλαμβάνει η άλγεβρα; ποια η σχέση της με την αριθμητική; γιατί

Διαβάστε περισσότερα

Η αλλαγή (μόνιμη και διαρκής) στη συμπεριφορά, που οφείλεται στην απόκτηση εμπειριών, γνώσεων και ικανοτήτων. Η αλλαγή αφορά στην συμπεριφορά, τις

Η αλλαγή (μόνιμη και διαρκής) στη συμπεριφορά, που οφείλεται στην απόκτηση εμπειριών, γνώσεων και ικανοτήτων. Η αλλαγή αφορά στην συμπεριφορά, τις 1 2 Η αλλαγή (μόνιμη και διαρκής) στη συμπεριφορά, που οφείλεται στην απόκτηση εμπειριών, γνώσεων και ικανοτήτων. Η αλλαγή αφορά στην συμπεριφορά, τις γνώσεις, τις νοητικές αναπαραστάσεις, τις ικανότητες

Διαβάστε περισσότερα

Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής

Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής Ε. Κολέζα, Γ. Βρέταρος, θ. Δρίγκας, Κ. Σκορδούλης Εισαγωγή Ο εκπαιδευτικός κατά τη διάρκεια της σχολικής

Διαβάστε περισσότερα

Χαρακτηριστικά άτυπης αξιολόγησης

Χαρακτηριστικά άτυπης αξιολόγησης Προσαρμογή Διδακτικών Στόχων σε μαθητές με Μαθησιακές Δυσκολίες Νιάκα Ευγενία Ειδική παιδαγωγός, Σχολική Σύμβουλος Τι λάβαμε υπόψη; Το ατομικό ιστορικό των μαθητών Την αξιολόγηση της διεπιστημονικής ομάδας

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

Διδακτικές Τεχνικές (Στρατηγικές)

Διδακτικές Τεχνικές (Στρατηγικές) Διδακτικές Τεχνικές (Στρατηγικές) Ενδεικτικές τεχνικές διδασκαλίας: 1. Εισήγηση ή διάλεξη ή Μονολογική Παρουσίαση 2. Συζήτηση ή διάλογος 3. Ερωταποκρίσεις 4. Χιονοστιβάδα 5. Καταιγισμός Ιδεών 6. Επίδειξη

Διαβάστε περισσότερα

Α/Α Τύπος Εκφώνηση Απαντήσεις Το λογισµικό Άτλαντας CENTENNIA µπορεί να χρησιµοποιηθεί 1. Α) Στην ιστορία. Σωστό το ) Σωστό το Γ)

Α/Α Τύπος Εκφώνηση Απαντήσεις Το λογισµικό Άτλαντας CENTENNIA µπορεί να χρησιµοποιηθεί 1. Α) Στην ιστορία. Σωστό το ) Σωστό το Γ) Α/Α Τύπος Εκφώνηση Απαντήσεις Το λογισµικό Άτλαντας CENTENNIA µπορεί να χρησιµοποιηθεί Α) Στην ιστορία. Α) Β) Γ) ) Απλή Β) Στη µελέτη περιβάλλοντος. Γ) Στις φυσικές επιστήµες. ) Σε όλα τα παραπάνω. Είστε

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά.

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. Γ. Οι μαθητές και τα Μαθηματικά. Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. ΠΙΝΑΚΑΣ 55 Στάση

Διαβάστε περισσότερα