Ιστότοπος του Τμήματος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr"

Transcript

1 Ιστότοπος του Τμήματος Αθήνα, 2013

2 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Πρυτανικές Αρχές ΠΡΥΤΑΝΗΣ Καθηγητής Κωνσταντίνος Γάτσιος ΑΝΤΙΠΡΥΤΑΝΕΙΣ Καθηγητής Εμμανουήλ Γιακουμάκης και Καθηγητής Γεώργιος Γιαγλής ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΕΔΡΟΣ Καθηγητής Νικόλαος Φράγκος ΑΝΑΠΛΗΡΩΤΗΣ ΠΡΟΕΔΡΟΣ Καθηγητής Μιχάηλ Ζαζάνης

3 Γενικά Το τμήμα ιδρύθηκε τον Ιούνιο του 1989 με το ΠΔ 377/1989 και λειτούργησε από την ακαδημαϊκή χρονιά Ήταν και εξακολουθεί να είναι το πρώτο και το μόνο αμιγές Τμήμα Στατιστικής σε Ελληνικό Πανεπιστήμιο. Το πτυχίο που χορηγεί είναι ενιαίο και φέρει την επωνυμία του Τμήματος. Στόχος του προπτυχιακού προγράμματος του Τμήματος Στατιστικής είναι η προαγωγή και η μετάδοση της γνώσης με την έρευνα και τη διδασκαλία στο γνωστικό πεδίο της επιστήμης της Στατιστικής και των συναφών με αυτήν αντικειμένων, θεωρητικών και εφαρμοσμένων, και η κατάρτιση στελεχών υψηλής στάθμης για τις ανάγκες του δημόσιου και ιδιωτικού τομέα. Η υλοποίηση του στόχου αυτού επιδιώκεται μέσω της ανάπτυξης της έρευνας και της εκπαίδευσης, η οργάνωση των οποίων εξασφαλίζει στους πτυχιούχους τόσο τις κατάλληλες θεωρητικές γνώσεις όσο και την ανάπτυξη της ικανότητας εφαρμογής τους στις πραγματικές ανάγκες διαφόρων τομέων της οικονομικής δραστηριότητας (Εθνική Στατιστική Υπηρεσία της Ελλάδος, Δημόσιοι και Ιδιωτικοί Οργανισμοί όπως Υπουργεία, Νοσοκομεία και Τράπεζες με υπηρεσίες Στατιστικής, Βιομηχανία, Ασφαλιστικές Εταιρίες, Εταιρίες Δημοσκοπήσεων, Ερευνητικά Κέντρα κ.λ.π.). Ο στόχος αυτός επιτυγχάνεται επίσης με την ανάπτυξη των διεθνών επαφών, κύρια έκφραση των οποίων στον εκπαιδευτικό τομέα είναι το πρόγραμμα ERASMUS. Η ανάγκη κατάρτισης επιστημόνων στις σύγχρονες τεχνικές και εφαρμογές της επιστήμης της Στατιστικής, καθιστά προφανές ότι οι πτυχιούχοι του Τμήματος Στατιστικής θα έχουν ιδιαίτερη ζήτηση στην αγορά εργασίας στα επόμενα χρόνια ιδιαίτερα λόγω της ενοποίησης των Ευρωπαϊκών αγορών. Το Προπτυχιακό Πρόγραμμα Σπουδών του Τμήματος αποτελεί προϊόν της προσπάθειας ανταπόκρισης στις προαναφερθείσες απαιτήσεις. Τα μαθήματα από τα οποία αποτελείται προσφέρουν πέρα από τη βασική κατάρτιση στη Στατιστική - ειδικότερες γνώσεις τόσο στον γνωστικό χώρο της Στατιστικής όσο και σε άλλους γνωστικούς χώρους δίνοντας έτσι τη δυνατότητα στο σπουδαστή να προσαρμόσει τις βασικές σπουδές του στη Στατιστική και να τις εξειδικεύσει. Το πρόγραμμα είναι εναρμονισμένο με τη φιλοσοφία των προγραμμάτων σπουδών των Ευρωπαϊκών Πανεπιστημίων με τα οποία συνεργάζεται το Τμήμα, αφού είναι βασισμένο στο Σύστημα Μεταφοράς Εκπαιδευτικών Μονάδων ECTS (European Credit Transfer System). Βάση, στο σύστημα αυτό, αποτελεί η Πιστωτική Μονάδα (ΠΜ). Σε κάθε μάθημα αντιστοιχεί ένας αριθμός ΠΜ που αναφέρεται στο πρόγραμμα. Για τον καθορισμό των ΠΜ κάθε μαθήματος, λαμβάνονται υπόψη οι συνολικές απαιτήσεις του μαθήματος (διαλέξεις, εργασίες, απαιτούμενη προετοιμασία κ.τ.λ.). Το ακαδημαϊκό έτος ξεκίνησε το Πρόγραμμα Σπουδών Παιδαγωγικής και Διδακτικής Επάρκειας. Το Πρόγραμμα εστιάζεται στις Επιστήμες της Αγωγής και της Εκπαίδευσης και οδηγεί στη λήψη του Πιστοποιητικού Παιδαγωγικής και Διδακτικής Επάρκειας-Πιστοποιητικό στις Επιστήμες της Αγωγής σύμφωνα με τον Ν.3848/2010. Το Πρόγραμμα είναι ετήσιας διάρκειας (2 εξάμηνα), απευθύνεται σε τελειόφοιτους φοιτητές/τριες (7ου, 8ου εξαμήνου) και αποτελείται από τις ακόλουθες δύο ενότητες: α. Παιδαγωγική επάρκεια Απαρτίζεται, για τα δυο εξάμηνα, από συνολικά οκτώ (8) μαθήματα των Επιστημών της 3

4 Αγωγής, 2ωρης εβδομαδιαίας διδασκαλίας. β. Διδακτική επάρκεια Απαρτίζεται, για τα δυο εξάμηνα, από τα μαθήματα «Ειδική Διδακτική Μεθοδολογία Διδακτική Μαθημάτων Ειδικότητας», «Πρακτική Άσκηση στη Διδασκαλία Ι και ΙΙ" (ΠΑΔ Ι και ΙΙ)» που αναλύονται σε ένα πλέγμα διδακτικών δραστηριοτήτων των φοιτητών/τριών σε πραγματικές συνθήκες στις σχολικές μονάδες. Βασικός στόχος του Προγράμματος Σπουδών "Παιδαγωγικής και Διδακτικής Επάρκειας" του ΟΠΑ είναι η διάνοιξη ενός νέου επαγγελματικού ορίζοντα για τους αποφοίτους του ΟΠΑ, αυτόν της εκπαίδευσης με την κατάρτιση ικανών επιστημόνων-εκπαιδευτικών, που θα μπορούν να ανταποκριθούν στις μελλοντικές ανάγκες της Ελληνικής εκπαίδευσης. Προοπτικές απασχόλησης των αποφοίτων Αρχίζει μια περίοδος, στην οποία θα είναι ολοένα περισσότερο απαραίτητη η ενεργοποίηση στελεχών και εκπαιδευτών, που διαθέτουν παιδαγωγική και διδακτική επάρκεια και που θα μπορούν να σχεδιάζουν προγράμματα διά βίου μάθησης. A. Νόμος 3848/ (Αναβάθμιση του ρόλου του εκπαιδευτικού καθιέρωση κανόνων αξιολόγησης και αξιοκρατίας στην εκπαίδευση) Σύμφωνα με το νόμο αυτό, από το 2014 η συμμετοχή στο διαγωνισμό του ΑΣΕΠ των υποψήφιων εκπαιδευτικών αποφοίτων όλων των τμημάτων του Ο.Π.Α. θα προϋποθέτει την κατοχή παιδαγωγικής και διδακτικής επάρκειας για το διορισμό στη Δευτεροβάθμια Εκπαίδευση. Ύστερα από ορισμένη εκπαιδευτική προϋπηρεσία στην Πρωτοβάθμια και Δευτεροβάθμια Εκπαίδευση, ο εκπαιδευτικός μπορεί να εξελιχτεί σε διοικητικό στέλεχος, δηλαδή σε διευθυντή σχολικής μονάδας, υποδιευθυντή, σχολικό σύμβουλο κ.λπ. B. Νόμος για την «Ανάπτυξη της Διά Βίου Μάθησης» Το 2010 ψηφίστηκε ο νόμος για την «Ανάπτυξη της Διά Βίου Μάθησης», ο οποίος διανοίγει πολλές ενδιαφέρουσες δυνατότητες και προοπτικές στο πεδίο της Εκπαίδευσης Ενηλίκων. Συγκεκριμένα, θα δημιουργηθεί Εθνικό Μητρώο φορέων άτυπης εκπαίδευσης ενηλίκων. Αυτό σημαίνει ότι θα χρειάζεται επιστημονική υποστήριξη αυτών των φορέων από στελέχη με εκπαιδευτική επάρκεια στους τομείς π.χ. της Οικονομίας, Διοίκησης, Πληροφορικής κ.λπ., ώστε να αποκτούν τα εχέγγυα για να εγγράφονται στο Εθνικό Μητρώο και για να υλοποιούν αποτελεσματικά τα προγράμματα μάθησης στο πλαίσιο των προγραμματικών συμβάσεων. Επιπλέον, σε κάθε Δήμο δημιουργείται τοπικό πρόγραμμα διά βίου μάθησης, με επιμορφωτικά προγράμματα για τη νέα γενιά και την τρίτη ηλικία, την επιχειρηματικότητα, την οικονομία, το management, το marketing, την καινοτομία, την πληροφορική κ.ά. Επίσης, οι Δήμοι θα ιδρύσουν Κέντρα Διά Βίου Μάθησης και υπηρεσιακές Μονάδες Διά Βίου Μάθησης. Απαιτήσεις του Προγράμματος Σπουδών: Για την απόκτηση του πτυχίου του Τμήματος ο φοιτητής θα πρέπει να συγκεντρώσει συνολικά 240 ΠΜ. Ο φοιτητής που θα επιλέξει να παρακολουθήσει τα μαθήματα του Προγράμματος Παιδαγωγικής και Διδακτικής Επάρκειας θα πάρει υποχρεωτικά επιπλέον την Πρακτική Άσκηση στη Διδασκαλία Ι και ΙΙ, που σημαίνει ότι θα πρέπει να συγκεντρώσει 252 ΠΜ για τη λήψη πτυχίου. Τα μαθήματα που προσφέρονται από το Τμήμα χωρίζονται, ανάλογα με το περιεχόμενο τους σε μαθήματα στατιστικού-μαθηματικού περιεχομένου και σε μαθήματα μη στατιστικούμαθηματικού περιεχομένου. 4

5 Τα μαθήματα του προγράμματος χωρίζονται σε τρεις βασικές κατηγορίες: τα 11 υποχρεωτικά μαθήματα (τα οποία πρέπει να παρακολουθήσουν όλοι οι φοιτητές του Τμήματος), και τα κάτωθι 6 υποχρεωτικά κατ επιλογήν μαθήματα (από τα οποία ο φοιτητής υποχρεούται να επιλέξει 4), 1. Πολυμεταβλητή Στατιστική Ανάλυση 2. Θεωρητική Στατιστική 3. Γενικευμένα Γραμμικά Μοντέλα, 4. Ανάλυση Χρονολογικών Σειρών 5. Στοχαστικές Ανελίξεις 6. Εισαγωγή στο Προγραμματισμό με R, S Plus, τα μαθήματα επιλογής τα οποία διαιρούνται σε μαθήματα που προσφέρονται από το Τμήμα Στατιστικής και μαθήματα που προσφέρονται από τα άλλα Τμήματα του Ιδρύματος. Στα δύο πρώτα εξάμηνα σπουδών ο φοιτητής μπορεί να εγγραφεί σε μαθήματα των οποίων οι ΠΜ δεν υπερβαίνουν τις 32 ανά εξάμηνο. Στο τρίτο και το τέταρτο εξάμηνο σπουδών ο φοιτητής μπορεί να εγγραφεί σε μαθήματα των οποίων οι ΠΜ δεν υπερβαίνουν τις 40 ανά εξάμηνο. Στο πέμπτο και το έκτο εξάμηνο σπουδών ο φοιτητής μπορεί να εγγραφεί σε μαθήματα των οποίων οι ΠΜ δεν υπερβαίνουν τις 48 ανά εξάμηνο. Στο έβδομο και το όγδοο εξάμηνο σπουδών αλλά και πέραν αυτών των εξαμήνων ο φοιτητής μπορεί να εγγραφεί σε μαθήματα των οποίων οι ΠΜ δεν υπερβαίνουν τις 48 ανά εξάμηνο καθώς και ένα επιπλέον μάθημα. Ο φοιτητής εγγράφεται στο Τμήμα στην αρχή κάθε εξαμήνου σε ημερομηνίες που ανακοινώνονται από τη Γραμματεία και δηλώνει τα μαθήματα που επιλέγει. Αν δεν εγγραφεί για δύο συνεχόμενα εξάμηνα, διαγράφεται αυτοδικαίως από το Τμήμα (άρθρο 33, παρ.2 του νόμου 4009/2011). Στις επιλογές μαθημάτων για εγγραφή σε κάθε εξάμηνο (δηλώσεις μαθημάτων) πρέπει να προηγούνται τα υποχρεωτικά μαθήματα προηγούμενων εξαμήνων στα οποία ο φοιτητής δεν έχει εξεταστεί με επιτυχία, και τα οποία προσφέρονται στο συγκεκριμένο εξάμηνο. Ενεργοποιείται ο θεσμός των προαπαιτούμενων εκεί όπου αυτό κρίνεται απαραίτητο. Ειδικότερα, το μάθημα «Εκτιμητική-Έλεγχοι Υποθέσεων» του β εξαμήνου, θεωρείται προαπαιτούμενο για το μάθημα «Εισαγωγή στη Γραμμική Παλινδρόμηση» του γ εξαμήνου. Το μάθημα «Εισαγωγή στη Γραμμική Παλινδρόμηση» του γ εξαμήνου θεωρείται προαπαιτούμενο για τα μαθήματα «Ανάλυση Διακύμανσης και Σχεδιασμός Πειραμάτων» του δ εξαμήνου και «Ανάλυση Δεδομένων Ι» του ε εξαμήνου. Εκτός των 11 υποχρεωτικών μαθημάτων που αντιστοιχούν σε 88 ΠΜ, των 4 υποχρεωτικών κατ επιλογήν μαθημάτων που αντιστοιχούν σε 32 ΠΜ, για τη συμπλήρωση των υπολοίπων 120 απαιτούμενων ΠΜ, ο φοιτητής πρέπει να συγκεντρώσει τουλάχιστον 72 ΠΜ από τα μαθήματα επιλογής στατιστικού-μαθηματικού περιεχομένου που προσφέρονται από το Τμήμα. Οι υπόλοιπες 48 ΠΜ που απομένουν για να φτάσει κάποιος τις 240 ΠΜ για τη λήψη πτυχίου, είναι από μαθήματα επιλογής είτε από το τμήμα μας είτε από τα άλλα τμήματα του 5

6 πανεπιστημίου ή ενδεχομένως από το νέο γκρουπ μαθημάτων παιδαγωγικής και διδακτικής επάρκειας. Πρόγραμμα Μαθημάτων Παιδαγωγικής και Διδακτικής Επάρκειας ΚΩΔΙΚΟΣ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ECTS ΜΕΡΟΣ Α : Μαθήματα Παιδαγωγικής Υποδομής (Παιδαγωγική Επάρκεια) 8301 Εισαγωγή στην Παιδαγωγική Επιστήμη Γενική και Εξελικτική Ψυχολογία Οργάνωση και Διοίκηση της Εκπαίδευσης και των Εκπαιδευτικών Μονάδων Εισαγωγή στη Διδακτική Μεθοδολογία- Αναλυτικά Προγράμματα Εκπαιδευτική Αξιολόγηση Ποιότητα στην Εκπαίδευση και τη Διδασκαλία Εισαγωγή στους Η/Υ Παιδαγωγικές Εφαρμογές στην Εκπαίδευση 6 ΜΕΡΟΣ Β : Ειδική Διδακτική (Διδακτική Επάρκεια) 8304 Ειδική Διδακτική Μεθοδολογία Διδακτική Μαθημάτων Ειδικότητας Πρακτική Άσκηση στη Διδασκαλία (Π.Α.Δ.) Ι Πρακτική Άσκηση στη Διδασκαλία (Π.Α.Δ.) ΙΙ 6 Τα μαθήματα του προγράμματος Παιδαγωγικής και Διδακτικής Επάρκειας καλύπτουν 48 πιστωτικές μονάδες, όσες είναι οι ελάχιστες ελεύθερες επιλογές που έχουν οι φοιτητές του Τμήματος Στατιστικής. Με την επιλογή αυτών των μαθημάτων ως ελεύθερες επιλογές ο φοιτητής που επιθυμεί να παρακολουθήσει το συγκεκριμένο πρόγραμμα φτάνει τις 240 πιστωτικές μονάδες που είναι και το ελάχιστο όριο για τη λήψη πτυχίου στο Τμήμα Στατιστικής. Με τις πιστωτικές μονάδες των υποχρεωτικών Π.Α.Δ. Ι και ΙΙ, (συνολικά 12ΠΜ) ο φοιτητής περνάει τις 240 πιστωτικές μονάδες που είναι το ελάχιστο όριο εκπαιδευτικών μονάδων για τη λήψη πτυχίου στο Τμήμα. Έτσι λοιπόν, ο φοιτητής που θα επιλέξει να παρακολουθήσει τα μαθήματα του Προγράμματος Παιδαγωγικής και Διδακτικής Επάρκειας θα πάρει υποχρεωτικά επιπλέον την Πρακτική Άσκηση στη Διδασκαλία Ι και ΙΙ, που σημαίνει ότι θα πρέπει να συγκεντρώσει 252ΠΜ για τη λήψη πτυχίου. Σημειώνεται ότι η Πρακτική Άσκηση στη Διδασκαλία Ι και ΙΙ είναι ξεχωριστή από την Πρακτική Άσκηση που ήδη υπάρχει στο πρόγραμμα Σπουδών του Τμήματος. Ο πίνακας των προσφερόμενων μαθημάτων ανανεώνεται κατ έτος ανάλογα με τα μαθήματα που προσφέρονται. Ο φοιτητής έχει τη δυνατότητα με την απόκτηση του πτυχίου του να λάβει βεβαίωση γνώσης Η/Υ, ισοδύναμη με το ECDL στο δημόσιο, εφόσον κατά τη διάρκεια των σπουδών του εξετασθεί επιτυχώς σε τέσσερα από τα παρακάτω μαθήματα: Τίτλος Μαθήματος ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΜΕ R, S-PLUS ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ Τμήμα ΣΤΑΤ ΣΤΑΤ ΣΤΑΤ ΣΤΑΤ ΠΛΗΡ ΠΛΗΡ ΠΛΗΡ ΠΛΗΡ 6

7 Από αυτά, τα τέσσερα προσφέρονται από το Τμήμα Στατιστικής και τα υπόλοιπα τέσσερα από το Τμήμα Πληροφορικής. Τέλος, δίνεται η ευκαιρία στους φοιτητές να παρακολουθήσουν μαθήματα για ένα εξάμηνο σε κάποιο αντίστοιχο τμήμα σε Πανεπιστήμιο του εξωτερικού μέσω του προγράμματος δια βίου μάθησης ERASMUS. Τα μαθήματα στα οποία θα εξεταστούν επιτυχώς αντιστοιχίζονται με μαθήματα του προγράμματος σπουδών του Τμήματος και αναγράφονται στην αναλυτική βαθμολογία των φοιτητών. 7

8 Το Προσωπικό του Τμήματος Διδακτικό Ερευνητικό Προσωπικό Καθηγητές 1. Γιαννακόπουλος Αθανάσιος, Πτυχίο Φυσικών Επιστημών Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, Ph.D. στη Στατιστική θεωρία των δυναμικών συστημάτων, University of Warwick. 2. Δελλαπόρτας Πέτρος, Πτυχίο Μαθηματικών Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, M.Sc. στη Στατιστική,University of Sheffield, Ph.D. στη Στατιστική, Plymouth Polytechnic. 3. Ζαζάνης Μιχαήλ, Δίπλωμα Τμήματος Ηλεκτρολόγων Μηχανικών Εθνικού Μετσόβειου Πολυτεχνείου, Ms στα Εφαρμοσμένα Μαθηματικά, Harvard University, Ph.D. στα Εφαρμοσμένα Μαθηματικά, από το Harvard University. 4. Ξεκαλάκη Ευδοκία, Πτυχίο Μαθηματικών, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, M.Sc. στις Πιθανότητες και τη Στατιστική, University of Sheffield, UK, Ph.D. στη Στατιστική, University of Bradford, UK. 5. Πανάρετος Ιωάννης, Πτυχίο Μαθηματικών, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, M.Sc. στις Πιθανότητες και τη Στατιστική, University of Sheffield, UK, Ph.D. στις Πιθανότητες και τη Στατιστική, Ph.D στη Στατιστική, University of Bradford, UK. 6. Φράγκος Νικόλαος, Πτυχίο Μαθηματικών, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, M.Sc. στα Μαθηματικά, Ohio State University, Ph. D. στις Πιθανότητες Στοχαστικές Ανελίξεις, Ohio State University. Αναπληρωτές Καθηγητές 1. Βασδέκης Βασίλειος, Πτυχίο Μαθηματικών Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, M.Sc. στην Εφαρμοσμένη Στατιστική, Oxford University, D.Phil στη Στατιστική, Oxford University 2. Δημάκη Αικατερίνη, Πτυχίο Μαθηματικών Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, M.Sc. στη Στατιστική, University of Warwick, Διδακτορικό στη Στατιστική, ΟΠΑ. 3. Κανδηλώρου Ελένη, Πτυχίο Οικονομικών Οικονομικού Πανεπιστημίου Αθηνών, Diploma στα Οικονομικά, Essex University, MA in Economic Statistics, Leeds University, Ph.D. Applied Econometrics in Human Capital, Leeds University. 4. Καρλής Δημήτριος, Πτυχίο Στατιστικής Οικονομικού Πανεπιστημίου Αθηνών, Διδακτορικό στη Στατιστική, Οικονομικό Πανεπιστήμιο Αθηνών. 8

9 5. Κυριακίδης Επαμεινώνδας Πτυχίο Μαθηματικών Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, M.Sc. στη Στατιστική, Imperial College, University of London, Ph.D. στη Στοχαστική Επιχειρησιακή Έρευνα, Birkbeck College, University of London 6. Κωστάκη Αναστασία, Candidate of Philosophy στη Στατιστική, Μαθηματικά, University of Lund, M. Sc. στη Στατιστική, University of Lund, Licentiate of Philosophy στη Στατιστική-Δημογραφία, University of Lund, Doctor of Philosophy στη Στατιστική-Δημογραφία, University of Lund. 7. Ντζούφρας Ιωάννης, Πτυχίο Στατιστικής και Αναλογιστικής Επιστήμης Πανεπιστημίου Πειραιά, Μεταπτυχιακό στη Στατιστική με Εφαρμογές στην Ιατρική, University of Southampton, Διδακτορικό δίπλωμα στο Οικονομικό Πανεπιστήμιο Αθηνών. 8. Παυλόπουλος Χαράλαμπος, Πτυχίο Πανεπιστημίου Πατρών, Μ.Α. University of Maryland at College Park, Ph. D. University of Maryland at College Park. 9. Ψαράκης Στυλιανός, Πτυχίο Μαθηματικών Πανεπιστημίου Κρήτης, Διδακτορικό Δίπλωμα Οικονομικού Πανεπιστημίου Αθηνών. Επίκουροι Καθηγητές 1. Βρόντος Ιωάννης, Πτυχίο Στατιστικής Οικονομικού Πανεπιστημίου Αθηνών, Μ.Sc. στη Στατιστική, Οικονομικό Πανεπιστήμιο Αθηνών, Διδακτορικό Δίπλωμα στη Στατιστική, Οικονομικό Πανεπιστήμιο Αθηνών. 2. Ζυμπίδης Αλέξανδρος, Πτυχίο Μαθηματικών Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, Μ.Sc. στην Αναλογιστική Επιστήμη, City University, Ph.D. στην Αναλογιστική επιστήμη, City University. 3. Ιωαννίδης Ευάγγελος, Πτυχίο Μαθηματικών, Πανεπιστήμιο Χαϊδελβέργης, Διδακτορικό στα Μαθηματικά, Πανεπιστήμιο της Χαϊδελβέργης. 4. Λειβαδά Αλεξάνδρα, Πτυχίο στα Οικονομικά, Οικονομικό Πανεπιστήμιο Αθηνών, Μεταπτυχιακό δίπλωμα στα Οικονομικά, Οικονομικό Πανεπιστήμιο Αθηνών, Ph.D. στα Οικονομικά, University of Essex. 5. Μερκούρης Παναγιώτης, Πτυχίο Μαθηματικών Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, M.Sc. στη Στατιστική, McGill University, Ph.D. στη Στατιστική, University of Waterloo. 6. Μπεσμπέας Παναγιώτης, Β.Sc. στα Μαθηματικά (Στατιστική), University of Kent, M.Sc. στη Στατιστική, University of Kent, Ph.D. στη Στατιστική, University of Kent. 9

10 7. Παπαγεωργίου Ιουλία, Πτυχίο Μαθηματικών Πανεπιστημίου Ιωαννίνων, Διδακτορικό στη Στατιστική Πανεπιστημίου Ιωαννίνων. 8. Τσιαμυρτζής Παναγιώτης, Πτυχίο Μαθηματικών, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, M.Sc. στη Στατιστική, University of Minnesota, Ph.D. στη Στατιστική, University of Minnesota. Λέκτορες 1. Δεμίρης Νικόλαος, Πτυχίο Μαθηματικών, Πανεπιστήμιο Πατρών, M.Sc. στη Στατιστική, Οικονομικό Πανεπιστήμιο Αθηνών, Ph.D. στη Στατιστική, University of Nottingham, UK. 2. Σταύρος Ντεγιαννάκης, (υπό διορισμό) Πτυχίο Στατιστικής με έμφαση στα Οικονομικά, Οικονομικό Πανεπιστήμιο Αθηνών, Μ.Sc. στην Οικονομετρία, University of Essex, Ph.D. στη Στατιστική, Οικονομικό Πανεπιστήμιο Αθηνών. Επιστημονικός Συνεργάτης 1. Αϋφαντή Μαρία, Πτυχίο Οικονομικών Επιστημών Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών. Επιστημονική Υπεύθυνη και Συντονίστρια Προγράμματος Παιδαγωγικής και Διδακτικής Επάρκειας: Βασιλική Μπρίνια Διδακτορικό και μεταδιδακτορικό δίπλωμα από το Πανεπιστήμιο Αθηνών. Μεταπτυχιακό Δίπλωμα στην Οργάνωση και Διοίκηση Επιχειρήσεων (M.B.A.) από το Οικονομικό Πανεπιστήμιο Αθηνών και πτυχίο παιδαγωγικών σπουδών. Ε.Τ.Ε.Π. (Ειδικό Τεχνικό Εργαστηριακό Προσωπικό) 1. Χρήστος Μαμαλούκας, Πτυχίο από το Μαθηματικό Τμήμα (Εφαρμοσμένη Κατεύθυνση Πληροφορική) του Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών, Ph.D. στον Τομέα Υπολογιστικών Μεθόδων και Προγραμματισμού Η/Υ του Αριστοτέλειου Πανεπιστήμιου Θεσσαλονίκης. 2. Μίχου Τατιάνα, Πτυχίο στη Στατιστική, Οικονομικό Πανεπιστήμιο Αθηνών. Προσωπικό Υποστήριξης Εργαστηριακής Υποδομής (Κτίριο Αντωνιάδου, 3ος όροφος) Μωραΐτης Νικόλαος Τσομπανάκη Ευγενία Προσωπικό Υποστήριξης Μεταπτυχιακών Σπουδών (Κτίριο Ευελπίδων 47Α & Λευκάδος 33, 2ος όροφος) Σμυρνάκη Αργυρώ Χρυσανθοπούλου Μάρω Προσωπικό Γραμματείας (Κτίριο Αντωνιάδου, ισόγειο) Μπριλάκη Αγγελική, Γραμματέας του Τμήματος. Αναστασίου Σοφία Γιαμαλάκη Ζαφειρώ Χατζηπαναγιώτου Κική 10

11 ΕΝΔΕΙΚΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔ. ΕΤΟΥΣ Μαθήματα προσφερόμενα από το Τμήμα Στατιστικής ανά εξάμηνο σπουδών Α Εξάμηνο Β Εξάμηνο ΚΩΔ ΤΙΤΛΟΣ ΚΑΤ ΠΜ ΚΩΔ ΤΙΤΛΟΣ ΚΑΤ ΠΜ 6001 Εισαγωγή στις Πιθανότητες Υ Θεωρία Κατανομών Υ Εισαγωγή στη Στατιστική Υ Εκτιμητική Έλεγχοι Υποθέσεων (προαπαιτούμενο για 6023) Υ Μαθηματικός Λογισμός Ι Υ Μαθηματικός Λογισμός ΙΙ Υ Γραμμική Άλγεβρα & Εφαρμογές Εισαγωγή στον Προγραμματισμό με R, Υ S-plus ΥΕ 8 Γ Εξάμηνο Δ Εξάμηνο ΚΩΔ ΤΙΤΛΟΣ ΚΑΤ ΠΜ ΚΩΔ ΤΙΤΛΟΣ ΚΑΤ ΠΜ Τεχνικές Δειγματοληψίας & Ανάλυση Διακύμανσης & Σχεδιασμός 6033 Υ Υ 8 Δειγματοληπτικές Έρευνες Πειραμάτων Εισαγωγή στη Γραμμική Παλινδρόμηση 6023 (προαπαιτούμενο για 6014 και 6005) Υ Θεωρητική Στατιστική ΥΕ Μαθηματικός Λογισμός ΙΙΙ Εισαγωγή στη Βελτιστοποίηση 6113 Μη Παραμετρική Στατιστική Ε Ε Δημογραφική Στατιστική Ε 8 Αναλογιστικά Μαθηματικά Ασφαλειών Ζωής Ε Στατιστικός Έλεγχος Ποιότητας Ε Αριθμοδείκτες & Επίσημες Στατιστικές Ε Στατιστική Θεωρία Αποφάσεων Ε Εισαγωγή στη Γραμμική Παλινδρόμηση (επαναληπτικό) Υ Εισαγωγή στη Μηχανογραφημένη Λογιστική και Χρηματοοικονομική Ε Εισαγωγή στην Οικονομική Επιστήμη Ε Εισαγωγή στη Μαθηματική Ανάλυση Ε Αναλογιστική Στατιστική Ε Εκτιμητική-Έλεγχοι Υποθέσεων (επαναληπτικό) Υ Εισαγωγή στη Θεωρία Μέτρου & Ολοκλήρωσης με Αναφορές στη Θεωρία Πιθανοτήτων Ε Εισαγωγή στην Επιχειρησιακή Έρευνα Ε Στατιστική Εργασία 4 ου εξαμήνου Ε Στατιστική Εργασία 3 ου εξαμήνου Ε 2 Ε Εξάμηνο ΣΤ Εξάμηνο ΚΩΔ ΤΙΤΛΟΣ ΚΑΤ ΠΜ ΚΩΔ ΤΙΤΛΟΣ ΚΑΤ ΠΜ 6005 Ανάλυση Δεδομένων Ι Υ Στοχαστικές Ανελίξεις ΥΕ Ανάλυση Χρονολογικών Σειρών ΥΕ Πολυμεταβλητή Στατιστική Ανάλυση ΥΕ Εφαρμοσμένα Γραμμικά Μοντέλα Ε Στατιστική κατά Bayes Ε Στοχαστικά Μοντέλα & Προσομοίωση Ε Θεωρία Πιθανοτήτων Ε Οικονομετρία Ε Εφαρμοσμένη Οικονομετρία Ε Θεωρία Κινδύνου Ε Γενικευμένα Γραμμικά Μοντέλα ΥΕ Υπολογιστική Στατιστική Ε Βιοστατιστική & Επιδημιολογία Ε ΕΘΠΣ: Ποσοτικές Μέθοδοι στα Αναλογιστικά Μαθηματικά Ασφαλειών Ε Συνταξιοδοτικά & την Κοινωνική Ατυχημάτων Ασφάλιση Ε Στατιστικές Μέθοδοι στην Οικολογία ΒΔ A Στατιστική Εργασία Ι 6 ου εξαμήνου Ε Στοχαστικά Χρηματοοικονομικά ΒΔ Β Στατιστική Εργασία ΙΙ 6 ου εξαμήνου Ε A Στατιστική Εργασία Ι 5 ου εξαμήνου Ε 2 Πρακτική Άσκηση Ε Β Στατιστική Εργασία ΙΙ 5 ου εξαμήνου Ε 2 Πρακτική Άσκηση Ε 6-14 Υ: Υποχρεωτικό Μάθημα ΥΕ: Υποχρεωτικό κατ Επιλογήν Ε: Μάθημα Επιλογής ΒΔ: Μάθημα Βραχείας Διάρκειας 11

12 Ζ Εξάμηνο Η Εξάμηνο ΚΩΔ ΤΙΤΛΟΣ ΚΑΤ ΠΜ ΚΩΔ ΤΙΤΛΟΣ ΚΑΤ ΠΜ 6127 Πολυμεταβλητές Στατιστικές Τεχνικές Ε Ανάλυση Επιβίωσης Ε Περιβαλλοντική Στατιστική Ε Ανάλυση Κατηγορικών Δεδομένων Ε Εφαρμογές Στατιστικών Μοντέλων στα Χρηματοοικονομικά ΒΔ Μοντέλα Δειγματοληπτικών Ερευνών Ε Διαχείριση Κινδύνου Ι ΒΔ Ανάλυση Δεδομένων ΙΙ Ε Ειδικά Θέματα Δειγματοληπτικών Ερευνών ΒΔ Διαχείριση Κινδύνου ΙΙ ΒΔ A Στατιστική Εργασία Ι 7 ου εξαμήνου Ε Στατιστική στον 21 ο Αιώνα ΒΔ Β Στατιστική Εργασία ΙΙ 7 ου εξαμήνου Ε A Στατιστική Εργασία Ι 8 ου εξαμήνου Ε 2 Πρακτική Άσκηση Ε Β Στατιστική Εργασία ΙΙ 8 ου εξαμήνου Ε 2 Πρακτική Άσκηση Ε 6-14 Υ: Υποχρεωτικό Μάθημα ΥΕ: Υποχρεωτικό κατ Επιλογήν Ε: Μάθημα Επιλογής ΒΔ: Μάθημα Βραχείας Διάρκειας 12

13 ΜΑΘΗΜΑΤΑ ΠΡΟΣΦΕΡΟΜΕΝΑ ΑΠΟ ΑΛΛΑ ΤΜΗΜΑΤΑ (Ακαδ.Έτους ) ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ Ελ. Εξ. ΚΩΔ. ΜΑΘ. ΠΜ Κατ. Μαθ. ΜΑΘΗΜΑΤΑ ΠΡΟΣΦΕΡΟΜΕΝΑ ΑΠΟ ΑΛΛΑ ΤΜΗΜΑΤΑ Α Επ. ΓΕΝΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΙΣΤΟΡΙΑ Α Επ. ΑΡΧΕΣ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Γ Επ. ΑΡΧΕΣ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ Γ Επ. ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Ι Γ Επ. ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ Ι Ε Επ. ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Α Επ. ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ Επ. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕ C++ Ε Επ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Ε Επ. ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ε Επ. ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ζ Επ. ΣΥΣΤΗΜΑΤΑ ΑΝΑΚΤΗΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ Γ Επ. ΥΠΟΛΟΓΙΣΤΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ζ Επ. ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΚΡΙΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Α Επ. ΟΙΚΟΝΟΜΙΚΟ ΔΙΚΑΙΟ Α Επ. ΣΥΓΧΡΟΝΗ ΕΥΡΩΠΑΪΚΗ ΙΣΤΟΡΙΑ Ζ Επ. ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ Ζ Επ. ΜΕΣΑ ΜΑΖΙΚΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ & ΜΕΣΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΚΤΥΩΣΗΣ Α Επ. ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ε Επ. ΕΙΣΑΓΩΓΗ ΣΤΟ ΜΑΡΚΕΤΙΝΓΚ Z Επ. ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ Z Επ. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΑΙΔΑΓΩΓΙΚΗ ΕΠΙΣΤΗΜΗ Z Επ. ΕΚΠΑΙΔΕΥΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ Z Επ. ΟΡΓΑΝΩΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΜΟΝΑΔΩΝ Z Επ. ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ Z Επ. ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ (Π.Α.Δ.) Ι ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Ελ. Εξ. ΚΩΔ. ΜΑΘ. ΠΜ Κατ. Μαθ. ΜΑΘΗΜΑΤΑ ΠΡΟΣΦΕΡΟΜΕΝΑ ΑΠΟ ΑΛΛΑ ΤΜΗΜΑΤΑ Β Επ. ΟΙΚΟΝΟΜΙΚΗ ΙΣΤΟΡΙΑ ΤΗΣ ΕΛΛΑΔΟΣ Δ Επ. ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Δ Επ. ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ ΙΙ Η Επ. ΕΦΑΡΜΟΣΜΕΝΗ ΒΙΟΜΗΧΑΝΙΚΗ ΟΡΓΑΝΩΣΗ Δ Επ. ΠΡΟΧΩΡΗΜΕΝΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΛΟΓΙΣΤΙΚΗ (ΛΟΓΙΣΤΙΚΗ ΙΙ) Δ Επ. ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ Ι ΣΤ Επ. ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΠΟΛΙΤΙΚΗ ΚΑΙ ΣΤΡΑΤΗΓΙΚΗ ΣΤ Επ. ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ ΣΤ Επ. ΔΙΑΧΕΙΡΙΣΗ ΕΠΕΝΔΥΣΕΩΝ Δ Επ. ΑΛΓΟΡΙΘΜΟΙ Δ Επ. ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΣΤ Επ. ΣΧΕΔΙΑΣΜΟΣ ΒΑΣΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΤ Επ. ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ ΣΤ Επ. ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΣΤ Επ. ΕΦΑΡΜΟΣΜΕΝΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Δ Επ. ΔΙΟΙΚΗΣΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ ΣΤ Επ. ΗΛΕΚΤΡΟΝΙΚΟ ΜΑΡΚΕΤΙΝΓΚ Η Επ. ΣΤΡΑΤΗΓΙΚΟ ΜΑΡΚΕΤΙΝΓΚ ΣΤ Επ. ΔΙΑΦΗΜΙΣΗ ΣΤ Επ. ΔΙΟΙΚΗΣΗ ΕΦΟΔΙΑΣΤΙΚΗΣ ΑΛΥΣΙΔΑΣ ΣΤ Επ. ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ Η Επ. ΓΕΝΙΚΗ ΚΑΙ ΕΞΕΛΙΚΤΙΚΗ ΨΥΧΟΛΟΓΙΑ Η Επ. ΕΙΔΙΚΗ ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ Η Επ. ΠΟΙΟΤΗΤΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΤΗ ΔΙΔΑΣΚΑΛΙΑ Η Επ. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ Η/Υ ΠΑΙΔΑΓΩΓΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Η Επ. ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ (Π.Α.Δ.) ΙΙ 13

14 Εργαστήρια Το Τμήμα Στατιστικής διαθέτει δύο πλήρως εξοπλισμένα εργαστήρια: Το πρώτο βρίσκεται στον 3ο όροφο της νέας πτέρυγας της οδού Αντωνιάδου. Στο εργαστήριο αυτό εργάζονται οι προπτυχιακοί φοιτητές, οι υποψήφιοι διδάκτορες του Τμήματος Στατιστικής καθώς και οι προσωρινοί διδάσκοντες. Αυτή τη στιγμή στο εργαστήριο υπάρχουν 4 SUN workstations, στο ένα από τα οποία φιλοξενείται η σελίδα του Τμήματος, 2 UPS, 1 DELL server και 45 υπολογιστές οι οποίοι αποτελούν ένα τοπικό δίκτυο, 2 εκτυπωτές, 1 scanner, διαφανοσκόπιο, προβολικό σύνδεσης με υπολογιστή και DVD-RW. Σε ειδικά διαμορφωμένο χώρο του εργαστηρίου υπάρχουν και 9 θέσεις εργασίας για τους υποψήφιους διδάκτορες του τμήματός μας. Σε ειδικά διαμορφωμένο χώρο υπάρχουν επίσης ένας server με σύνδεση DATASTREAM και ένας με σύνδεση Bloomberg, οι οποίοι είναι διαθέσιμοι τόσο στους φοιτητές όσο και στα μέλη ΔΕΠ για αναζήτηση και λήψη δεδομένων. Υπάρχει απευθείας πρόσβαση στο διαδίκτυο (Internet) όπως επίσης και πρόσβαση στο κεντρικό υπολογιστικό σύστημα του Πανεπιστημίου. Το δεύτερο βρίσκεται στο υπόγειο του κεντρικού κτιρίου. Στο εργαστήριο αυτό εργάζονται οι προπτυχιακοί φοιτητές, οι μεταπτυχιακοί φοιτητές καθώς και οι υποψήφιοι διδάκτορες του Τμήματος Στατιστικής. Είναι εξοπλισμένο με 30 Η/Υ (Pentium 2.8 Ghz, 512 Ram, DVD16X, 80 GH Hard Disk Sata και 1 Server Dell (Dual Cpu) αποκλειστικής χρήσης καθώς και εκτυπωτή Ηewlett-Packard συνολικής απόδοσης 30 σελίδων/λεπτό. 14

15 Αναλυτική περιγραφή μαθημάτων Α Εξάμηνο Υποχρεωτικά Μαθήματα Εισαγωγή στις Πιθανότητες Η εισαγωγή και κατανόηση των βασικών εννοιών των πιθανοτήτων με έμφαση στις εφαρμογές τους. Τυχαία πειράματα, δειγματικός χώρος, ενδεχόμενο, γεγονός, ορισμοί και φυσική ερμηνεία της πιθανότητας, η πιθανότητα ως μέτρο, αξιώματα πιθανοτήτων, ιδιότητες πιθανοτήτων, ανεξάρτητα ενδεχόμενα, το θεώρημα του Bayes, τυχαία μεταβλητή, συνάρτηση πιθανότητας, κατανομή πιθανότητας, ροπές, εκατοστιαία σημεία, διακριτές και συνεχείς κατανομές, κατανομές Poisson, διωνυμική, γεωμετρική, αρνητική διωνυμική, κανονική, ομοιόμορφη, εκθετική. Εισαγωγή στη Στατιστική Παρουσίαση των περιγραφικών μεθόδων της Στατιστικής για την σύνοψη, παρουσίαση και ανάλυση δεδομένων. Εισαγωγή στα βασικά προβλήματα της Στατιστικής, μορφές και είδη δεδομένων, οι βασικές έννοιες της Στατιστικής, ο ρόλος των Στατιστικών τεχνικών για την εξαγωγή στατιστικών συμπερασμάτων, τρόποι συλλογής στοιχείων, στατιστικός τρόπος σκέψης για διαδικασίες λήψης αποφάσεων, χάρτες ροής, εισαγωγή στο σχεδιασμό και ανάλυση πειραμάτων, χρήση των υπολογιστών στη στατιστική ανάλυση: τα στατιστικά πακέτα MINITAB και SPSS. Περιγραφή δεδομένων με γραφικές μεθόδους, αριθμητική περιγραφή δεδομένων. Συσχέτιση, παλινδρόμηση. Μέθοδος ελαχίστων τετραγώνων. Εισαγωγή στις χρονολογικές σειρές. Μαθηματικός Λογισμός Ι Αξιωματική θεμελίωση του συστήματος των πραγματικών αριθμών. Αξιώματα πεδίου και διάταξης, το αξίωμα του ελαχίστου άνω φράγματος και η Αρχιμήδεια ιδιότητα. Μονότονες και φραγμένες πραγματικές συναρτήσεις, συνέχεια πραγματικής συνάρτησης, θεώρημα Bolzano, και θεώρημα ενδιάμεσης τιμής, θεώρημα ακραίας τιμής, ομοιόμορφη συνέχεια. Στοιχεία θεωρίας συνόλων, το σύστημα των πραγματικών αριθμών. Παράγωγος συνάρτησης, λογισμός παραγώγων και παράγωγοι ανώτερης τάξης, θεωρήματα Rolle, Μέσης Τιμής, και L Hospital, τοπικά ακρότατα. Το ολοκλήρωμα Riemann, ιδιότητες ολοκληρώματος (προσθετικότητα, τριγωνική ανισότητα, γραμμικότητα), συνέχεια και παραγωγισιμότητα, ολοκλήρωμα στα σημεία συνέχειας της ολοκληρώσιμης συνάρτησης, ολοκληρωσιμότητα συνεχών συναρτήσεων, θεώρημα μέσης τιμής, αόριστο ολοκλήρωμα συνάρτησης, θεμελιώδες θεώρημα ολοκληρωτικού λογισμού. Τεχνικές ολοκλήρωσης (αλλαγή μεταβλητής, ολοκλήρωση κατά παράγοντες, κλπ.), ο λογάριθμος και η εκθετική συνάρτηση, γενικευμένα ολοκληρώματα, παραδείγματα και εφαρμογές. Υποσύνολα του R, σημεία συσσώρευσης, ακολουθίες πραγματικών αριθμών, μονότονες ακολουθίες, υπακολουθίες και κριτήριο σύγκλισης Cauchy, θεώρημα Bolzano-Weierstrass, θεωρήματα σύγκλισης ακολουθιών. Σειρές πραγματικών αριθμών, σειρές με θετικούς όρους, κριτήρια σύγκλισης και απόλυτης σύγκλισης σειρών. Γραμμική Άλγεβρα και Εφαρμογές n n Στοιχεία και πράξεις στον R, ευθείες και επίπεδα στον R. Πίνακες και πολλαπλασιασμός πινάκων, στοιχειώδεις πίνακες. Γραμμικά συστήματα: απαλοιφή Gauss και η παραγοντοποίηση PΑ=LDU. Αντίστροφοι και ανάστροφοι πίνακες, αλγόριθμος Gauss- Jordan. Συμμετρικοί πίνακες και η παραγοντοποίηση Cholesky. Διανυσματικοί χώροι και υπόχωροι. Γραμμικά συστήματα: λύση m εξισώσεων με n αγνώστους και τάξη πίνακα. 15

16 Γραμμική ανεξαρτησία, βάσεις και διάσταση. Οι 4 θεμελιώδεις υπόχωροι ενός πίνακα. n Θεμελιώδες Θεώρημα της Γραμμικής Άλγεβρας. Γραμμικοί μετασχηματισμοί του R και πίνακες. Ορθογώνιοι υπόχωροι, ορθογώνιο συμπλήρωμα υπόχωρου. Προβολές και προσεγγίσεις ελάχιστων τετραγώνων. Ορθογώνιοι πίνακες, η ορθογωνιοποίηση Gramm- Schmidt και η παραγοντοποίηση A=QR. Ορίζουσα πίνακα. Ιδιοτιμές και ιδιοδιανύσματα, διαγώνια μορφή πίνακα, δυνάμεις πίνακα και φασματικό θεώρημα για συμμετρικούς πίνακες. Γεωμετρική ερμηνεία γραμμικών μετασχηματισμών: συντεταγμένες ως προς βάση και όμοιοι πίνακες. Τετραγωνικές μορφές σε συμμετρικούς πίνακες: θετική ορισιμότητα, πηλίκο Raleygh, ελλειψοειδή στις ν διαστάσεις. Β Εξάμηνο Υποχρεωτικά Μαθήματα Θεωρία Κατανομών Από κοινού κατανομές, ανεξαρτησία τυχαίων μεταβλητών, δεσμευμένες κατανομές, ανέλιξη Poisson, νόμος των μεγάλων αριθμών και σύνδεσή του με τον ορισμό της πιθανότητας ως οριακής σχετικής συχνότητας, κεντρικό οριακό θεώρημα, μορφές και είδη σύγκλισης. Πολυδιάστατες από κοινού κατανομές. Συναρτήσεις τυχαίων μεταβλητών, μετασχηματισμοί και αλλαγή μεταβλητών. Γεννήτριες πιθανοτήτων, ροπογεννήτριες, χαρακτηριστικές συναρτήσεις, διμεταβλητή κανονική κατανομή, (συν)διακύμανση, ομοσκεδαστικότητα συναρτήσεων παλινδρόμησης, κατανομές στατιστικών συναρτήσεων κανονικού πληθυσμού: ανεξαρτησία μέσου και διασποράς δείγματος, κατανομές χ2, t, F, βήτα, γάμμα και οι μεταξύ τους σχέσεις, διατεταγμένες στατιστικές συναρτήσεις, από κοινού κατανομές διατεταγμένων στατιστικών συναρτήσεων, διάμεσος, εύρος, ακραίες τιμές, εκθετική οικογένεια κατανομών. Εκτιμητική-Έλεγχοι Υποθέσεων Σημειακή εκτίμηση, ιδιότητες σημειακών εκτιμητριών (συνέπεια, αμεροληψία, αποτελεσματικότητα, επάρκεια), μέθοδοι σημειακής εκτίμησης (μέθοδος των ροπών, μέθοδος ελαχίστων τετραγώνων, μέθοδος μεγίστης πιθανοφάνειας). Δειγματοληψία και δειγματικές κατανομές. Διαστήματα εμπιστοσύνης για μέσες τιμές, αναλογίες και διακυμάνσεις ενός πληθυσμού και για την διαφορά μέσων τιμών, αναλογιών και διακυμάνσεων στην περίπτωση κανονικών και μη-κανονικών πληθυσμών. Έλεγχοι υποθέσεων, στατιστικές υποθέσεις, έλεγχοι υποθέσεων για παραμέτρους πληθυσμών όπως μέσες τιμές, αναλογίες, διακυμάνσεις, σύγκριση παραμέτρων σε δύο πληθυσμούς, επίπεδο στατιστικής σημαντικότητας, παρατηρούμενο επίπεδο στατιστικής σημαντικότητας (p-τιμή), ισχύς ενός στατιστικού ελέγχου, καθορισμός μεγέθους δείγματος. Μαθηματικός Λογισμός ΙΙ Ακολουθίες και σειρές συναρτήσεων, oμοιόμορφη σύγκλιση ακολουθιών και σειρών συναρτήσεων, δυναμοσειρές και πολυωνυμική προσέγγιση συναρτήσεων, θεώρημα Taylor. Διανυσματική δομή των στοιχείων του Ευκλείδιου χώρου Rn, εσωτερικό γινόμενο, ορθογωνιότητα, ευκλείδια απόσταση, ορθοκανονική βάση διανυσμάτων, εξωτερικό γινόμενο στον R3, ανοιχτά υποσύνολα του Rn, ακολουθίες στοιχείων του Rn, ιδιότητες ορίων. Πραγματικές συναρτήσεις στον Rn, συνέχεια, παράγωγος κατά κατεύθυνση, μερικές παράγωγοι, διάνυσμα κλίσης και γεωμετρική ερμηνεία του. Γεωμετρία δευτεροβάθμιων επιφανειών στον R3, στοιχειώδης διαφορική γεωμετρία καμπυλών στον R3. Παράγωγοι συναρτήσεων από το Rn στο Rm, Ιακωβιανός πίνακας, μερικές παράγωγοι ανώτερης τάξης. Το θεώρημα Taylor για πραγματικές συναρτήσεις στον Rn, μελέτη τοπικών ακροτάτων πραγματικής συνάρτησης πολλών μεταβλητών. Διπλό και τριπλό ολοκλήρωμα Riemann, 16

17 αρχή του Cavallieri, ορισμός, ιδιότητες ολοκληρώματος, Θεώρημα Fubini, γενικά χωρία ολοκλήρωσης, επαναλαμβανόμενα ολοκληρώματα. Ιακωβιανές ορίζουσες, αλλαγή μεταβλητών, πολλαπλά ολοκληρώματα στον Rn. Μαθήματα Υποχρεωτικά κατ Επιλογήν Προσφερόμενα από το Τμήμα Στατιστικής Εισαγωγή στον Προγραμματισμό με R, S-PLUS Το μάθημα έχει σκοπό να εισάγει απλές ιδέες προγραμματισμού με τη χρήση της στατιστικής γλώσσας R. Η ύλη του μαθήματος περιλαμβάνει περιγραφή των παρακάτω εννοιών: Εισαγωγή στους ηλεκτρονικούς υπολογιστές. Βασικές αρχές προγραμματισμού. Εισαγωγή στην R/SPLUS, βασικά στοιχεία του πακέτου, περιβάλλον εντολών, περιβάλλον παραθύρων. Αριθμητικές πράξεις. Παραστάσεις. Αντικείμενα, είδη και τύποι αντικειμένων. Σύνθετες εντολές: εντολή for, εντολή while, εντολή repeat. Δημιουργία προγραμμάτων. Λίστες αποτελεσμάτων. Ειδικές εντολές. Γραφικές παραστάσεις στην R/SPLUS, δημιουργία πολλαπλών γραφημάτων. Συναρτήσεις, συναρτήσεις με πολλά αποτελέσματα. Απλές στατιστικές μέθοδοι με τη χρήση της R/SPLUS, περιγραφική στατιστική, έλεγχοι υποθέσεων. Γ Εξάμηνο Υποχρεωτικά Μαθήματα Τεχνικές Δειγματοληψίας και Δειγματοληπτικές Έρευνες 1. Εισαγωγή: Σκοποί της θεωρίας δειγματοληπτικών ερευνών, κριτήρια επιλογών καλών δειγματοληπτικών σχημάτων και ακρίβεια των εκτιμήσεων, αρχές της λήψης δειγμάτων, μεροληπτικότητα, συστηματικά σφάλματα των εκτιμήσεων και οι επιδράσεις τους, Δειγματοληπτικά Σχήματα: Απλή Tυχαία Δειγματοληψία, Στρωματοποιημένη Τυχαία Δειγματοληψία, Δειγματοληψία κατά ομάδες, Συστηματική Δειγματοληψία, Δειγματοληψία με Προκαθορισμένα Ποσοστά, Πηγές Σφαλμάτων στις Δειγματοληπτικές Έρευνες: Είδη Σφαλμάτων και οι Επιδράσεις τους, Μαθηματικά Μοντέλα για τις επιδράσεις των διαφόρων Σφαλμάτων. 2. Μέθοδοι συλλογής στατιστικών στοιχείων (προσωπική συνέντευξη, παρατήρηση, μέθοδος του ταχυδρομείου, τηλεφωνική συνέντευξη, άντληση στοιχείων από αρχεία), κατάρτιση ερωτηματολογίου, προκωδικοποιημένες και ανοιχτές ερωτήσεις, αρχική επεξεργασία των δεδομένων, πλαίσια δειγματοληψίας, επεξεργασία του στατιστικού υλικού, ανάλυση και παρουσίαση των αποτελεσμάτων, πηγές μεταβλητότητας και σφάλματα, προκαταρκτική δειγματοληψία και πολιτικές μελέτες, διεξαγωγή μιας δειγματοληπτικής έρευνας. Εισαγωγή στη Γραμμική Παλινδρόμηση Σκοπός του μαθήματος αυτού είναι να εισάγει τους φοιτητές στην θεωρία της γραμμικής παλινδρόμησης και εν συνεχεία να τους μυήσει στην ορθή εφαρμογή της. Τα θέματα τα οποία καλύπτει περιλαμβάνουν: σχέσεις ανάμεσα σε συνεχείς μεταβλητές συντελεστής συσχέτισης. Η διμεταβλητή κανονική κατανομή. Απλή γραμμική παλινδρόμηση: στατιστική συμπερασματολογία, πρόβλεψη, έλεγχοι υποθέσεων και διαγνωστικοί έλεγχοι. Μετασχηματισμοί και γενικό γραμμικό μοντέλο. Ανάλυση διακύμανσης για έλεγχο μοντέλων. Πολλαπλή γραμμική παλινδρόμηση με τη χρήση πινάκων. Γράφημα προστιθέμενης μεταβλητής. Επιλογή καλύτερου μοντέλου, γενικευμένο F-test. Αλγοριθμικές διαδικασίες επιλογής καλύτερου μοντέλου, πολυσυγγραμμικότητα και ψευδομεταβλητές 17

18 Μαθήματα Επιλογής Προσφερόμενα από το Τμήμα Στατιστικής Μαθηματικός Λογισμός ΙΙΙ - Εισαγωγή στη Βελτιστοποίηση Το θεώρημα Taylor για πραγματικές συναρτήσεις στον Rn. Θετικά και αρνητικά ορισμένοι πίνακες, τοπικά ακρότατα πραγματικής συνάρτησης πολλών μεταβλητών. Ακρότατα υπό συνθήκη και πολλαπλασιαστές Lagrange. Φασματικό θεώρημα για τετραγωνικούς πίνακες, κανονικοί πίνακες, θεώρημα Cayley-Hamilton, διάσπαση Jordan. Ιδιότητες ακρότατου ιδιοτιμών συμμετρικών πινάκων, πηλίκο του Rayleigh, minimax περιγραφή ιδιοτιμών. Κυρτά σύνολα. Διαχωρισμός. Λήμμα Farkas. Δυϊκότητα, Γραμμικός προγραμματισμός και μέθοδος Simplex. Συμπληρωματική χαλαρότητα, συνθήκες Kuhn-Tucker. Κυρτές συναρτήσεις. Συνέχεια, διαφορισιμότητα. Κλασσικές ανισότητες. Κυρτός προγραμματισμός. Μη Παραμετρική Στατιστική Έλεγχοι βασισμένοι στην διωνυμική κατανομή: διωνυμικός έλεγχος για ποσοστά, διωνυμικός έλεγχος για εκατοστιαία σημεία, όρια ανοχής, προσημικός έλεγχος, παραλλαγές προσημικού έλεγχου (έλεγχος Mc Nemar, έλεγχος Cox και Stuart, έλεγχος συσχέτισης), έλεγχος Wilcoxon, έλεγχος των προσημασμένων τάξεων μεγέθους Wilcoxon (περιπτώσεις ενός και δύο δειγμάτων), έλεγχος Mann-Whitney, πίνακες συνάφειας, έλεγχος διάμεσου, μέτρα εξάρτησης, έλεγχοι συσχέτισης, έλεγχος Χ2 καλής προσαρμογής, βαθμολογικοί έλεγχοι (rank tests), έλεγχος διακύμανσης, μη παραμετρική γραμμική παλινδρόμηση, μη παραμετρική μονότονη παλινδρόμηση, στατιστικές συναρτήσεις τύπου Kolmogorov και Smirnov, έλεγχος Lilliefors (κανονικότητας και εκθετικότητας). Στατιστικός Έλεγχος Ποιότητας Σχεδιασμός παραγωγής και βασικές έννοιες ποιότητας του ποιοτικού ελέγχου και του στατιστικού ελέγχου ποιότητας. Διαγράμματα cause and effect. Pareto διαγράμματα. Διαγράμματα ελέγχου μεταβλητών (X,R,S). Διαγράμματα ελέγχου ιδιοτήτων (p,np,c,u). CUSUM και EWMA διαγράμματα ελέγχου. Δείκτες ικανότητας διαδικασίας. Εισαγωγή στα πολυμεταβλητά διαγράμματα ελέγχου. Η μεθοδολογία 6σ (six sigma). Δειγματοληψία αποδοχής. Στατιστική Θεωρία Αποφάσεων Θεωρία παιγνίων και θεωρία αποφάσεων, συνάρτηση απόφασης, συνάρτηση διακινδύνευσης, ωφέλεια (utility), υποκειμενική πιθανότητα, επιτρεψιμότητα (admissibility), πληρότητα, θεώρημα minimax, θεώρημα πλήρους τάξης, αμετάβλητοι κανόνες αποφάσεων, προβλήματα πολλαπλών επιτρεπτών και minimax αποφάσεων, λήψη αποφάσεων με πληροφόρηση που βασίζεται σε τυχαίο δείγμα. Εισαγωγή στη Μηχανογραφημένη Λογιστική & Χρηματοοικονομική Στόχος του μαθήματος: Παρουσίαση του θεωρητικού πλαισίου της Χρηματοοικονομικής Λογιστικής. Παρουσίαση και κατάρτιση των χρηματοοικονομικών καταστάσεων βάσει Διεθνών Προτύπων Χρηματοοικονομικής Πληροφόρησης (κατάσταση συνολικών αποτελεσμάτων χρήσης, κατάσταση μεταβολών ιδίων κεφαλαίων, ισολογισμός, σημειώσεις). Παρουσίαση σταδίων λογιστικού κύκλου και βασικών λογιστικών βιβλίων (ημερολόγιο, γενικό καθολικό), ανάλυση οικονομικών γεγονότων και των συνεπειών τους στη λογιστική ισότητα, καταχώριση ημερολογιακών εγγραφών, εγγραφών προσαρμογής, εγγραφών κλεισίματος και προσδιορισμού του αποτελέσματος, κατάρτιση ισοζυγίου. Εισαγωγή στη λογιστική αποσβέσεων. Εισαγωγή στον τρόπο λειτουργίας ενός λογιστικού πληροφοριακού συστήματος, καταχώριση οικονομικών γεγονότων και παραστατικών στο σύστημα, κατάρτιση ισοζυγίου με τη χρήση λογιστικού πληροφοριακού συστήματος. 18

19 Εισαγωγή στη Μαθηματική Ανάλυση Προχωρημένες έννοιες σχετικά με την σύγκλιση ακολουθιών πραγματικών αριθμών και ακολουθιών πραγματικών συναρτήσεων. Εφαρμογές στις πιθανότητες. Συνέχεια και εφαρμογές. Βασικές έννοιες κυρτότητας. Το ολοκλήρωμα του Stieltjes και οι εφαρμογές του στην στατιστική και τις πιθανότητες Εισαγωγή στην θεωρία των μετρικών χώρων, και σε έννοιες όπως συμπάγεια και πληρότητα. Εφαρμογές στις πιθανότητες την στατιστική και τα οικονομικά. Χώροι εσωτερικού γινομένου και ιδιότητες τους. Εφαρμογές. Εισαγωγή στην Επιχειρησιακή Έρευνα Το πρόβλημα του Γραμμικού Προγραμματισμού. Διατύπωση διαφόρων πρακτικών προβλημάτων ως προβλήματα γραμμικού προγραμματισμού. Γραφική επίλυση ενός προβλήματος γραμμικού προγραμματισμού. Η μέθοδος Simplex. Tο δυϊκό πρόβλημα. Το πρόβλημα της μεταφοράς. Επίλυση του προβλήματος γραμμικού προγραμματισμού με χρήση Excel. To πρόβλημα του δυναμικού προγραμματισμού. Ελαχιστοποίηση του συνολικού αναμενόμενου κόστους ή μεγιστοποίηση του συνολικού αναμενόμενου κέρδους σε μία εν εξελίξει διαδικασία. Εξίσωση του δυναμικού προγραμματισμού. Εύρεση της βέλτιστης πολιτικής. Παραδείγματα (ένα μοντέλο σχετιζόμενο μ ένα τυχερό παιχνίδι, προβλήματα ελάχιστης διαδρομής, παραγωγή ενός αποδεκτού προϊόντος, μεγιστοποίηση της πιθανότητας να κερδίσουμε ένα στοίχημα, ένα μοντέλο για την αγορά μιας μετοχής, το πρόβλημα της Γραμματέως, η τιμολόγηση ενός Αμερικανικού δικαιώματος πώλησης, το πρόβλημα της δρομολόγησης ενός οχήματος, το πρόβλημα του σακιδίου). Δ Εξάμηνο Υποχρεωτικά Μαθήματα Ανάλυση Διακύμανσης και Σχεδιασμός Πειραμάτων Στο μάθημα παρουσιάζονται οι βασικοί πειραματικοί σχεδιασμοί υιοθετώντας της αρχές της επανάληψης και του blocking. Τα δεδομένα θεωρούνται ότι ακολουθούν την κανονική κατανομή και είναι ανεξάρτητα. Παρουσιάζεται η θεωρία αλλά και η συμπερασματολογία τυχαιοποιημένων παραγοντικών μοντέλων, τυχαιοποιημένων block μοντέλων, ανάλυσης συνδιακύμανσης και ανάλυσης τυχαίων παραγόντων. Μαθήματα Υποχρεωτικά κατ Επιλογήν Προσφερόμενα από το Τμήμα Στατιστικής Θεωρητική Στατιστική Στατιστικά μοντέλα, το γενικό πρόβλημα της επαγωγής, σημειακή εκτίμηση, αμεροληψία, επάρκεια, ασυμπτωτική επάρκεια, ελάχιστη επάρκεια, ύπαρξη εκτιμητριών ελάχιστης διασποράς, πληρότητα, αποτελεσματικότητα, πληροφορία του Fisher, φράγμα Gramer-Rao, μέθοδοι εκτίμησης (μέθοδος μέγιστης πιθανοφάνειας, ιδιότητες των εκτιμητριών μέγιστης πιθανοφάνειας, συνέπεια, η μέθοδος των ροπών, η μέθοδος των ελαχίστων τετραγώνων), σύνολα και διαστήματα εμπιστοσύνης, έλεγχοι υποθέσεων - η θεωρία των Neyman Pearson, απλές και σύνθετες υποθέσεις, αμερόληπτοι και αμετάβλητοι έλεγχοι, έλεγχοι λόγου πιθανοφανειών. 19

20 Μαθήματα Επιλογής Προσφερόμενα από το Τμήμα Στατιστικής Δημογραφική Στατιστική Εισαγωγή στη Δημογραφία, δημογραφικά συμβάντα, είδη δημογραφικών δεδομένων, πηγές δημογραφικών δεδομένων, δημοσιεύσεις δημογραφικών στοιχείων, τα βασικά δημογραφικά μέτρα, λόγοι, αναλογίες, δείκτες ή συντελεστές, εξέλιξη του πληθυσμού - βασική εξίσωση). Μέθοδοι ανάλυσης θνησιμότητας, Συγκρίσεις Θνησιμότητας - Μέθοδοι Τυποποίησης, Ευθεία (Άμεση),Έμμεση Τυποποίηση, Πίνακας Επιβίωσης Κατασκευή πινάκων επιβίωσης με τη χρήση macro ρουτινών στο ΜΙΝΙΤΑΒ. Πίνακες Πολλαπλών Κινδύνων (Multiple Decrement Tables). Μέτρα Γεννητικότητας, Συντελεστές Αναπαραγωγής, Μέτρα Γαμηλιότητας, Πίνακες Γαμηλιότητας. Εκτιμήσεις, προβλέψεις και προβολές πληθυσμού (Population Projections). Διερεύνηση της ακρίβειας των δημογραφικών δεδομένων. Αναλογιστικά Μαθηματικά Ασφαλειών Ζωής Συνάρτηση επιβίωσης, Απλός πίνακας θνησιμότητας και οι σχετικές συναρτήσεις, Ένταση θνησιμότητας, Κλασικοί νόμοι θνησιμότητας, Αναλογιστικοί πίνακες και συναρτήσεις μετατροπής, Στοχαστική προσέγγιση στις Ασφαλίσεις Ζωής. Ενδεχόμενα επιβίωσης, Ράντες Ζωής με μία ή περισσότερες πληρωμές ετησίως, Σχέσεις μεταξύ των διαφόρων ραντών, Ενδεχόμενα θανάτου, Ασφάλειες Ζωής διαφόρων ειδών, Σχέσεις ραντών και ασφαλειών, Διακυμάνσεις επιτοκίου και θνησιμότητας. Καθαρά και εμπορικά ασφάλιστρα, Έννοια και διαδικασία υπολογισμού αποθεμάτων, Σχέσεις μεταξύ διαδοχικών τιμών αποθεμάτων. Πίνακες και Αναλογιστικές συναρτήσεις επί δύο ή περισσοτέρων ατόμων, Μη βέβαιες αναλογιστικές συναρτήσεις, Μεταβιβαζόμενες ράντες. Αριθμοδείκτες & Επίσημες Στατιστικές Εισαγωγή, δείκτες, αριθμοδείκτες, απλά και σύνθετα μεγέθη, δείκτες απλού μεγέθους, συμπεριφορά ατομικών δεικτών, βάση, αλλαγή βάσης, ενοποίηση χρονοσειρών αριθμοδεικτών, επιλογή ειδών, έρευνες οικογενειακού προϋπολογισμού, αλύσωση, αντικατάσταση αγαθών, σύνδεση αριθμοδεικτών, εφαρμογές αριθμοδεικτών, σφάλματα, ανομοιογένεια, δειγματοληπτικά εφαρμοσμένοι δείκτες στην Ελλάδα, θεωρία κλιμάκων, δείκτης τιμών καταναλωτή, δείκτης τιμών χονδρικής πώλησης, δείκτης τιμών μετοχών, αποπληθωρισμός, οι αριθμοδείκτες ως τυχαίες μεταβλητές. Eισαγωγή στην Οικονομική Επιστήμη Εισαγωγικές γνώσεις σχετικά με τον τρόπο λειτουργίας της μικροοικονομίας και μακροοικονομίας και τα κυριότερα προβλήματα που αντιμετωπίζουν. Επίσης, εισαγωγικές γνώσεις σχετικά με τις βασικές έννοιες και τα μεγέθη μιας οικονομίας, τη μέτρησή τους και τον τρόπο προσδιορισμού τους. Εισαγωγή: Το οικονομικό κύκλωμα. Το πρόβλημα της στενότητας. Θεσμοί (Institutional Framework). Μικροοικονομική Θεωρία: Ζήτηση και Προσφορά, Ισορροπία και ελαστικότητα. Θεωρία Συμπεριφοράς του Καταναλωτή. Η μέθοδος της χρησιμότητας και των καμπυλών αδιαφορίας. Θεωρία Παραγωγής και Κόστους. Μορφές Διάρθρωσης Αγοράς, Τέλειος Ανταγωνισμός, Μονοπώλιο, Μονοπωλιακός ανταγωνισμός, Ολιγοπώλιο, Άλλες μορφές. Γενική Οικονομική Ισορροπία και Οικονομική της Ευημερίας. Μακροοικονομική Θεωρία: Εθνικό Προϊόν και Εθνικό Εισόδημα. Κατανάλωση, Αποταμίευση, Επένδυση. Πολλαπλασιαστής. Παραγωγή, Απασχόληση, Μισθοί. Προσδιορισμός Εισοδήματος και απασχόλησης. Αγορά Χρήματος. Δημοσιονομική και Νομισματική Πολιτική, Προσδιορισμός του Εισοδήματος και απασχόλησης. Διεθνές Εμπόριο και μακροοικονομία. Περί Πληθωρισμού και Ανεργίας. Οικονομική Ανάπτυξη. Ο ρόλος του Κράτους στην αντιμετώπιση των μακροοικονομικών προβλημάτων. 20

21 Αναλογιστική Στατιστική Μετρήσεις θνησιμότητας, Μορφή της ειδικής κατά ηλικίας θνησιμότητας, Συγκρίσεις θνησιμότητας και μέθοδοι τυποποίησης, Πίνακες επιβίωσης kai πολλαπλών κινδύνων. Επιλογή πινάκων επιβίωσης (Έλεγχος Χ2, Μεμονωμένων τυποποιημένων αποκλίσεων, Μεμονωμένων απολύτων τυποποιημένων αποκλίσεων, αθροιστικών αποκλίσεων, προσήμων, αλλαγής προσήμων, ομάδων προσήμων). Εκτεθειμένος στον κίνδυνο πληθυσμός (Αναλυτική-ακριβής μέθοδος, μέθοδος της απογραφής, μέθοδος βασισμένη στο lx). Τεχνικές εξομάλυνσης εμπειρικών δεδομένων (Γραφική Μέθοδος, Παραμετρικά μοντέλα, Αθροιστικοί τύποι εξομάλυνσης Εξομάλυνση με αναφορά σε τυπικό πίνακα επιβίωσης. Τεχνικές εξάπλωσης πίνακα επιβίωσης. Εισαγωγή στη Θεωρία Μέτρου & Ολοκλήρωσης με αναφορές στη Θεωρία Πιθανοτήτων Η έννοια του μέτρου. Εισαγωγή με τα διακριτά μέτρα. Το μέτρο Lebesgue κατασκευή και ιδιότητες. Γενικά μέτρα, κατασκευή με την χρήση του εξωτερικού μέτρου και το θεώρημα του Καραθεοδωρή. Θεωρία της ολοκλήρωσης επάνω σε μέτρα, και εφαρμογές στις πιθανότητες. Αναφορά στα θεωρήματα σύγκλισης. Χώροι Lp και ιδιότητες τους με ειδική αναφορά στον L2. Γινόμενο μέτρο, κατασκευή και ιδιότητες. Θεωρία της παραγώγισης των μέτρων, θεώρημα Radon Nikodym. Εφαρμογές των εννοιών στις πιθανότητες και την στατιστική (π.χ. το θεώρημα προβολής στον L2 και η θεωρία των γραμμικών μοντέλων, η κατασκευή της υπό συνθήκη μέσης τιμής, το θεώρημα Radon Nikodym και η έννοια της επάρκειας στην στατιστική κλπ.) Ε Εξάμηνο Υποχρεωτικά Μαθήματα Ανάλυση Δεδομένων Ι Βασικός σκοπός του μαθήματος είναι η κατανόηση και η εφαρμογή των στατιστικών μεθόδων σε προβλήματα διαφορετικών επιστημονικών πεδίων όπως η Διοικητική Επιστήμη, το Μάρκετινγκ, Ψυχολογία, Ιατρική, Αθλητισμός και Κοινωνικές επιστήμες. Γίνεται επισκόπηση των παραμετρικών και μη παραμετρικών ελέγχων υποθέσεων για ένα και δύο δείγματα (t-tests και Wilcoxon tests), της ανάλυσης παλινδρόμησης και της ανάλυσης διακύμανσης. Έμφαση δίνεται στην εφαρμογή των μεθόδων με τη χρήση του SPSS (και Splus/R) και στη επίλυση προβλημάτων. Ενδιαφέροντα πραγματικά δεδομένα και προβλήματα επιλύονται κατά τη διάρκεια του μαθήματος με σκοπό να προκαλέσουν το ενδιαφέρον των φοιτητών. Η ύλη του μαθήματος έχει την ακόλουθη μορφή: ΜΕΡΟΣ Α: Στατιστικές Μέθοδοι σε απλά προβλήματα με τη χρήση στατιστικών πακέτων. (Περιγραφική ανάλυση, διαγραμματική απεικόνιση, προσομοίωση τυχαίων αριθμών από θεωρητικές κατανομές, διαστήματα εμπιστοσύνης, έλεγχοι υποθέσεων για 1 και 2 ανεξάρτητα δείγματα, έλεγχοι υποθέσεων για 2 εξαρτημένα δείγματα, πίνακες συνάφειας, απλή και πολλαπλή ανάλυση παλινδρόμησης, ανάλυση διακύμανσης.) ΜΕΡΟΣ Β: Ανάλυση Σύνθετων και ρεαλιστικών προβλημάτων. (αναφέρονται ενδεικτικά μερικά: Οι εκρήξεις του πίδακα "Old Faithful". Η έκρηξη του Διαστημικού Λεωφορείου Challenger. Σχιζοτυπία και Συμπεριφορά Καταναλωτή. Ανάλυση αθλητικών δεδομένων. Ανάλυση Δεδομένων Ιατρικών Προβλημάτων) 21

22 Μαθήματα Υποχρεωτικά κατ Επιλογήν Προσφερόμενα από το Τμήμα Στατιστικής Ανάλυση Χρονολογικών Σειρών Παραδείγματα χρονικά συσχετισμένων δεδομένων. Έννοιες στασιμότητας. Ιδιότητες αυτοσυσχέτισης στάσιμης χρονοσειράς. Κλασσικό προσθετικό υπόδειγμα με ντετερμινιστικές συνιστώσες (τάσεως, περιοδικοτήτων), μέθοδοι προσδιορισμού και απαλοιφής αυτών, κλασσικοί έλεγχοι τυχαιότητας. Γενικό γραμμικό υπόδειγμα στάσιμων χρονοσειρών, γραμμικά φίλτρα ασυσχέτιστου θορύβου, θεώρημα Wold. Αυτοπαλίνδρομα κινητού μέσου υποδείγματα (ARMA), συνθήκες ύπαρξης στάσιμων γραμμικών λύσεων, αιτιότητας, αντιστρεψιμότητας, υπολογισμός αυτο-συνδιακύμανσης αιτιατών λύσεων. Ασυμπτωτικές ιδιότητες δειγματικού μέσου και δειγματικών εκτιμητριών αυτο-συνδιακύμανσης / αυτοσυσχέτισης. Πρόγνωση ελαχίστου μέσου τετραγωνικού σφάλματος. Αλγόριθμοι βέλτιστων γραμμικών προγνώσεων, πρόγνωση στάσιμων λύσεων ARMA, εκτίμηση μερικής αυτοσυσχέτισης, προσαρμογή ARMA υποδειγμάτων. Κριτήρια επιλογής ARMA, διαγνωστικοί έλεγχοι. Υποδείγματα ARIMA και SARIMA για μη-στάσιμες χρονολογικές σειρές. Μαθήματα Επιλογής Προσφερόμενα από το Τμήμα Στατιστικής Εφαρμοσμένα Γραμμικά Μοντέλα Στο μάθημα περιγράφεται η γενική θεωρία των γραμμικών μοντέλων για συνεχή δεδομένα για τα οποία η κανονική κατανομή θεωρείται επαρκής προσαρμογή. Παρουσιάζονται επίσης πολλά παραδείγματα κατασκευής μοντέλων καθώς και προβλημάτων που εμφανίζονται στην προσπάθεια προσαρμογής τους όπως ετεροσκεδαστικότητα, ακραίες τιμές, μη ανεξαρτησία, άνισο μέγεθος δειγμάτων μεταξύ ομάδων υποκειμένων κ.α. Για κάθε ένα από αυτά προτείνεται η θεωρία αλλά και η πρακτική εφαρμογή που περιγράφει τα προβλήματα αλλά και οδηγεί σε ενδεχόμενη λύση τους. Οι διαλέξεις συμπληρώνονται από δέκα εργαστηριακά μαθήματα με τη χρήση του πακέτου SPSS. Στοχαστικά Μοντέλα και Προσομοίωση Παραγωγή ομοιόμορφων τυχαίων μεταβλητών: αναγωγικές γεννήτριες, έλεγχοι τυχαίων αριθμών, μέθοδοι παραγωγής τυχαίων μεταβλητών. Τεχνικές ελάττωσης διασποράς και ολοκλήρωση Monte Carlo: Monte Carlo κλήρωση, δειγματοληψία σπουδαιότητας, αντίθετες τυχαίες μεταβλητές, τυχαίες μεταβλητές ελέγχου. Παραγωγή εξαρτημένων τυχαίων μεταβλητών: Διατεταγμένο δείγμα, εκθετικά διαστήματα, πολυμεταβλητή κανονική κατανομή, ανέλιξη Poisson, αλυσίδες Markov, τυχαία πεδία Markov, δειγματολήπτης Gibbs. Οικονομετρία Γραμμικό υπόδειγμα (κριτήριο των Jarque Bera, έλεγχοι ευστάθειας συντελεστών, κριτήρια Akaike, Schwarz, έλεγχος RESET). Γενικευμένη μέθοδος ελαχίστων τετραγώνων. Παραβίαση των βασικών υποθέσεων: πολυσυγγραμικότητα, ετεροσκεδαστικότητα, αυτοσυσχέτιση. Κριτήριο του Wald, του πολλαπλασιαστή του Lagrange, του Hansen, του Hausman και CUSUM. Κριτήριο των Box-Cox. Σφάλματα μετρήσεων στις μεταβλητές. Στοχαστικές ερμηνευτικές μεταβλητές. Μέθοδος βοηθητικών μεταβλητών. Υποδείγματα κατανεμομένων υστερήσεων. Ημι-παραμετρικές μέθοδοι (Γενικευμένη μέθοδος των ροπών (GMM), quantile παλινδρόμηση). Τεχνική των ψευδομεταβλητών. Υποδείγματα Logit, Probit. Συστήματα αλληλεξαρτημένων εξισώσεων. Ταυτοποίηση συστημάτων. Μέθοδοι εκτίμησης συστημάτων (μέθοδοι ελαχίστων τετραγώνων σε δύο και σε τρία στάδια και μέθοδος μεγίστης πιθανοφάνειας) 22

329 Στατιστικής Οικονομικού Παν. Αθήνας

329 Στατιστικής Οικονομικού Παν. Αθήνας 329 Στατιστικής Οικονομικού Παν. Αθήνας Σκοπός Το Τμήμα σκοπό έχει να αναδείξει επιστήμονες ικανούς να σχεδιάζουν, να αναλύουν και να επεξεργάζονται στατιστικές καθώς επίσης και να δημιουργούν προγράμματα

Διαβάστε περισσότερα

Ιστότοπος του Τμήματος

Ιστότοπος του Τμήματος Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr Αθήνα, 2012 Γενικά Το τμήμα ιδρύθηκε τον Ιούνιο του 1989 με το ΠΔ 377/1989 και λειτούργησε από την ακαδημαϊκή χρονιά 1989 90. Ήταν και εξακολουθεί

Διαβάστε περισσότερα

Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr

Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr Αθήνα, 2011 Γενικά Το τμήμα ιδρύθηκε τον Ιούνιο του 1989 με το ΠΔ 377/1989 και λειτούργησε από την ακαδημαϊκή χρονιά 1989 90. Ήταν και εξακολουθεί

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΑΚΑΔ. ΕΤΟΣ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΣΚΑΛΙΑΣ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΑΚΑΔ. ΕΤΟΣ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΣΚΑΛΙΑΣ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ σελ. 1 1ο ΕΞΑΜΗΝΟ ΥΠΟΧΡΕΩΤΙΚΑ Γραμμική Άλγεβρα και Εφαρμογές Ιωαννίδης Εισαγωγή στη Στατιστική Εισαγωγή στις Πιθανότητες Μαθηματικός Λογισμός Ι Γραμμική Άλγεβρα και Εφαρμογές Δημάκη Ζαζάνης Φράγκος Μαμαλούκας

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Μάστερ στην Εφαρµοσµένη Στατιστική

Μάστερ στην Εφαρµοσµένη Στατιστική Μάστερ στην Εφαρµοσµένη Στατιστική Πρότυπο Πρόγραµµα Master Εξάµηνο Σπουδών Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες 1 ο Εξάµηνο ΜΑΣ650 Μαθηµατική Στατιστική 10 ΜΑΣ655 ειγµατοληψία 10 ΜΑΣ658 Στατιστικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ Πειραιάς, 19-04-2016 Θέμα: Κατατάξεις Πτυχιούχων για το Ακαδημαϊκό Έτος 2016-2017

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ Πειραιάς, 2/10/2014 ΑΝΑΚΟΙΝΩΣΗ ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Η κατάταξη των υποψηφίων στο Τμήμα για το ακαδημαϊκό έτος 2014-15, θα

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ 17 ΣΥΝΟΛΑ ΣΧΕΣΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ 17 1. Η έννοια του συνόλου 17 2. Εγκλεισμός και ισότητα συνόλων 19

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

(329) Τμήμα Στατιστικής Σχολή Επιστημών και Τεχνολογίας της Πληροφορίας Οικονομικό Πανεπιστήμιο Αθηνών

(329) Τμήμα Στατιστικής Σχολή Επιστημών και Τεχνολογίας της Πληροφορίας Οικονομικό Πανεπιστήμιο Αθηνών (329) Τμήμα Στατιστικής Σχολή Επιστημών και Τεχνολογίας της Πληροφορίας Οικονομικό Πανεπιστήμιο Αθηνών Ιστότοπος του Τμήματος http://www.stat-athens.aueb.gr 1 Αθήνα, 2014 2 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 13 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 15 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

Παρουσίαση : Ιωάννης Κυρίτσης, Αν. Καθηγητής, Αν. Πρόεδρος Τμήματος Οικονομικών Επιστημών

Παρουσίαση : Ιωάννης Κυρίτσης, Αν. Καθηγητής, Αν. Πρόεδρος Τμήματος Οικονομικών Επιστημών Παρουσίαση : Ιωάννης Κυρίτσης, Αν. Καθηγητής, Αν. Πρόεδρος Τμήματος Οικονομικών Επιστημών Το Τμήμα Οικονομικών Επιστημών ΑΠΘ Από τα αρχαιότερα Τμήματα Οικονομικών Επιστημών στην Ελλάδα (1927) Εισάγονται

Διαβάστε περισσότερα

Παρουσίαση: Στέλλα Κωστοπούλου Επίκουρη Καθηγήτρια

Παρουσίαση: Στέλλα Κωστοπούλου Επίκουρη Καθηγήτρια Παρουσίαση: Στέλλα Κωστοπούλου Επίκουρη Καθηγήτρια ΙΣΤΟΡΙΚΟ ΤΜΗΜΑΤΟΣ Το Τμήμα Οικονομικών και Πολιτικών Επιστημών (Ο.Π.Ε.) ιδρύθηκε το 1927, ένα από τα 5 ιδρυτικά τμήματα του Α.Π.Θ. Το 1973 εξειδικεύτηκε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ Ι. ΠΑΝΑΡΕΤΟΥ & Ε. ΞΕΚΑΛΑΚΗ Καθηγητών του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ (Εισαγωγή στις Πιθανότητες και την Στατιστική Συμπερασματολογία)

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΟΥΣ ΕΙΣΑΧΘΕΝΤΕΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΟΥΣ ΕΙΣΑΧΘΕΝΤΕΣ ΤΜΗΜΑ ΜΑΡΚΕΤΙΝΓΚ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΚΑΔ. ΕΤΟΣ: 1 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΟΥΣ ΕΙΣΑΧΘΕΝΤΕΣ ΑΠΟ ΤΟ ΑΚΑΔ. ΕΤΟΣ 2002-2003 ΕΩΣ ΚΑΙ ΤΟ ΑΚΑΔ. ΕΤΟΣ 2013-2014 ΠΟΥ ΠΑΡΑΜΕΝΟΥΝ ΣΤΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔ. ΕΤΟΥΣ 2015-2016

Διαβάστε περισσότερα

- 1 - ΕΠΙΤΡΟΠΩΝ ΕΠΙΛΟΓΗΣ ΚΑΙ ΚΡΙΣΗΣ ΚΑΘΗΓΗΤΩΝ ΤΗΣ ΣΧΟΛΗΣ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Ο.Π.Α.

- 1 - ΕΠΙΤΡΟΠΩΝ ΕΠΙΛΟΓΗΣ ΚΑΙ ΚΡΙΣΗΣ ΚΑΘΗΓΗΤΩΝ ΤΗΣ ΣΧΟΛΗΣ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Ο.Π.Α. ΜΗΤΡΩΟ ΕΣΩΤΕΡΙΚΩΝ ΜΕΛΩΝ ΕΠΙΤΡΟΠΩΝ ΕΠΙΛΟΓΗΣ ΚΑΙ ΚΡΙΣΗΣ ΚΑΘΗΓΗΤΩΝ ΤΗΣ ΣΧΟΛΗΣ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Ο.Π.Α. Α. Γνωστικές περιοχές και υποπεριοχές καθηγητών της Σχολής 1 Θεμελιώσεις της

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΟΥΣ ΕΙΣΑΧΘΕΝΤΕΣ ΤΑ ΑΚΑΔ. ΕΤΗ , ΠΟΥ ΠΑΡΑΜΕΝΟΥΝ ΣΤΟ ΠΡΟΓΡΑΜΜΑ. Ακαδ. έτος :

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΟΥΣ ΕΙΣΑΧΘΕΝΤΕΣ ΤΑ ΑΚΑΔ. ΕΤΗ , ΠΟΥ ΠΑΡΑΜΕΝΟΥΝ ΣΤΟ ΠΡΟΓΡΑΜΜΑ. Ακαδ. έτος : 2 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΟΥΣ ΕΙΣΑΧΘΕΝΤΕΣ ΤΑ ΑΚΑΔ. ΕΤΗ 2000-2001, 2001-2002 ΠΟΥ ΠΑΡΑΜΕΝΟΥΝ ΣΤΟ ΠΡΟΓΡΑΜΜΑ Ακαδ. έτος : 2016-2017. ΤΜΗΜΑ ΜΑΡΚΕΤΙΝΓΚ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Πρώην Τμήμα Επιχειρησιακής Έρευνας και

Διαβάστε περισσότερα

Ειδικό Πρόγραμμα Σπουδών στις ΕΠΙΣΤΗΜΕΣ ΤΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ Ν. 3848/2010

Ειδικό Πρόγραμμα Σπουδών στις ΕΠΙΣΤΗΜΕΣ ΤΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ Ν. 3848/2010 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΝΗΜΕΡΩΤΙΚΟ ΕΝΤΥΠΟ Ειδικό Πρόγραμμα Σπουδών στις ΕΠΙΣΤΗΜΕΣ ΤΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ Ν. 3848/2010 ΤΜΗΜΑ ΠΟΥ ΠΡΟΣΦΕΡΕΙ ΤΟ ΠΡΟΓΡΑΜΜΑ ΣΕ ΟΛΑ ΤΑ ΤΜΗΜΑΤΑ ΤΟΥ

Διαβάστε περισσότερα

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1

Πρόλογος... xv. Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 Πρόλογος... xv Κεφάλαιο 1. Εισαγωγικές Έννοιες... 1 1.1.Ιστορική Αναδρομή... 1 1.2.Βασικές Έννοιες... 5 1.3.Πλαίσιο ειγματοληψίας (Sampling Frame)... 9 1.4.Κατηγορίες Ιατρικών Μελετών.... 11 1.4.1.Πειραµατικές

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1

ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1 ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ: ΜΟΝΟΜΕΤΑΒΛΗΤΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1. Αλγεβρικές συναρτήσεις... 3 1.1 Η έννοια της συνάρτησης... 3 1.2 Ασαφείς και σαφείς συναρτήσεις... 3 1.3 Γραφικές απεικονίσεις των

Διαβάστε περισσότερα

215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας

215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας 215 Μηχανικών Η/Υ και Πληροφορικής Πάτρας Το Τμήμα ασχολείται με τη διδασκαλία και την έρευνα στην επιστήμη και τεχνολογία των υπολογιστών και τη μελέτη των εφαρμογών τους. Το Τμήμα ιδρύθηκε το 1980 (ως

Διαβάστε περισσότερα

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 2 ο Εξάμηνο του Ακαδημαϊκού Έτους 2015-2016 ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Αντώνης Κ.

Διαβάστε περισσότερα

Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΘΗΝΑ, 2001 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ iii ix ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1 1.1

Διαβάστε περισσότερα

http://kesyp.didefth.gr/ 1

http://kesyp.didefth.gr/ 1 248_Τµήµα Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης, Ηράκλειο Προπτυχιακό Πρόγραµµα Σκοπός του Τµήµατος Εφαρµοσµένων Μαθηµατικών είναι η εκαπαίδευση επιστηµόνων ικανών όχι µόνο να υπηρετήσουν και να

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Παραδόσεις 4. Μαθήματα Γενικής Υποδομής Υποχρεωτικά. Δεν υφίστανται απαιτήσεις. Ελληνική/Αγγλική ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

Παραδόσεις 4. Μαθήματα Γενικής Υποδομής Υποχρεωτικά. Δεν υφίστανται απαιτήσεις. Ελληνική/Αγγλική ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ DP1021 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Πρώτο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Μαθηματικά ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ σε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

ΜΕΤΑΒΑΤΙΚΟΙ ΚΑΝΟΝΕΣ ΕΞΕΤΑΣΗΣ ΜΑΘΗΜΑΤΩΝ ΛΟΓΩ ΕΦΑΡΜΟΓΗΣ ΤΟΥ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014

ΜΕΤΑΒΑΤΙΚΟΙ ΚΑΝΟΝΕΣ ΕΞΕΤΑΣΗΣ ΜΑΘΗΜΑΤΩΝ ΛΟΓΩ ΕΦΑΡΜΟΓΗΣ ΤΟΥ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΜΕΤΑΒΑΤΙΚΟΙ ΚΑΝΟΝΕΣ ΕΞΕΤΑΣΗΣ ΜΑΘΗΜΑΤΩΝ ΛΟΓΩ ΕΦΑΡΜΟΓΗΣ ΤΟΥ ΝΕΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΣΗΜΕΙΩΣΗ 1: ΣΗΜΕΙΩΣΗ 2: ΣΗΜΕΙΩΣΗ 3: ΟΛΟΙ ΟΙ ΠΑΡΑΚΑΤΩ ΜΕΤΑΒΑΤΙΚΟΙ ΚΑΝΟΝΕΣ ΠΟΥ ΑΦΟΡΟΥΝ

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ

Διαβάστε περισσότερα

Συνοπτικά περιεχόμενα

Συνοπτικά περιεχόμενα b Συνοπτικά περιεχόμενα 1 Τι είναι η στατιστική;... 25 2 Περιγραφικές τεχνικές... 37 3 Επιστήμη και τέχνη των διαγραμματικών παρουσιάσεων... 119 4 Αριθμητικές μέθοδοι της περιγραφικής στατιστικής... 141

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ I. Εισηγητική Έκθεση Συνημμένα: IΙ. Τομείς IΙI. Κατηγορίες Μαθημάτων και Αναλογίες IV. Πρόγραμμα Μαθημάτων V. Περιγράμματα

Διαβάστε περισσότερα

ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ (Ισχύει για τους φοιτητές με έτος εισαγωγής και μετά)

ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ (Ισχύει για τους φοιτητές με έτος εισαγωγής και μετά) ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ (Ισχύει για τους φοιτητές με έτος εισαγωγής 2015-16 και μετά) Για τη λήψη του πτυχίου τους οι φοιτητές υποχρεούνται να εξετασθούν επιτυχώς σε 38 μαθήματα και σε 4 μαθήματα ξένης γλώσσας.

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ

Διαβάστε περισσότερα

Επαγγελματικές Προοπτικές. Επιστημόνων Κοινωνικής Πολιτικής στην Εκπαίδευση. Πρόεδρος Τμήματος Κοινωνικής Πολιτικής, Πάντειο Πανεπιστήμιο

Επαγγελματικές Προοπτικές. Επιστημόνων Κοινωνικής Πολιτικής στην Εκπαίδευση. Πρόεδρος Τμήματος Κοινωνικής Πολιτικής, Πάντειο Πανεπιστήμιο Επαγγελματικές Προοπτικές Επιστημόνων Κοινωνικής Πολιτικής στην Εκπαίδευση Καθηγητής Ιορδάνης Ψημμένος, Πρόεδρος Τμήματος Κοινωνικής Πολιτικής, Πάντειο Πανεπιστήμιο Καθηγητής Βασίλειος Χατζόπουλος, Πρόεδρος

Διαβάστε περισσότερα

Προσφερόμενα Διπλώματα (Προσφερόμενοι Τίτλοι)

Προσφερόμενα Διπλώματα (Προσφερόμενοι Τίτλοι) Εισαγωγή Το Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών του Πανεπιστημίου Κύπρου προσφέρει ολοκληρωμένα προπτυχιακά και μεταπτυχιακά προγράμματα σπουδών στους κλάδους του Ηλεκτρολόγου Μηχανικού

Διαβάστε περισσότερα

Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3.

Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3. Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3. Η δημιουργία ικανών και άριστα εκπαιδευμένων επιστημόνων Γιατί Μαθηματικά

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 3-4 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 3 ΗΜ/ΝΙΑ 1ο-2ο Φυσική Φυσικού

Διαβάστε περισσότερα

Τηλ./Fax: ,

Τηλ./Fax: , Ποσοτικές Μέθοδοι στη Χρηματοοικονομική Π.Μ.Σ. Λογιστικής & Χρηματοοικονομικής Ανδριανός Ε. Τσεκρέκος Οκτώβριος Νοέμβριος, 2015 Περίληψη Το παρόν κείμενο παρέχει πληροφορίες για την διεξαγωγή του μαθήματος

Διαβάστε περισσότερα

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης

Περιγραφική Στατιστική. Ακαδ. Έτος 2012-2013 1 ο εξάμηνο. Κ. Πολίτης Περιγραφική Στατιστική Ακαδ. Έτος 2012-2013 1 ο εξάμηνο Κ. Πολίτης 1 2 Η στατιστική ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση πληροφοριών. Οι πληροφορίες αυτές, πολύ συχνά αριθμητικές,

Διαβάστε περισσότερα

Περιεχόμενα Παρουσίασης

Περιεχόμενα Παρουσίασης 1 Περιεχόμενα Παρουσίασης Σπουδές και εκπαίδευση Ποιοί είμαστε Τι προσφέρουμε: Προγράμματα σπουδών Προπτυχιακές σπουδές Επαγγελματικά δικαιώματα Μεταπτυχιακές σπουδές και έρευνα Διδακτορικές σπουδές Μεταδιδακτορική

Διαβάστε περισσότερα

3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών

3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών 3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών Στην ενότητα αυτή παρουσιάζονται τα συνοπτικά περιγράμματα των μαθημάτων που διδάσκονται στο Πρόγραμμα Σπουδών, είτε αυτά προσφέρονται από το τμήμα που είναι

Διαβάστε περισσότερα

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21 Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Αναμόρφωση και Υλοποίηση του Προγράμματος Σπουδών της Σχολής Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών ΕΠΙΣΤΗΜΟΝΙΚΟΣ

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΓΕΝΙΚΑ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ (ΜΑΕ531) ΣΧΟΛΗ ΤΜΗΜΑ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ MAE531 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 o ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ

Διαβάστε περισσότερα

5ο Επιστημονικό Πεδίο ΕΠΙΣΤΗΜΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ

5ο Επιστημονικό Πεδίο ΕΠΙΣΤΗΜΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ 3ο Επιστημονικό Πεδίο 3 5ο Επιστημονικό Πεδίο ΕΠΙΣΤΗΜΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Οι πτυχιούχοι της Σχολής: Στατιστικής του Πειραιά εγγράφονται στο Οικονομικό Επιμελητήριο, ενώ του Αιγαίου (2ο Πεδίο) δεν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦ ΑΡΜ ΟΣΜ ΕΝΩΝ Μ ΑΘΗΜ ΑΤΙΚΩΝ ΚΑΙ Φ ΥΣΙΚΩΝ ΕΠΙΣΤΗΜ ΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 3-4 ΗΜ/ΝΙΑ 1ο-2ο 3ο-4ο 5ο-6ο 5ο-6ο Μαθηματικού 7ο-8ο Φυσικού

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΔΙΠΛΩΜΑΤΟΣ

ΠΑΡΑΡΤΗΜΑ ΔΙΠΛΩΜΑΤΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΓΝΑΤΙΑ 156, 54006 ΘΕΣΣΑΛΟΝΙΚΗ - ΤΗΛ. +302310891218 - FAX: +302310891290 - website: http://www.uom.gr - e-mail:

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 20-201 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 20-201 ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ ΟΡΘΗ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή 1. Γενικά... 25 2. Έννοια και Είδη Μεταβλητών... 26 3. Κλίμακες Μέτρησης Μεταβλητών... 29 3.1 Ονομαστική κλίμακα... 30 3.2. Τακτική κλίμακα... 31 3.3 Κλίμακα ισοδιαστημάτων... 34 3.4

Διαβάστε περισσότερα

Πρόταση για Ανασχηματισμό του Προγράμματος Προπτυχιακών Σπουδών της ΣΗΜΜΥ

Πρόταση για Ανασχηματισμό του Προγράμματος Προπτυχιακών Σπουδών της ΣΗΜΜΥ Πρόταση για Ανασχηματισμό του Προγράμματος Προπτυχιακών Σπουδών της ΣΗΜΜΥ Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Περίληψη Τί προτείνουμε, πώς και γιατί με λίγα λόγια: 55 μαθήματα = 30 για ενιαίο

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΑΘΗΜΑΤΩΝ Μαθηματικός Λογισμός ΙΙ 7-9 Α22 Μαθηματικός Λογισμός ΙΙ 1-3 Εργ. Στατ. Θεωρία Κατανομών 5-7

ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΑΘΗΜΑΤΩΝ Μαθηματικός Λογισμός ΙΙ 7-9 Α22 Μαθηματικός Λογισμός ΙΙ 1-3 Εργ. Στατ. Θεωρία Κατανομών 5-7 ΟΙΚΟΝΟΜΙΚΟ ΝΕΙΣΤΗΜΙΟ ΘΗΝΩΝ ΚΔ. ΕΤΟΣ 2010-2011 ΩΡΟΛΟΓΙΟ ΡΟΓΡΜΜ ΔΙΔΣΚΛΙΣ ΕΡΙΝΟΥ ΕΞΜΗΝΟΥ ΤΜΗΜ ΣΤΤΙΣΤΙΚΗΣ σελ. 1 ΜΘΗΜ ΔΕΥΤ. ΤΡΙΤΗ ΤΕΤ. ΕΜ ΡΣ ΔΙΔΣΚΟΝΤΕΣ 2ο ΕΞΜΗΝΟ ΥΟΧΡΕΩΤΙΚ Θεωρία Κατανομών Βρόντος απαγεωργίου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΕΑΡΙΝΗ ΕΞΕΤΑΣΤΙΚΗ

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΕΑΡΙΝΗ ΕΞΕΤΑΣΤΙΚΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΕΥΤΕΡΑ 23/1/2017 ΤΡΙΤΗ 24/1/2017 1η 1ο ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ, 4 3ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ, 4 Γαλλικά (9.00 11.00)

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ B ΕΚΔΟΣΗ ΑΘΗΝΑ 2004 ΠΡΟΛΟΓΟΣ Η συλλογή και επεξεργασία δεδομένων από πεπερασμένους πληθυσμούς

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ

ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ Θ = ΘΕΩΡΙΑ Ε = ΕΡΓΑΣΤΗΡΙΟ Σ = ΣΥΝΟΛΟ ΔΜ = ΔΙΔΑΚΤΙΚΕΣ ΜΟΝΑΔΕΣ ECTS = ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ 1 ο ΕΞΑΜΗΝΟ Α ΕΤΟΣ 1ΚΠ01 Μαθηματική Ανάλυση Ι 4 1 5 5 5 1ΚΠ02 Γραμμική Άλγεβρα 4 5

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ Σ.Τ.ΕΦ ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ 2201301 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Γ ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Αναμόρφωση και Υλοποίηση του Προγράμματος Σπουδών της Σχολής Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών

Αναμόρφωση και Υλοποίηση του Προγράμματος Σπουδών της Σχολής Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Αναμόρφωση και Υλοποίηση του Προγράμματος Σπουδών της Σχολής Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Επιστημονικός υπεύθυνος: Κ. Χριστοδουλίδης Αναπληρωτής Καθηγητής, ΣΕΜΦΕ, ΕΜΠ (cchrist@central.ntua.gr)

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ - ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΩΝ ΜΑΘΗΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 2

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ - ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΩΝ ΜΑΘΗΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 2 ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ - ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΩΝ ΜΑΘΗΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2015-16 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 2 1η 5ο-6ο 7ο-8ο 9ο ΔΕΥΤΕΡΑ 18/1/201 ΜΗΧΑΝΙΚΗ Ι (ΣΤΑΤΙΚΗ) ΑΜΦ.1,2,3,4 ΣΤΑΤΙΣΤΙΚΗ ΦΥΣΙΚΗ,

Διαβάστε περισσότερα

Πρόγραμμα Προπτυχιακών Σπουδών (ΠΠΣ) Τμήματος «Διοίκησης Επιχειρήσεων» Πάτρας, ΤΕΙ Δυτικής Ελλάδας

Πρόγραμμα Προπτυχιακών Σπουδών (ΠΠΣ) Τμήματος «Διοίκησης Επιχειρήσεων» Πάτρας, ΤΕΙ Δυτικής Ελλάδας Πρόγραμμα Προπτυχιακών Σπουδών (ΠΠΣ) Τμήματος «Διοίκησης Επιχειρήσεων» Πάτρας, ΤΕΙ Δυτικής Ελλάδας Μαθήματα Τα ΠΠΣ περιλαμβάνει πενήντα ένα (51) μαθήματα, οργανωμένα ως εξής: Είκοσι τέσσερα (24) μαθήματα

Διαβάστε περισσότερα

ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ

ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί Lorentz 3. Δυναμική ενός σωματιδίου (Νόμοι της δυναμικής-ορμή-στροφορμήσυστήματα

Διαβάστε περισσότερα

415 Μαθηματικών και Στατιστικής Κύπρου

415 Μαθηματικών και Στατιστικής Κύπρου 415 Μαθηματικών και Στατιστικής Κύπρου Το "Τμήμα Μαθηματικών και Στατιστικής" ιδρύθηκε το έτος 1989, ανήκει στη Σχολή Θετικών και Εφαρμοσμένων Επιστημών του Πανεπιστημίου Κύπρου (με έδρα του τη Λευκωσία)

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ΕΘΝΚΟ ΜΕΤΣΟΒΟ ΠΟΛΥΤΕΧΝΕΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΚΩΝ ΚΑ ΦΥΣΚΩΝ ΕΠΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2011-2012 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2011-2012 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ΗΜ/ΝΑ 1ο-2ο 3ο-4ο 5ο-6ο

Διαβάστε περισσότερα

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου ΠΡΟΛΟΓΟΣ Η γραμμική παλινδρόμηση χρησιμοποιείται για την μελέτη των σχέσεων μεταξύ μετρήσιμων μεταβλητών. Γενικότερα, η γραμμική στατιστική συμπερασματολογία αποτελεί ένα ευρύ πεδίο της στατιστικής ανάλυσης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής του Πανεπιστημίου Μακεδονίας

Τμήμα Λογιστικής και Χρηματοοικονομικής του Πανεπιστημίου Μακεδονίας Τμήμα Λογιστικής και Χρηματοοικονομικής του Πανεπιστημίου Μακεδονίας Αποστολή και Στόχοι του Τμήματος Λογιστικής και Χρηματοοικονομικής Καλώς ήλθατε στο Τμήμα Λογιστικής και Χρηματοοικονομικής Η λογιστική/χρηματοοικονομική

Διαβάστε περισσότερα

711 Πληροφορικής ΤΕΙ Αθήνας

711 Πληροφορικής ΤΕΙ Αθήνας 711 Πληροφορικής ΤΕΙ Αθήνας Το Τμήμα Πληροφορικής του ΤΕΙ Αθήνας ιδρύθηκε και δέχτηκε τους πρώτους του σπουδαστές τον Οκτώβριο του 1983, ταυτόχρονα δηλαδή με την έναρξη ισχύος του νόμου 1404/83 για τα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 Επιτροπή προπτυχιακών σπουδών: Κ. Βασιλάκης Κ. Γιαννόπουλος

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 5 )

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 5 ) ΠΑΡΑΣΚΕΥΗ 19/6/2015 ΠΕΜΠΤΗ 18/6/2015 ΤΕΤΑΡΤΗ 17/6/2015 ΤΡΙΤΗ 16/6/2015 ΔΕΥΤΕΡΑ 15/6/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ

Διαβάστε περισσότερα

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου ΤΥΠΟΛΟΓΙΟ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ο ανάστροφος πίνακας του [ j ] σημειώνεται με [ j ] (δηλαδή οι γραμμές γίνονται στήλες αντίστροφα Ιδιότητες: ( ( B B ( R ( B B Ο αντίστροφος ενός τετραγωνικού πίνακα [ j ]

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ Εξάμηνο Υ/Ε Ώρες Θεωρίας Ώρες Ασκήσης Διδακτικές μονάδες ECTS A Υ 3 3 4 6 Διδάσκουσα Μ. Αλεξίου Χατζάκη, Επίκ. Καθηγήτρια Γεν. Βιολογίας. Aντικειμενικοί στόχοι του μαθήματος Οι στόχοι

Διαβάστε περισσότερα

ΠΡΑΞΗ: «ΜΟ.ΔΙ.Π» (Μονάδα Διασφάλισης Ποιότητας) του Πανεπιστημίου Μακεδονίας» Κωδικός MIS ΥΠΟΕΡΓΟ:

ΠΡΑΞΗ: «ΜΟ.ΔΙ.Π» (Μονάδα Διασφάλισης Ποιότητας) του Πανεπιστημίου Μακεδονίας» Κωδικός MIS ΥΠΟΕΡΓΟ: ΠΡΑΞΗ: «ΜΟ.ΔΙ.Π» (Μονάδα Διασφάλισης Ποιότητας) του Πανεπιστημίου Μακεδονίας» Κωδικός MIS 299516 ΥΠΟΕΡΓΟ: «ΜΟΔΙΠ του ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ» και α/α «01» ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ: «Εκπαίδευση και Δια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Τμήμα Μαθηματικών & Εφαρμοσμένων Μαθηματικών. Σχολή Θετικών και Τεχνολογικών Επιστημών. οδηγός σπουδών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Τμήμα Μαθηματικών & Εφαρμοσμένων Μαθηματικών. Σχολή Θετικών και Τεχνολογικών Επιστημών. οδηγός σπουδών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τμήμα Μαθηματικών & Εφαρμοσμένων Μαθηματικών Σχολή Θετικών και Τεχνολογικών Επιστημών οδηγός σπουδών Ιστορικά Στοιχεία Ίδρυση του Τμήματος: Το Τμήμα δημιουργήθηκε τον Ιούνιο του 2013

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΠΑΡΑΣΚΕΥΗ 2/9/2016 ΠΕΜΠΤΗ 1/9/2016 ΤΕΤΑΡΤΗ 31/8/2016 ΤΡΙΤΗ 30/8/2016 ΔΕΥΤΕΡΑ 29/8/2016 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΕΦΟΔΙΑΣΜΟΥ ΠΑΡΑΡΤΗΜΑ ΘΗΒΑΣ ΤΕΙ ΧΑΛΚΙΔΑΣ Πέμπτη, 21/2/2013 ΑΝΑΚΟΙΝΩΣΗ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΕΦΟΔΙΑΣΜΟΥ ΠΑΡΑΡΤΗΜΑ ΘΗΒΑΣ ΤΕΙ ΧΑΛΚΙΔΑΣ Πέμπτη, 21/2/2013 ΑΝΑΚΟΙΝΩΣΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΕΦΟΔΙΑΣΜΟΥ ΠΑΡΑΡΤΗΜΑ ΘΗΒΑΣ ΤΕΙ ΧΑΛΚΙΔΑΣ Πέμπτη, 21/2/2013 ΑΝΑΚΟΙΝΩΣΗ Οι επι πτυχίω φοιτητές (με αριθμό μητρώου ΣΕΒ08 ή παλαιότερο, δηλαδή που διανύουν το 8 ο εξάμηνο ή μεγαλύτερο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 4 )

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 4 ) ΠΑΡΑΣΚΕΥΗ 19/6/2015 ΠΕΜΠΤΗ 18/6/2015 ΤΕΤΑΡΤΗ 17/6/2015 ΤΡΙΤΗ 16/6/2015 ΔΕΥΤΕΡΑ 15/6/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 1ο-2ο 3ο-4ο ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 5ο-6ο 7ο-8ο 9ο ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-17 1η 1o - 2ο 3o - 4ο

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ - ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΩΝ ΜΑΘΗΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ - ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΩΝ ΜΑΘΗΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ΠΑΡΑΣΚΕΥΗ 22/1/2016 ΠΕΜΠΤΗ 21/1/201 ΤΕΤΑΡΤΗ 20/1/2016 ΤΡΙΤΗ 19/1/2016 ΔΕΥΤΕΡΑ 18/1/201 ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ - ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΩΝ ΜΑΘΗΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2015-16 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2012-2013 Α ΕΞΑΜΗΝΟ Σαμαράς Νικόλαος, Επ. Μαυρίδης Ιωάννης, Επ. Ρεφανίδης Ιωάννης, Επ. ΑΛΓΟΡΙΘΜΟΙ ΜΕ C Σαμαράς Νικόλοας, Επ. Σατρατζέμη Μαρία-Αικατερίνη,

Διαβάστε περισσότερα