ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1"

Transcript

1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Ανάλυση Ακολουθιακών Κυκλωμάτων Ανάλυση: Ο καθορισμός μιας κατάλληλης περιγραφής η οποία επιδεικνύει τη χρονική ακολουθία εισόδων, εξόδων και καταστάσεων (states states). t s) Λογικό ιάγραμμα: Λογικές πύλες,, flip-flops, flops, και κατάλληλες διασυνδέσεις. Το λογικό διάγραμμα μπορεί να καθοριστεί από ένα από τα ακόλουθα: Εξισώσεις (FF-Εισόδων Εισόδων, Εξόδων) Πίνακα Καταστάσεων (State Table ή Transition Table) ιάγραμμα Καταστάσεων (State Diagram ή Transition Diagram ή Finite State Machine FSM) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών MKM - 2 Εξισώσεις Εισόδων Flip-Flop Flop (FF-Input Equations) Αλγεβρικές αναπαραστάσεις που χρησιμοποιούνται για την περιγραφή της λογικής που οδηγεί τις εισόδους των FFs. Παράδειγμα: Εξισώσεις Εισόδων FF Θεωρήστε: J A = XB+Y και K A = YB + Τα J, K υπονοούν τον τύπο του FF (σε αυτή την περίπτωση, είναι JK-FF). Ο δείκτης ( A ) ορίζει την έξοδο του FF. Υπονοούν τον τύπο των FFs που θα χρησιμοποιηθούν και καθορίζουν πλήρως την συνδυαστική λογική που οδηγεί τις εισόδους των FFs. J A J A K A K A Παρατηρήστε ότι ο τύπος πυροδότησης δεν καθορίζεται από τις εξισώσεις εισόδων FF. Αυτός είτε δίνετε ή καθορίζεται από τον αναλυτή. Για αυτό το παράδειγμα, θεωρούμε ότι η πυροδότηση γίνετε στη θετική ακμή. MKM - 3 MKM - 4 Ανάλυση Ακολουθιακών Κυκλωμάτων 1

2 Παράδειγμα: Εξισώσεις Εισόδων FF Υλοποίηση Λογικού ιαγράμματος Πλήρως Καθορισμένα Λογικά ιαγράμματα X B Y J A K A J K A A Μπορούν οι εξισώσεις εισόδων FF να καθορίσουν πλήρως το λογικό διάγραμμα ενός ακολουθιακού κυκλώματος; Χρειαζόμαστε και τις εξισώσεις για τις εξόδους του κυκλώματος. Λίστα από δυαδικές εξισώσεις για τις εξόδους J A = XB+Y K A = YB + Ρολόι () Συνδ. Μέρος FFs Λίστα εξισώσεων εισόδων FF MKM - 5 MKM - 6 Παράδειγμα Παράδειγμα (συν.) Εξισώσεις Εισόδων FF: D A (t+1) = X(t) + B(t) X(t) D B (t+1) = A (t) X(t) Εξισώσεις Εξόδων: Y(t) = ( + B(t)) X (t) Εξισώσεις Εισόδων FF: D A (t+1) = X(t) + B(t)X(t) D B (t+1) = A (t)x(t) Εξισώσεις Εξόδων: Y(t) = ( + B(t)) X (t) x Q A A B 2 FFs τύπου D, Καταστάσεις: : Α(t), B(t) 1 είσοδος: X(t), 1 έξοδος: Y(t) Λογικό διάγραμμα P Q y MKM - 7 MKM - 8 Ανάλυση Ακολουθιακών Κυκλωμάτων 2

3 Πίνακας Καταστάσεων (State Table) Απαριθμεί τις σχέσεις μεταξύ εισόδων, εξόδων, και καταστάσεων (states = τιμές στα FF) ενός ακολουθιακού κυκλώματος. Αποτελείται από 4 μέρη: : : τις τιμές των FFs για κάθε επιτρεπτή κατάσταση, σε χρόνο t Είσοδοι: : οι επιτρεπτοί συνδυασμοί εισόδων : : τις τιμές των FFs για κάθε επιτρεπτή κατάσταση, σε χρόνο t+1, βάσει των τιμών στις εισόδους και της παρούσας κατάστασης Έξοδοι: : οι τιμές των εξόδων σε σχέση με την παρούσα κατάσταση και, πιθανόν, τις τιμές των εισόδων εδομένου ενός κυκλώματος με n εισόδους και m flip-flops, flops, ο αντίστοιχος πίνακας καταστάσεων αποτελείται από 2 n+m γραμμές. MKM - 9 Πίνακας Καταστάσεων (συν.) D A = AX + BX = A(t+1) D B = A X = B(t+1) Y = (A + B)X Είσοδος B(t) X A(t+1) B(t+1) MKM - 10 Y Πίνακας Καταστάσεων Εναλλακτική Μορφή D A = AX + BX = A(t+1) D B = A X = B(t+1) Y = (A + B)X X=0 X=1 X=0 X=1 B(t) A(t+1) B(t+1) A(t+1) B(t+1) Y Y Πίνακες Καταστάσεων για JK FFs ιαδικασία σε 2 φάσεις: 1. Καθορισμός δυαδικών τιμών για κάθε είσοδο FF βάση των εξισώσεων εισόδων FF, σε σχέση με την παρούσα κατάσταση και τις μεταβλητές εισόδου. 2. Χρήση αντίστοιχων χαρακτηριστικών πινάκων FF για καθορισμό της επόμενης κατάστασης. MKM - 11 MKM - 12 Ανάλυση Ακολουθιακών Κυκλωμάτων 3

4 Παράδειγμα J A = B, K A = BX J B = X, K B = AX + A X = A X χρειαζόμαστε 2 JK-FFs: J A K A J K Χαρακτηριστικός Πίνακας JK-FF A J B J B J K Q(t+1) 0 0 Q(t) A KB K B Q(t) MKM - 13 Παράδειγμα (συν.) Είσοδος B(t) X A(t+1) Είσοδοι FF B(t+1) J A K A J B K B J A = B, K A = BX J B = X, K B = AX + A X = A X Φάση 1: Χρήση εξισώσεων εισόδων FF MKM - 14 Παράδειγμα (συν.) Είσοδος Είσοδοι FF B(t) X A(t+1) B(t+1) J A K A J B K B Φάση 2: Χρήση χαρακτηριστικών πινάκων FF MKM - 15 Μηχανές Mealy και Moore Μοντέλο Mealy: Έξοδοι ΚΑΙ επόμενη κατάσταση εξαρτούνται άμεσα από τις τιμές των εισόδων ΚΑΙ της παρούσας κατάστασης. Μοντέλο Moore: ΜΟΝΟ η επόμενη κατάσταση εξαρτάται άμεσα από τις τιμές των εισόδων ΚΑΙ της παρούσας κατάστασης. Οι τιμές στις εξόδους εξαρτούνται μόνο από την παρούσα κατάσταση (δεν εξαρτούνται άμεσα από τις τιμές των εισόδων) MKM - 16 Ανάλυση Ακολουθιακών Κυκλωμάτων 4

5 ομή Κανονικού Ακολουθιακού Κυκλώματος Μηχανή Mealy x(t) είσοδοι Συνδυαστικό Κύκλωμα επόμενη κατάσταση αχωρητής κατάστασης tate register FFs) Κατ (s παρούσα κατάσταση x(t) είσοδοι 1 επόμενη κατάσταση Καταχωρητής ς παρούσα κατάσταση 2 z(t) z(t) έξοδοι MKM - 17 MKM - 18 Μηχανή Moore Παράδειγμα Μηχανής Moore x(t) () είσοδοι 1 επόμενη κατάσταση Κα αταχωρητής ς παρούσα κατάσταση 2 z(t) Βρείτε το λογικό διάγραμμα και τον πίνακα καταστάσεων για: D A = A X Y Z = A X Y D A D A Z MKM - 19 MKM - 20 Ανάλυση Ακολουθιακών Κυκλωμάτων 5

6 Παράδειγμα Μηχανής Moore (συν.) Πίνακας Καταστάσεων Είσοδοι Εναλλακτική Μορφή Μηχανές Mealy και Moore X Y A(t+1) Z XY=00 A(t+1) XY=01 A(t+1) XY=10 A(t+1) XY=11 A(t+1) Ζ Έχουμε δει, μέχρι στιγμής, παράδειγμα (με λογικό διάγραμμα) μηχανής Mealy; X Y D A D A Z MKM - 21 MKM - 22 ιαγράμματα Καταστάσεων (State Diagrams) Γραφική αναπαράσταση του πίνακα καταστάσεων. Ένας κόμβος με σήμανση s αντιστοιχεί σε κάθε πιθανή κατάσταση (state) s. S Μια ακμή με σήμανση X δηλώνει την μετάβαση μεταξύ δύο καταστάσεων (state transition), όταν η τιμή X εφαρμόζεται στις εισόδους. ηλ., αν παρούσα κατάσταση = s1 X και input = X, S1 S2 τότε επόμενη κατάσταση = s2 Το διάγραμμα διαφέρει, αναλόγως του τύπου του κυκλώματος (Mealy ή Moore). MKM - 23 Παράδειγμα: Μοντέλο Mealy Πίνακας Καταστάσεων Είσοδος B(t) X A(t+1) B(t+1) Πιθανές Καταστάσεις = { 00, 01, 10, 11 } = {s0, s1, s2, s3} 4 κόμβοι στο διάγραμμα καταστάσεων MKM - 24 Y Ανάλυση Ακολουθιακών Κυκλωμάτων 6

7 Παράδειγμα: Μοντέλο Mealy (συν.) Παράδειγμα: Μοντέλο Mealy (συν.) Πίνακας Καταστάσεων Είσοδος B(t) X A(t+1) B(t+1) Y s0 0 s0 0 s0 s1 s1 s2 s2 s s1 s0 s3 s0 s2 s0 s3 1 s ιάγραμμα Καταστάσεων 0/0 1/0 s0 s1 0/1 0/1 0/1 1/0 Si I/O Sj ιαβάζεται ως ακολούθως: Όταν η παρούσα κατάσταση είναι Si και η είσοδος I εφαρμοστεί, έχουμε έξοδο O και η επόμενη κατάσταση είναι η Sj. Πιθανές Καταστάσεις = { 00, 01, 10, 11 } = {s0, s1, s2, s3} 4 κόμβοι στο διάγραμμα καταστάσεων s2 1/0 1/0 s3 Τιμές εισόδων/εξόδων πάνω στην κάθε ακμή MKM - 25 MKM - 26 Παράδειγμα: Μοντέλο Mealy (συν.) ιάγραμμα Καταστάσεων 0/1 00 0/0 0/1 1/0 0/1 10 1/0 1/ /0 Si I/O Sj ιαβάζεται ως ακολούθως: Όταν η παρούσα κατάσταση είναι Si και η είσοδος I εφαρμοστεί, έχουμε έξοδο O και η επόμενη κατάσταση είναι η Sj. Τιμές εισόδων/εξόδων πάνω στην κάθε ακμή υαδικές τιμές για την κάθε κατάσταση MKM - 27 Παράδειγμα: Μοντέλο Moore Πίνακας Καταστάσεων Είσοδοi X Y A(t+1) Πιθανές Καταστάσεις = { 0, 1 } = {s0, s1} 2 κόμβοι στο διάγραμμα καταστάσεων MKM - 28 Z Ανάλυση Ακολουθιακών Κυκλωμάτων 7

8 Παράδειγμα: Μοντέλο Moore (συν.) Πίνακας Καταστάσεων Είσοδοi X Y A(t+1) Z S0 0 0 S0 0 S0 0 1 S1 0 S0 1 0 S1 0 S0 1 1 S0 0 S1 0 0 S1 1 S1 0 1 S0 1 S1 1 0 S0 1 S1 1 1 S1 1 Πιθανές Καταστάσεις = { 0, 1 } = {S0, S1} 2 κόμβοι στο διάγραμμα καταστάσεων MKM - 29 Παράδειγμα: Μοντέλο Moore (συν.) ιάγραμμα Καταστάσεων 00,11 01,10 s0/0 01,10 s1/1 00,11 Si/O1 I Sj/O2 ιαβάζεται ως ακολούθως: Όταν η παρούσα κατάσταση είναι Si με έξοδο O1 και η είσοδος I εφαρμοστεί, έχουμε έξοδο O2 και η επόμενη κατάσταση είναι η Sj. Τιμές εισόδων πάνω στην κάθε ακμή Τιμές εξόδων στον κάθε κόμβο MKM - 30 Παράδειγμα: Μοντέλο Moore (συν.) ιάγραμμα Καταστάσεων 00,11 01,10 0/0 01,10 1/1 00,11 υαδικές τιμές για την κάθε κατάσταση s0 = 0 s1 = 1 Si/O1 I Sj/O2 ιαβάζεται ως ακολούθως: Όταν η παρούσα κατάσταση είναι Si με έξοδο O1 και η είσοδος I εφαρμοστεί, έχουμε έξοδο O2 και η επόμενη κατάσταση είναι η Sj. Τιμές εισόδων πάνω στην κάθε ακμή Τιμές εξόδων στον κάθε κόμβο MKM - 31 Άλλο Παράδειγμα ιαγραμμάτων για Moore και Mealy Μοντέλο Mealy: x=1/y=0 Αντιστοιχεί τιμές x=0/y=0 εισόδων και 0 1 καταστάσεων σε εξόδους x=0 Μοντέλο Moore: 0/0 Αντιστοιχεί καταστάσεις x=0/y=0 x=0 x=1/y=1 σε εξόδους x=1 x=0 x=1 1/0 2/1 x=1 MKM - 32 Ανάλυση Ακολουθιακών Κυκλωμάτων 8

9 Παράδειγμα Πινάκων Καταστάσεων για Moore και Mealy Συμβαίνει το ίδιο με τα διαγράμματα, δηλ.: Μοντέλο Mealy: Αντιστοιχεί τιμές εισόδων και καταστάσεων σε εξόδους x=0 x=1 x=0 x= Ανάλυση Ακολουθιακών Κυκλωμάτων: Παράδειγμα Λογικό ιάγραμμα: A Z R Q D B Q R Q Μοντέλο Moore: Αντιστοιχεί καταστάσεις σε εξόδους x=0 x= lock Reset D Q R Q MKM - 33 MKM - 34 Ανάλυση Ακολουθιακών Κυκλωμάτων: Παράδειγμα Εξισώσεις (FF και εξόδων) Ανάλυση Ακολουθιακών Κυκλωμάτων: Παράδειγμα Πίνακας Καταστάσεων Μεταβλητές: Είσοδοι: Καμία Έξοδοι: : Z Μεταβλητές Καταστάσεων: : A, B, Αρχικοποίηση: : Reset = 1 (Α,Β, Α,Β,) = (0,0,0) Εξισώσεις: A(t+1) = B(t+1) = (t+1) = Z = B(t) (t) A(t+1) B(t+1) (t+1) Z MKM - 35 MKM - 36 Ανάλυση Ακολουθιακών Κυκλωμάτων 9

10 Ανάλυση Ακολουθιακών Κυκλωμάτων: Παράδειγμα ιάγραμμα Καταστάσεων Reset AB Ποιες καταστάσεις χρησιμοποιούνται; Ποια η λειτουργία του κυκλώματος; 110 Ακολουθιακών Κυκλωμάτων Θεωρείστε ένα ακολουθιακό κύκλωμα το οποίο αποτελείται από ομάδες FFs, συνδεδεμένες μέσω συνδυαστικής λογικής. Αν η περίοδος του ρολογιού είναι πολύ μικρή, πιθανόν κάποιες αλλαγές στις τιμές των δεδομένων να ΜΗΝ προλάβουν να διαδοθούν μέσω της λογικής στις εισόδους των FFs ΠΡΙΝ ξεκινήσει το setup των FFs. Q' Q' Q' Q' Q' Q' Q' Q' Q' Q' LOK LOK MKM - 37 MKM - 38 Ακολουθιακών Κυκλωμάτων (συν.) Πρέπει να καθοριστεί η μέγιστη καθυστέρηση max pd, έτσι ώστε η περίοδος του ρολογιού να οριστεί ως t p >= max pd Για την μέγιστη καθυστέρηση, πρέπει να εξετάσουμε τα διάφορα μονοπάτια του κυκλώματος. Υπάρχουν 4 ων ειδών μονοπάτια: Ι/Ο είσοδο σε έξοδο I Συ υνδυαστικό Κύκλωμα ρητής κατάστασης register FFs) Καταχωρ (state Ακολουθιακών Κυκλωμάτων (συν.) Πρέπει να καθοριστεί η μέγιστη καθυστέρηση max pd, έτσι ώστε η περίοδος του ρολογιού να οριστεί ως t p >= max pd Για την μέγιστη καθυστέρηση, πρέπει να εξετάσουμε τα διάφορα μονοπάτια του κυκλώματος. Υπάρχουν 4 ων ειδών μονοπάτια: Ι/Ο είσοδο σε έξοδο Ι/FF είσοδο σε FF I Συ υνδυαστικό Κύκλωμα ρητής κατάστασης register FFs) Καταχωρ (state O O MKM - 39 MKM - 40 Ανάλυση Ακολουθιακών Κυκλωμάτων 10

11 Ακολουθιακών Κυκλωμάτων (συν.) Πρέπει να καθοριστεί η μέγιστη καθυστέρηση max pd, έτσι ώστε η περίοδος του ρολογιού να οριστεί ως t p >= max pd Για την μέγιστη καθυστέρηση, πρέπει να εξετάσουμε τα διάφορα μονοπάτια του κυκλώματος. Υπάρχουν 4 ων ειδών μονοπάτια: Ι/Ο είσοδο σε έξοδο Ι/FF είσοδο σε FF FF/O FF σε έξοδο I Συ υνδυαστικό Κύκλωμα ρητής κατάστασης register FFs) Καταχωρ (state Ακολουθιακών Κυκλωμάτων (συν.) Πρέπει να καθοριστεί η μέγιστη καθυστέρηση max pd, έτσι ώστε η περίοδος του ρολογιού να οριστεί ως t p >= max pd Για την μέγιστη καθυστέρηση, πρέπει να εξετάσουμε τα διάφορα μονοπάτια του κυκλώματος. Υπάρχουν 4 ων ειδών μονοπάτια: Ι/Ο είσοδο σε έξοδο Ι/FF είσοδο σε FF FF/O FF σε έξοδο FF/FF FF σε FF I Συ υνδυαστικό Κύκλωμα ρητής κατάστασης register FFs) Καταχωρ (state O O MKM - 41 MKM - 42 Ακολουθιακών Κυκλωμάτων (συν.) Καθυστερήσεις: t pd,ff = καθυστέρηση μετάδοσης FF t pd,omp = καθυστέρηση μετάδοσης συνδυαστικού μέρους t s = FF setup time t slack = πιθανόν επιπρόσθετος χρόνος που παρέχεται πέραν της καθυστέρησης ενός μονοπατιού Ι/Ο = t pd,omp Ι/FF = t pd,omp + t s FF/O = t pd,ff + t pd,omp I FF/FF = t pd,ff + t pd,omp + t s MKM - 43 Συνδυαστικό Κύκλωμα Καταχωρητής κατάστα σης (state register FF Fs) O Ακολουθιακών Κυκλωμάτων (συν.) Σκοπός μας είναι να ελαχιστοποιήσουμε την περίοδο του ρολογιού t p (για να μεγιστοποιήσουμε την συχνότητα) t p >= max pd t p = t pmin + t slack max pd =max{ max{t pd,ff + t pd,omp + t s } = t pmin για όλα τα μονοπάτια FF/FF tp tpd,ff tpd,omb ts tslack (a)positive Edge triggered tpd,ff tpd,omb tslack ts tp (b) Negative Pulse/Level triggered MKM - 44 Ανάλυση Ακολουθιακών Κυκλωμάτων 11

12 Υπολογισμός της μέγιστης επιτρεπτής τιμής του t pd,omb Συγκρίνετε την μέγιστη επιτρεπτή καθυστέρηση του συνδυαστικού μέρους για ένα ακολουθιακό κύκλωμα: a) Χρησιμοποιώντας ακμοπυροδοτούμενα FFs b) Χρησιμοποιώντας master-slave slave FFs Παράμετροι: t pd,ff (max) = 1.0 ns t s (max) = 0.3 ns για ακμοπυροδοτούμενα FFs t s = t wh = 1.0 ns για master-slave slave FFs Συχνότητα ρολογιού = 250 MHz Υπολογισμός της μέγιστης επιτρεπτής τιμής του t pd,omb (συν. συν.) Υπολογισμοί: t p = 1/συχνότητα ρολογιού = 4.0 ns Ακμοπυροδότηση: : t pd,omb + 0.3, t pd,omb 2.7 ns Master-slave: slave: t pd,omb + 1.0, t pd,omb 2.0 ns Σύγκριση: Θεωρήστε ότι για μία πύλη, η μέση τιμή του t pd είναι 0.3 ns Ακμοπυροδότηση : Περίπου 9 πύλες στο μέγιστο μονοπάτι Master-slave: slave: Περίπου 6 έως 7 πύλες στο μέγιστο μονοπάτι MKM - 45 MKM - 46 Ανάλυση Ακολουθιακών Κυκλωμάτων 12

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009. ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα (συν.) Κυκλώματα που Κυκλώματα που αποθηκεύουν εξετάσαμε μέχρι τώρα πληροφορίες Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

Ακολουθιακά Κυκλώματα Flip-Flops

Ακολουθιακά Κυκλώματα Flip-Flops Ακολουθιακά Κυκλώματα Flip-Flops . Συνδυαστικα κυκλωματα Ακολουθιακα κυκλωματα x x 2 x n Συνδυαστικο κυκλωμα z z 2 z m z i =f i (x,x 2,,x n ) i =,2,,m 2. Ακολουθιακα κυκλωματα: x n Συνδυαστικο m z y κυκλωμα

Διαβάστε περισσότερα

Πρότυπα Συµβόλων για τις Μονάδες Μνήµης. Άµεση Είσοδοι (Direct Inputs) Χρονικοί Παράµετροι (Flip-Flop Timing Parameters)

Πρότυπα Συµβόλων για τις Μονάδες Μνήµης. Άµεση Είσοδοι (Direct Inputs) Χρονικοί Παράµετροι (Flip-Flop Timing Parameters) Πρότυπα Συµβόλων για τις Μονάδες Μνήµης Άµεση Είσοδοι (irect Inputs) Master-lave: Postponed output indicators Edge-Triggered: namic indicator with ontrol with ontrol (a) Latches Triggered Triggered Triggered

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 28 8//28 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Σχεδιασμός Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων 15/11/2010. Σχεδιασμός Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων 15/11/2010. Σχεδιασμός Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ 20: Σχεδιασμός Ψηφιακών Συστημάτων 5//200 ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σχεδιασμός Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Σχεδιασμός Ακολουθιακών Κυκλωμάτων Αρχή: Μια λίστα/περιγραφή

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 i: Καταχωρητές Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές Ολίσθησης Σειριακή Φόρτωση Σειριακή Ολίσθηση Καταχωρητές Ολίσθησης Παράλληλης Φόρτωσης

Διαβάστε περισσότερα

5. Σύγχρονα Ακολουθιακά Κυκλώματα

5. Σύγχρονα Ακολουθιακά Κυκλώματα 5. Σύγχρονα Ακολουθιακά Κυκλώματα Ακολουθιακό (sequential) λέμε το σύστημα που περιέχει στοιχεία μνήμης, δηλ. κυκλώματα αποθήκευσης δυαδικής πληροφορίας Γενικό διάγραμμα ακολουθιακού κυκλώματος - Αποτελείται

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 11: Ακολουθιακά Κυκλώµατα (Κεφάλαιο 5, 6.1, 6.3, 6.4) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Ακολουθιακά

Διαβάστε περισσότερα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα 6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. VHDL για Ακολουθιακά Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. VHDL για Ακολουθιακά Κυκλώματα 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων VHDL για Σχεδιασμό Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Περίληψη VHDL Processes Εντολές If-Then Then-Else και CASE Περιγραφή Flip-Flop Flop με VHDL

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων

VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών n VHDL Processes Περίληψη n Εντολές If-Then-Else και CASE

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops

K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter)

Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter) ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter) ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Μετρητής Ριπής q Σύγχρονος

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου

Διαβάστε περισσότερα

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Μηχανές Πεπερασμένων Καταστάσεων

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Μηχανές Πεπερασμένων Καταστάσεων «Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Μηχανές Πεπερασμένων Καταστάσεων Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ

Διαβάστε περισσότερα

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Μάθημα 5: Στοιχεία µνήµης ενός ψηφίου Διδάσκων: Καθηγητής Ν. Φακωτάκης Στοιχεία μνήμης Ένα ψηφιακό λογικό κύκλωμα

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 Συµπληρωµατική ΔΙΑΛΕΞΗ 14: Περιγραφή Ακολουθιακών Κυκλωµάτων στη VHDL

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 Συµπληρωµατική ΔΙΑΛΕΞΗ 14: Περιγραφή Ακολουθιακών Κυκλωµάτων στη VHDL ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 Συµπληρωµατική ΔΙΑΛΕΞΗ 14: Περιγραφή Ακολουθιακών Κυκλωµάτων στη VHDL ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

Σχεδίαση Ψηφιακών Συστημάτων

Σχεδίαση Ψηφιακών Συστημάτων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 6: Σύγχρονα Ακολουθιακά Κυκλώματα Κυριάκης Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ FLIP-FLOP ΤΟ ΒΑΣΙΚΟ FLIP-FLOP ΧΡΟΝΙΖΟΜΕΝΑ FF ΤΥΠΟΥ FF ΤΥΠΟΥ D FLIP-FLOP Τ FLIP-FLOP ΠΥΡΟΔΟΤΗΣΗ ΤΩΝ FLIP-FLOP ΚΥΡΙΟ - ΕΞΑΡΤΗΜΕΝΟ FLIP-FLOP ΑΚΜΟΠΥΡΟΔΟΤΟΥΜΕΝΑ FLIP-FLOP ΚΥΚΛΩΜΑΤΑ

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακών Κυκλωμάτων

Εργαστήριο Ψηφιακών Κυκλωμάτων ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Μηχανές Πεπερασμένων Καταστάσεων Χειμερινό Εξάμηνο 2009 2010 ΗΥ220 University of Crete 1 Τι είναι οι FSMs? 10 FSM Κερματοδέκτης open Μηχανισμός Αυτόματου 20 Απελευθέρωσης

Διαβάστε περισσότερα

ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ένα συνδυαστικό κύκλωµα µπορεί να περιγραφεί από: Φεβ-05. n-είσοδοι

ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ένα συνδυαστικό κύκλωµα µπορεί να περιγραφεί από: Φεβ-05. n-είσοδοι ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Φεβ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 3 -i: Σχεδιασµός Συνδυαστικών Κυκλωµάτων Περίληψη Αρχές σχεδιασµού Ιεραρχία σχεδιασµού Σχεδιασµός

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 8: Σύγχρονα ακολουθιακά κυκλώµατα (µέρος Α ) Διδάσκων: Καθηγητής Ν. Φακωτάκης Κυκλώµατα οδηγούµενα από

Διαβάστε περισσότερα

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 ) ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου

Διαβάστε περισσότερα

Καταχωρητές,Σύγχρονοι Μετρητές και ΑκολουθιακάΚυκλώματα

Καταχωρητές,Σύγχρονοι Μετρητές και ΑκολουθιακάΚυκλώματα ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Καταχωρητές,Σύγχρονοι Μετρητές και ΑκολουθιακάΚυκλώματα ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ατζέντα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9. Tα Flip-Flop

ΑΣΚΗΣΗ 9. Tα Flip-Flop ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

Διαβάστε περισσότερα

ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωµάτων

ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωµάτων ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωµάτων Χειµερινό Εξάµηνο 2007-2008 Μηχανές Πεπερασµένων Καταστάσεων ΗΥ220 - Βασίλης Παπαευσταθίου 1 FSMs Οι µηχανές πεπερασµένων καταστάσεων Finite State Machines (FSMs) πιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 6. Εισαγωγή Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά και ακολουθιακά. Τα κυκλώματα που εξετάσαμε στα προηγούμενα κεφάλαια ήταν συνδυαστικά. Οι τιμές των

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 9: Σύγχρονα ακολουθιακά κυκλώµατα (µέρος Β ) Διδάσκων: Καθηγητής Ν. Φακωτάκης Σχεδιασµός ακολουθίας παλµών

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου DEPARTMENT OF COMPUTER SCIENCE

Πανεπιστήµιο Κύπρου DEPARTMENT OF COMPUTER SCIENCE Πανεπιστήµιο Κύπρου DEPARTMENT OF OMPUTER SIENE S 121 Ψηφιακά Εργαστήρια LAB EXERISE 4 Sequential Logic Χρίστος ιονυσίου Σωτήρης ηµητριάδης Άνοιξη 2002 Εργαστήριο 4 Sequential ircuits A. Στόχοι Ο σκοπός

Διαβάστε περισσότερα

Σύγχρονα ακολουθιακά κυκλώματα. URL:

Σύγχρονα ακολουθιακά κυκλώματα.   URL: DeÔtero Ex mhno FoÐthshc Σύγχρονα ακολουθιακά κυκλώματα Ge rgioc. Alexandrìpouloc Lèktorac P.D. 47/8 e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg Tm ma Epist mhc kai TeqnologÐac

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 6: Απαριθµητές (µετρητές) Διδάσκων: Καθηγητής Ν. Φακωτάκης Ακολουθιακά κυκλώµατα Σύγχρονα (οδηγούµενα από

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 3: Ψηφιακή Λογική ΙI Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Καταστάσεων. Καταστάσεων

Καταστάσεων. Καταστάσεων 8 η Θεµατική Ενότητα : Εισαγωγή Ησχεδίαση ενός ψηφιακού συστήµατος µπορεί να διαιρεθεί σε δύο µέρη: τα κυκλώµατα επεξεργασίας δεδοµένων και τα κυκλώµατα ελέγχου. Το κύκλωµα ελέγχου δηµιουργεί σήµατα για

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ Σύγχρονο ακολουθιακό κύκλωμα είναι εκείνο του οποίου όλα τα FFs χρονίζονταιμετοίδιο ρολόι (clock). Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαση Σύγχρονων Ακολουθιακών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 13: Διαδικασία Σχεδιασµού Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6.

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 13: Διαδικασία Σχεδιασµού Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6. ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 13: Διαδικασία Σχεδιασµού Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6.3) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 FLIP - FLOP

ΑΣΚΗΣΗ 7 FLIP - FLOP ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά

Διαβάστε περισσότερα

Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS

Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS Γενικές Γραμμές Ακολουθιακή Λογική Μεταστάθεια S-R RLatch h( (active high h&l low) S-R Latch with Enable Latch Flip-Flop Ασύγχρονοι είσοδοι PRESET

Διαβάστε περισσότερα

Ασύγχρονοι Απαριθμητές. Διάλεξη 7

Ασύγχρονοι Απαριθμητές. Διάλεξη 7 Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι

Διαβάστε περισσότερα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές

Διαβάστε περισσότερα

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2 ΚΥΚΛΩΜΑΤΑ VLSI Ακολουθιακή Λογική Κεφάλαιο 7 ο Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταστάθεια 2. Μανδαλωτές 3. Flip Flops Flops 4. Δομές διοχέτευσης 5. Διανομή ρολογιού 6. Συγχρονισμός

Διαβάστε περισσότερα

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. 6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. Να μελετηθεί η λειτουργία του ακόλουθου κυκλώματος. Ποιος ο ρόλος των εισόδων του (R και S) και πού βρίσκει εφαρμογή; S Q

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. Να μελετηθεί η λειτουργία του ακόλουθου κυκλώματος. Ποιος ο ρόλος των εισόδων του (R και S) και πού βρίσκει εφαρμογή; S Q ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ = ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ = ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Συμπληρώνεται από τον διδάσκοντα (2.0) 2 (2.5) 3 (3.0) 4 (2.5) Σ ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL

Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL Διδάσκoντες: Δρ. Γιώργος Ζάγγουλοςκαι Δρ. Παναγιώτα Δημοσθένους Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Ηλεκτρονικής. Πτυχιακή Εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Ηλεκτρονικής. Πτυχιακή Εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Ηλεκτρονικής Πτυχιακή Εργασία Υλοποίηση σύγχρονων ακολουθιακών κυκλωμάτων σε VHDL για FPGAs/CPLDs και ανάλυση χρονισμών για εύρεση

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Κεφάλαιο 10 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Ακολουθιακή Λογική 2

Κεφάλαιο 10 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Ακολουθιακή Λογική 2 ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Ακολουθιακή Λογική Κεφάλαιο 10 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταευστάθεια 2. Μανδαλωτές 3. Flip

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH.

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH. ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

ΛΟΓΙΚH ΣΧΕΔΙΑΣH ΙΙ. Καλώς ήλθατε

ΛΟΓΙΚH ΣΧΕΔΙΑΣH ΙΙ. Καλώς ήλθατε ΛΟΓΙΚH ΣΧΕΔΙΑΣH ΙΙ Καλώς ήλθατε Ωρολόγιο Πρόγραμμα Τα τυπικά (1/2) (2 ώρες παραδόσεις 1 ώρα φροντιστήριο) x 13 Πέμπτη 16:00 19:00, ΒΑ Στην αρχή μόνο παραδόσεις Τελική εξέταση : Γραπτώς, με ανοικτές σημειώσεις

Διαβάστε περισσότερα

Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων

Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Με τον όρο ανάλυση ενός κυκλώματος εννοούμε τον προσδιορισμό της συμπεριφοράς του κάτω από συγκεκριμένες συνθήκες λειτουργίας. Έτσι, για ένα συνδυαστικό κύκλωμα,

Διαβάστε περισσότερα

Ακολουθιακά Κυκλώµατα (Sequential Circuits) Συνδυαστικά Κυκλώµατα (Combinational Circuits) Σύγχρονα και Ασύγχρονα

Ακολουθιακά Κυκλώµατα (Sequential Circuits) Συνδυαστικά Κυκλώµατα (Combinational Circuits) Σύγχρονα και Ασύγχρονα Συνδυαστικά Κυκλώµατα (Combinational Circuits) Εξοδος οποιαδήποτε στιγµή εξαρτάται µόνο από τις τιµές στην είσοδο την ίδια στιγµή κολουθιακά Κυκλώµατα (Sequential Circuits) Aποθηκεύουν κατάσταση (state)

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ

ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ ΑΣΚΗΣΗ ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Στόχος της άσκησης: Η διαδικασία σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων. Χαρακτηριστικό παράδειγμα σύγχρονων ακολουθιακών κυκλωμάτων είναι οι σύγχρονοι μετρητές. Τις αδυναμίες

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)

Διαβάστε περισσότερα

βαθµίδων µε D FLIP-FLOP. Μονάδες 5

βαθµίδων µε D FLIP-FLOP. Μονάδες 5 Κεφάλαιιο: 6 ο Τίίτλος Κεφαλαίίου:: Μανταλωτές & Flip Flop (Ιούνιος 2004 ΤΕΕ Ηµερήσιο) Να σχεδιάσετε καταχωρητή δεξιάς ολίσθησης τεσσάρων βαθµίδων µε D FLIP-FLOP. Μονάδες 5 (Ιούνιος 2005 ΤΕΕ Ηµερήσιο)

Διαβάστε περισσότερα

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21 Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος 10. Κεφάλαιο 2: Συνδιαστικά Λογικά Κυκλώματα (Ελαχιστοποίηση με Κατάταξη σε Πίνακα) 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος 10. Κεφάλαιο 2: Συνδιαστικά Λογικά Κυκλώματα (Ελαχιστοποίηση με Κατάταξη σε Πίνακα) 1 ΗΜΥ : Σχεδιασμός Ψηφιακών Συστημάτων Σεπτέμβριος ΗΜΥ-: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική: Ελαχιστοποίηση με τη μέθοδο Κατάταξης σε Πίνακα Διδάσκουσα: Μαρία Κ. Μιχαήλ Αλγοριθμική Ελαχιστοποίηση

Διαβάστε περισσότερα

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. 1 ΗΥ330 - Διάλεξη 7η - Ακολουθιακά Κυκλώματα

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.  1 ΗΥ330 - Διάλεξη 7η - Ακολουθιακά Κυκλώματα HY330 Ψηφιακά - Εισαγωγή στα Συστήματα VLSI Διδάσκων: Χ. Σωτηρίου, Βοηθοί: θα ανακοινωθούν http://inf-server.inf.uth.gr/courses/ce330 1 Μανταλωτές θετικής, αρνητικής πολικότητας Σχεδίαση με Μανταλωτές

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης 1 Κεφάλαιο 8 Σχεδίαση στο Επίπεδο Μεταφοράς Περιεχομένων Καταχωρητών Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης 2 Περίγραμμα Κεφαλαίου

Διαβάστε περισσότερα

Κυκλώματα αποθήκευσης με ρολόι

Κυκλώματα αποθήκευσης με ρολόι Κυκλώματα αποθήκευσης με ρολόι Latches και Flip-Flops Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης 1 Γιατί χρειαζόμαστε τα ρολόγια Συνδιαστική λογική Η έξοδος εξαρτάται μόνο

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Συνδυαστική Λογική / Κυκλώματα (Μέρος B) Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Βελτιστοποίηση

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση

Διαβάστε περισσότερα

Ασύγχρονοι Απαριθμητές. Διάλεξη 7

Ασύγχρονοι Απαριθμητές. Διάλεξη 7 Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι

Διαβάστε περισσότερα

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων Περιγραφή Κυκλωμάτων με χρήση της VHDL Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων Οργάνωση Παρουσίασης Περιγραφή Δομής σε VHDL (Structural Description) Μηχανές Πεπερασμένων Καταστάσεων

Διαβάστε περισσότερα

Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Περίληψη

Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο Περίληψη ΗΜΥ 2: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο 27 Οκτ-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Συνδυαστική Λογική / Ολοκληρωμένα Κυκλώματα (Μέρος Γ) Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο

Διαβάστε περισσότερα

ΗΥ220: Εργαστήριο σχεδίασης ψηφιακών κυκλωμάτων Χριστόφορος Κάχρης

ΗΥ220: Εργαστήριο σχεδίασης ψηφιακών κυκλωμάτων Χριστόφορος Κάχρης Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ220: Εργαστήριο σχεδίασης ψηφιακών κυκλωμάτων Χριστόφορος Κάχρης 4-11-2009 Πρόοδος Θέμα 1 ο (25%): 1. Βρείτε την μεγίστη συχνότητα λειτουργίας του παρακάτω

Διαβάστε περισσότερα

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική Υλοποίηση λογικών πυλών µε τρανζίστορ MOS Εισαγωγή στην Ηλεκτρονική Λογική MOS Η αναπαράσταση των λογικών µεταβλητών 0 και 1 στα ψηφιακά κυκλώµατα γίνεται µέσω κατάλληλων επιπέδων τάσης, όπου κατά σύµβαση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop. Διάλεξη 6

Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop. Διάλεξη 6 Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop Διάλεξη 6 Δομή της διάλεξης Εισαγωγή στην ακολουθιακή λογική Ομανδαλωτής SR Latch JK Flip-Flop D Flip-Flop Timing Definitions Latch vs Flip-Flop Ασκήσεις

Διαβάστε περισσότερα

ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων

ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Χειμερινό Εξάμηνο 2015-2016 ΗΥ220 -Γιώργος Καιλοκαιρινός & Βασίλης Παπαευσταθίου 1 Λογικές Πύλες, Στοιχεία Μνήμης, Συνδυαστική Λογική και Κυματομορφές ΗΥ220 -Γιώργος

Διαβάστε περισσότερα

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου

Ψηφιακή Σχεδίαση Εργαστηριο 1. Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου Ψηφιακή Σχεδίαση Εργαστηριο 1 Τμήμα: Μηχανικών Πληροφορικής κ Τηλεπικοινωνιών Διδάσκων: Δρ. Σωτήριος Κοντογιαννης Μάθημα 2 ου εξαμήνου ΛΟΓΙΚΕΣ ΠΥΛΕΣ ΕΡΓΑΛΕΙΑ ΕΡΓΑΣΤΗΡΙΟ Το εργαλείο που θα χρησιμοποιηθεί

Διαβάστε περισσότερα

Εισαγωγή στα ακολουθιακά στοιχεία CMOS

Εισαγωγή στα ακολουθιακά στοιχεία CMOS Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στη Σχεδίαση VLSI Εισαγωγή στα ακολουθιακά στοιχεία

Διαβάστε περισσότερα

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Άλλες Αριθμητικές Συναρτήσεις/Κυκλώματα ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Αριθμητικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόσθεση υαδική Πρόσθεση

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ. Ψηφιακά κυκλώματα.

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ. Ψηφιακά κυκλώματα. ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Ψηφιακά κυκλώματα Σημειώσεις Αναστάσιος Ι. Μπαλουκτσής (Μηχανολόγος/Ηλεκτρολόγος Μηχανικός,

Διαβάστε περισσότερα

7 η διάλεξη Ακολουθιακά Κυκλώματα

7 η διάλεξη Ακολουθιακά Κυκλώματα 7 η διάλεξη Ακολουθιακά Κυκλώματα 1 2 3 4 5 6 7 Παραπάνω βλέπουμε ακολουθιακό κύκλωμα σχεδιασμένο με μανταλωτές διαφορετικής φάσης. Παρατηρούμε ότι συνδυαστική λογική μπορεί να προστεθεί μεταξύ και των

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS)

ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) Αντικείμενο της άσκησης: H σχεδίαση και η χρήση ασύγχρονων απαριθμητών γεγονότων. Με τον όρο απαριθμητές ή μετρητές εννοούμε ένα ακολουθιακό κύκλωμα με FF, οι καταστάσεις

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή

Διαβάστε περισσότερα