Σχήµα Τµηµατικό διάγραµµα διάταξης φλογοφωτοµετρίας και οι διάφοροι τύποι και πηγές θορύβου, που επηρεάζουν το µετρούµενο σήµα.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σχήµα 5.1.1 Τµηµατικό διάγραµµα διάταξης φλογοφωτοµετρίας και οι διάφοροι τύποι και πηγές θορύβου, που επηρεάζουν το µετρούµενο σήµα."

Transcript

1 Ενότητα 5 Σήµατα και Θόρυβος 5.1 ΕΙΣΑΓΩΓΗ Μια από τις πλέον επιθυµητές ιδιότητες ενός οργάνου µετρήσεων µιας φυσικής ή χηµικής ποσότητας, είναι η ικανότητα διάκρισης της πραγµατικής τιµής της ποσότητας µέσα από ανεπιθύµητα σήµατα. Για τους σκοπούς της ενότητας αυτής ακολουθούν οι εξής ορισµοί: Σήµα (signal) είναι ο φορέας στον οποίο κωδικοποιείται η ζητούµενη πληροφορία κατά τη διαδικασία µιας µέτρησης. Θόρυβος (noise) ορίζεται το σύνολο των ανεπιθύµητων πληροφοριών, οι οποίες συνοδεύουν το σήµα και υποβαθµίζουν την ορθότητα και την ακρίβεια µιας µέτρησης. Σε πολλές περιπτώσεις ο θόρυβος έχει καθορισµένη προέλευση και ιδιαίτερα χαρακτηριστικά, η γνώση των οποίων µπορεί να συµβάλλει αποτελεσµατικά στην αντιµετώπισή του. Σχήµα Τµηµατικό διάγραµµα διάταξης φλογοφωτοµετρίας και οι διάφοροι τύποι και πηγές θορύβου, που επηρεάζουν το µετρούµενο σήµα. Οι µεταλλάκτες µετατρέπουν τις διάφορες φυσικές ή χηµικές ποσότητες σε ηλεκτρικά σήµατα (κυρίως τάση ή ρεύµα). Στη συνέχεια η µεταλλαγµένη µορφή του σήµατος υφίσταται τις απαραίτητες ενισχύσεις, τροποποιήσεις και φιλτραρίσµατα µε τα εκάστοτε κατάλληλα ηλεκτρονικά κυκλώµατα. Ο τελικός θόρυβος, που συνοδεύει τη µετρούµενη ποσότητα κατά την εµφάνισή της στον µεταλλάκτη εξόδου (π.χ. στον καταγραφέα), δεν είναι µόνο ο θόρυβος που συνυπάρχει µε τη µετρούµενη ποσότητα και συλλαµ

2 βάνεται παράλληλα µε το σήµα από τον µεταλλάκτη-ανιχνευτή. Θόρυβος καθαρά ηλεκτρικής προέλευσης παράγεται στις επιµέρους µονάδες κάθε µετρητικής διάταξης, που παρεµβάλλονται µεταξύ των µεταλλακτών εισόδου και εξόδου. Ο θόρυβος, που συνυπάρχει µε τη µετρούµενη ποσότητα, γνωστός και ως σήµα υποβάθρου (background signal), εξαρτάται από τα χαρακτηριστικά ποιότητας του µεταλλάκτη εισόδου και δεν µπορεί να αντιµετωπισθεί στα επόµενα στάδια, εκτός εάν έχει διαφορετικά χρονοχαρακτηριστικά από εκείνα του κυρίως σήµατος. Στο Σχήµα δείχνεται παραστατικά µια διάταξη φλογοφασµατογραφίας και κατονοµάζονται διάφοροι τύποι θορύβου, που παράγονται στις επιµέρους µονάδες και η σύνθεση των οποίων αποτελεί τον ολικό θόρυβο του σήµατος. 5. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΦΑΣΜΑΤΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΑΤΩΝ Πληρέστερη πληροφόρηση ως προς τα χρονοχαρακτηριστικά ενός σήµατος παρέχεται από το φάσµα συχνοτήτων (frequency spectrum) του. Από τα φάσµατα τόσο του σήµατος, όσο και του θορύβου, είναι δυνατόν να εξαχθούν χρήσιµα συµπεράσµατα, όπως τα ακόλουθα: 1. Σε ποια περιοχή συχνοτήτων βρίσκονται οι ηµιτονικές συνιστώσες που συνθέτουν το σήµα στο σύνολο ή κατά το µεγαλύτερο µέρος του.. Το ίδιο όσον αφορά τις ηµιτονικές συνιστώσες του θορύβου. 3. Ο τύπος και η προέλευση του θορύβου. 4. Οι περιοχές συχνοτήτων οι οποίες µπορούν να αποκοπούν, ώστε να περιορισθεί η παρουσία του θορύβου στο ελάχιστο δυνατό επίπεδο, χωρίς να υποστεί σηµαντική αλλοίωση η επιθυµητή πληροφορία του σήµατος. 5. Σε περίπτωση δειγµατοληψίας και όχι συνεχούς καταγραφής του ολικού σήµατος, η ελάχιστη δυνατή συχνότητα δειγµατοληψίας που δεν εισάγει παράσιτες συνιστώσες σύµφωνα µε το θεώρηµα Nyquist (σελ. 199) Μετασχηµατισµός Fourier Κάθε φυσική διαδικασία µπορεί να περιγραφεί είτε στην περιοχή του χρόνου (time domain), είτε στην περιοχή των συχνοτήτων (frequency domain). Σύµφωνα µε το θεώρηµα του Fourier κάθε συνάρτηση χρόνου h(t) µπορεί να µετασχηµατισθεί σε συνάρτηση συχνότητας H(f) και αντιστρόφως. Οι µετασχηµατισµοί πραγµατοποιούνται µε βάση τις ακόλουθες εξισώσεις. (1) + H(f) = h(t) [cos(πft) j sin(πft)] dt (5..1) + h(t) = H(f) [cos(πft) + j sin(πft)] df (5..) Οι Εξισώσεις 5..1 και 5.. αποδίδουν αντιστοίχως τον ορθό και τον αντίστροφο µετασχηµατισµό Fourier (forward και reverse Fourier transform) και οι αντίστοιχες συµβολικές παραστάσεις τους είναι: H(f) = F{h(t)} και h(t) = F 1 {H(f)}. (1) Η εισαγωγή της φανταστικής µονάδας j = 1 ) εξυπηρετεί στην έκφραση διαφοράς φάσης µεταξύ των ηµιτονικών (ή συνηµιτονικών) συστατικών των σηµάτων

3 Με βάση το θεώρηµα του Fourier και ανάλυση των προηγούµενων σχέσεων, κάθε σήµα είναι δυνατόν να αποδοθεί από πεπερασµένο ή άπειρο αριθµό ηµιτονικών όρων. ιακρίνονται δύο κατηγορίες σηµάτων: Η πρώτη περιλαµβάνει σήµατα περιοδικά και άπειρης διάρκειας και η δεύτερη σήµατα περιοδικά πεπερασµένης διάρκειας ή γενικά σήµατα µη περιοδικά. Μη ηµιτονικά σήµατα που υπάγονται στην πρώτη κατηγορία αναλύονται σε αθροίσµατα πεπερασµένων ή άπειρων όρων διακριτών ηµιτονικών όρων, γνωστά ως σειρές (ή αναπτύγµατα) Fourier. Οι σειρές Fourier αποδίδονται από τη γενική εξίσωση n= 1 A 0 h(t) = + A n cos( π n f t) + Bm sin( π m f t) (5..3) Ο όρος Α 0 / αντιπροσωπεύει τη συνεχή συνιστώσα (DC component) του σήµατος και οι συντελεστές Α 1, A,... Α n, Β 1, Β,... Β m, αποτελούν τα πλάτη των ηµιτονικών όρων. () Η συχνότητα f (n = m = 1) ονοµάζεται θεµελιώδης (foundamental), ενώ οι συχνότητες f, 3f,... (n, m>1) ονοµάζονται αρµονικές (harmonics). Παραδείγµατα σειρών Fourier τυπικών περιοδικών σηµάτων (κυµατοµορφών) δείχνονται στο Σχήµα Έτσι π.χ., από τη µορφή της αντίστοιχης σειράς φαίνεται ότι τετραγωνικό σήµα συχνότητας f αποτελείται από ηµιτονικό σήµα θεµελιώδους συχνότητας f και αρµονικές (µε συνεχώς µειούµενο πλάτος) µε συχνότητες 3f, 5f κ.λπ. Αξίζει να παρατηρηθεί ότι σε αντίθεση µε το τριγωνικό σήµα (µε µέση τιµή π/), το τετραγωνικό και το πριονωτό σήµα στερούνται συνεχούς συνιστώσας, λόγω συµµετρίας της κυµατοµορφής τους ως προς τον άξονα του χρόνου (µέση τιµή 0). m= 1 Σχήµα 5..1 Τυπικά παραδείγµατα περιοδικών σηµάτων και οι αντίστοιχες σειρές Fourier. () Έπειδή είναι: cos(x) = sin(π/ + x), οι συνηµιτονικοί όροι θεωρούνται ηµιτονικοί όροι µετατοπισµένοι σε φάση κατά π/ ακτίνια (ή 90 )

4 Σήµατα, που υπάγονται στην πολύ γενικότερη δεύτερη κατηγορία (µη περιοδικά) και αποτελούν την πραγµατική περίπτωση, αναλύονται σε άπειρους ηµιτονικούς όρους µη διακριτών συχνοτήτων (συνεχό- µενων τιµών). Εάν η µορφή της συνάρτησης h(t) είναι γνωστή, η ανάλυση γίνεται άµεσα µε το ολοκλήρωµα Fourier (Εξίσωση 5..1). (3) 5.. Φάσµατα πλάτους και ισχύος Το φάσµα πυκνότητας πλάτους (amplitude density spectrum), ή απλά φάσµα πλάτους, αντιπροσωπεύει τη γραφική παράσταση της πυκνότητας πλάτους (π.χ. σε µονάδες Volt/Hz) ως προς τη συχνότητα (σε µονάδες Hz). Τυπικά παραδείγµατα ζευγών συναρτήσεων h(t) και H(f) σηµάτων που ανήκουν και στις δύο κατηγορίες δείχνονται στο Σχήµα 5... Χαρακτηριστική είναι η διαφορά των φασµάτων των σηµάτων της πρώτης κατηγορίας, όπου οι επιµέρους συνιστώσες συχνότητες διακρίνονται µεταξύ τους (γραµµωτά φάσµατα), ενώ τα φάσµατα των σηµάτων της δεύτερης (γενικότερης) κατηγορίας δεν περιέχουν διακριτές συχνότητες, αλλά ζώνες συχνοτήτων (ταινιωτά φάσµατα). Τα ζεύγη συναρτήσεων 1, και 3 αποτελούν περιπτώσεις καθαρού ηµιτονικού σήµατος και σύνθεσης δύο ηµιτονικών σηµάτων µε απέχουσες και παραπλήσιες συχνότητες. Τα ζεύγη συναρτήσεων 4, 5 και 6 αφορούν σε µη ηµιτονικά περιοδικά σήµατα του Σχήµατος 5..1 και τα φάσµατά τους περιέχουν απειρία γραµµών σε αντίθεση µε τα προηγούµενα. Είναι χαρακτηριστική η παρουσία της συνεχούς συνιστώσας (f = 0) στην περίπτωση του τριγωνικού σήµατος και η παρουσία θετικών και αρνητικών τιµών H(f). Η διεύρυνση των φασµατικών γραµµών και η εµφάνιση δορυφορικών λοβών εναλλασσόµενου προσή- µου, είναι χαρακτηριστική στα φάσµατα ηµιτονικών σηµάτων πεπερασµένης διάρκειας (ζεύγη 7 και 8). Εάν το σήµα είναι ένας παλµός απειροστά µικρής διάρκειας (ζεύγος 9), τότε το αντίστοιχο φάσµα είναι λευκό (white spectrum). Εποµένως, για να διέλθει ένα τέτοιο σήµα µέσω µιας µονάδας χωρίς καµιά παραµόρφωση, η µονάδα θα έπρεπε να διαθέτει άπειρο εύρος ζώνης διέλευσης συχνοτήτων. Όσο ο παλµός διευρύνεται χρονικά (ζεύγη 10 και 11), τόσο το περιεχόµενό του σε υψηλές συχνότητες µειώνεται και το φάσµα συχνοτήτων τείνει να συρρικνωθεί προς την περιοχή της µηδενικής συχνότητας, αφού το σήµα τείνει να γίνει συνεχές. Αποδεικνύεται ότι το φασµατικό εύρος f που καταλαµβάνουν οι συνιστώσες ενός παλµικού σήµατος είναι αντιστρόφως ανάλογο της χρονικής διάρκειας του παλµού. (3) Τα πραγµατικά σήµατα δεν έχουν καθορισµένη µαθηµατική έκφραση. Πραγµατοποιείται δειγµατοληψία Ν τιµών του σήµατος (χρονικώς ισοαπέχουσες, t = t n+1 t n, = σταθερά) (h(t 0 ), h(t 1 ), h(t N 1 )) και εισάγονται σε ψηφιακούς υπολογιστές, όπου ο µετασχηµατισµός εκτελείται µε βάση όχι το ολοκλήρωµα Fourier, αλλά την αριθ- µητική του έκφραση, που συνιστά τον διακριτό µετασχηµατισµό Fourier (discrete Fourier transform) H(f k ) N = 1 i= 0 [ cos( πf t ) jsin( πf t )] h(t ) + i Ο υπολογισµός των διάκριτων τιµών H(f k ), που απαρτίζουν το φάσµα συχνοτήτων του σήµατος απαιτεί µεγάλο αριθµό µαθηµατικών πράξεων, ο οποίος αυξάνει εκθετικά, όσο αυξάνει ο αριθµός Ν. Ο υπολογισµός αυτός πραγ- µατοποιείται αποκλειστικά µε υπολογιστές και µε τη βοήθεια του αλγορίθµου (ή µιας από τις πολλές ποικιλίες του) των Cooley-Tukey, που είναι γνωστός ως ταχύς µετασχηµατισµός Fourier (Fast Fourier Transform, FFT), επειδή ελαχιστοποιεί τον αριθµό των απαιτούµενων πράξεων. Ο FFT χρησιµοποιείται ευρύτατα στις φυσικές επιστήµες και στη σύγχρονη τεχνολογία. Ο τρόπος υπολογισµού των σειρών, των ολοκληρωµάτων, όπως επίσης η περιγραφή των ιδιοτήτων και οι γενικότερες και εξαιρετικά ενδιαφέρουσες εφαρµογές των µετασχηµατισµών Fourier στην επίλυση µαθηµατικών και φυσικών προβληµάτων, ξεφεύγει από τους σκοπούς του βιβλίου αυτού και θα πρέπει να αναζητηθεί σε ειδική βιβλιογραφία. k i -17- k i t

5 Σχήµα 5.. Τυπικά παραδείγµατα µετασχηµατισµού Fourier (FT) σηµάτων διαφόρων µορφών. Ενδιαφέρον παρουσιάζει η περίπτωση ηµιτονικού σήµατος που αποσβένυται εκθετικά (ζεύγος 1). Το φάσµα συχνοτήτων του σήµατος αυτού αποδίδεται από µια κορυφή Lorentz. Οι κορυφές Lorentz και οι παρόµοιες µε αυτές κορυφές Gauss, αποτελούν (κατά προσέγγιση) τα στοιχειώδη συστατικά κάθε ηλεκτρονιακού ή µοριακού φάσµατος. Το φάσµα πυκνότητας ισχύος (power density spectrum), ή απλά φάσµα ισχύος, είναι η γραφική παράσταση της πυκνότητας ισχύος (π.χ. σε µονάδες Watt/Hz) ως προς τη συχνότητα (σε µονάδες Hz) και αποδίδει τη διασπορά της ενέργειας ενός σήµατος σε διάφορες συχνότητας Eπειδή η ισχύς είναι ανάλογη του τετραγώνου του πλάτους του σήµατος, τα φάσµατα ισχύος δεν περιέχουν αρνητικές κορυφές, όπως τα φάσµατα πλάτους (4) και στην ουσία αποτελούν τη γραφική παράσταση [H(f)] -f. Από το φάσµα συχνοτήτων κάθε σήµατος εντοπίζονται η περιοχή ή οι περιοχές συχνοτήτων που φέρουν το µεγαλύτερο ποσοστό πληροφοριών. Η σταδιακή σύνθεση των περιοδικών σηµάτων του Σχήµατος 5..1 δείχνεται στο Σχήµα 5..3., όπου παρουσιάζονται οι γραφικές παραστάσεις των αντίστοιχων κολοβωµένων σειρών Fourier µε Ν (N = 1,, 3, 5 και 8) ηµιτονικούς όρους. Είναι χαρακτηριστικό το ότι η σχεδόν πλήρης ανασύνθεση του τριγωνικού σήµατος πραγµατοποιείται µε πολύ λιγότερους ηµιτονικούς όρους, απ' ό,τι συµβαίνει µε το τετραγωνικό και το πριονωτό σήµα. Η διαφορά αυτή µπορεί να ερµηνευθεί µε προσεκτική παρατήρηση των αντίστοιχων φασµάτων συχνοτή- (4) Στα φάσµατα πλάτους οι µονάδες στον άξονα των τεταγµένων (π.χ. Volt/Hz) δεν έχουν καµιά φυσική σηµασία. Αντίθετα, στα φάσµατα ισχύος οι µονάδες, όπως Watt/Hz, έχουν σηµασία, αφού από το φάσµα µπορεί να εκτιµηθεί το ποσοστό της ισχύος ενός σήµατος, που περιέχεται σε µια περιοχή συχνοτήτων

6 των (Σχήµα 5..). Οι υψηλές αρµονικές του τετραγωνικού και του πριονωτού σήµατος αποτελούν σηµαντικό ποσοστό του φάσµατος συχνοτήτων, σε αντίθεση µε το τριγωνικό, όπου οι υψηλές αρµονικές είναι ουσιαστικά ανύπαρκτες, έχοντας πολύ µικρό πλάτος. Η περιεκτικότητα του τετραγωνικού και του πριονωτού σήµατος σε υψηλές αρµονικές, οφείλεται στις απότοµες µεταπτώσεις τους (κάθετες πλευρές). Χαρακτηριστικό αποτέλεσµα της αποκοπής των υψηλών συχνοτήτων (ή ισοδύναµα της µη συµµετοχής τους στην ανασύνθεση) είναι ο κωδωνισµός (ringing), που παρατηρείται στα σηµεία απότοµων µεταπτώσεων. Σχήµα 5..3 Σταδιακή ανασύνθεση των κυµατοµορφών του Σχήµατος 5..1 µε χρησιµοποίηση 1,, 3, 5 και 8 ηµιτονικών όρων των αντίστοιχων σειρών Fourier. 5.3 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΤΡΑ ΘΟΡΥΒΟΥ Έστω ότι το θορυβώδες σήµα S(t) έχει µέση τιµή S και εµφανίζει στιγµιαίες τιµές S i (i = 1,,.., n). Απόλυτο µέτρο του θορύβου του σήµατος S(t) είναι η µέση τιµή τετραγώνων θορύβου (mean square noise), N RMS, που παρέχεται από την εξίσωση N RMS n (S S i ) = i = 1 (5.3.1) n και αποτελεί τη διακύµανση ή µεταβλητότητα (variance, σ ) του πληθυσµού των στιγµιαίων τιµών. Η τετραγωνική ρίζα της διακύµανσης, ονοµάζεται ενεργή τιµή ή τιµή RMS (root mean square, σελ. 35) του θορύβου, N RMS και ισούται µε την τυπική απόκλιση (standard deviation, σ) του πληθυσµού των στιγµιαίων τιµών του θορυβώδους σήµατος. Θα πρέπει να σηµειωθεί ότι θόρυβος και σφάλµα είναι έννοιες ουσιαστικά ταυτόσηµες. Στο Σχήµα δείχνεται παραστατικά η µορφή του σήµατος S(t). Τα δείγµατα τιµών που λαµβάνονται σε τακτά χρονικά διαστήµατα συνιστούν ένα πληθυσµό µε κανονική (ή κατά Gauss) κατανοµή (normal ή Gaussian distribution). Αυτός ο τύπος θορύβου χαρακτηρίζεται ως κανονικός θόρυβος (normal noise) και η µέση τιµή του είναι πάντοτε ίση µε το µηδέν. Τύποι θορύβου µε διαφορετικές κατανοµές είναι ασυνήθιστοι, όχι όµως και απίθανοι

7 Σχήµα Σήµα επιβαρυµένο µε κανονικό θόρυβο. Για σχεδιαστική απλούστευση και ανάδειξη της κανονικής κατανοµής των δειγµάτων τιµών (κύκλοι), αυτές δείχνονται σαν να καταλαµβάνουν καθορισµένα µόνο (κβαντισµένα) επίπεδα τιµών. Σύνθεση θορύβων διαφόρων προελεύσεων. Εάν το σήµα επιβαρύνεται µε θορύβους διαφόρων προελεύσεων (1,,... n), το αποτέλεσµα είναι ισοδύναµο µε το να υπήρχε θόρυβος µιας και µόνης προέλευσης, αλλά µε µέση τιµή τετραγώνων θορύβου ίση προς το άθροισµα των µέσων τιµών τετραγώνων θορύβου των επιµέρους θορύβων, είναι δηλαδή (N RMS ) ολ = (NRMS) 1 + (NRMS) (NRMS) n (5.3.) Η Eξίσωση 5.3. είναι αποτέλεσµα του στατιστικού χαρακτήρα του θορύβου και παρουσιάζει αναλογία µε την ολική διακύµανση αθροίσµατος ποσοτήτων κάθε µία των οποίων χαρακτηρίζεται από µία επι- µέρους διακύµανση. Από τη στατιστική και ειδικότερα από τη θεωρία διάδοσης τυχαίου σφάλµατος είναι γνωστό ότι εάν οι ποσότητες Α, Β,... χαρακτηρίζονται από τυπικές αποκλίσεις σ Α, σ Β,..., τότε εάν Χ = Α + Β +..., ισχύει ότι σ X = σ A + σ B +... (αθροιστικότητα των διακυµάνσεων). Λόγος S/N. Τα απόλυτα µέτρα θορύβου έχουν ελάχιστη σηµασία σε ένα όργανο, όπου ο θόρυβος µαζί µε το σήµα διέρχονται από τη µια µονάδα στην άλλη και υφίστανται ενισχύσεις, µειώσεις ή άλλες διεργασίες. Το ενδιαφέρον εστιάζεται κυρίως στη σχετική µεταβολή των τιµών των σηµάτων αυτών. Ορίζεται ως λόγος σήµατος-προς-θόρυβο (ή λόγος S/N) (Signal-to-Noise Ratio, S/N ratio, SNR) η σχέση λόγος S/N = S / N (5.3.3) Ο λόγος S/N εκφράζεται κυρίως ως λόγος ισχύων σε µονάδες decibel (db) σύµφωνα µε την εξίσωση RMS S/N (db ισχύος) = 10 log(p ΣΗΜΑΤΟΣ /P RMS,ΘΟΡΥΒΟΥ ) (5.3.4) και σπανιότερα ως λόγος τάσεων και ρευµάτων ανάλογα µε τη φύση των ηλεκτρικών σηµάτων S/N (db τάσης) = 0 log(v ΣΗΜΑΤΟΣ /V RMS,ΘΟΡΥΒΟΥ ) (5.3.5) S/N (db ρεύµατος) = 0 log(ι ΣΗΜΑΤΟΣ /Ι RMS,ΘΟΡΥΒΟΥ ) (5.3.6) -175-

8 Εικόνα θορύβου. Ένα χρήσιµο µέτρο µε το οποίο µπορεί να κριθεί το κατά πόσο µια µονάδα ενός οργάνου προσθέτει ή αποκόπτει θόρυβο από το σήµα είναι η εικόνα θορύβου (noise figure, NF), που παρέχεται από τη σχέση (S/N) i NF = (5.3.7) (S/N) o όπου (S/N) i είναι ο λόγος S/N του σήµατος εισόδου και (S/N) o, ο λόγος S/N του σήµατος εξόδου της µονάδας. Είναι προφανές ότι εάν είναι NF = 1 η µονάδα δεν επιβαρύνει το σήµα µε θόρυβο (ιδανική µονάδα), ενώ εάν είναι NF>1 η µονάδα επιβαρύνει το σήµα εξόδου µε θόρυβο. Η εικόνα θορύβου συνήθως εκφράζεται σε decibel, σύµφωνα µε τη σχέση NF (σε db) (S/N) i = 0 log (5.3.8) (S/N) o Σχήµα 5.3. ιάδοση σήµατος και θορύβου µέσω µονάδων, που απαρτίζουν µια διάταξη ενός διαύλου. Συµβολή θορύβων σε διάταξη σειράς µονάδων. Σε κάθε όργανο, από τον µεταλλάκτη εισόδου (ανιχνευτή) µέχρι τη µονάδα εξόδου, µεσολαβούν διάφορες µονάδες όπως διαγραµµατικά δείχνεται στο Σχήµα Εάν κάθε µονάδα χαρακτηρίζεται από εικόνα θορύβου (NF) i, και απολαβή Α i, τότε η εικόνα θορύβου της όλης διάταξης (θεωρούµενη πλέον ως µια ενιαία µονάδα) παρέχεται από τη σχέση NF = (NF) 1 + (NF) A (NF) A A 1 (NF) n 1 A A...A 1 n 1 (5.3.9) Παράδειγµα 5-1. Η είσοδος µετατροπέα I/V (σελ. 78) συνδέεται µε την άνοδο φωτολυχνίας, η οποία στις τρέχουσες συνθήκες λειτουργίας εµφανίζει θερµικό θόρυβο (σελ. 178) και θόρυβο βολής (σελ. 179) µε ενεργές τιµές 0 και 1 pa, αντιστοίχως. Στην είσοδο του µετατροπέα εισάγεται φωτόρευµα 5 na και στην έξοδο του εµφανίζεται µέση τάση 0,40 V µε ενεργή (RMS) τιµή θορύβου,0 mv. Να εκτι- µηθεί η εικόνα θορύβου του µετατροπέα I/V. Λύση. Η ενεργή τιµή του θορύβου στην έξοδο της φωτολυχνίας υπολογίζεται από την Εξίσωση 5.3. i RMS = = 3,3 pa ο λόγος S/N των σηµάτων εισόδου και εξόδου είναι αντιστοίχως: -176-

9 (S/N) i = i / i RMS = ( A) / (3, A) = 1073 (S/N) o = v / v RMS = (0,40 V) / (0,00 V) = 10 Με αντικατάσταση των τιµών S/N των σηµάτων εισόδου και εξόδου στην Eξίσωση υπολογίζεται η εικόνα θορύβου του µετατροπέα I/V NF = 1073 / 10 = 8,9 ή 0 log(8,9) = 19,0 db. Παράδειγµα 5-. Ένα όργανο αποτελείται από τρεις βασικές µονάδες: 1 (µεταλλάκτης), (ενισχυτής), 3 (όργανο εξόδου). Οι αντίστοιχες εικόνες θορύβου και απολαβές είναι (NF) 1 = 1,8, (NF) = 3, (NF) 3 = 5 και Α 1 = 50, Α = 0, Α 3 = 10. Ποια είναι η εικόνα θορύβου του οργάνου, εάν τούτο θεωρηθεί ως µια ενιαία µονάδα; Λύση. Σύµφωνα µε την Εξίσωση θα είναι NF = 1,8 + (3 1) / 50 + (5 1) / (50 0) = 1,844. Παρατήρηση. Η συνεισφορά θορύβου κάθε µονάδας ελαττώνεται ταχύτατα, όσο αυτή απέχει περισσότερο από τον µεταλλάκτη/ανιχνευτή. Το γεγονός αυτό οδηγεί στο ακόλουθο πρακτικό συµπέρασµα: Η προσπάθεια για τη µείωση του θορύβου στις µετρήσεις µε ένα όργανο, πρέπει να επικεντρώνεται κυρίως στον ίδιο τον ανιχνευτή και στο πρώτο στάδιο ενίσχυσης. Επειδή µια από τις κυριότερες πηγές θορύβου της πρώτης µονάδας είναι τα ίδια τα καλώδια σύνδεσης µεταλλάκτη/ανιχνευτή µε τον πρώτο ενισχυτή, όποτε είναι δυνατόν ο πρώτος ενισχυτής (προενισχυτής) καλωδιώνεται απ'ευθείας στον µεταλλάκτη. 5.4 ΚΥΡΙΟΤΕΡΟΙ ΤΥΠΟΙ ΗΛΕΚΤΡΙΚΩΝ ΘΟΡΥΒΩΝ Εφόσον σε όλα τα όργανα µετρήσεων, από το µεταλλάκτη εισόδου µέχρι τα όργανα παρουσίασης, µεσολαβούν ηλεκτρικά κυκλώµατα, πρέπει να δοθεί ιδιαίτερη έµφαση στους διάφορους τύπους ηλεκτρικών θορύβων. Υπάρχουν δύο βασικές κατηγορίες θορύβου: (α) Ο θεµελιώδης θόρυβος (fundamental noise), ο οποίος είναι κατά κανόνα ενδογενούς προέλευσης για κάθε µονάδα και χαρακτηρίζεται από λευκό φάσµα συχνοτήτων, δηλαδή όλες οι συχνότητες συµµετέχουν στον ίδιο βαθµό. Οφείλεται στην τυχαία κίνηση φορέων ηλεκτρικού φορτίου και κύριοι εκπρόσωποι του είναι ο θερµικός θόρυβος και ο θόρυβος βολής. (β) Ο µη θεµελιώδης θόρυβος (ή θόρυβος περίσσειας) (non-fundamental ή excess noise), ο οποίος χαρακτηρίζεται από έγχρωµο φάσµα συχνοτήτων, δηλαδή µπορεί κάποιες συχνότητες να εµφανίζονται εντονότερα. Ο θόρυβος περιβάλλοντος είναι ο κυριότερος τύπος µη θεµελιώδους θορύβου Θόρυβος περιβάλλοντος Ο θόρυβος περιβάλλοντος (environmental noise) ή θόρυβος παρεµβολής (interference noise) αποτελεί τυπική περίπτωση εξωγενούς, µη θεµελιώδους θορύβου και κατά κανόνα ανθρωπογενούς προέλευσης. Είναι γνωστό ότι η επιτάχυνση φορέων ηλεκτρικού φορτίου (π.χ. ηλεκτρονίων) έχει ως αποτέλεσµα την εκποµπή ηλεκτροµαγνητικής ακτινοβολίας. Έτσι, π.χ., στις γραµµές ηλεκτρικής τροφοδοσίας, που περιβάλλουν κάθε χώρο διαβίωσης και εργασίας, ηλεκτρικά φορτία υπόκεινται σε αρµονικές ταλαντώσεις -177-

10 50 Hz (συχνότητα του ηλεκτρικού δικτύου). Οι γραµµές αυτές δρουν ως κεραίες εκποµπής ηλεκτρο- µαγνητικής ακτινοβολίας 50 Hz. Η ακτινοβολία αυτή συλλαµβάνεται επαγωγικά από κάθε αθωράκιστο αγωγό, ο οποίος δρα ως κεραία λήψης. Ο θόρυβος των 50 Hz συνοδεύεται και από τις αρµονικές συχνότητες 100, 150, 00 Hz κ.ο.κ. µε συνεχώς µειούµενο πλάτος. Ηλεκτρικές εκκενώσεις (π.χ. ατµοσφαιρικά φαινόµενα, σπινθηριστές µηχανών εσωτερικής καύσης) προκαλούν την εµφάνιση παροδικού θορύβου σε ευρύτατο πλάτος του ηλεκτροµαγνητικού φάσµατος (βλέπε Σχήµα 5.., ζεύγος συναρτήσεων 9). Σε υψηλότερες συχνότητες του ηλεκτροµαγνητικού φάσµατος, εµφανίζονται θόρυβοι στην περιοχή ραδιοφωνικών συχνοτήτων και των µικροκυµάτων, που οφείλονται σε ποµπούς ραδιοφωνίας και τηλεόρασης, σε συσκευές διαθερµίας και µικροκυµάτων, στην κινητή τηλεφωνία, ραντάρ κ.λπ. Οι θόρυβοι περιβάλλοντος, που εµφανίζονται σε περιοχές συχνοτήτων µεγαλύτερες από 100 khz, δεν αποτελούν ιδιαίτερο πρόβληµα στη χηµική οργανολογία, δεδοµένου του γεγονότος ότι δεν αντιµετωπίζεται η µέτρηση ποσοτήτων µε συνιστώσες συχνοτήτων στην περιοχή αυτή µε εξαίρεση τις φασµατοσκοπίες NMR και ESR. Οι θόρυβοι περιβάλλοντος αντιµετωπίζονται µε διάφορες τεχνικές υλισµικού, (hardware) (σελ. 183), όπως µε σχολαστική θωράκιση των ευαίσθητων µονάδων, χρησιµοποίηση φίλτρων αποκοπής ζώνης συχνοτήτων ή µε µεταφορά της πληροφορίας σε σχετικά ήσυχες περιοχές συχνοτήτων Θερµικός θόρυβος Η θερµική κίνηση φορέων ηλεκτρικού φορτίου είναι η αιτία του θερµικού θορύβου (thermal noise), που συναντάται σε κάθε ηλεκτρονικό κύκλωµα. Ο θόρυβος αυτός είναι γνωστός και ως θόρυβος Johnson και θόρυβος Nyquist προς τιµή εκείνου που ανακάλυψε το φαινόµενο αυτό και εκείνου, που έδειξε ότι ο θόρυβος αυτός είναι αποτέλεσµα του δεύτερου νόµου της θερµοδυναµικής, αντιστοίχως. Ο θερµικός θόρυβος υπάρχει πάντοτε στα άκρα µιας αντίστασης, ανεξάρτητα του εάν η ίδια διαρρέεται ή όχι από ηλεκτρικό ρεύµα. Η φύση του θερµικού θορύβου είναι καθαρά τυχαία, όπως ακριβώς η κατεύθυνση και η απόσταση, που µπορούν να κινηθούν τα ηλεκτρικά φορτία, απουσία ηλεκτρικού πεδίου. ηλαδή, δεν υπάρχει συγκεκριµένη προτίµηση για µια πολικότητα, ένα πλάτος ή µια συχνότητα. Για τους λόγους αυτούς ο θερµικός θόρυβος είναι τυπικό παράδειγµα θεµελιώδους (λευκού), κανονικού θορύβου. Η ενεργή (RMS) τιµή της τάσης, η οποία αναπτύσσεται στα άκρα µιας αντίστασης λόγω θερµικού θορύβου, παρέχεται από την εξίσωση Nyquist VΘΕΡΜ, RMS = 4k TR f (5.4.1) όπου k η σταθερά Boltzman (1, J K 1 ), Τ η απόλυτη θερµοκρασία της αντίστασης, R η τιµή της αντίστασης και f το εύρος της ζώνης συχνοτήτων (frequency bandwidth), που λαµβάνονται υπόψη για τον υπολογισµό της RMS τιµής τάσης του θερµικού θορύβου. Αξιοσηµείωτο είναι το ότι η ισχύς του θερµικού θορύβου δεν εξαρτάται από την τιµή της αντίστασης : P ΘΕΡΜ = (V ΘΕΡΜ,RMS ) / R = 4k T f (5.4.) Ο θερµικός θόρυβος αντιµετωπίζεται µε µείωση του εύρους συχνοτήτων των µονάδων, αποφυγή χρήσης µεγάλων τιµών αντιστάσεων (σελ. 71) και σε ορισµένες περιπτώσεις µε κατάψυξη κρίσιµων τµηµάτων των κυκλωµάτων

11 Παράδειγµα 5-3. Ποια είναι η RMS τιµή του θερµικού θορύβου, εκπεφρασµένη σε πεχαµετρικές µονάδες, που συνοδεύει τις µετρήσεις ph στους 5 C, εάν το ηλεκτρόδιο ύαλου έχει εσωτερική αντίσταση 1000 ΜΩ και το εύρος ζώνης συχνοτήτων των υπόλοιπων σταδίων ενίσχυσης είναι: (α) 100 khz (τυπικό για κυκλώµατα µε τελεστικούς ενισχυτές σε ζεύξη DC) και (β) 500 Hz (τυπικό για κυκλώµατα συντονισµένων ενισχυτών, σελ. 190). Λύοη. (α) v ΘΕΡΜ, RMS = 4 (1,38 10 J K )(98K)(10 Ω)(10 s ) = 0,0018 V Από την εξίσωση Nernst υπολογίζεται ότι στους 5 C µια πεχαµετρική µονάδα αντιστοιχεί σε 0,05916 V (βλέπε και σελ. 87), εποµένως η RMS τιµή του θορύβου εκπεφρασµένη σε µονάδες ph είναι (0,0018 V) / (0,05916 V/µονάδα ph) = 0,0 µονάδες ph (β) Στην περίπτωση του ηλεκτροµέτρου µε ενισχυτή περιορισµένου εύρους διέλευσης ζώνης συχνοτήτων, µε ανάλογο τρόπο υπολογίζεται ότι είναι V ΘΕΡΜ,RMS = 0, V, που αντιστοιχεί µόλις σε 0,0015 µονάδες ph. Παρατήρηση. Από το παράδειγµα γίνεται σαφές ότι το εύρος συχνοτήτων, στο οποίο αποκρίνεται µια µονάδα (βλέπε σελ. 5, 66), πρέπει να περιορίζεται στο ελάχιστο απαραίτητο, ώστε να ελαχιστοποιείται η συνεισφορά του θερµικού θορύβου στη διακύµανση του µετρούµενου σήµατος Θόρυβος βολής Ο θόρυβος βολής (shot noise) περιγράφηκε από τον Schottky και είναι θεµελιώδης θόρυβος, που εµφανίζεται, όποτε φορτισµένα σωµατίδια διέρχονται µέσω επαφών pn (σε διόδους και τρανζίστορ) ή καταφθάνουν σε επιφάνειες ηλεκτροδίων (π.χ. ηλεκτρόνια στις ανόδους λυχνιών κενού, φωτολυχνιών και φωτοπολλαπλασιαστών). Στατιστικά οι αφίξεις των ηλεκτρονίων, ως διακριτά γεγονότα, είναι τυχαίες. Η στατιστική απαρίθµησης διακριτών γεγονότων γνωστή ως κατανοµή Poisson 5 προβλέπει ότι ο αριθµός Ν των αφικνούµενων ηλεκτρονίων, σε σταθερό χρονικό διάστηµα παρατήρησης t, υπόκειται σε διακυµάνσεις από τη µια παρατήρηση στην άλλη µε τυπική απόκλιση ίση προς Ν. Έτσι, εάν για χρόνο παρατήρησης t, ίσο προς 1 ms ο µέσος αριθµός άφιξης στην άνοδο ενός φωτοπολλαπλασιαστή είναι 100 φωτοηλεκτρόνια, η τυπική απόκλιση πλήθους παρατηρήσεων θα είναι ίση προς Ν = 10 ηλεκτρόνια και η σχετική τυπική απόκλιση (10/100) 100 = 10%. Εάν ο χρόνος παρατήρησης αυξηθεί στα 100 ms, ο µέσος αριθµός αφίξεων γίνεται ηλεκτρόνια και η τυπική απόκλιση γίνεται ίση προς 100 και η σχετική τυπική απόκλιση (100/10000) 100 = 1%. Εφόσον το ρεύµα είναι ανάλογο του αριθµού των αφικνούµενων ηλεκτρονίων στη χρονική µονάδα και επειδή οι αφίξεις αυτές υπόκεινται σε στατιστικές διακυµάνσεις ως διακριτά γεγονότα, τότε οι προηγούµενες διακυµάνσεις µεταφράζονται σε διακυµάνσεις ρεύµατος, που συνιστούν τον θόρυβο βολής. Η RMS τιµή του ρεύµατος που οφείλεται σε θόρυβο βολής παρέχεται από την εξίσωση του Schottky: (5) Η κατανοµή Poisson περιγράφει την πιθανότητα να συµβεί καθορισµένος αριθµός γεγονότων σε καθορισµένο διάστηµα χρόνου ή χώρου. Τυπικά παραδείγµατα φαινοµένων που ακολουθούν την κατανοµή Poisson είναι: ο αριθµός αυτοκινήτων που διασχίζουν µια λεωφόρο, ο αριθµός τηλεφωνικών κλήσεων από µια τηλεφωνική συσκευή και οι απαριθµούµενες κρούσεις σε ένα απαριθµητή Geiger. Χαρακτηριστική ιδιότητα της κατανοµής Poisson είναι ότι εάν στο δεδοµένο διάστηµα χώρου ή χρόνου αναµένονται κατά µέσο όρο m γεγονότα, η τυπική απόκλιση πολλαπλών µετρήσεων για το ίδιο διάστηµα θα είναι m

12 q e I I ΒΟΛΗΣ, RMS = (5.4.3) t όπου q e είναι το φορτίο του ηλεκτρονίου (1, C), I είναι η µέση τιµή του ρεύµατος και t ο χρόνος παρατήρησης ή ολοκλήρωσης για κάθε µέτρηση. Ο θόρυβος βολής µπορεί να εκφρασθεί και ως συνάρτηση του φασµατικού εύρους f, εάν ληφθεί υπόψη ότι χρόνος παρατήρησης t ισοδυναµεί σε φασµατικό εύρος f = 1/(t), οπότε I ΒΟΛΗΣ, RMS = q e I f (5.4.4) Από τα προηγούµενα συµπεραίνεται ότι ο θόρυβος βολής οφείλεται στον διακριτό χαρακτήρα των ηλεκτρικών φορτίων και συνεπώς των ρευµάτων και των τάσεων. Ένας αποτελεσµατικός τρόπος αντιµετώπισής του είναι η αντικατάσταση των απλών µετρήσεων της τρέχουσας τιµής του µεγέθους, µε το αποτέλεσµα της ολοκλήρωσης της τιµής του για ένα σχετικά µεγαλύτερο χρονικό διάστηµα. Γενικά, ο θόρυβος βολής έχει τα ίδια φασµατικά χαρακτηριστικά µε τον θερµικό θόρυβο (λευκός θόρυβος ενδογενούς προέλευσης) και κατά κανόνα οι RMS τιµές του είναι αρκετά µικρότερες από εκείνες του θερµικού θορύβου. Γενικά ο θόρυβος βολής µπορεί να αγνοηθεί, εκτός από τις περιπτώσεις των φωτολυχνιών και των φωτοπολλαπλασιαστών, όπου πολλές φορές µπορεί να είναι και ο καθοριστικός παράγοντας επαναληψιµότητας των µετρήσεων Θόρυβος 1/f Ο θόρυβος 1/f ή θόρυβος flicker (to flicker: τρεµοσβύνω) είναι ένας ενδογενής θόρυβος η προέλευση του οποίου ακόµη δεν είναι βέβαιη. Θα µπορούσε να αποδοθεί σε διαδοχικές διασπάσεις-επανασυνδέσεις ηλεκτρονίων-οπών και αναµένεται ιδιαίτερα έντονος στους ηµιαγωγούς. Ωστόσο, εµφανίζεται και όπου υπάρχουν συµπλέγµατα διαφορετικών ατόµων, όπως στα υλικά κατασκευής των φωτοκαθόδων και όπου υπάρχουν κοκκώδη υλικά, όπως στις αντιστάσεις άνθρακα και για τον περιορισµό του χρησι- µοποιούνται, όποτε είναι δυνατόν, αντιστάσεις περιελιγµένου σύρµατος (σελ. 0). Ονοµάζεται θόρυβος 1/f επειδή εµφανίζεται ιδιαίτερα έντονος σε σήµατα χαµηλών συχνοτήτων και η ισχύς του είναι ανάλογη του 1/f n, όπου f είναι η συχνότητα του σήµατος και n µια σταθερά σχεδόν ίση µε 1 (0,9 n 1,35). Η παρουσία του θορύβου 1/f έχει ως αποτέλεσµα την αύξηση της εικόνας θορύβου των ενισχυτών στις χαµηλές συχνότητες.υπερισχύει των άλλων θεµελιωδών θορύβων σε συχνότητες κάτω από 300 Hz, ενώ η παρουσία του είναι σχεδόν αµελητέα σε σήµατα µε συχνότητες µεγαλύτερες από 1 khz. Γενικά, το φαινόµενο της ολίσθησης της απολαβής των ενισχυτών DC θεωρείται ως µια εκδήλωση του θορύβου 1/f. Κατά την ενίσχυση χαµηλόσυχνων ασθενών σηµάτων, ο θόρυβος 1/f υφίσταται ίση ενίσχυση, οπότε δεν είναι δυνατόν να επέλθει καµία ουσιαστική βελτίωση του λόγου S/N. Η κατάσταση αντιµετωπίζεται µε µεταφορά της πληροφορίας του σήµατος σε υψηλές συχνότητες, π.χ. µε διαµόρφωση (modulation) ενός υψίσυχνου σήµατος, όπου το υψίσυχνο πλέον σήµα µπορεί να ενισχυθεί χωρίς εισαγωγή θορύβου 1/f. Στη συνέχεια το σήµα επαναφέρεται στις αρχικές συχνότητες µε συγχρονισµένη αποδιαµόρφωση (synchronous demodulation). Στην αρχή αυτή βασίζεται η λειτουργία των ενισχυτών lock-in (σελ. 194). Τυπικό φάσµα πυκνότητας ισχύος (P/f) ηλεκτρικών θορύβων διαφορετικών προελεύσεων δείχνεται στο Σχήµα Είναι χαρακτηριστική η έντονη παρουσία του θορύβου 1/f στις χαµηλές συχνότητες, η σταθερή παρουσία λευκού θορύβου (θερµικός θόρυβος + θόρυβος βολής), όπως και οι διάφοροι µη θεµελιώδεις θόρυβοι (θόρυβοι περίσσειας). Αξίζει ακόµη να παρατηρηθεί ότι στην περιοχή 500 Hz -100 khz κατά κανόνα υπάρχει µια περιοχή σχετικής ηρεµίας

13 Σχήµα Τυπικό φάσµα ισχύος υποβάθρου ηλεκτρικών θορύβων, που µπορεί να συνοδεύει το επιθυµητό σήµα. Η σχέση των πλατών και η συνεισφορά των επιµέρους θορύβων είναι υποθετική, εφόσον εξαρτάται από την περιοχή στην οποία πραγµατοποιούνται οι µετρήσεις Θόρυβος κβαντισµού Ο θόρυβος κβαντισµού (quantization noise, QN) εµφανίζεται κατά τη µετατροπή αναλογικών σηµάτων σε ψηφιακά και είναι αναπόφευκτο αποτέλεσµα της καθορισµένης διακρισιµότητας των αναλογικοψηφιακών µετατροπέων. Το αποτέλεσµα της ψηφιοποίησης ενός αναλογικού σήµατος και ο αντίστοιχος θόρυβος κβαντισµού δείχνεται στο Σχήµα Η RMS τιµή του θορύβου κβαντισµού, παρέχεται από την ακόλουθη σχέση QN RMS = q 1 (5.4.5) όπου q είναι το διάστηµα κβαντισµού του Α/Ψ µετατροπέα. Είναι προφανές ότι οι τιµές του θορύβου (ή σφάλµατος) κβαντισµού βρίσκονται πάντοτε στο διάστηµα q/ έως +q/. Σχήµα 5.4. Το αρχικό σήµα (1), η κβαντισµένη µορφή του () και o θόρυβος κβαντισµού (3). Σφάλµα κβαντισµού εισάγεται και στην περίπτωση αναλογικών οργάνων από τη στιγµή που ο χειριστής στρογγυλεύει τις ενδείξεις κατά ένα καθορισµένο τρόπο. Παράδειγµα 5-4. Το δυναµικό ενός εκλεκτικού ηλεκτροδίου ιόντων φθορίου µετρείται µε ψηφιακό ηλεκτρόµετρο µε διακρισιµότητα τιµών 0,1 mv. Η τυπική απόκλιση µετρήσεων του δυναµικού, που αναπτύσσει σε διάλυµα NaF 1, Μ, βρίσκεται 0,070 mv. Να εκτιµηθεί η πραγµατική (ενδογενής) τυπική απόκλιση των ενδείξεων δυναµικού του εκλεκτικού ηλεκτροδίου. Λύση. Η τυπική απόκλιση (σ ολ ) που µετρήθηκε είναι η συνισταµένη δύο πηγών θορύβου (ή σφάλµατος): του ενδογενούς θορύβου (σ x ) του µεταλλάκτη και του θορύβου κβαντισµού (σ QN ) που εισάγει η ίδια η παρουσίαση της µέτρησης. Με βάση την Εξίσωση 5.3. θα είναι -181-

14 σ x = σ ολ σ QN = 0,070 (0,1/ 1) = 0,064 mv Βελτίωση ακρίβειας ψηφιακής ένδειξης µε εισαγωγή θορύβου. Ενώ ο θόρυβος είναι ανεπιθύµητος στις µετρήσεις, υπάρχει περίπτωση που σκόπιµη εισαγωγή του βελτιώνει την ακρίβεια µέτρησης. Αυτή η κάπως παράδοξη περίπτωση παρουσιάζεται στην εξαιρετικά συνηθισµένη µέτρηση µέσω ψηφιακών οργάνων ή Α/Ψ µετατροπέων διασυνδεδεµένων µε υπολογιστές. Εάν η διακρισιµότητα του Α/Ψ µετατροπέα ή του ψηφιακού οργάνου είναι περιορισµένη, ένα σχετικά αθόρυβο και σταθερό σήµα εισόδου θα έχει ως αποτέλεσµα σταθερή ψηφιακή ένδειξη στην έξοδο του µετατροπέα ή του οργάνου. Ο υπολογιστής, προγραµµατισµένος να λαµβάνει Ν δείγ- µατα τιµών για να υπολογίσει τη µέση τιµή τους, αναπόφευκτα ως αποτέλεσµα θα δώσει την αρχική σταθερή τιµή. Αντίθετα, εάν το σήµα περιέχει κανονικό θόρυβο µε RMS τιµή (δηλ. τυπική απόκλιση) περίπου ίση προς q/, όπου q η διακρισιµότητα του Α/Ψ µετατροπέα ή του ψηφιακού οργάνου, τα δείγµατα τιµών θα διαφέρουν µεταξύ τους και η µέση τιµή τους θα είναι αντιπροσωπευτικότερη της πραγµατικής τιµής του σήµατος. Η τυπική απόκλιση της µέσης τιµής θα είναι αντιστρόφως ανάλογη προς την τετραγωνική ρίζα του Ν. Η τεχνική αυτή αναφέρεται ως dithering (to dither = αµφιταλαντεύοµαι). Σχήµα Αύξηση της ακρίβειας µέτρησης µε την τεχνική dithering: (α) Αρχικό σήµα, (β) το ίδιο σήµα µετά τη σκόπιµη εισαγωγή κανονικού θορύβου. Ένα παράδειγµα της εφαρµογής της τεχνικής εισαγωγής κανονικού θορύβου παρουσιάζεται στο Σχήµα Υπολογισµός της µέσης τιµής πολλαπλών µετρήσεων του σχετικά αθόρυβου σήµατος (α) θα παρέχει πάντοτε ως αποτέλεσµα 145,0 µονάδες (π.χ. mv). Ο ίδιος υπολογισµός στο ίδιο σήµα, αλλά µε επιπλέον κανονικό θόρυβο µε RMS τιµή 0,5 (β), θα δώσει ως αποτέλεσµα 145,3 µονάδες, το οποίο είναι πιο κοντά στην πραγµατική µέση τιµή. 5.5 ΑΝΑΓΚΗ ΑΥΞΗΣΗΣ ΤΟΥ ΛΟΓΟΥ S/N Η αύξηση του λόγου S/N κατά τη µέτρηση µιας φυσικής ή χηµικής ποσότητας εξυπηρετεί δύο σκοπούς: (1) Βελτιώνεται η ακρίβεια και η αξιοπιστία της µέτρησης και () η χρήσιµη περιοχή µέτρησης ενός οργάνου επεκτείνεται σηµαντικά προς χαµηλότερες τιµές. Γενικά, κάθε προσπάθεια βελτίωσης µιας ενόργανης αναλυτικής τεχνικής δεν πρέπει να αποβλέπει στην απλή ενίσχυση του αναλυτικού σήµατος, αλλά στην αύξηση του λόγου S/N. Υπενθυµίζεται ότι στις περισσότερες αναλυτικές µεθόδους το όριο ανίχνευσης (limit of detection, LOD) ορίζεται ως το τριπλάσιο της τυπικής απόκλισης των µετρήσεων, ενώ το όριο ποσοτικού προσδιορισµού (limit of quantification, LOQ) ορίζεται ως το δεκαπλάσιο της τυπικής απόκλισης. Έτσι, π.χ. εάν κατά τον φλογοφωτοµετρικό προσδιορισµό ασβεστίου οι µετρούµενες συγκεντρώσεις παρουσιάζουν τυπική απόκλιση σ = 0,5 µg/l, το κατώτερα όρια ανίχνευσης και ποσοτικού προσδιορισµού µε την τεχνική αυτή είναι 1,5 και 5 µg/l, αντίστοιχα. Αύξηση του λόγου S/N συνεπάγεται αντίστοιχη µείωση της τυπικής απόκλισης των µετρήσεων, εποµένως η εφαρµοσιµότητα της τεχνικής επεκτείνεται και σε δείγµατα µε ακόµη χαµηλότερες συγκεντρώσεις ασβεστίου. Οι µέθοδοι αύξησης του λόγου S/N στις µετρήσεις διαφόρων φυσικών ή χηµικών ποσοτήτων διακρίνονται σε δύο κατηγορίες. Η πρώτη κατηγορία βασίζεται σε συνδυασµό τεχνικών θωράκισης, χρήση ηλεκτρονικών κυκλωµάτων (π.χ. φίλτρων διέλευσης ζώνης συχνοτήτων), ενισχυτών ειδικού τύπου και ολοκληρωτών. Οι µέθοδοι αυτές ονοµάζονται συλλογικά µέθοδοι υλισµικού (hardware methods). -18-

15 Η δεύτερη κατηγορία µεθόδων βασίζεται στη χρήση ψηφιακών υπολογιστών. Λαµβάνονται δείγµατα- στιγµιότυπα του σήµατος (µαζί µε τον θόρυβο που τα συνοδεύει) και εισάγονται στη µνήµη του υπολογιστή ως µια σειρά τιµών. Στη συνέχεια οι τιµές υφίστανται επεξεργασία µε κατάλληλο πρόγραµµα που βελτιώνει τον λόγο S/N. Οι µέθοδοι αυτές ονοµάζονται συλλογικά µέθοδοι λογισµικού (software methods). Λόγω του συνεχώς µειούµενου κόστους των ψηφιακών υπολογιστών και της σύνδεσης ή ενσωµάτωσής τους ουσιαστικά σε κάθε µετρητική διάταξη, η τάση στη σύγχρονη οργανολογία είναι η αντικατάσταση των µεθόδων υλισµικού µε µεθόδους λογισµικού. Μια σειρά βασικών µεθόδων υλισµικού και λογισµικού για την αντιµετώπιση του θορύβου στις µετρήσεις θα περιγραφεί στα επόµενα κεφάλαια. 5.6 ΑΝΤΙΜΕΤΩΠΙΣΗ ΘΟΡΥΒΟΥ ΜΕ ΜΕΘΟ ΟΥΣ ΥΛΙΣΜΙΚΟΥ Γείωση και θωράκιση µονάδων Γενικά, ως γείωση (grounding) ορίζεται η ηλεκτρική σύνδεση του µεταλλικού περιβλήµατος (chassis) µιας συσκευής µε τη γείωση της ηλεκτρολογικής εγκαταστάσης, ή µε µεταλλικές ράβδους µπηγµένες στο έδαφος ή µε µεταλλικούς αγωγούς ύδρευσης. Η γείωση αυτού του τύπου στο εξής θα ονοµάζεται πραγµατική γείωση (true ground, earthing) και πρέπει να διακρίνεται από τη γείωση των εξαρτηµάτων σε ένα κύκλωµα. Η τελευταία αποτελεί το σηµείο αναφοράς και µετρήσεων των δυναµικών διαφόρων σηµείων του και ονοµάζεται κοινό (common). Το κοινό ενός κυκλώµατος άλλοτε συνδέεται µε την πραγµατική γείωση και άλλοτε όχι. Σε ευαίσθητα κυκλώµατα ενισχυτών, ποτενσιοστάτες κ.λπ. η σύνδεση αυτή πρέπει να αποφεύγεται, γιατί καθιστά το κύκλωµα ευαίσθητο σε βρόχους γείωσης. Με την πραγµατική γείωση εξασφαλίζονται: (1) Η ασφάλεια του χειριστή της συσκευής έναντι τυχαίων διαρροών του ηλεκτρικού ρεύµατος προς το µεταλλικό περίβληµα λόγω φθοράς διαφόρων εξαρτηµάτων ή κακής κατασκευής και () η αποτελεσµατική µείωση της απ'ευθείας σύλληψης ηλεκτροµαγνητικής ακτινοβολίας και γενικά µη θεµελιωδών τύπων θορύβου, π.χ. θόρυβος 50 Hz, ραδιοφωνικές εκποµπές, ηλεκτρονικές αναφλέξεις κινητήρων αυτοκινήτων, θόρυβοι εκκινητών (starters) λαµπτήρων φθορισµού. Βρόχος γείωσης. Η σύνδεση των κοινών πολλών µονάδων πρέπει να γίνεται µε βάση καθορισµένο και όχι τυχαίο τρόπο, για να αποφευχθεί η εισαγωγή θορύβου από την παρουσία βρόχου γείωσης (grounding loop). Η σύνδεση του Σχήµατος 5.6.1α δηµιουργεί βρόχο γείωσης, λόγω σύνδεσης της πηγής σήµατος (π.χ. του ανιχνευτή) και του τελεστικού ενισχυτή σε δύο διαφορετικά σηµεία του κοινού του κυκλώµατος. Μεταξύ των δύο σηµείων σύνδεσης είναι δυνατόν να υπάρχει µια παράσιτη διαφορά δυναµικού v C1 v C. Στην περίπτωση αυτή το σήµα στην έξοδο του ενισχυτή θα παρέχεται από τη σχέση v o = (R f /R i )[v i + (v C1 v C )] (5.6.1) Η παράσιτη διαφορά δυναµικού v C1 v C οφείλεται στο ότι δεν υπάρχουν µεταλλικοί αγωγοί, που είναι πλήρως απαλλαγµένοι από ωµική και επαγωγική αντίσταση. Έτσι, όταν και οι δύο γειώσεις είναι συνδεδεµένες µε τον ίδιο αγωγό και η αντίσταση µεταξύ των δύο σηµείων συνδέσεων είναι R, κάθε ρεύ- µα i, που διαρρέει τον αγωγό, θα δηµιουργεί µια διαφορά δυναµικού v C v C1 = ir. Το ρεύµα i µπορεί να είναι ρεύµα επιστροφής (return current) από άλλες µονάδες ή επαγωγικό ρεύµα, λόγω παρουσίας ηλεκτρικών και µαγνητικών πεδίων. Με τη σύνδεση που δείχνεται στο Σχήµα 5.6.1β, αποφεύγεται η δηµιουργία βρόχου γείωσης και η παράσιτη διαφορά δυναµικού µηδενίζεται. Οι δύο γενικοί τρόποι σύνδεσης των κοινών επιµέρους µονάδων δείχνονται στο Σχήµα Η σύνδεση σε σειρά (α) είναι πιο απλή, αλλά οδηγεί σε βρόχους γείωσης, ενώ η παράλληλη σύνδεση (β) είναι η ορθότερη, αφού αποτρέπει τη διασταύρωση ρευµάτων επιστροφής σε µεγάλα µήκη αγωγών

16 Εάν η πηγή σήµατος βρίσκεται σε διαφορετικό κοινό από εκείνο του ενισχυτή, τότε πρέπει να γίνει χρήση διαφορικού ενισχυτή (π.χ. ενισχυτή οργανολογίας, σελ. 83) για να εξουδετερωθεί η παράσιτη διαφορά δυναµικού, που θα αποτελεί κοινό σήµα και για τις δύο εισόδους του (σελ.86, Σχήµα , περίπτωση γ). Όσο µεγαλύτερος είναι ο CMRR του διαφορικού ενισχυτή, τόσο µεγαλύτερη θα είναι η ανοχή του σε βρόχους γείωσης. Σχήµα (α) Σύνδεση πηγής σήµατος και ενισχυτή σε δύο διαφορετικά σηµεία του κοινού του κυκλώµατος µε αποτέλεσµα δηµιουργία βρόχου γείωσης. (β) Ορθός τρόπος σύνδεσης των µονάδων µε το κοινό. Σχήµα 5.6. Σύνδεση µονάδων µε το κοινό: (α) Σύνδεση σε σειρά, (β) σύνδεση παράλληλη. Θωράκιση (shielding). Σύνδεση του µεταλλικού περιβλήµατος µιας µονάδας µε την πραγµατική γείωση το µετατρέπει σε κλωβό Faraday (Faraday cage) και περιορίζει ή αποκλείει την επαγωγική σύλληψη ηλεκτροµαγνητικού θορύβου. Η σύνδεση θα πρέπει να είναι άµεση, µε αγωγούς µεγάλης διατοµής, και ποτέ µέσω της γείωσης της ηλεκτρολογικής εγκατάστασης (που είναι σχεδόν πάντοτε επιβαρυµένη µε ρεύ- µατα επιστροφής και επαγωγικά ρεύµατα), αλλά µε πραγµατική γείωση αποκλειστικά κατασκευασµένη για τη δεδοµένη µονάδα, κάτι όχι πάντοτε εφικτό στους συνηθισµένους χώρους µετρήσεων. Η σύνδεση των µεταλλικών περιβληµάτων µε την πραγµατική γείωση απαιτεί ιδιαίτερη προσοχή για να αποφευχθεί η δηµιουργία βρόχων γειώσεων και παράσιτων χωρητικοτήτων. Τρεις διαφορετικοί τρόποι σύνδεσης των θωρακίσεων των επιµέρους µονάδων διάταξης πηγής σήµατος-ενισχυτή-µονάδας εξόδου παρουσιάζονται στο Σχήµα Ο ορθότερος τρόπος σύνδεσης δείχνεται στο Σχήµα 5.6.3α (ενιαίο περίβληµα µέσω θωρακισµένων καλωδίων, ενιαία σύνδεση θωράκισης, κοινού, πραγµατικής γείωσης στη µονάδα της πηγής). Στο Σχήµα 5.6.3β δείχνεται σύνδεση του κοινού του ενισχυτή µε τη θωράκιση, γεγονός που θα οδηγήσει σε αύξηση της παράσιτης χωρητικότητας µεταξύ εισόδου και πραγµατικής γείωσης. Αυτό θα έχει ως αποτέλεσµα την εισαγωγή παράσιτων σηµάτων ηλεκτροστατικής προέλευσης. Στο Σχήµα 5.6.3γ το περίβληµα κάθε µονάδας συνδέεται ξεχωριστά µε την πραγµατική γείωση. Η σύνδεση αυτή δηµιουργεί βρόχους γείωσης µε όλα τα επακόλουθα προβλήµατα

17 Σχήµα Συνδέσεις των θωρακίσεων (---) µονάδων πηγής σήµατος-ενισχυτή- µονάδας εξόδου, µε την πραγ- µατική γείωση: (α) ορθός τρόπος, (β)-(γ) εσφαλµένοι τρόποι Θόρυβος κατά τη ζεύξη µονάδων Το ηλεκτρικό σήµα µεταφέρεται από τη µια µονάδα στην άλλη (π.χ. από το µεταλλάκτη στον ενισχυτή) µε ζεύγος καλωδίων. Εάν τα δύο καλώδια διαφέρουν σε µήκος και θέση ως προς µια πηγή θορύβου (π.χ. τις γραµµές τροφοδοσίας, µετασχηµατιστές, κινητήρες), είναι βέβαιη η σε διαφορετικό βαθµό επαγωγική σύλληψη θορύβου από το κάθε καλώδιο. Λόγω του διαφορετικού πλάτους του θορύβου σε κάθε αγωγό, ο διαφορικός ενισχυτής δεν θα είναι σε θέση να εξουδετερώσει το θόρυβο. Το πρόβληµα λύνεται µε χρήση πλεγµένου ζεύγους καλωδίων, οπότε και οι δύο αγωγοί θα συλλαµβάνουν το θόρυβο, πρακτικά στον ίδιο βαθµό. Προτιµότερη λύση είναι η χρήση οµοαξoνικού καλωδίου (coaxial cable) ή θωρακισµένου ζεύγους πλεγµένων καλωδίων (shielded twisted-pair cable). Σχήµα Συνιστώµενοι τρόποι ζεύξης πηγής σήµατος µε ενισχυτή µε θωρακισµένα καλώδια. Οι συνιστώµενοι τρόποι ζεύξης πηγής σήµατος µε ενισχυτή, µε θωρακισµένα καλώδια δείχνονται στο Σχήµα Κατά τη χρησιµοποίηση θωρακισµένων καλωδίων για τη µεταφορά υψίσυχνων σηµάτων επιβάλλεται ο έλεγχος της συµβατότητας της σύνθετης αντίστασης του καλωδίου µε εκείνη της εξόδου και εισόδου των συνδεόµενων µονάδων (βλέπε συνθήκη άριστης µεταφοράς ισχύος, σελ. 0). Σε πολλές περιπτώσεις οι γειώσεις δύο µονάδων είναι τελείως ασύµβατες (π.χ. λόγω παρουσίας µεγάλης διαφοράς τάσης ή µεγάλων ρευµάτων επιστροφής). Στις περιπτώσεις αυτές επιβάλλεται πλήρης ηλεκτρολογική αποµόνωση (isolation) µεταξύ των µονάδων και η µετάδοση της πληροφορίας µπορεί να -185-

18 πραγµατοποιηθεί µε επαγωγική ζεύξη (inductive coupling) ή µε οπτική ζεύξη (optical coupling). Στην πρώτη περίπτωση η πληροφορία πρέπει να διαµορφώσει ένα υψίσυχνο σήµα, ώστε να είναι δυνατή επαγωγική µεταφορά από ένα πηνίο στο άλλο, ενώ στη δεύτερη η πληροφορία πρέπει να υποστεί παλµική κωδικοποίηση. Η οπτική ζεύξη αποτρέπει τελείως κάθε επίδραση θορύβου περιβάλλοντος στη γραµµή µεταφοράς του σήµατος (οπτικές ίνες, σελ. 115) Μείωση εύρους διέλευσης συχνοτήτων Σύµφωνα µε την Εξίσωση αποτελεσµατικός τρόπος µείωσης του θερµικού θορύβου είναι η µείωση του εύρους διέλευσης συχνοτήτων. Το φάσµα συχνοτήτων του σήµατος θα δείξει την περιοχή, όπου βρίσκεται ο κύριος όγκος της πληροφορίας (χρήσιµη περιοχή). Εάν η περιοχή αυτή είναι σχετικά στενή, η χρήση ενισχυτή µε ευρεία περιοχή συχνοτήτων θα είχε ως αποτέλεσµα να ενισχυθεί ο λευκός θόρυβος, όλης της περιοχής συχνοτήτων του ενισχυτή, ενώ θα µπορούσε να ενισχυθεί µόνο το τµήµα του λευκού θορύβου, που αντιστοιχεί στη χρήσιµη περιοχή συχνοτήτων. Η µείωση του εύρους συχνοτήτων γίνεται µε συνδυασµούς φίλτρων συχνοτήτων ή µε τη χρησιµοποίηση συντονισµένων ενισχυτών (σελ. 190) Μεταφορά του σήµατος σε υψηλές συχνότητες Εάν το σήµα S(t) είναι σταθερό ή µεταβάλλεται σχετικά αργά, τότε η χρήσιµη περιοχή συχνοτήτων του, σπάνια βρίσκεται πέρα από την περιοχή Hz (0-f max ). Ενίσχυση του σήµατος µε ενισχυτές DC (π.χ. µε αντιστροφέα ενισχυτή, σελ. 70) θα είχε ως αποτέλεσµα παράλληλη ενίσχυση του θορύβου 1/f, που δεσπόζει στην περιοχή αυτή, και των θορύβων περιβάλλοντος (π.χ. των 50 Hz). Επιπλέον, θα εισήγαγε λευκό θόρυβο λόγω της ευρείας περιοχής συχνοτήτων του ενισχυτή. Γενικά, η εικόνα θορύβου (NF) του ενισχυτή αναµένεται να είναι πολύ µεγαλύτερη από τη µονάδα, εποµένως η απ ευθείας ενίσχυση ασθενών σηµάτων (π.χ. <1 mv) µε ενισχυτή DC ουσιαστικά δεν προσφέρει τίποτα. Στις περιπτώσεις αυτές χρησιµοποιείται ενισχυτής µε διάταξη της οποίας η γενική αρχή λειτουργίας απεικονίζεται στο Σχήµα Σε κάθε µονάδα της διάταξης γίνονται τα ακόλουθα: 1. Στον διαµορφωτή το σήµα S(t) διαµορφώνει ένα υψίσυχνο σήµα C(t) συχνότητας f C >> f max (τυπικά f C : 500 Hz-500 khz).. Στον συντονισµένο ενισχυτή ενισχύεται το διαµορφωµένο υψίσυχνο σήµα, που είναι πλέον ο φορέας της πληροφορίας που υπήρχε στο σήµα εισόδου. Ο συντονισµένος ενισχυτής ενισχύει περιορισµένο εύρος συχνοτήτων µε κεντρική συχνότητα την f C. 3. Στον αποδιαµορφωτή (ή φωρατή) το ενισχυµένο σήµα επανέρχεται στην αρχική περιοχή συχνοτήτων του και αναγεννάται η αρχική, αλλά ενισχυµένη πλέον, µορφή του σήµατος εισόδου. Στη συνέχεια παρουσιάζεται η αρχή λειτουργίας των επιµέρους µονάδων της προηγούµενης διάταξης. Σχήµα Ενίσχυση σήµατος µετά από µεταφορά του σε υψηλότερες περιοχές συχνοτήτων (αρχή)

19 5.6.5 ιαµορφωτές και τεµαχιστές Ως διαµόρφωση (modulation) ορίζεται η αλλαγή µιας ιδιότητας ενός φέροντος κύµατος (carrier wave) µε την επίδραση ενός σήµατος έτσι, ώστε το φέρον κύµα να γίνει φορέας των πληροφοριών του σήµατος. Εάν το φέρον κύµα είναι ηµιτονικό η διαµόρφωσή του µπορεί να γίνει κατά πλάτος, συχνότητα ή φάση. Εάν το φέρον κύµα είναι αλληλουχία παλµών, η διαµόρφωση µπορεί να γίνει κατά πλάτος (ύψος), συχνότητα ή εύρος τους. Όλες οι µέθοδοι χρησιµοποιούνται στις τηλεπικοινωνίες, ενώ στη χηµική οργανολογία (σε φασµατοφωτόµετρα και σε ευαίσθητους ενισχυτές πολλών οργάνων κοινής χρήσης) χρησιµοποιείται κυρίως η διαµόρφωση κατά πλάτος. Σχήµα ιαµόρφωση διπλής πλευρικής ζώνης (DSB) του φέροντος C(t) µε το ηµιτονικό σήµα S(t) (αρχή). Η γκρίζα περιοχή κάτω από τη διάστικτη γραµµή αποτελεί το υποθετικό φάσµα συχνοτήτων ενός γενικού σήµατος και η S(t) (µε συχνότητα f S ) αποτελεί µία από τις άπειρες ηµιτονικές συνιστώσες του (µε συχνότητες από 0 έως f max ). ιαµόρφωση ηµιτονικού σήµατος. Ηµιτονικό σήµα φέροντος, C(t) = A C cos(πf C t), διαµορφώνεται κατά πλάτος µε πολλαπλασιασµό του µε το σήµα εισόδου S(t). Το σήµα εισόδου µπορεί να αποτελείται από µία έως άπειρες ηµιτονικές συνιστώσες µε συχνότητες στην περιοχή 0-f max. Εάν S(t) = A S cos(πf S t) είναι µία από αυτές τις συνιστώσες, µε βάση την τριγωνοµετρική ταυτότητα cos x cos y = cos(x y) + cos(x+y), θα είναι C(t) S(t) = A C cos(πf C t) A S cos(πf S t) = (A C A S /) {cos[π(f C f S )t] + cos[π(f C + f S )t]} (5.6.) Από την Eξίσωση 5.6. καταφαίνεται ότι η χαµηλόσυχνη συνιστώσα του σήµατος µεταφέρεται στην περιοχή των υψηλών συχνοτήτων (ως συχνότητες f C f max και f C + f max ) και δεν υπάρχει πλέον συστατικό µε τη συχνότητα του φέροντος f C. Ανάλογα, µεταφέρονται και οι υπόλοιπες συνιστώσες συχνοτήτων του σήµατος εισόδου S(t) (και εποµένως ολόκληρο το φάσµα του) καταλαµβάνοντας την περιοχή συχνοτήτων f C f max έως f C + f max, που ονοµάζονται πλευρικές ζώνες (sidebands) του φέροντος. Η προηγουµένη διαµόρφωση ονοµάζεται διαµόρφωση διπλής πλευρικής ζώνης (double sideband modulation, DSB) και για χαµηλόσυχνα σήµατα εισόδου S(t) ο πολλαπλασιασµός των σηµάτων µπορεί να πραγµατοποιηθεί µε διάφορες τεχνικές µεταξύ των οποίων περιλαµβάνεται και η χρήση πολλαπλασιαστή τεσσάρων τεταρτηµορίων (σελ. 10). Η αρχή της διαµόρφωσης DSB, οι κυµατοµορφές εισόδου-εξόδου και τα αντίστοιχα φάσµατα συχνοτήτων τους δείχνονται παραστατικά στο Σχήµα

20 Η ευρύτερα γνωστή ως διαµόρφωση πλάτους (amplitude modulation, AM) διαφέρει από τη διαµόρφωση DSB ως προς το ότι η τελική κυµατοµορφή περιέχει και την κεντρική συχνότητα f C (π.χ. µε πρόσθεση φέροντος στο αποτέλεσµα του πολλαπλασιασµού). Στη διαµόρφωση ΑΜ η περιβάλλουσα (envelope) της κυµατοµορφής του διαµορφωµένου σήµατος συµπίπτει πάντοτε µε το σήµα εισόδου. Αντίθετα, στη διαµόρφωση DSB η περιβάλλουσα διαφέρει από το σήµα εισόδου, αφού κάθε αλλαγή στο πρόσηµο του σήµατος εισόδου προκαλεί αλλαγή φάσης κατά 180 (αντιστροφή φάσης). Η παραλαβή της περιβάλλουσας είναι απλή διαδικασία (σελ. 19) και εποµένως η αποδιαµόρφωση σηµάτων ΑΜ είναι ευκολότερη από την αποδιαµόρφωση σηµάτων DSB. Οι κυµατο- µορφές µετά από διαµόρφωση DSB και AM ενός φέροντος µε ένα διπολικό χαµηλόσυχνο σήµα δείχνονται συγκριτικά στο Σχήµα Σχήµα ιαµόρφωση DSB και AM φέροντος κύµατος. Στην περίπτωση της διαµόρφωσης DSB, η περιβάλλουσα του διαµορφωµένου φέροντος (διάστικτη γραµµή) δεν συµπίπτει µε τη µορφή του χαµηλόσυχνου σήµατος (ΑΦ: σηµείο αναστροφής φάσης). ιαµόρφωση µε τεµαχισµό. Ως τεµαχισµός (chopping) του σήµατος εισόδου S(t) ορίζεται η περιοδική αντικατάσταση της τιµής του µε τη µηδενική τιµή ή (συχνότερα) µε µια τιµή αναφοράς. Με τεµαχισµό το σήµα εισόδου µετατρέπεται σε µια αλληλουχία παλµών. Ο τεµαχισµός του σήµατος µπορεί να θεωρηθεί ως πολλαπλασιασµός του µε τετραγωνικό σήµα σταθερής συχνότητας (συχνότητα τεµαχισµού, f C ) και πλάτους 0 έως 1, όπως δείχνεται στο Σχήµα Επειδή το τετραγωνικό σήµα εµπεριέχει ως κύριο συστατικό την ηµιτονική συνιστώσα συχνότητας f C (σελ. 171) η Eξίσωση 5.6. ισχύει και στην περίπτωση του τεµαχισµού, οπότε το φάσµα συχνοτήτων του σήµατος εισόδου µεταφέρεται στην περιοχή της συχνότητας f C. Τα γινόµενα µε τις αρµονικές συχνότητες του τετραγωνικού σήµατος µπορούν να αγνοηθούν, επειδή κατά κανόνα βρίσκονται έξω από την περιοχή συχνοτήτων του συντονισµένου ενισχυτή, που ακολουθεί το στάδιο του τεµαχισµού. Ο τεµαχισµός είναι η πλέον χρησιµοποιούµενη διαδικασία διαµόρφωσης στη χηµική οργανολογία και πραγµατοποιείται εύκολα µε µηχανικούς, ηλεκτροµηχανικούς ή ηλεκτρονικούς τεµαχιστές (choppers). Επιπλέον, µπορεί να εφαρµοσθεί στο πρωτογενές σήµα, δηλαδή την ίδια τη µετρούµενη φυσική ποσότητα (π.χ. στην οπτική ακτινοβολία), πριν ακόµη µετατραπεί σε ηλεκτρικό σήµα. Θα πρέπει µε έµφαση να σηµειωθεί ότι η τακτική του έγκαιρου τεµαχισµού (ή γενικά διαµόρφωσης) του πρωτογενούς σήµατος προσφέρει σηµαντικά πλεονεκτήµατα ως προς το ζητούµενο (αύξηση του λόγου S/N) και αποτελεί απαράβατο κατασκευαστικό κανόνα. Οι τρεις τρόποι δείχνονται παραστατικά στο Σχήµα

21 Σχήµα Τεµαχισµός χαµηλόσυχνου σήµατος εισόδου µε πολλαπλασιασµό του µε τετραγωνικό σήµα συχνότητας f C (αρχή). Οι µηχανικοί τεµαχιστές χρησιµοποιούνται ευρύτατα στα φασµατοφωτόµετρα διπλής δέσµης (double beam spectrophotometers) και δρουν απ' ευθείας στην οπτική δέσµη πριν µετατραπεί σε ηλεκτρικό σή- µα. Το γεγονός αυτό αµέσως παρέχει το πλεονέκτηµα της διαφοροποίησης του µετρούµενου σήµατος από σήµατα υποβάθρου, ως π.χ. παράσιτες ακτινοβολίες, σκοτεινό ρεύµα φωτοπολλαπλασιαστών και φωτοδιόδων. Συνήθως αποτελούνται από ένα περιστρεφόµενο κατοπτρικό δίσκο µε εγκοπές (Σχήµα 5.6.9α). Η συχνότητα των παλµών στην έξοδο του φωτοπολλαπλασιαστή εξαρτάται από τη γωνιακή ταχύτητα του δίσκου, ενώ το ύψος τους είναι ανάλογο προς τη διαφορά των διαπερατοτήτων των κυψελίδων αναφοράς και δείγµατος Η επιλεγόµενη συχνότητα τεµαχισµού εξαρτάται από την ταχύτητα απόκρισης του χρησιµοποιούµενου µεταλλάκτη. Μπορεί να είναι µερικές δεκάδες ή εκατοντάδες Hz για φασµατοφωτόµετρα ορατού-υπεριώδους, στα οποία οι µεταλλάκτες (φωτολυχνίες, φωτοπολλαπλασιαστές, φωτοδίοδοι) είναι ταχύτατοι ως προς την απόκρισή τους. Αντίθετα, για φασµατοφωτόµετρα υπερύθρου, όπου οι χρησιµοποιούµενοι ανιχνευτές (θερµοζεύγη, βολόµετρα) βασίζονται στα θερµικά αποτελέσµατα της ακτινοβολίας, οι συχνότητες τεµαχισµού κυµαίνονται σε σχετικά χαµηλές τιµές (π.χ. στην περιοχή 0,1-0,5 Hz). Η λήψη των φασµάτων υπερύθρου (στα όργανα µε µονοχρωµάτορα) γίνεται πάντοτε µε µικρή ταχύτητα σάρωσης, σε σχέση µε τις αντίστοιχες ταχύτητες σάρωσης των φασµατοφωτοµέτρων ορατού-υπεριώδους. Παρ όλο που οι συχνότητες f C είναι πολύ µικρές, ο θόρυβος 1/f είναι σηµαντικά χαµηλότερος, από εκείνον που θα προέκυπτε εάν το σήµα ενισχυόταν µε ενισχυτές DC. Το σηµείο της διαδροµής του σήµατος, όπου πρέπει να γίνει η διαµόρφωση του φέροντος µε αυτό ή ο τεµαχισµός του, εξαρτάται από το είδος και την προέλευση του θορύβου, που πρέπει να µειωθεί. Κατά κανόνα η διαµόρφωση πρέπει να πραγµατοποιείται όσο το δυνατόν νωρίτερα έτσι, ώστε οι θόρυβοι που θα παραχθούν στα επόµενα στάδια (παράσιτη ακτινοβολία, ανακλάσεις, ρεύµα σκότους και λευκοί θόρυβοι) να µη µπορούν να διαµορφώσουν πλέον το φέρον. Ουσιαστικά, η διαµόρφωση χρωµατίζει το σήµα προσδίδοντάς του χαρακτηριστικά που το ξεχωρίζουν από τον θόρυβο. Μετά το σηµείο δια- µόρφωσης, µόνο ο λευκός θόρυβος και ο θόρυβος 1/f µπορούν πλέον να µειωθούν. Όποτε είναι δυνατόν διαµορφώνεται η ίδια η πηγή φωτός, κάτι που γίνεται συνήθως εύκολα στις λυχνίες κοίλης καθόδου (φασµατοφωτοµετρία ατοµικής απορρόφησης) µε εφαρµογή τετραγωνικής υψηλής τάσης στην άνοδο τους, όπως επίσης και στις πηγές laser. Η αρχή του τεµαχισµού σήµατος µε τη βοήθεια ηλεκτροµηχανικών τεµαχιστών, όπως επίσης και µε καθαρά ηλεκτρονικά µέσα (µε τη βοήθεια διακοπτών FET) απεικονίζονται στα Σχήµατα 5.6.9β και 5.6.9γ. Με τους ηλεκτροµηχανικούς τεµαχιστές παλλόµενου ελάσµατος (vibrating reed choppers) επιτυγχάνονται συχνότητες τεµαχισµού µέχρι 1 khz, ενώ µε τους ηλεκτρονικούς τεµαχιστές οι συχνότητες µπορεί να φθάσουν τα 50 khz και πλέον

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

ΟΡΓΑΝΟΛΟΓΙΑ ΦΑΣΜΑΤΟΜΕΤΡΙΚΩΝ ΟΡΓΑΝΩΝ ΜΕΤΡΗΣΗΣ: ΑΠΟΡΡΟΦΗΣΗΣ ΦΘΟΡΙΣΜΟΥ, ΦΩΣΦΩΡΙΣΜΟΥ, ΣΚΕΔΑΣΗΣ ΕΚΠΟΜΠΗΣ, ΧΗΜΕΙΟΦΩΤΑΥΓΕΙΑΣ

ΟΡΓΑΝΟΛΟΓΙΑ ΦΑΣΜΑΤΟΜΕΤΡΙΚΩΝ ΟΡΓΑΝΩΝ ΜΕΤΡΗΣΗΣ: ΑΠΟΡΡΟΦΗΣΗΣ ΦΘΟΡΙΣΜΟΥ, ΦΩΣΦΩΡΙΣΜΟΥ, ΣΚΕΔΑΣΗΣ ΕΚΠΟΜΠΗΣ, ΧΗΜΕΙΟΦΩΤΑΥΓΕΙΑΣ ΟΡΓΑΝΟΛΟΓΙΑ ΦΑΣΜΑΤΟΜΕΤΡΙΚΩΝ ΟΡΓΑΝΩΝ ΜΕΤΡΗΣΗΣ: ΑΠΟΡΡΟΦΗΣΗΣ ΦΘΟΡΙΣΜΟΥ, ΦΩΣΦΩΡΙΣΜΟΥ, ΣΚΕΔΑΣΗΣ ΕΚΠΟΜΠΗΣ, ΧΗΜΕΙΟΦΩΤΑΥΓΕΙΑΣ ΠΗΓΕΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΥΝΕΧΕΙΣ ΠΗΓΕΣ ΠΗΓΕΣ ΓΡΑΜΜΩΝ ΚΟΙΛΗΣ ΚΑΘΟΔΟΥ & ΛΥΧΝΙΕΣ ΕΚΚΕΝΩΣΕΩΝ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΙΑΜΟΡΦΩΣΗ ΑΠΟ ΙΑΜΟΡΦΩΣΗ ΠΛΑΤΟΥΣ (ΑΜ) 1. ιαµόρφωση Πλάτους. Στην άσκηση αυτή θα ασχοληθούµε µε τη ιαµόρφωση Πλάτους (Amplitude Modulation) χρησιµοποιώντας τον ολοκληρωµένο διαµορφωτή

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

Προβλήµατα κατά τη µετάδοση σήµατος Τρόποι αντιµετώπισης

Προβλήµατα κατά τη µετάδοση σήµατος Τρόποι αντιµετώπισης Προβλήµατα κατά τη µετάδοση σήµατος Τρόποι αντιµετώπισης Στόχος κατά τη µετάδοση σε µια τηλεπικοινωνιακή ζεύξη είναι να ληφθεί στην έξοδο του δέκτη το αρχικό µέγεθος µε τις λιγότερες δυνατές αλλοιώσεις

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

5. Τροφοδοτικά - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Ανορθωµένη τάση Εξοµαλυµένη τάση Σταθεροποιηµένη τάση. Σχηµατικό διάγραµµα τροφοδοτικού

5. Τροφοδοτικά - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Ανορθωµένη τάση Εξοµαλυµένη τάση Σταθεροποιηµένη τάση. Σχηµατικό διάγραµµα τροφοδοτικού 5. Τροφοδοτικά - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 5. ΤΡΟΦΟ ΟΤΙΚΑ 220 V, 50 Hz. 0 V Μετασχηµατιστής Ανορθωµένη τάση Εξοµαλυµένη τάση Σταθεροποιηµένη τάση 0 V 0 V Ανορθωτής Σχηµατικό διάγραµµα τροφοδοτικού Φίλτρο

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; Ηλεκτρονικοί Υπολογιστές Κινητά τηλέφωνα Τηλεπικοινωνίες Δίκτυα Ο κόσμος της Ηλεκτρονικής Ιατρική Ενέργεια Βιομηχανία Διασκέδαση ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ Τι περιέχουν οι ηλεκτρονικές

Διαβάστε περισσότερα

Το υποσύστηµα "αίσθησης" απαιτήσεις και επιδόσεις φυσικά µεγέθη γενική δοµή και συγκρότηση

Το υποσύστηµα αίσθησης απαιτήσεις και επιδόσεις φυσικά µεγέθη γενική δοµή και συγκρότηση Το υποσύστηµα "αίσθησης" απαιτήσεις και επιδόσεις φυσικά µεγέθη γενική δοµή και συγκρότηση Το υποσύστηµα "αίσθησης" είσοδοι της διάταξης αντίληψη του "περιβάλλοντος" τροφοδοσία του µε καθορίζει τις επιδόσεις

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 1: Εισαγωγή στη διαμόρφωση πλάτους (ΑΜ) Προσομοίωση σε Η/Υ Δρ.

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων ΘΕ1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Σφάλµατα και στατιστική επεξεργασία πειραµατικών µετρήσεων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες όπως : σφάλµατα, στατιστική

Διαβάστε περισσότερα

Bασική διάταξη τηλεπικοινωνιακού συστήµατος οπτικών ινών

Bασική διάταξη τηλεπικοινωνιακού συστήµατος οπτικών ινών ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ - διαφάνεια 1 - Bασική διάταξη τηλεπικοινωνιακού συστήµατος οπτικών ινών ιαµορφωτής Ηλεκτρικό Σήµα Ποµπός Οπτικό Σήµα Οπτική Ίνα διαµορφωτής: διαµορφώνει τη φέρουσα συχνότητα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΚΑΙ ΑΠΩΛΕΙΕΣ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΚΑΙ ΑΠΩΛΕΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΚΑΙ ΑΠΩΛΕΙΕΣ Υ πάρχει µεγάλη διαφορά σε µια ηλεκτρική εγκατάσταση εναλλασσόµενου (AC) ρεύµατος µεταξύ των αντιστάσεων στο συνεχές ρεύµα (DC) των διαφόρων κυκλωµάτων ηλεκτρικών στοιχείων

Διαβάστε περισσότερα

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων

Μαθηµατική Παρουσίαση των FM και PM Σηµάτων Μαθηµατική Παροσίαση των FM και PM Σηµάτων Ένα γωνιακά διαµορφωµένο σήµα, πο αναφέρεται επίσης και ως εκθετικά διαµορφωµένο σήµα, έχει τη µορφή u os j [ ] { π + jφ π + φ Re e } Σεραφείµ Καραµπογιάς Ορίζοµε

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΚΕΦΑΛΑΙΟ 2ο ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Σκοπός Στο δεύτερο κεφάλαιο θα εισαχθεί η έννοια του ηλεκτρικού ρεύματος και της ηλεκτρικής τάσης,θα μελετηθεί ένα ηλεκτρικό κύκλωμα και θα εισαχθεί η έννοια της αντίστασης.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ

ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ ΕΝΟΤΗΤΑ 3 3.0 ΜΕΣΑ ΜΕΤΑΔΟΣΗΣ ΕΙΣΑΓΩΓΗ Όπως είναι ήδη γνωστό, ένα σύστημα επικοινωνίας περιλαμβάνει τον πομπό, το δέκτη και το κανάλι επικοινωνίας. Στην ενότητα αυτή, θα εξετάσουμε τη δομή και τα χαρακτηριστικά

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΤΙΚΗ FOURIER. Γ. Μήτσου ΕΡΓΑΣΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΙΚΗΣ - ΟΠΟΗΛΕΚΡΟΝΙΚΗΣ & LASER ΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & /Υ ΑΣΚΗΣΗ ΝΟ7 ΟΠΙΚΗ FOURIER Γ. Μήτσου Μάρτιος 8 Α. Θεωρία. Εισαγωγή Η επεξεργασία οπτικών δεδοµένων, το φιλτράρισµα χωρικών συχνοτήτων

Διαβάστε περισσότερα

Σχήµα 5.6.13 Ενισχυτής αποκοπής ζώνης συχνοτήτων µε φίλτρο δίδυµου Τ και το αντίστοιχο διάγραµµα Bode.

Σχήµα 5.6.13 Ενισχυτής αποκοπής ζώνης συχνοτήτων µε φίλτρο δίδυµου Τ και το αντίστοιχο διάγραµµα Bode. Σχήµα 5.6.13 Ενισχυτής αποκοπής ζώνης συχνοτήτων µε φίλτρο δίδυµου Τ και το αντίστοιχο διάγραµµα Bode. Ενισχυτής αποκοπής (notch amplifier). Ο ενισχυτής αποκοπής (ζώνης συχνοτήτων) δρα ακριβώς αντίστροφα

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

Αρχές επικοινωνίας με ήχο και εικόνα

Αρχές επικοινωνίας με ήχο και εικόνα Αρχές επικοινωνίας με ήχο και εικόνα Εισαγωγή Πως λειτουργούν οι ηλεκτρονικές επικοινωνίες: Ένα βασικό μοντέλο ηλεκτρονικής επικοινωνίας αποτελείται απλά από ένα πόμπο, το δίαυλο μεταδόσεως, και το δέκτη.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1-3 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε FET s 8

ΠΕΡΙΕΧΟΜΕΝΑ. 1-3 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε FET s 8 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΙΑΦΟΡΙΚΟΣ ΕΝΙΣΧΥΤΗΣ 1 1-1 Κέρδος Τάσης του ιαφορικού Ενισχυτή µε BJT s 1 και ιπλή Έξοδο Ανάλυση µε το Υβριδικό Ισοδύναµο του Τρανζίστορ 2 Ανάλυση µε βάση τις Ενισχύσεις των Βαθµίδων CE- 4

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΟΝΙΚΑ ΚΥΚΛΩΜΑΤΑ θεωρία και ασκήσεις Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής ΗΛΕΚΤΡΙΚΑ ΣΤΟΙΧΕΙΑ ΚΑΙ ΚΥΚΛΩΜΑΤΑ Ένα ηλεκτρικό κύκλωμα αποτελείται από ένα σύνολο

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΕΦΑΛΑΙΟ 3ο ΚΡΥΣΤΑΛΛΟΔΙΟΔΟΙ Επαφή ΡΝ Σε ένα κομμάτι κρύσταλλο πυριτίου προσθέτουμε θετικά ιόντα 5σθενούς στοιχείου για τη δημιουργία τμήματος τύπου Ν από τη μια μεριά, ενώ από την

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής Η/Μ ΚΥΜΑΤΑ 1. Τα ηλεκτροµαγνητικά κύµατα: Ερωτήσεις Πολλαπλής επιλογής α. είναι διαµήκη. β. υπακούουν στην αρχή της επαλληλίας. γ. διαδίδονται σε όλα τα µέσα µε την ίδια ταχύτητα. δ. Δημιουργούνται από

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα: ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ Περιεχόμενα: Διαμόρφωση Φάσης (PM) και Συχνότητας (FM) Διαμόρφωση FM από Απλό Τόνο - - Στενής Ζώνης - - Ευρείας Ζώνης - - από Πολλούς Τόνους Εύρος Ζώνης Μετάδοσης Κυματομορφών FM Απόκριση

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΚΙΝΗΤΩΝ ΚΑΙ ΠΡΟΣΩΠΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το ασύρματο

Διαβάστε περισσότερα

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό

27-Ιαν-2009 ΗΜΥ 429. 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (i) Βασική στατιστική 2 Στατιστική Vs Πιθανότητες Στατιστική: επιτρέπει μέτρηση και αναγνώριση θορύβου και

Διαβάστε περισσότερα

Κυκλώματα με ημιτονοειδή διέγερση

Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση Κυκλώματα με ημιτονοειδή διέγερση ονομάζονται εκείνα στα οποία επιβάλλεται τάση της μορφής: = ( ω ϕ ) vt V sin t όπου: V το πλάτος (στιγμιαία μέγιστη τιμή) της τάσης ω

Διαβάστε περισσότερα

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η ιδάσκουσα: Παντάνο Ρόκου Φράνκα Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8 η : Το Φυσικό Επίπεδο Το Φυσικό Επίπεδο ιάδοση Σήµατος Ηλεκτροµαγνητικά Κύµατα Οπτικές Ίνες Γραµµές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Ασύρματη διάδοση Εισαγωγή Κεραίες διάγραμμα ακτινοβολίας, κέρδος, κατευθυντικότητα

Διαβάστε περισσότερα

Φύλλο εργασίας. Ερωτήσεις ανασκόπησης του μαθήματος

Φύλλο εργασίας. Ερωτήσεις ανασκόπησης του μαθήματος Φύλλο εργασίας Παραθέτουμε μια ομάδα ερωτήσεων ανασκόπησης του μαθήματος και μια ομάδα ερωτήσεων κρίσης για εμβάθυνση στο αντικείμενο του μαθήματος. Θεωρούμε ότι μέσα στην τάξη είναι δυνατή η κατανόηση

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: Σκοπός της Άσκησης: ΑΣΚΗΣΗ η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την: α. Κατασκευή μετασχηματιστών. β. Αρχή λειτουργίας μετασχηματιστών.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο Βασίλης Γαργανουράκης Φυσική ήγ Γυμνασίου Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις αλληλεπιδράσεις των στατικών (ακίνητων) ηλεκτρικών φορτίων. Σε αυτό το κεφάλαιο

Διαβάστε περισσότερα

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε

Διαβάστε περισσότερα

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

Εισαγωγή στις Ηλεκτρικές Μετρήσεις Εισαγωγή στις Ηλεκτρικές Μετρήσεις Σφάλματα Μετρήσεων Συμβατικά όργανα μετρήσεων Χαρακτηριστικά μεγέθη οργάνων Παλμογράφος Λέκτορας Σοφία Τσεκερίδου 1 Σφάλματα μετρήσεων Επιτυχημένη μέτρηση Σωστή εκλογή

Διαβάστε περισσότερα

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής

Ενισχυτές Μετρήσεων. 3.1 Ο διαφορικός Ενισχυτής 3 Ενισχυτές Μετρήσεων 3.1 Ο διαφορικός Ενισχυτής Πολλές φορές ένας ενισχυτής σχεδιάζεται ώστε να αποκρίνεται στη διαφορά µεταξύ δύο σηµάτων εισόδου. Ένας τέτοιος ενισχυτής ονοµάζεται ενισχυτής διαφοράς

Διαβάστε περισσότερα

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ α. Τι ονοµάζουµε διασπορά οπτικού παλµού σε µια οπτική ίνα; Ποια φαινόµενα παρατηρούνται λόγω διασποράς; (Αναφερθείτε σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα.

ΚΕΦΑΛΑΙΟ 7. Σχ.7.1. Σύµβολο κοινού τελεστικού ενισχυτή και ισοδύναµο κύκλωµα. ΚΕΦΑΛΑΙΟ 7 7. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Ο τελεστικός ενισχυτής εφευρέθηκε κατά τη διάρκεια του δεύτερου παγκοσµίου πολέµου και. χρησιµοποιήθηκε αρχικά στα συστήµατα σκόπευσης των αντιαεροπορικών πυροβόλων για

Διαβάστε περισσότερα

Μετρήσεις µε παλµογράφο

Μετρήσεις µε παλµογράφο Η6 Μετρήσεις µε παλµογράφο ΜΕΡΟΣ 1 ο ΠΑΛΜΟΓΡΑΦΟΣ Α. Γενικά Κατά την απεικόνιση ενός εναλλασσόµενου µεγέθους (Σχήµα 1), είναι γνωστό ότι στον κατακόρυφο άξονα «Υ» παριστάνεται το πλάτος του µεγέθους, ενώ

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Επαφή p- Στάθμη Fermi Χαρακτηριστική ρεύματος-τάσης Ορθή και ανάστροφη πόλωση Περιεχόμενο της άσκησης Οι επαφές p- παρουσιάζουν σημαντικό ενδιαφέρον επειδή βρίσκουν εφαρμογή στη

Διαβάστε περισσότερα

ΑΙΣΘΗΤΗΡΑΣ ΣΧΕΤΙΚΗΣ ΥΓΡΑΣΙΑΣ. Η πιο συνηθισμένη έκφραση για την υγρασία του αέρα είναι η σχετική υγρασία (Relative Ηumidity, RH).

ΑΙΣΘΗΤΗΡΑΣ ΣΧΕΤΙΚΗΣ ΥΓΡΑΣΙΑΣ. Η πιο συνηθισμένη έκφραση για την υγρασία του αέρα είναι η σχετική υγρασία (Relative Ηumidity, RH). ΑΙΣΘΗΤΗΡΑΣ ΣΧΕΤΙΚΗΣ ΥΓΡΑΣΙΑΣ Η πιο συνηθισμένη έκφραση για την υγρασία του αέρα είναι η σχετική υγρασία (Relative Ηumidity, RH). Η σχετική υγρασία είναι ο λόγος επί τοις εκατό (%) της μάζας των υδρατμών

Διαβάστε περισσότερα

ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET)

ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET) Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ (FET) ΤΡΑΝΖΙΣΤΟΡ ΕΠΙ ΡΑΣΗΣ ΠΕ ΙΟΥ ΕΠΑΦΗΣ (JFET) Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ

Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Η ΑΝΑΓΚΗ ΓΙΑ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Οι Ενόργανες Μέθοδοι Ανάλυσης είναι σχετικές μέθοδοι και σχεδόν στο σύνολο τους παρέχουν την αριθμητική τιμή μιας φυσικής ή φυσικοχημικής ιδιότητας, η

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Σελίδα 1 από 13

ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Σελίδα 1 από 13 ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Σελίδα από 3 ΦΥΛΛΑ ΙΟ 4 ο η : Το δοµικό διάγραµµα του ποµπού ΑΜ φαίνεται στο παραπάνω σχήµα. Με βάση αυτό η διαδικασία της διαµόρφωσης αποτελείται από δύο λειτουργικά τµήµατα:

Διαβάστε περισσότερα

ΜΕΤΑΤΡΟΠΕΙΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΜΕΤΑΤΡΟΠΕΙΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΜΑΘ.. 12 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΜΕΤΑΤΡΟΠΕΙΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ 1. ΓΕΝΙΚΑ Οι μετατροπείς συνεχούς ρεύματος επιτελούν τη μετατροπή μιας τάσης συνεχούς μορφής, σε συνεχή τάση με ρυθμιζόμενο σταθερό πλάτος ή και πολικότητα.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν

ΤΕΙ - ΧΑΛΚΙ ΑΣ. παθητικά: προκαλούν την απώλεια ισχύος ενός. ενεργά: όταν τροφοδοτηθούν µε σήµα, αυξάνουν 1. Εισαγωγικά στοιχεία ηλεκτρονικών - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 1. ΘΕΜΕΛΙΩ ΕΙΣ ΕΝΝΟΙΕΣ ΚΑΙ ΕΙΣΑΓΩΓΙΚΑ ΣΤΟΙΧΕΙΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ηλεκτρικό στοιχείο: Κάθε στοιχείο που προσφέρει, αποθηκεύει και καταναλώνει

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ

3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1. Kρυσταλλοδίοδος ή δίοδος επαφής. ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν ΤΕΙ ΧΑΛΚΙ ΑΣ 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 3. ΙΟ ΟΣ ΚΑΙ ΚΥΚΛΩΜΑΤΑ ΙΟ ΩΝ Kρυσταλλοδίοδος ή δίοδος επαφής ίοδος: συνδυασµός ηµιαγωγών τύπου Ρ και Ν 3. ίοδος-κυκλώµατα ιόδων - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener 4. Ειδικές ίοδοι - Ι.Σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ ίοδος zener Χαρακτηριστική καµπύλη διόδου zener Τάση Zener ( 100-400 V για µια απλή δίοδο) -V Άνοδος Ι -Ι Κάθοδος V Τάση zener V Z I Ζ 0,7V

Διαβάστε περισσότερα

Doppler Radar. Μεταφορά σήµατος µε την βοήθεια των µικροκυµάτων.

Doppler Radar. Μεταφορά σήµατος µε την βοήθεια των µικροκυµάτων. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 101 10. Άσκηση 10 Doppler Radar. Μεταφορά σήµατος µε την βοήθεια των µικροκυµάτων. 10.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: ΠΡΑΚΤΙΚΗ Κλάδος: ΗΛΕΚΤΡΟΛΟΓΙΑ Μάθημα: ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Τάξη: A Τμήμα:

Διαβάστε περισσότερα

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ Στα συστήματα διαμόρφωσης (otiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (output igl-tooie rtio). λόγος σήματος προς

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία Ηλεκτρονικών

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων Εργαστήριο 10 Μετάδοση και Αποδιαμόρφωση Ραδιοφωνικών Σημάτων Λευκωσία, 2010 Εργαστήριο 10

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Ηλεκτρικό δυναμικό Νίκος Ν. Αρπατζάνης Ηλεκτρικό δυναμικό Θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα

Διαβάστε περισσότερα

Αυτά τα πειράµατα έγιναν από τους Michael Faraday και Joseph Henry.

Αυτά τα πειράµατα έγιναν από τους Michael Faraday και Joseph Henry. Επαγόµενα πεδία Ένα µαγνητικό πεδίο µπορεί να µην είναι σταθερό, αλλά χρονικά µεταβαλλόµενο. Πειράµατα που πραγµατοποιήθηκαν το 1831 έδειξαν ότι ένα µεταβαλλόµενο µαγνητικό πεδίο µπορεί να επάγει ΗΕΔ σε

Διαβάστε περισσότερα

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ η ΠΕΡΙΠΤΩΣΗ ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ ΣΥΝΤΟΝΙΣΜΟΣ ΣΕ ΚΥΚΛΩΜΑ -L-C ΣΕ ΣΕΙΡΑ Κύκλωµα που αποτελείται από ωµική αντίσταση,ιδανικό πηνίο µε συντελεστή αυτεπαγωγής L

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER

ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΤΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟ FOURIER Ανάλυση σημάτων και συστημάτων Ο μετασχηματισμός Fourier (DTFT και DFT) είναι σημαντικότατος για την ανάλυση σημάτων και συστημάτων Εντοπίζει

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΑΣΚΗΣΗ 7 Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΣΥΣΚΕΥΕΣ : Πηγή συνεχούς 0-50 Volts, πηγή 6V/2A, βολτόµετρο συνεχούς, αµπερόµετρο συνεχούς, βολτόµετρο, ροοστάτης. ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Όταν η θερµοκρασία ενός

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 2Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ 2.1 ΤΟ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ Τι είναι ; Ηλεκτρικό ρεύμα ονομάζεται η προσανατολισμένη κίνηση των ηλεκτρονίων ή γενικότερα των φορτισμένων σωματιδίων Που μπορεί να

Διαβάστε περισσότερα

2012 : (307) : , 29 2012 : 11.00 13.30

2012  : (307) : , 29 2012 : 11.00 13.30 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρµοσµένη Ηλεκτρολογία

Διαβάστε περισσότερα

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου Οργανική Χημεία Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου 1. Γενικά Δυνατότητα προσδιορισμού δομών με σαφήνεια χρησιμοποιώντας τεχνικές φασματοσκοπίας Φασματοσκοπία μαζών Μέγεθος, μοριακός τύπος

Διαβάστε περισσότερα

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ ΟΡΓΑΝΑ ΕΡΓΑΣΤΗΡΙΟΥ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες ΟΡΓΑΝΑ ΕΡΓΑΣΤΗΡΙΟΥ ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ 2 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ (MOBILE NETWORKS)

ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ (MOBILE NETWORKS) ΟΜΑΔΑ ΦΟΙΤΗΤΩΝ: Χριστιάνα Δαυίδ 960057 Ιάκωβος Στυλιανού 992129 ΕΠΛ 476: ΚΙΝΗΤΑ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ (MOBILE NETWORKS) Δρ. Χριστόφορος Χριστοφόρου Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Παρουσίαση 1- ΚΕΡΑΙΕΣ

Διαβάστε περισσότερα

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα. Copyright 2009 Pearson Education, Inc. Κεφάλαιο31 Εξισώσεις Maxwellκαι ΗλεκτροµαγνητικάΚύµατα ΠεριεχόµεναΚεφαλαίου 31 Τα µεταβαλλόµενα ηλεκτρικά πεδία παράγουν µαγνητικά πεδία. Ο Νόµος του Ampère-Ρεύµα µετατόπισης Νόµος του Gauss s στο µαγνητισµό

Διαβάστε περισσότερα

Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης

Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης Επιδόσεις της σύνδεσης για κάλυψη µε κεραία πολλαπλής δέσµης σε σχέση µε κάλυψη µε κεραία απλής δέσµης Η συνολική ποιότητα της σύνδεσης µέσω ραδιοσυχνοτήτων εξαρτάται από την 9000 απολαβή της κεραίας του

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΑΛΜΟΓΡΑΦΟ

ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΑΛΜΟΓΡΑΦΟ 4.1 ΑΣΚΗΣΗ 4 ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΑΛΜΟΓΡΑΦΟ A. ΣΥΝΘΕΣΗ ΚΑΘΕΤΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΥΡΕΣΗ ΤΗΣ ΔΙΑΦΟΡΑΣ ΦΑΣΕΩΣ ΤΟΥΣ Η σύνθεση δύο καθέτων ταλαντώσεων, x x0 t, y y0 ( t ) του ίδιου πλάτους της ίδιας συχνότητας

Διαβάστε περισσότερα

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno. Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου Κβάντωση ηλεκτρικού φορτίου ( q ) Q=Ne Ολικό

Διαβάστε περισσότερα

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι

ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Θέμα 1 ο ιαγώνισμα στη Φυσική Γ Λυκείου Κατεύθυνσης Επαναληπτικό Ι Στα ερωτήματα 1 5 του πρώτου θέματος, να μεταφέρετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα της απάντησης που θεωρείτε

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,

Διαβάστε περισσότερα

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Ένα ρεύµα ονοµάζεται εναλλασσόµενο όταν το πλάτος του χαρακτηρίζεται από µια συνάρτηση του χρόνου, η οποία εµφανίζει κάποια περιοδικότητα. Το συνολικό ρεύµα που διέρχεται από µια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα

1/3/2009. Φλώρος Ανδρέας Επίκ. Καθηγητής. Ευαισθησία μικροφώνων

1/3/2009. Φλώρος Ανδρέας Επίκ. Καθηγητής. Ευαισθησία μικροφώνων Ηλεκτροακουστικοί μετατροπείς Μάθημα: «Ηλεκτροακουστική & Ακουστική Χώρων» Μετατρέπουν ακουστική/ηλεκτρική/μηχανική ενέργεια που παράγεται σε κάποιο υποσύστημα σε κάποια άλλη μορφή Συνδιάζουν πολλαπλά

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΚΑΤΑΜΕΡΙΣΤΩΝ ΚΑΙ ΔΟΚΙΜΙΩΝ ΓΙΑ ΤΟ ΝΕΟ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΚΑΤΑΜΕΡΙΣΤΩΝ ΚΑΙ ΔΟΚΙΜΙΩΝ ΓΙΑ ΤΟ ΝΕΟ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΚΑΤΑΜΕΡΙΣΤΩΝ ΚΑΙ ΔΟΚΙΜΙΩΝ ΓΙΑ ΤΟ ΝΕΟ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ του Σπουδαστή Σταμούλια Π. Γεώργιου Α.Μ. 27731 Επιβλέπων: Δρ. Ψωμόπουλος Σ. Κωνσταντίνος Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΚΑΙ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΜΗ ΙΟΝΙΖΟΥΣΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ

ΜΕΤΡΗΣΗ ΚΑΙ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΜΗ ΙΟΝΙΖΟΥΣΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΜΕΤΡΗΣΗ ΚΑΙ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΜΗ ΙΟΝΙΖΟΥΣΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ Οποτε ακούτε ραδιόφωνο, βλέπετε τηλεόραση, στέλνετε SMS χρησιµοποιείτε ηλεκτροµαγνητική ακτινοβολία (ΗΜΑ). Η ΗΜΑ ταξιδεύει µε

Διαβάστε περισσότερα

Το εξεταστικό δοκίµιο µαζί µε το τυπολόγιο αποτελείται από εννιά (9) σελίδες. Τα µέρη του εξεταστικού δοκιµίου είναι τρία (Α, Β και Γ ).

Το εξεταστικό δοκίµιο µαζί µε το τυπολόγιο αποτελείται από εννιά (9) σελίδες. Τα µέρη του εξεταστικού δοκιµίου είναι τρία (Α, Β και Γ ). ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (ΙI) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΕΦΑΡΜΟΣΜΕΝΗ ΗΛΕΚΤΡΟΛΟΓΙΑ

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

Γενικά για µικροκύµατα. ηµιουργία ηλεκτροµαγνητικών κυµάτων.

Γενικά για µικροκύµατα. ηµιουργία ηλεκτροµαγνητικών κυµάτων. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 5 1. Άσκηση 1 Γενικά για µικροκύµατα. ηµιουργία ηλεκτροµαγνητικών κυµάτων. 1.1 Εισαγωγή Τα µικροκύµατα είναι ηλεκτροµαγνητική ακτινοβολία όπως το ορατό φώς, οι ακτίνες

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Σύστημα μετάδοσης με οπτικές ίνες Tο οπτικό φέρον κύμα μπορεί να διαμορφωθεί είτε από αναλογικό

Διαβάστε περισσότερα

5. ΜΟΝΟΦΑΣΙΚΟΙ ΚΑΙ ΑΛΛΟΙ ΚΙΝΗΤΗΡΕΣ

5. ΜΟΝΟΦΑΣΙΚΟΙ ΚΑΙ ΑΛΛΟΙ ΚΙΝΗΤΗΡΕΣ 73 5. ΜΟΝΟΦΑΣΙΚΟΙ ΚΑΙ ΑΛΛΟΙ ΚΙΝΗΤΗΡΕΣ Στην συνέχεια εξετάζονται οι µονοφασικοί επαγωγικοί κινητήρες αλλά και ορισµένοι άλλοι όπως οι τριφασικοί σύγχρονοι κινητήρες που υπάρχουν σε µικρό ποσοστό σε βιοµηχανικές

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Τα φίλτρα είναι ηλεκτρικά δικτυώματα που αφήνουν να περνούν απαραμόρφωτα ηλεκτρικά σήματα μέσα σε συγκεκριμένες ζώνες συχνοτήτων και ταυτόχρονα μηδενίζουν κάθε άλλο ηλεκτρικό

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά: Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 9 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : Εφαρμοσμένη Ηλεκτρολογία

Διαβάστε περισσότερα