ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1"

Transcript

1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Ανάλυση Ακολουθιακών Κυκλωμάτων Ανάλυση: Ο καθορισμός μιας κατάλληλης περιγραφής η οποία επιδεικνύει τη χρονική ακολουθία εισόδων, εξόδων και καταστάσεων (states states). t s) Λογικό ιάγραμμα: Λογικές πύλες,, flip-flops, flops, και κατάλληλες διασυνδέσεις. Το λογικό διάγραμμα μπορεί να καθοριστεί από ένα από τα ακόλουθα: Εξισώσεις (FF-Εισόδων Εισόδων, Εξόδων) Πίνακα Καταστάσεων (State Table ή Transition Table) ιάγραμμα Καταστάσεων (State Diagram ή Transition Diagram ή Finite State Machine FSM) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών MKM - 2 Εξισώσεις Εισόδων Flip-Flop Flop (FF-Input Equations) Αλγεβρικές αναπαραστάσεις που χρησιμοποιούνται για την περιγραφή της λογικής που οδηγεί τις εισόδους των FFs. Παράδειγμα: Εξισώσεις Εισόδων FF Θεωρήστε: J A = XB+Y και K A = YB + Τα J, K υπονοούν τον τύπο του FF (σε αυτή την περίπτωση, είναι JK-FF). Ο δείκτης ( A ) ορίζει την έξοδο του FF. Υπονοούν τον τύπο των FFs που θα χρησιμοποιηθούν και καθορίζουν πλήρως την συνδυαστική λογική που οδηγεί τις εισόδους των FFs. J A J A K A K A Παρατηρήστε ότι ο τύπος πυροδότησης δεν καθορίζεται από τις εξισώσεις εισόδων FF. Αυτός είτε δίνετε ή καθορίζεται από τον αναλυτή. Για αυτό το παράδειγμα, θεωρούμε ότι η πυροδότηση γίνετε στη θετική ακμή. MKM - 3 MKM - 4 Ανάλυση Ακολουθιακών Κυκλωμάτων 1

2 Παράδειγμα: Εξισώσεις Εισόδων FF Υλοποίηση Λογικού ιαγράμματος Πλήρως Καθορισμένα Λογικά ιαγράμματα X B Y J A K A J K A A Μπορούν οι εξισώσεις εισόδων FF να καθορίσουν πλήρως το λογικό διάγραμμα ενός ακολουθιακού κυκλώματος; Χρειαζόμαστε και τις εξισώσεις για τις εξόδους του κυκλώματος. Λίστα από δυαδικές εξισώσεις για τις εξόδους J A = XB+Y K A = YB + Ρολόι () Συνδ. Μέρος FFs Λίστα εξισώσεων εισόδων FF MKM - 5 MKM - 6 Παράδειγμα Παράδειγμα (συν.) Εξισώσεις Εισόδων FF: D A (t+1) = X(t) + B(t) X(t) D B (t+1) = A (t) X(t) Εξισώσεις Εξόδων: Y(t) = ( + B(t)) X (t) Εξισώσεις Εισόδων FF: D A (t+1) = X(t) + B(t)X(t) D B (t+1) = A (t)x(t) Εξισώσεις Εξόδων: Y(t) = ( + B(t)) X (t) x Q A A B 2 FFs τύπου D, Καταστάσεις: : Α(t), B(t) 1 είσοδος: X(t), 1 έξοδος: Y(t) Λογικό διάγραμμα P Q y MKM - 7 MKM - 8 Ανάλυση Ακολουθιακών Κυκλωμάτων 2

3 Πίνακας Καταστάσεων (State Table) Απαριθμεί τις σχέσεις μεταξύ εισόδων, εξόδων, και καταστάσεων (states = τιμές στα FF) ενός ακολουθιακού κυκλώματος. Αποτελείται από 4 μέρη: : : τις τιμές των FFs για κάθε επιτρεπτή κατάσταση, σε χρόνο t Είσοδοι: : οι επιτρεπτοί συνδυασμοί εισόδων : : τις τιμές των FFs για κάθε επιτρεπτή κατάσταση, σε χρόνο t+1, βάσει των τιμών στις εισόδους και της παρούσας κατάστασης Έξοδοι: : οι τιμές των εξόδων σε σχέση με την παρούσα κατάσταση και, πιθανόν, τις τιμές των εισόδων εδομένου ενός κυκλώματος με n εισόδους και m flip-flops, flops, ο αντίστοιχος πίνακας καταστάσεων αποτελείται από 2 n+m γραμμές. MKM - 9 Πίνακας Καταστάσεων (συν.) D A = AX + BX = A(t+1) D B = A X = B(t+1) Y = (A + B)X Είσοδος B(t) X A(t+1) B(t+1) MKM - 10 Y Πίνακας Καταστάσεων Εναλλακτική Μορφή D A = AX + BX = A(t+1) D B = A X = B(t+1) Y = (A + B)X X=0 X=1 X=0 X=1 B(t) A(t+1) B(t+1) A(t+1) B(t+1) Y Y Πίνακες Καταστάσεων για JK FFs ιαδικασία σε 2 φάσεις: 1. Καθορισμός δυαδικών τιμών για κάθε είσοδο FF βάση των εξισώσεων εισόδων FF, σε σχέση με την παρούσα κατάσταση και τις μεταβλητές εισόδου. 2. Χρήση αντίστοιχων χαρακτηριστικών πινάκων FF για καθορισμό της επόμενης κατάστασης. MKM - 11 MKM - 12 Ανάλυση Ακολουθιακών Κυκλωμάτων 3

4 Παράδειγμα J A = B, K A = BX J B = X, K B = AX + A X = A X χρειαζόμαστε 2 JK-FFs: J A K A J K Χαρακτηριστικός Πίνακας JK-FF A J B J B J K Q(t+1) 0 0 Q(t) A KB K B Q(t) MKM - 13 Παράδειγμα (συν.) Είσοδος B(t) X A(t+1) Είσοδοι FF B(t+1) J A K A J B K B J A = B, K A = BX J B = X, K B = AX + A X = A X Φάση 1: Χρήση εξισώσεων εισόδων FF MKM - 14 Παράδειγμα (συν.) Είσοδος Είσοδοι FF B(t) X A(t+1) B(t+1) J A K A J B K B Φάση 2: Χρήση χαρακτηριστικών πινάκων FF MKM - 15 Μηχανές Mealy και Moore Μοντέλο Mealy: Έξοδοι ΚΑΙ επόμενη κατάσταση εξαρτούνται άμεσα από τις τιμές των εισόδων ΚΑΙ της παρούσας κατάστασης. Μοντέλο Moore: ΜΟΝΟ η επόμενη κατάσταση εξαρτάται άμεσα από τις τιμές των εισόδων ΚΑΙ της παρούσας κατάστασης. Οι τιμές στις εξόδους εξαρτούνται μόνο από την παρούσα κατάσταση (δεν εξαρτούνται άμεσα από τις τιμές των εισόδων) MKM - 16 Ανάλυση Ακολουθιακών Κυκλωμάτων 4

5 ομή Κανονικού Ακολουθιακού Κυκλώματος Μηχανή Mealy x(t) είσοδοι Συνδυαστικό Κύκλωμα επόμενη κατάσταση αχωρητής κατάστασης tate register FFs) Κατ (s παρούσα κατάσταση x(t) είσοδοι 1 επόμενη κατάσταση Καταχωρητής ς παρούσα κατάσταση 2 z(t) z(t) έξοδοι MKM - 17 MKM - 18 Μηχανή Moore Παράδειγμα Μηχανής Moore x(t) () είσοδοι 1 επόμενη κατάσταση Κα αταχωρητής ς παρούσα κατάσταση 2 z(t) Βρείτε το λογικό διάγραμμα και τον πίνακα καταστάσεων για: D A = A X Y Z = A X Y D A D A Z MKM - 19 MKM - 20 Ανάλυση Ακολουθιακών Κυκλωμάτων 5

6 Παράδειγμα Μηχανής Moore (συν.) Πίνακας Καταστάσεων Είσοδοι Εναλλακτική Μορφή Μηχανές Mealy και Moore X Y A(t+1) Z XY=00 A(t+1) XY=01 A(t+1) XY=10 A(t+1) XY=11 A(t+1) Ζ Έχουμε δει, μέχρι στιγμής, παράδειγμα (με λογικό διάγραμμα) μηχανής Mealy; X Y D A D A Z MKM - 21 MKM - 22 ιαγράμματα Καταστάσεων (State Diagrams) Γραφική αναπαράσταση του πίνακα καταστάσεων. Ένας κόμβος με σήμανση s αντιστοιχεί σε κάθε πιθανή κατάσταση (state) s. S Μια ακμή με σήμανση X δηλώνει την μετάβαση μεταξύ δύο καταστάσεων (state transition), όταν η τιμή X εφαρμόζεται στις εισόδους. ηλ., αν παρούσα κατάσταση = s1 X και input = X, S1 S2 τότε επόμενη κατάσταση = s2 Το διάγραμμα διαφέρει, αναλόγως του τύπου του κυκλώματος (Mealy ή Moore). MKM - 23 Παράδειγμα: Μοντέλο Mealy Πίνακας Καταστάσεων Είσοδος B(t) X A(t+1) B(t+1) Πιθανές Καταστάσεις = { 00, 01, 10, 11 } = {s0, s1, s2, s3} 4 κόμβοι στο διάγραμμα καταστάσεων MKM - 24 Y Ανάλυση Ακολουθιακών Κυκλωμάτων 6

7 Παράδειγμα: Μοντέλο Mealy (συν.) Παράδειγμα: Μοντέλο Mealy (συν.) Πίνακας Καταστάσεων Είσοδος B(t) X A(t+1) B(t+1) Y s0 0 s0 0 s0 s1 s1 s2 s2 s s1 s0 s3 s0 s2 s0 s3 1 s ιάγραμμα Καταστάσεων 0/0 1/0 s0 s1 0/1 0/1 0/1 1/0 Si I/O Sj ιαβάζεται ως ακολούθως: Όταν η παρούσα κατάσταση είναι Si και η είσοδος I εφαρμοστεί, έχουμε έξοδο O και η επόμενη κατάσταση είναι η Sj. Πιθανές Καταστάσεις = { 00, 01, 10, 11 } = {s0, s1, s2, s3} 4 κόμβοι στο διάγραμμα καταστάσεων s2 1/0 1/0 s3 Τιμές εισόδων/εξόδων πάνω στην κάθε ακμή MKM - 25 MKM - 26 Παράδειγμα: Μοντέλο Mealy (συν.) ιάγραμμα Καταστάσεων 0/1 00 0/0 0/1 1/0 0/1 10 1/0 1/ /0 Si I/O Sj ιαβάζεται ως ακολούθως: Όταν η παρούσα κατάσταση είναι Si και η είσοδος I εφαρμοστεί, έχουμε έξοδο O και η επόμενη κατάσταση είναι η Sj. Τιμές εισόδων/εξόδων πάνω στην κάθε ακμή υαδικές τιμές για την κάθε κατάσταση MKM - 27 Παράδειγμα: Μοντέλο Moore Πίνακας Καταστάσεων Είσοδοi X Y A(t+1) Πιθανές Καταστάσεις = { 0, 1 } = {s0, s1} 2 κόμβοι στο διάγραμμα καταστάσεων MKM - 28 Z Ανάλυση Ακολουθιακών Κυκλωμάτων 7

8 Παράδειγμα: Μοντέλο Moore (συν.) Πίνακας Καταστάσεων Είσοδοi X Y A(t+1) Z S0 0 0 S0 0 S0 0 1 S1 0 S0 1 0 S1 0 S0 1 1 S0 0 S1 0 0 S1 1 S1 0 1 S0 1 S1 1 0 S0 1 S1 1 1 S1 1 Πιθανές Καταστάσεις = { 0, 1 } = {S0, S1} 2 κόμβοι στο διάγραμμα καταστάσεων MKM - 29 Παράδειγμα: Μοντέλο Moore (συν.) ιάγραμμα Καταστάσεων 00,11 01,10 s0/0 01,10 s1/1 00,11 Si/O1 I Sj/O2 ιαβάζεται ως ακολούθως: Όταν η παρούσα κατάσταση είναι Si με έξοδο O1 και η είσοδος I εφαρμοστεί, έχουμε έξοδο O2 και η επόμενη κατάσταση είναι η Sj. Τιμές εισόδων πάνω στην κάθε ακμή Τιμές εξόδων στον κάθε κόμβο MKM - 30 Παράδειγμα: Μοντέλο Moore (συν.) ιάγραμμα Καταστάσεων 00,11 01,10 0/0 01,10 1/1 00,11 υαδικές τιμές για την κάθε κατάσταση s0 = 0 s1 = 1 Si/O1 I Sj/O2 ιαβάζεται ως ακολούθως: Όταν η παρούσα κατάσταση είναι Si με έξοδο O1 και η είσοδος I εφαρμοστεί, έχουμε έξοδο O2 και η επόμενη κατάσταση είναι η Sj. Τιμές εισόδων πάνω στην κάθε ακμή Τιμές εξόδων στον κάθε κόμβο MKM - 31 Άλλο Παράδειγμα ιαγραμμάτων για Moore και Mealy Μοντέλο Mealy: x=1/y=0 Αντιστοιχεί τιμές x=0/y=0 εισόδων και 0 1 καταστάσεων σε εξόδους x=0 Μοντέλο Moore: 0/0 Αντιστοιχεί καταστάσεις x=0/y=0 x=0 x=1/y=1 σε εξόδους x=1 x=0 x=1 1/0 2/1 x=1 MKM - 32 Ανάλυση Ακολουθιακών Κυκλωμάτων 8

9 Παράδειγμα Πινάκων Καταστάσεων για Moore και Mealy Συμβαίνει το ίδιο με τα διαγράμματα, δηλ.: Μοντέλο Mealy: Αντιστοιχεί τιμές εισόδων και καταστάσεων σε εξόδους x=0 x=1 x=0 x= Ανάλυση Ακολουθιακών Κυκλωμάτων: Παράδειγμα Λογικό ιάγραμμα: A Z R Q D B Q R Q Μοντέλο Moore: Αντιστοιχεί καταστάσεις σε εξόδους x=0 x= lock Reset D Q R Q MKM - 33 MKM - 34 Ανάλυση Ακολουθιακών Κυκλωμάτων: Παράδειγμα Εξισώσεις (FF και εξόδων) Ανάλυση Ακολουθιακών Κυκλωμάτων: Παράδειγμα Πίνακας Καταστάσεων Μεταβλητές: Είσοδοι: Καμία Έξοδοι: : Z Μεταβλητές Καταστάσεων: : A, B, Αρχικοποίηση: : Reset = 1 (Α,Β, Α,Β,) = (0,0,0) Εξισώσεις: A(t+1) = B(t+1) = (t+1) = Z = B(t) (t) A(t+1) B(t+1) (t+1) Z MKM - 35 MKM - 36 Ανάλυση Ακολουθιακών Κυκλωμάτων 9

10 Ανάλυση Ακολουθιακών Κυκλωμάτων: Παράδειγμα ιάγραμμα Καταστάσεων Reset AB Ποιες καταστάσεις χρησιμοποιούνται; Ποια η λειτουργία του κυκλώματος; 110 Ακολουθιακών Κυκλωμάτων Θεωρείστε ένα ακολουθιακό κύκλωμα το οποίο αποτελείται από ομάδες FFs, συνδεδεμένες μέσω συνδυαστικής λογικής. Αν η περίοδος του ρολογιού είναι πολύ μικρή, πιθανόν κάποιες αλλαγές στις τιμές των δεδομένων να ΜΗΝ προλάβουν να διαδοθούν μέσω της λογικής στις εισόδους των FFs ΠΡΙΝ ξεκινήσει το setup των FFs. Q' Q' Q' Q' Q' Q' Q' Q' Q' Q' LOK LOK MKM - 37 MKM - 38 Ακολουθιακών Κυκλωμάτων (συν.) Πρέπει να καθοριστεί η μέγιστη καθυστέρηση max pd, έτσι ώστε η περίοδος του ρολογιού να οριστεί ως t p >= max pd Για την μέγιστη καθυστέρηση, πρέπει να εξετάσουμε τα διάφορα μονοπάτια του κυκλώματος. Υπάρχουν 4 ων ειδών μονοπάτια: Ι/Ο είσοδο σε έξοδο I Συ υνδυαστικό Κύκλωμα ρητής κατάστασης register FFs) Καταχωρ (state Ακολουθιακών Κυκλωμάτων (συν.) Πρέπει να καθοριστεί η μέγιστη καθυστέρηση max pd, έτσι ώστε η περίοδος του ρολογιού να οριστεί ως t p >= max pd Για την μέγιστη καθυστέρηση, πρέπει να εξετάσουμε τα διάφορα μονοπάτια του κυκλώματος. Υπάρχουν 4 ων ειδών μονοπάτια: Ι/Ο είσοδο σε έξοδο Ι/FF είσοδο σε FF I Συ υνδυαστικό Κύκλωμα ρητής κατάστασης register FFs) Καταχωρ (state O O MKM - 39 MKM - 40 Ανάλυση Ακολουθιακών Κυκλωμάτων 10

11 Ακολουθιακών Κυκλωμάτων (συν.) Πρέπει να καθοριστεί η μέγιστη καθυστέρηση max pd, έτσι ώστε η περίοδος του ρολογιού να οριστεί ως t p >= max pd Για την μέγιστη καθυστέρηση, πρέπει να εξετάσουμε τα διάφορα μονοπάτια του κυκλώματος. Υπάρχουν 4 ων ειδών μονοπάτια: Ι/Ο είσοδο σε έξοδο Ι/FF είσοδο σε FF FF/O FF σε έξοδο I Συ υνδυαστικό Κύκλωμα ρητής κατάστασης register FFs) Καταχωρ (state Ακολουθιακών Κυκλωμάτων (συν.) Πρέπει να καθοριστεί η μέγιστη καθυστέρηση max pd, έτσι ώστε η περίοδος του ρολογιού να οριστεί ως t p >= max pd Για την μέγιστη καθυστέρηση, πρέπει να εξετάσουμε τα διάφορα μονοπάτια του κυκλώματος. Υπάρχουν 4 ων ειδών μονοπάτια: Ι/Ο είσοδο σε έξοδο Ι/FF είσοδο σε FF FF/O FF σε έξοδο FF/FF FF σε FF I Συ υνδυαστικό Κύκλωμα ρητής κατάστασης register FFs) Καταχωρ (state O O MKM - 41 MKM - 42 Ακολουθιακών Κυκλωμάτων (συν.) Καθυστερήσεις: t pd,ff = καθυστέρηση μετάδοσης FF t pd,omp = καθυστέρηση μετάδοσης συνδυαστικού μέρους t s = FF setup time t slack = πιθανόν επιπρόσθετος χρόνος που παρέχεται πέραν της καθυστέρησης ενός μονοπατιού Ι/Ο = t pd,omp Ι/FF = t pd,omp + t s FF/O = t pd,ff + t pd,omp I FF/FF = t pd,ff + t pd,omp + t s MKM - 43 Συνδυαστικό Κύκλωμα Καταχωρητής κατάστα σης (state register FF Fs) O Ακολουθιακών Κυκλωμάτων (συν.) Σκοπός μας είναι να ελαχιστοποιήσουμε την περίοδο του ρολογιού t p (για να μεγιστοποιήσουμε την συχνότητα) t p >= max pd t p = t pmin + t slack max pd =max{ max{t pd,ff + t pd,omp + t s } = t pmin για όλα τα μονοπάτια FF/FF tp tpd,ff tpd,omb ts tslack (a)positive Edge triggered tpd,ff tpd,omb tslack ts tp (b) Negative Pulse/Level triggered MKM - 44 Ανάλυση Ακολουθιακών Κυκλωμάτων 11

12 Υπολογισμός της μέγιστης επιτρεπτής τιμής του t pd,omb Συγκρίνετε την μέγιστη επιτρεπτή καθυστέρηση του συνδυαστικού μέρους για ένα ακολουθιακό κύκλωμα: a) Χρησιμοποιώντας ακμοπυροδοτούμενα FFs b) Χρησιμοποιώντας master-slave slave FFs Παράμετροι: t pd,ff (max) = 1.0 ns t s (max) = 0.3 ns για ακμοπυροδοτούμενα FFs t s = t wh = 1.0 ns για master-slave slave FFs Συχνότητα ρολογιού = 250 MHz Υπολογισμός της μέγιστης επιτρεπτής τιμής του t pd,omb (συν. συν.) Υπολογισμοί: t p = 1/συχνότητα ρολογιού = 4.0 ns Ακμοπυροδότηση: : t pd,omb + 0.3, t pd,omb 2.7 ns Master-slave: slave: t pd,omb + 1.0, t pd,omb 2.0 ns Σύγκριση: Θεωρήστε ότι για μία πύλη, η μέση τιμή του t pd είναι 0.3 ns Ακμοπυροδότηση : Περίπου 9 πύλες στο μέγιστο μονοπάτι Master-slave: slave: Περίπου 6 έως 7 πύλες στο μέγιστο μονοπάτι MKM - 45 MKM - 46 Ανάλυση Ακολουθιακών Κυκλωμάτων 12

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009. ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

Ακολουθιακά Κυκλώματα Flip-Flops

Ακολουθιακά Κυκλώματα Flip-Flops Ακολουθιακά Κυκλώματα Flip-Flops . Συνδυαστικα κυκλωματα Ακολουθιακα κυκλωματα x x 2 x n Συνδυαστικο κυκλωμα z z 2 z m z i =f i (x,x 2,,x n ) i =,2,,m 2. Ακολουθιακα κυκλωματα: x n Συνδυαστικο m z y κυκλωμα

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα 6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα

Διαβάστε περισσότερα

3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων

Διαβάστε περισσότερα

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου

Διαβάστε περισσότερα

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 ) ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου

Διαβάστε περισσότερα

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2 ΚΥΚΛΩΜΑΤΑ VLSI Ακολουθιακή Λογική Κεφάλαιο 7 ο Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταστάθεια 2. Μανδαλωτές 3. Flip Flops Flops 4. Δομές διοχέτευσης 5. Διανομή ρολογιού 6. Συγχρονισμός

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ Σύγχρονο ακολουθιακό κύκλωμα είναι εκείνο του οποίου όλα τα FFs χρονίζονταιμετοίδιο ρολόι (clock). Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαση Σύγχρονων Ακολουθιακών

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 FLIP - FLOP

ΑΣΚΗΣΗ 7 FLIP - FLOP ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

βαθµίδων µε D FLIP-FLOP. Μονάδες 5

βαθµίδων µε D FLIP-FLOP. Μονάδες 5 Κεφάλαιιο: 6 ο Τίίτλος Κεφαλαίίου:: Μανταλωτές & Flip Flop (Ιούνιος 2004 ΤΕΕ Ηµερήσιο) Να σχεδιάσετε καταχωρητή δεξιάς ολίσθησης τεσσάρων βαθµίδων µε D FLIP-FLOP. Μονάδες 5 (Ιούνιος 2005 ΤΕΕ Ηµερήσιο)

Διαβάστε περισσότερα

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21 Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005. Στοιχειώδης Λογικές Συναρτήσεις ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Μαρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 4 -i: Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώµατα Περίληψη Συναρτήσεις και συναρτησιακές (λειτουργικές)

Διαβάστε περισσότερα

Κυκλώματα αποθήκευσης με ρολόι

Κυκλώματα αποθήκευσης με ρολόι Κυκλώματα αποθήκευσης με ρολόι Latches και Flip-Flops Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης 1 Γιατί χρειαζόμαστε τα ρολόγια Συνδιαστική λογική Η έξοδος εξαρτάται μόνο

Διαβάστε περισσότερα

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων Περιγραφή Κυκλωμάτων με χρήση της VHDL Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων Οργάνωση Παρουσίασης Περιγραφή Δομής σε VHDL (Structural Description) Μηχανές Πεπερασμένων Καταστάσεων

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα 1 ΗΜΥ 2: Σχεδιασμός Ψηφιακών Συστημάτων Αυγ-3 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Βασικές Συνδυαστικές Συναρτήσεις και Κυκλώματα Διδάσκουσα: Μαρία Κ Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Ψηφιακά Κυκλώματα (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Ψηφιακά Κυκλώματα (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά Κυκλώματα (2 ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ακολουθιακά κυκλώματα είσοδοι.. ακολουθιακή λογική.. έξοδοι. ανάδραση Η λειτουργία μνήμης στηρίζεται στη ανάδραση (feedback):

Διαβάστε περισσότερα

Pipelining και Παράλληλη Επεξεργασία

Pipelining και Παράλληλη Επεξεργασία Pipelining και Παράλληλη Επεξεργασία Εισαγωγή Σωλήνωση - Pipelining Βασισμένη στην ιδέα σωλήνα που στέλνει νερό χωρίς να περιμένει το νερό που μπαίνει σε ένα σωλήνα να τελειώσει water pipe Μπορεί να οδηγήσει

Διαβάστε περισσότερα

Χρονισμός ψηφιακών κυκλωμάτων

Χρονισμός ψηφιακών κυκλωμάτων Χρονισμός ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Γ. Δημητρακόπουλος HY422 1 Tρόποι χρονισμού Πως μπορούμε να συνδέσουμε τα στοιχεία αποθήκευσης με τη

Διαβάστε περισσότερα

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Εργαστήριο Λογικής Σχεδίασης Ψηφιακών Συστημάτων ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμήμα Πληροφορικής - Πανεπιστήμιο Πειραιώς i ΠΕΡΙΕΧΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

Να οδηγηθούμε σε μια αρχιτεκτονική που έχει μεγάλο αριθμό καταχωρητών και να εφαρμόσουμε τεχνική ελαχιστοποίησης καταχωρητών

Να οδηγηθούμε σε μια αρχιτεκτονική που έχει μεγάλο αριθμό καταχωρητών και να εφαρμόσουμε τεχνική ελαχιστοποίησης καταχωρητών Folding Να καθορίσουμε συστηματικά τα κυκλώματα ελέγχου μιας DSP αρχιτεκτονικής χρησιμοποιώντας folding μετασχηματισμό ώστε να πραγματοποιούμε πολλαπλές αλγοριθμικές πράξεις σε ένα λειτουργικό στοιχείο

Διαβάστε περισσότερα

VERILOG. Γενικά περί γλώσσας

VERILOG. Γενικά περί γλώσσας VERILOG Γενικά περί γλώσσας Χρησιµότητα της Verilog Υψηλού επιπέδου περιγραφή της συµπεριφοράς του συστήµατος µε σκοπό την εξοµοίωση. RTL περιγραφή της λειτουργίας του συστήµατος µε σκοπό τη σύνθεσή του

Διαβάστε περισσότερα

Βιβλιογραϕικές σηµειώσεις 59. Ασκήσεις 19

Βιβλιογραϕικές σηµειώσεις 59. Ασκήσεις 19 ΠΕΡΙΕΧΟΜΕΝΑ Μέρος I Εισαγωγή 1 Η ψηφιακή αφαίρεση 3 1.1 Ψηϕιακά σήµατα 4 1.2 Τα ψηϕιακά σήµατα είναι ανεκτικά στον θόρυβο 5 1.3 Τα ψηϕιακά σήµατα αναπαριστούν σύνθετα δεδοµένα 9 1.3.1 Αναπαράσταση της

Διαβάστε περισσότερα

Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM

Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM 2 Ενότητα ΚΑΤΑΧΩΡΗΤΕΣ ΜΕΤΡΗΤΕΣ ΜΝΗΜΕΣ RAM Γενικές Γραμμές Παράλληλα και Σειριακά Δεδομένα Παράλληλοι λ Καταχωρητές Σήματα Ενεργοποίησης Διαβάσματος & Γραψίματος - Εισόδου & Εξόδου Υπολογισμός Περιόδου

Διαβάστε περισσότερα

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής Κεφάλαιο 4 ο Ο Προσωπικός Υπολογιστής Μάθημα 4.3 Ο Επεξεργαστής - Εισαγωγή - Συχνότητα λειτουργίας - Εύρος διαδρόμου δεδομένων - Εύρος διαδρόμου διευθύνσεων - Εύρος καταχωρητών Όταν ολοκληρώσεις το μάθημα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 14. ΑΠΑΡΙΘΜΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΑΠΑΡΙΘΜΗΤΕΣ ΤΡΟΠΟΣ ΥΛΟΠΟΙΗΣΗΣ KAI ΡΟΗ ΑΠΑΡΙΘΜΗΣΗΣ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ ΥΑ ΙΚΟΥ ΑΠΑΡΙΘΜΗΤΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

Ύλη Λογικού Σχεδιασµού Ι

Ύλη Λογικού Σχεδιασµού Ι 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Μοντέλα Αρχιτεκτονικής στην Σύνθεση

Μοντέλα Αρχιτεκτονικής στην Σύνθεση Μοντέλα Αρχιτεκτονικής στην Σύνθεση Σχεδιαστικά Στυλ & Αρχιτεκτονική Ο σχεδιαστής επιλέγει Σχεδιαστικό στυλ prioritized interrupt instruction buffer bus-oriented datapath serial I/O direct memory access

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ 22 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.

Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1 1-1 Σχηµατισµός Μηνύµατος 1 1-2 Βάση Αρίθµησης 2 1-3 Παράσταση Αριθµών στο εκαδικό Σύστηµα 2 Μετατροπή υαδικού σε εκαδικό 3 Μετατροπή εκαδικού σε υαδικό 4

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 2: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 24 25 Ηµεροµηνία Εξέτασης 29.6.25 Χρόνος Εξέτασης

Διαβάστε περισσότερα

Καταχωρητες (Registers) Μετρητες (Counters)

Καταχωρητες (Registers) Μετρητες (Counters) Καταχωρητες (Registers) Μετρητες (Counters) Καταχωρητής (register) Ομαδα από flip-flops μαζί με συνδυαστικο κυκλωμα για εκτελεση διαφορων λειτουργιων όπως μεταφορα, αποθηκευση και επεξεργασια πληροφοριων.

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

A1.1 Σε κύκλωμα εναλλασσόμενου ρεύματος δίνεται η διανυσματική παράσταση των διανυσμάτων τάσης V 0 και έντασης ρεύματος I 0 που

A1.1 Σε κύκλωμα εναλλασσόμενου ρεύματος δίνεται η διανυσματική παράσταση των διανυσμάτων τάσης V 0 και έντασης ρεύματος I 0 που ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ)

Διαβάστε περισσότερα

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Λογικά Κυκλώµατα Ø Τα λογικά κυκλώµατα διακρίνονται σε συνδυαστικά (combinational) και ακολουθιακά (sequential). Ø Τα συνδυαστικά

Διαβάστε περισσότερα

Ψηφιακά Συστήματα. Σημείωση

Ψηφιακά Συστήματα. Σημείωση Το έργο υλοποιείται στο πλαίσιο του υποέργου 2 με τίτλο «Ανάπτυξη έντυπου εκπαιδευτικού υλικού για τα νέα Προγράμματα Σπουδών» της Πράξης «Ελληνικό Ανοικτό Πανεπιστήμιο» η οποία έχει ενταχθεί στο Επιχειρησιακό

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙ- ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α Α1. Για τις ημιτελείς προτάσεις Α1.1 και Α1. να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY

EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY ΠANEΠIΣTHMIO ΠATPΩN TMHMA MHX H/ Y & ΠΛHPOΦOPIKHΣ TOMEAΣ YΛIKOY KAI APXITEKTONIKHΣ YΠOΛOΓIΣTΩN Εργαστήριο Θεωρίας Κυκλωμάτων, Ηλεκτρονικών & Λογικού Σχεδιασμού EPΓAΣTHPIAKEΣ AΣKHΣEIΣ ΛOΓIKOY ΣXEΔIAΣMOY

Διαβάστε περισσότερα

12. ΚΑΤΑΧΩΡΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

12. ΚΑΤΑΧΩΡΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 12. ΚΑΤΑΧΩΡΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΚΑΤΑΧΩΡΗΤΕΣ Ο ΚΑΤΑΧΩΡΗΤΗΣ ΩΣ ΣΤΟΙΧΕΙΟ ΜΝΗΜΗΣ ΕΙ Η ΚΑΤΑΧΩΡΗΤΩΝ ΣΤΑΤΙΚΟΣ ΚΑΤΑΧΩΡΗΤΗΣ ΚΑΤΑΧΩΡΗΤΗΣ ΟΛΙΣΘΗΣΗΣ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

Εργαστήριο 10: Μηχανές Πεπερασµένων Καταστάσεων (Finite State Machines - FSM)

Εργαστήριο 10: Μηχανές Πεπερασµένων Καταστάσεων (Finite State Machines - FSM) 1 of 6 16/12/2003 9:23 µµ ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2003 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 10: Μηχανές Πεπερασµένων Καταστάσεων (Finite State Machines - FSM) 12-15 Ιανουαρίου

Διαβάστε περισσότερα

Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων

Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Γιώργος Δημητρακόπουλος 1 Αποκωδικοποιητής κώδικα Huffman συμπίεση δεδομένων Ξέρουμε ότι με n bits μπορούμε να κωδικοποιήσουμε 2 n διαφορετικά

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ Η/Υ

ΕΡΓΑΣΤΗΡΙΟ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ Η/Υ ΕΡΓΑΣΤΗΡΙΟ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ Η/Υ 4 ο Εξάμηνο Μαδεμλής Ιωάννης ΛΟΓΙΚΕΣ ΠΡΑΞΕΙΣ Οι λογικές πράξεις που υποστηρίζει η Assembly του 8088 είναι : Πράξη AND Πράξη OR Πράξη NOT Πράξη XOR Με τις λογικές πράξεις μπορούμε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση

Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Παράρτηµα Γ Τα Βασικά της Λογικής Σχεδίασης ιαφάνειες διδασκαλίας του πρωτότυπου βιβλίου µεταφρασµένες στα ελληνικά και εµπλουτισµένες

Διαβάστε περισσότερα

και έντασης ρεύματος I 0 που περιστρέφονται με γωνιακή ταχύτητα ω. Το κύκλωμα περιλαμβάνει: α. μόνο ωμική αντίσταση β. μόνο ιδανικό πηνίο

και έντασης ρεύματος I 0 που περιστρέφονται με γωνιακή ταχύτητα ω. Το κύκλωμα περιλαμβάνει: α. μόνο ωμική αντίσταση β. μόνο ιδανικό πηνίο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

4 η Θεµατική Ενότητα : Καταχωρητές και Μετρητές. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

4 η Θεµατική Ενότητα : Καταχωρητές και Μετρητές. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 4 η Θεµατική Ενότητα : Καταχωρητές και Μετρητές Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Καταχωρητής: οµάδα από δυαδικά κύτταρα αποθήκευσης και λογικές πύλες που αποθηκεύουν και µεταφέρουν πληροφορίες.

Διαβάστε περισσότερα

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Εισαγωγικές έννοιες για σχεδιασμό με τη VHDL

Περιγραφή Κυκλωμάτων με χρήση της VHDL. Εισαγωγικές έννοιες για σχεδιασμό με τη VHDL Περιγραφή Κυκλωμάτων με χρήση της VHDL Εισαγωγικές έννοιες για σχεδιασμό με τη VHDL Οργάνωση Παρουσίασης VHDL εισαγωγικές έννοιες Ροή και επίπεδα σχεδιασμού ψηφιακών κυκλωμάτων Μοντελοποίηση Καθυστερήσεων

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 7: Καταχωρητές ολισθήσεως ως απαριθµητές και γεννήτριες ακολουθιών Διδάσκων: Καθηγητής Ν. Φακωτάκης Καταχωρητής

Διαβάστε περισσότερα

Εργαστηριακές ασκήσεις λογικών κυκλωμάτων 11 A/D-D/A

Εργαστηριακές ασκήσεις λογικών κυκλωμάτων 11 A/D-D/A 11.1 Θεωρητικό μέρος 11 A/D-D/A 11.1.1 Μετατροπέας αναλογικού σε ψηφιακό σήμα (A/D converter) με δυαδικό μετρητή Σχ.1 Μετατροπέας A/D με δυαδικό μετρητή Στο σχήμα 1 απεικονίζεται σε block diagram ένας

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace

Μετασχηματισμοί Laplace Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s

Διαβάστε περισσότερα

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ

Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ Πίνακας Περιεχομένων ΚΕΦΑΛΑΙΟ I ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Παράσταση ενός φυσικού αριθμού 1 1.2 Δεκαδικό σύστημα 1 1.3 Δυαδικό σύστημα 2 1.4 Οκταδικό σύστηνα 2 1.5 Δεκαεξαδικό σύστημα 2 1.6 Μετατροπές από ένα

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

Χρονισμός και Απόδοση Υπολογιστικών Συστημάτων

Χρονισμός και Απόδοση Υπολογιστικών Συστημάτων ΗΥ 232 Οργάνωση και στον Σχεδίαση Η/Y Διάλεξη 7 Χρονισμός και Απόδοση Υπολογιστικών Συστημάτων Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Τι σημαίνει απόδοση; Αεροσκάφος NYC to Paris

Διαβάστε περισσότερα

Εισαγωγή στα Ψηφιακά Συστήματα

Εισαγωγή στα Ψηφιακά Συστήματα Εισαγωγή στα Ψηφιακά Συστήματα Ασημόπουλος Νικόλαος Πατουλίδης Γεώργιος Παλιανόπουλος Ιωάννης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016. Μάθημα Προγραμματισμός Ι.

ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016. Μάθημα Προγραμματισμός Ι. ΥΛΗ ΚΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΓΙΑ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-2016 Μάθημα Προγραμματισμός Ι. 1) Προπαρασκευαστική Εισαγωγή, Εισαγωγή στον προγραμματισμό, (Κεφ, 1.2, 1.3,

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ CAD ΓΙΑ ΥΠΟΛΟΓΙΣΜΟ ΙΣΧΥΟΣ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑΣ ΚΥΚΛΩΜΑΤΩΝ VLSI

ΕΡΓΑΛΕΙΑ CAD ΓΙΑ ΥΠΟΛΟΓΙΣΜΟ ΙΣΧΥΟΣ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑΣ ΚΥΚΛΩΜΑΤΩΝ VLSI ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων ΕΡΓΑΛΕΙΑ CAD ΓΙΑ ΥΠΟΛΟΓΙΣΜΟ ΙΣΧΥΟΣ ΚΑΙ ΑΞΙΟΠΙΣΤΙΑΣ ΚΥΚΛΩΜΑΤΩΝ VLSI ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ ΜΠΟΥΝΤΑΣ ΔΗΜΗΤΡΙΟΣ ΒΟΛΟΣ

Διαβάστε περισσότερα

Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ. ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ d.fotiadis@kastoria.teikoz.gr

Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ. ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ d.fotiadis@kastoria.teikoz.gr Ι ΑΣΚΩΝ ΚΑΘΗΓΗΤΗΣ: ΦΩΤΙΑ ΗΣ Α. ΗΜΗΤΡΗΣ M.Sc. ΚΑΘΗΓΗΤΗΣ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ (Σ.Τ.ΕΦ.) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ d.fotiadis@kastoria.teikoz.gr Ασύγχρονη σειριακή

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν 1. Εισαγωγικά στοιχεία ηλεκτρονικών - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 1. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ηλεκτρικό στοιχείο: Κάθε στοιχείο που προσφέρει, αποθηκεύει και καταναλώνει

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης 5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει

Διαβάστε περισσότερα

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων 1 Επίλυση Συνήθων ιαφορικών Εξισώσεων Εξίσωση πρώτης τάξης µε συνθήκες αρχικών τιµών ΠΡΟΒΛΗΜΑ : Να ευρεθεί συνάρτηση y = y(x) η οποία για x [a, b] ικανοποιεί την εξίσωση y = f(x, y) υπό την αρχική συνθήκη

Διαβάστε περισσότερα

Εξαγωγή Διανυσμάτων Δοκιμής. Δημήτρης Νικολός, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών και Πληροφορικής, Παν. Πατρών

Εξαγωγή Διανυσμάτων Δοκιμής. Δημήτρης Νικολός, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών και Πληροφορικής, Παν. Πατρών Εξαγωγή Διανυσμάτων Δοκιμής Δημήτρης Νικολός, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών και Πληροφορικής, Παν. Πατρών Περίγραμμα ργρ Παρουσίασης Είδη Συνόλων Δοκιμής Ντετερμινιστικά σύνολα δοκιμής Συμβολισμοί

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ

ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕ ΙΑΣΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ ΟΛΟΚΛΗΡΩΣΗΣ (VLSI) ΜΕ ΧΡΗΣΗ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ FPGA ρ. Ε. Βασιλακοπούλου οµήτης Παρουσίασης ιάκριση Κυκλωµάτων.

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 3 Καθηγητής Χ. Χαμζάς Κυκλώματα, Σήματα και Συστήματα.3- ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΕΞΙΣΩΣΕΙΣ Ένα διακριτό discree ή ψηφιακό digial σύστημα είναι μία διαδικασία προσδιορισμού

Διαβάστε περισσότερα

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ Μεταπτυχιακή Εξειδίκευση στα Πληροφοριακά Συστήματα Θεματική Ενότητα ΠΛΣ-5 ΒΑΣΙΚΕΣ ΕΞEΙΔΙΚΕΥΣΕΙΣ ΣΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ - ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΑΛΙΑΣ - Δρ. Λάμπρος Μπισδούνης Σύμβουλος Καθηγητής

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 2. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ...30 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α : ΘΕΜΑΤΑ ΒΑΣΗΣ 1. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ...11 1.1 Τι είναι Πληροφορική;...11 1.1.1 Τι είναι η Πληροφορική;...12 1.1.2 Τι είναι ο Υπολογιστής;...14 1.1.3 Τι είναι το Υλικό και το

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία Τεχνικών Σχολών

Διαβάστε περισσότερα

Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση

Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2011 Τμ. Επ. Υπολογιστών Πανεπιστήμιο Κρήτης Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση 29 Νοεμβρίου - 2 Δεκεμβρίου 2011 Διαλέξεις βδομάδας 8:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011

ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 6/0/0 ΘΕΜΑ 0 Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής - 5, να γράψετε στο

Διαβάστε περισσότερα