Core Mathematics C34

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Core Mathematics C34"

Transcript

1 Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Core Mathematics C34 Advanced Tuesday 21 June 2016 Morning Time: 2 hours 30 minutes You must have: Mathematical Formulae and Statistical Tables (Blue) Paper Reference WMA02/01 Total Marks P46714A 2016 Pearson Education Ltd. 1/1/1/1/1/1/ Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. Instructions Use black ink or ball-point pen. If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used. Fill in the boxes at the top of this page with your name, centre number and candidate number. Answer all questions and ensure that your answers to parts of questions are clearly labelled. Answer the questions in the spaces provided there may be more space than you need. You should show sufficient working to make your methods clear. Answers without working may not gain full credit. When a calculator is used, the answer should be given to an appropriate degree of accuracy. Information The total mark for this paper is 125. The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. Advice Read each question carefully before you start to answer it. Try to answer every question. Check your answers if you have time at the end. *P46714A0152* Turn over

2 1. (a) Express 3cos +5sin in the form Rcos( ), where R and are constants, R and Give the exact value of R and give the value of to 2 decimal places. (3) (b) Hence solve, for 0 360, the equation 3cos +5sin = 2 Give your answers to one decimal place. (c) Use your solutions to parts (a) and (b) to deduce the smallest positive value of for which 3cos 5sin = 2 (4) (2) 2 *P46714A0252*

3 Question 1 continued *P46714A0352* 3 Turn over

4 Question 1 continued 4 *P46714A0452*

5 Question 1 continued (Total 9 marks) Q1 *P46714A0552* 5 Turn over

6 π 2. The point P with coordinates,1 lies on the curve with equation 2 2 π 5π 4xsin x = πy + 2 x, x 6 6 Find an equation of the normal to the curve at P. (6) 6 *P46714A0652*

7 Question 2 continued (Total 6 marks) Q2 *P46714A0752* 7 Turn over

8 3. (a) Find the binomial expansion of (1 + ax) 3, ax 1 in ascending powers of x, up to and including the term in x 3, giving each coefficient as simply as possible in terms of the constant a. (3) f( x 2 + 3x ) = ( 1 + ax), ax 1 3 In the series expansion of f(x), the coefficient of x 2 is 3 Given that 0 (b) find the value of the constant a, (c) find the coefficient of x 3 in the series expansion of f(x), giving your answer as a simplified fraction. (2) (4) 8 *P46714A0852*

9 Question 3 continued *P46714A0952* 9 Turn over

10 Question 3 continued 10 *P46714A01052*

11 Question 3 continued (Total 9 marks) Q3 *P46714A01152* 11 Turn over

12 4 3 2 x + x 7x + 8x g( x) =, 2 x + x 12 (a) Given that x > 3, x x + x 7x + 8x 48 2 B x + A + 2 x + x 12 x 3 find the values of the constants A and B. (b) Hence, or otherwise, find the equation of the tangent to the curve with equation y = g(x) at the point where x = 4. Give your answer in the form y = mx + c, where and c are constants to be determined. (5) (4) 12 *P46714A01252*

13 Question 4 continued *P46714A01352* 13 Turn over

14 Question 4 continued 14 *P46714A01452*

15 Question 4 continued (Total 9 marks) Q4 *P46714A01552* 15 Turn over

16 5. Use integration by parts to find the exact value of 0 2 x2 Write your answer as a single simplified fraction. (6) x dx 16 *P46714A01652*

17 Question 5 continued *P46714A01752* 17 Turn over

18 Question 5 continued 18 *P46714A01852*

19 Question 5 continued (Total 6 marks) Q5 *P46714A01952* 19 Turn over

20 6. Given that and are constants and that a b 0 (a) on separate diagrams, sketch the graph with equation (i) y = x a (ii) y = x a b Show on each sketch the coordinates of each point at which the graph crosses or meets the x-axis and the y-axis. (5) (b) Hence or otherwise find the complete set of values of x for which x a b 1 x 2 giving your answer in terms of a and b. (4) 20 *P46714A02052*

21 Question 6 continued *P46714A02152* 21 Turn over

22 Question 6 continued 22 *P46714A02252*

23 Question 6 continued (Total 9 marks) Q6 *P46714A02352* 23 Turn over

24 7. y O Figure 1 R 2 5 x Diagram not drawn to scale 1 Figure 1 shows a sketch of part of the curve with equation y =, x 25. 2x + 5 The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the lines with equations x = 2 and x = 5 (a) Use the trapezium rule with three strips of equal width to find an estimate for the area of R, giving your answer to 3 decimal places. (4) (b) Use calculus to find the exact area of R. (c) Hence calculate the magnitude of the error of the estimate found in part (a), giving your answer to one significant figure. (1) (4) 24 *P46714A02452*

25 Question 7 continued *P46714A02552* 25 Turn over

26 Question 7 continued 26 *P46714A02652*

27 Question 7 continued (Total 9 marks) Q7 *P46714A02752* 27 Turn over

28 8. (a) Prove that (b) Hence solve, for 0 (2n + 1) π sin 2x tan x tan xcos 2 x, x, n Z 2 π θ < 2 (i) sin 2θ tan θ = 3 cos 2θ (ii) tan( θ + 1)cos(2θ + 2) sin(2θ + 2) = 2 Give your answers in radians to 3 significant figures, as appropriate. (.) (4) (7) 28 *P46714A02852*

29 Question 8 continued *P46714A02952* 29 Turn over

30 Question 8 continued 30 *P46714A03052*

31 Question 8 continued (Total 11 marks) Q8 *P46714A03152* 31 Turn over

32 9. P O Figure 2 The population of a species of animal is being studied. The population P, at time t years from the start of the study, is assumed to be where k is a positive constant. P = kt 9000e, t 0 kt 3e + 7 A sketch of the graph of P against t is shown in Figure 2. Use the given equation to (a) find the population at the start of the study, (b) find the value for the upper limit of the population. Given that P = 2500 when t = 4 (c) calculate the value of k, giving your answer to 3 decimal places. Using this value for k, (d) find, using d P, the rate at which the population is increasing when t = 10 dt Give your answer to the nearest integer. t (2) (1) (5) (3) 32 *P46714A03252*

33 Question 9 continued *P46714A03352* 33 Turn over

34 Question 9 continued 34 *P46714A03452*

35 Question 9 continued (Total 11 marks) Q9 *P46714A03552* 35 Turn over

36 π π 10. (a) Given that < g( x) <, sketch the graph of y = g(x) where 2 2 g(x) = arctan x, (b) Find the exact value of x for which 3g(x + 1) = 0 x 1 The equation arctan x 4 + x = 0 has a positive root at x = radians. 2 (c) Show that 5 6 The iteration formula x n + 1 = 8 2 arctan x n can be used to find an approximation for (d) Taking x 0 = 5, use this formula to find x 1 and x 2, giving each answer to 3 decimal places. (2) (2) (3) (2) 36 *P46714A03652*

37 Question 10 continued *P46714A03752* 37 Turn over

38 Question 10 continued 38 *P46714A03852*

39 Question 10 continued (Total 9 marks) Q10 *P46714A03952* 39 Turn over

40 11. With respect to a fixed origin O, the lines l 1 and l 2 are given by the equations l l : r = 4 + λ : r = 7 + μ 4 3 b where and are scalar parameters and b is a constant. Given that l 1 and l 2 meet at the point X, (a) show that b = 3 and find the coordinates of X. The point A lies on l 1 and has coordinates (6, 3, 5) The point B lies on l 2 and has coordinates (14, 9, 9) (b) Show that angle AXB = 1 arccos 10 (c) Using the result obtained in part (b), find the exact area of triangle AXB. Write your answer in the form p q where and are integers to be determined. (3) (5) (4) 40 *P46714A04052*

41 Question 11 continued *P46714A04152* 41 Turn over

42 Question 11 continued 42 *P46714A04252*

43 Question 11 continued (Total 12 marks) *P46714A04352* Q11 43 Turn over

44 12. y O S 3 2 Figure 3 Figure 3 shows a sketch of the curve with parametric equations x = 3sin t, y = 2sin2 t, 0 t The finite region S, shown shaded in Figure 3, is bounded by the curve, the x-axis and the line with equation x = 3 2 The shaded region S is rotated through 2 radians about the x-axis to form a solid of revolution. (a) Show that the volume of the solid of revolution is given by a 2 3 k sin tcos t dt where k and a are constants to be given in terms of 0 (b) Use the substitution u = sin t, or otherwise, to find the exact value of this volume, giving your answer in the form pπ where and are integers. q (.) (6) π 2 x (5) 44 *P46714A04452*

45 Question 12 continued *P46714A04552* 45 Turn over

46 Question 12 continued 46 *P46714A04652*

47 Question 12 continued (Total 11 marks) Q12 *P46714A04752* 47 Turn over

48 13. Figure 4 Figure 4 shows a hemispherical bowl containing some water. At t seconds, the height of the water is cm and the volume of the water is V cm 3, where 1 = (30 ), 0 < V πh h h The water is leaking from a hole in the bottom of the bowl. Given that d V dt (a) show that d h dt (b) Write = 1 V 10 30( 20 ) ( 30 ) h( 30 h) = 30( 20 h) Given that = 10 when t = 0, in partial fraction form. (c) use your answers to parts (a) and (b) to find the time taken for the height of the water to fall to 5 cm. Give your answer in seconds to 2 decimal places. (6) (5) (3) 48 *P46714A04852*

49 Question 13 continued *P46714A04952* 49 Turn over

50 Question 13 continued 50 *P46714A05052*

51 Question 13 continued *P46714A05152* 51 Turn over

52 Question 13 continued (Total 14 marks) TOTAL FOR PAPER: 125 MARKS END Q13 52 *P46714A05252*

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6666/01 Edexcel GCE Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

43603H. (NOV1243603H01) WMP/Nov12/43603H. General Certificate of Secondary Education Higher Tier November 2012. Unit 3 10 11 H

43603H. (NOV1243603H01) WMP/Nov12/43603H. General Certificate of Secondary Education Higher Tier November 2012. Unit 3 10 11 H Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier November 2012 Pages 3 4 5 Mark Mathematics

Διαβάστε περισσότερα

Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary

Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Centre No. Candidate No. Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Friday 20 May 2011 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

Διαβάστε περισσότερα

Advanced Unit 2: Understanding, Written Response and Research

Advanced Unit 2: Understanding, Written Response and Research Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Thursday 9 June 2011 Morning Time: 3 hours Paper

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Advanced Unit 2: Understanding, Written Response and Research

Advanced Unit 2: Understanding, Written Response and Research Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Tuesday 18 June 2013 Afternoon Time: 3 hours Paper

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Modern Greek *P40074A0112* P40074A. Edexcel International GCSE. Thursday 31 May 2012 Morning Time: 3 hours. Instructions. Information.

Modern Greek *P40074A0112* P40074A. Edexcel International GCSE. Thursday 31 May 2012 Morning Time: 3 hours. Instructions. Information. Write your name here Surname Other names Edexcel International GCSE Centre Number Modern Greek Candidate Number Thursday 31 May 2012 Morning Time: 3 hours You do not need any other materials. Paper Reference

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Read each question carefully before you start to answer it. Try to answer every question. Check your answers if you have time at the end.

Read each question carefully before you start to answer it. Try to answer every question. Check your answers if you have time at the end. Write your name here Surname Other names Pearson Edexcel International GCSE Centre Number Modern Greek Candidate Number Monday 22 June 2015 Morning Time: 3 hours You do not need any other materials. Paper

Διαβάστε περισσότερα

Modern Greek *P40075A0112* P40075A. Edexcel International GCSE. Monday 3 June 2013 Morning Time: 3 hours. Instructions. Information.

Modern Greek *P40075A0112* P40075A. Edexcel International GCSE. Monday 3 June 2013 Morning Time: 3 hours. Instructions. Information. Write your name here Surname Other names Edexcel International GCSE Centre Number Modern Greek Candidate Number Monday 3 June 2013 Morning Time: 3 hours You do not need any other materials. Paper Reference

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2517291414* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2013 1 hour 30 minutes

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding

Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Thursday 24 May 2007 Morning Time: 45 minutes

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding

Paper Reference. Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Friday 18 June 2010 Morning Time: 45 minutes

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Candidate Number. General Certificate of Secondary Education Higher Tier November 2013

Candidate Number. General Certificate of Secondary Education Higher Tier November 2013 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Pages Mark General Certificate of Secondary Education Higher Tier November 2013 3 4 5 Mathematics

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Subsidiary Unit 1: Understanding and Written Response Monday 18 May 2009 Afternoon Time: 2 hours 45 minutes

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

*2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009

*2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *2354431106* GREEK 0543/02 Paper 2 Reading and Directed Writing May/June 2009 1 hour 30 minutes

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *4358398658* GREEK 0543/04 Paper 4 Writing May/June 2015 1 hour Candidates answer on the Question

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Cambridge International Examinations Cambridge International General Certificate of Secondary Education Cambridge International Examinations Cambridge International General Certificate of Secondary Education *3148288373* GREEK 0543/04 Paper 4 Writing May/June 2016 1 hour Candidates answer on the Question

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Paper Reference. Modern Greek Paper 1 Listening and Responding. Friday 15 May 2009 Afternoon Time: 45 minutes (+5 minutes reading time)

Paper Reference. Modern Greek Paper 1 Listening and Responding. Friday 15 May 2009 Afternoon Time: 45 minutes (+5 minutes reading time) Centre No. Candidate No. Paper Reference 1 7 7 6 0 1 Surname Signature Paper Reference(s) 1776/01 Edexcel GCSE Modern Greek Paper 1 Listening and Responding Friday 15 May 2009 Afternoon Time: 45 minutes

Διαβάστε περισσότερα

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin. Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Monday 16 May 2011 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς; ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

Advanced Unit 2: Understanding, Written Response and Research

Advanced Unit 2: Understanding, Written Response and Research Write your name here Surname Other names Pearson Edexcel GCE Centre Number Candidate Number Greek Advanced Unit 2: Understanding, Written Response and Research Thursday 11 June 2015 Afternoon Time: 3 hours

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Pearson Edexcel GCE Greek Advanced Subsidiary Unit 1: Understanding and Written Response

Pearson Edexcel GCE Greek Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Pearson Edexcel GE entre Number andidate Number Greek Advanced Subsidiary Unit 1: Understanding and Written Response Tuesday 17 May 2016 Morning Time: 2 hours 45

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Modern Greek Extension

Modern Greek Extension Centre Number 2017 HIGHER SCHOOL CERTIFICATE EXAMINATION Student Number Modern Greek Extension Written Examination General Instructions Reading time 10 minutes Working time 1 hour and 50 minutes Write

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response. Wednesday 19 May 2010 Afternoon Time: 2 hours 45 minutes

Advanced Subsidiary Unit 1: Understanding and Written Response. Wednesday 19 May 2010 Afternoon Time: 2 hours 45 minutes Write your name here Surname Other names Edexcel GCE Centre Number Candidate Number Greek Advanced Subsidiary Unit 1: Understanding and Written Response Wednesday 19 May 2010 Afternoon Time: 2 hours 45

Διαβάστε περισσότερα

GCSE MATHEMATICS (LINEAR) Higher Tier Paper 2. Morning (NOV H01) Materials. Instructions. Information. Advice PMT

GCSE MATHEMATICS (LINEAR) Higher Tier Paper 2. Morning (NOV H01) Materials. Instructions. Information. Advice PMT Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature GCSE H MATHEMATICS (LINEAR) Higher Tier Paper 2 Friday 4 November 2016 Materials For this

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Pearson Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Friday 5 June 2015 fternoon Time: 2 hours 45

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

PHYA1. General Certificate of Education Advanced Subsidiary Examination June 2012. Particles, Quantum Phenomena and Electricity

PHYA1. General Certificate of Education Advanced Subsidiary Examination June 2012. Particles, Quantum Phenomena and Electricity Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 1 For this paper you must have: l a pencil and a ruler l a calculator l a Data

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Friday 14 May 2010 Afternoon Time: 3 hours

Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Friday 14 May 2010 Afternoon Time: 3 hours Centre No. Candidate No. Paper Reference 7 6 1 5 0 1 Surname Signature Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level Friday 14 May 2010 Afternoon Time: 3 hours Initial(s)

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Nuclear Physics 5. Name: Date: 8 (1)

Nuclear Physics 5. Name: Date: 8 (1) Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Wednesday 20 May 2015 Afternoon

Wednesday 20 May 2015 Afternoon Oxford Cambridge and RSA Wednesday 20 May 2015 Afternoon LEVEL 3 CERTIFICATE ENGINEERING H865/01 Mathematical Techniques and Applications for Engineers * 5 1 0 8 5 0 0 8 2 4 * Candidates answer on the

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Monday 11 January 2010 Afternoon Time: 3 hours

Paper Reference. Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level. Monday 11 January 2010 Afternoon Time: 3 hours Centre No. Candidate No. Paper Reference 7 6 1 5 0 1 Surname Signature Paper Reference(s) 7615/01 London Examinations GCE Modern Greek Ordinary Level Monday 11 January 2010 Afternoon Time: 3 hours Initial(s)

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Physics (Specification A & B) PHY6T/Q11/test

Physics (Specification A & B) PHY6T/Q11/test Centre Number Surname Candidate Signature Candidate Number Other Names Notice to Candidate. The work you submit for assessment must be your own. If you copy from someone else or allow another candidate

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

PHYA4/2. (JUN14PHYA4201) WMP/Jun14/PHYA4/2/E4. General Certificate of Education Advanced Level Examination June 2014

PHYA4/2. (JUN14PHYA4201) WMP/Jun14/PHYA4/2/E4. General Certificate of Education Advanced Level Examination June 2014 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A General Certificate of Education Advanced Level Examination June 2014 PHYA4/2 Question

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

PHYA1 (JUN13PHYA101) General Certificate of Education Advanced Subsidiary Examination June 2013. Particles, Quantum Phenomena and Electricity TOTAL

PHYA1 (JUN13PHYA101) General Certificate of Education Advanced Subsidiary Examination June 2013. Particles, Quantum Phenomena and Electricity TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 1 For this paper you must have: l a pencil and a ruler l a calculator l a Data

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Cambridge International Examinations Cambridge International General Certifi cate of Secondary Education

Cambridge International Examinations Cambridge International General Certifi cate of Secondary Education Cambridge International Examinations Cambridge International General Certifi cate of Secondary Education *7662998175* MATHEMATICS 0580/13 Paper 1 (Core) May/June 2014 Candidates answer on the Question

Διαβάστε περισσότερα

Mathematics (Linear) 43652H. General Certificate of Secondary Education Higher Tier June 2012. Paper 2. Wednesday 13 June 2012 9.00 am to 11.

Mathematics (Linear) 43652H. General Certificate of Secondary Education Higher Tier June 2012. Paper 2. Wednesday 13 June 2012 9.00 am to 11. Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier June 2012 Pages 2 3 4 5 Mark Mathematics

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications: UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences EECS 150 Fall 2001 Prof. Subramanian Midterm II 1) You are implementing an 4:1 Multiplexer that has the following specifications:

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

1999 MODERN GREEK 2 UNIT Z

1999 MODERN GREEK 2 UNIT Z STUDENT NUMBER CENTRE NUMBER HIGHER SCHOOL CERTIFICATE EXAMINATION 1999 MODERN GREEK 2 UNIT Z (55 Marks) Time allowed Two hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Write your Student

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education GREEK 0543/03 Paper 3 Speaking and Listening Role Play Booklet One For Examination from 2011

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsandmathstutor.com Centre No. Candidate No. physicsandmathstutor.com Paper Reference 6 6 8 3 0 1 Paper Reference(s) 6683/01 Edexcel GCE Statistics S1 Advanced/Advanced Subsidiary Thursday 9 June

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

Candidate Number. General Certificate of Education Advanced Level Examination June 2010 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Level Examination June 2010 Question 1 2 Mark Physics

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Thursday 22 May 2008 Afternoon Time: 55 minutes

Paper Reference. Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding. Thursday 22 May 2008 Afternoon Time: 55 minutes Centre No. Candidate No. Paper Reference 1 7 7 6 0 3 Surname Signature Paper Reference(s) 1776/03 Edexcel GCSE Modern Greek Paper 3 Reading and Responding Thursday 22 May 2008 Afternoon Time: 55 minutes

Διαβάστε περισσότερα