Εναλλακτική Μορφή Διδασκαλίας των Συναρτήσεων στη Β Γυμνασίου με Χρήση Νέων Τεχνολογιών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εναλλακτική Μορφή Διδασκαλίας των Συναρτήσεων στη Β Γυμνασίου με Χρήση Νέων Τεχνολογιών"

Transcript

1 Εναλλακτική Μορφή Διδασκαλίας των Συναρτήσεων στη Β Γυμνασίου με Χρήση Νέων Τεχνολογιών Δέσποινα Χριστοφόρου 1, Χρήστος Κουρουνιώτης 1, Ειρήνη Μπιζά 2, Έλενα Ναρδή 2 1 Πανεπιστήμιο Κρήτης 2 University of East Anglia Περίληψη Η παρούσα εργασία αποτελεί μέρος διδακτικής παρέμβασης που πραγματοποιήθηκε σε μία τάξη Β Γυμνασίου χρησιμοποιώντας περιβάλλον Δυναμικής Γεωμετρίας (EucliDraw) για τη διδασκαλία των συναρτήσεων. Η επίδραση της εφαρμογής στη μαθησιακή εμπειρία των μαθητών αξιολογήθηκε με διαγώνισμα μαθηματικού περιεχομένου και ερωτηματολόγιο στάσεων και αντιλήψεων και έδειξε, συγκριτικά με την προηγούμενη εικόνα των μαθητών στα μαθηματικά: αύξηση της συμμετοχής στο μάθημα, διαμόρφωση θετικότερης στάσης των μαθητών και βελτίωση των μαθηματικών επιδόσεων. Ενδιαφέρον είναι ότι η παρέμβαση κατάφερε να εμπλέξει σε δραστηριότητες μαθητές που μέχρι τότε εκφράζονταν σαφώς αρνητικά και δε συμμετείχαν στο μάθημα. Λέξεις κλειδιά: Συναρτήσεις, δυναμικά ηλεκτρονικά περιβάλλοντα, στάσεις / αντιλήψεις 1. Εισαγωγή Η έρευνα για τη διδασκαλία και μάθηση μαθηματικών εννοιών έχει επανειλημμένα εντοπίσει τις δυσκολίες που αντιμετωπίζουν οι μαθητές στην κατανόηση της έννοιας της συνάρτησης (π.χ. Gagatsis & Shiakalli, 2004, Tall & Bakar, 1991, Sierpinska, 1992). Για το ξεπέρασμα των παραπάνω δυσκολιών οι ερευνητές συχνά προτείνουν τη χρήση νέων τεχνολογιών στη διδασκαλία της συνάρτησης (π.χ. Abu-Naja, 2008, Ferrara, Pratt & Robutti, 2006, Lagrange, 2005, Τουμάσης & Αρβανίτης, 2008). Στο παρόν άρθρο το οποίο βασίζεται στη διπλωματική μεταπτυχιακή εργασία της πρώτης συγγραφέως (Χριστοφόρου, 2009) παρουσιάζουμε τμήματα διδακτικής παρέμβασης που πραγματοποιήθηκε σε μία τάξη Β Γυμνασίου χρησιμοποιώντας περιβάλλον Δυναμικής Γεωμετρίας για τη διδασκαλία των συναρτήσεων. Στη συνέχεια παρουσιάζουμε εν συντομία τη σχετική βιβλιογραφία, το σχεδιασμό της παρέμβασης, στοιχεία από την εφαρμογή της και, τέλος, τα σημαντικότερα αποτελέσματα από την αξιολόγηση της επίδρασης που αυτή είχε στη μαθησιακή εμπειρία των μαθητών τόσο σε γνωστικό όσο και σε συναισθηματικό επίπεδο. Μαθηματική Εκπαίδευση και Οικογενειακές Πρακτικές ΕΝΕΔΙΜ, Πανεπιστήμιο Αιγαίου, 2009

2 482 3 ο Συνέδριο ΕΝΕΔΙΜ 2. Σχετική βιβλιογραφία Η κατανόηση της έννοιας της συνάρτησης είναι ένα θέμα που συγκεντρώνει την προσοχή των εκπαιδευτικών αλλά και της ερευνητικής κοινότητας της μαθηματικής εκπαίδευσης γενικότερα (Tall & Bakar, 1991, Sierpinska, 1992). Ένας σημαντικός παράγοντας παρεμπόδισης της κατανόησης της έννοιας της συνάρτησης είναι οι διαφορετικοί τρόποι που αυτή αναπαριστάται (Sierpinska, 1992). Υπάρχει ο αριθμητικός τρόπος αναπαράστασης μέσω του πίνακα τιμών, ο αναλυτικός μέσω του τύπου και ο γραφικός μέσω της γραφικής παράστασης. Οι μαθητές δυσκολεύονται να συσχετίσουν αυτές τις αναπαραστάσεις και να μεταβούν από τον ένα τρόπο αναπαράστασης στον άλλο (Gagatsis & Shiakalli, 2004). Επίσης, συναντούν δυσκολίες στη μετάφραση της γραφικής παράστασης και στο χειρισμό των συμβόλων που σχετίζονται με τη συνάρτηση όπως f(x), x y, sin(x + t) (Sierpinska, 1992). Η χρήση της τεχνολογίας στη διδασκαλία της συνάρτησης προτείνεται από ερευνητές και παιδαγωγούς (Abu-Naja, 2008, Ferrara κ.ά., 2006, Lagrange, 2005, Τουμάσης & Αρβανίτης, 2008) ως βοηθητική για την ενεργοποίηση των μαθητών μέσω δραστηριοτήτων διερεύνησης. Σημαντική, επιπλέον, έχει αποδειχθεί η χρήση περιβαλλόντων Δυναμικής Γεωμετρίας, όπου οι μαθητές μεταβάλλουν τα δεδομένα, παρατηρούν τις αλλαγές που προκαλούνται και βγάζουν χρήσιμα συμπεράσματα (Ferrara κ.ά., 2006). Αντίστοιχη προσέγγιση προτείνεται στο Βιβλίο του Εκπαιδευτικού για τα Μαθηματικά της Β Γυμνασίου (Βλάμος, Δρούτσας, Πρέσβης & Ρεκούμης, 2007, σελ. 33) και στις οδηγίες του Παιδαγωγικού Ινστιτούτου για τη διδασκαλία των μαθηματικών (Π.Ι., 2007) όπου η χρήση εκπαιδευτικών λογισμικών και η ενασχόληση με δραστηριότητες καθιστούν πιο ενεργητικό το ρόλο των μαθητών μέσα στην τάξη και διαφοροποιούν τη διδασκαλία από το παραδοσιακό διδακτικό μοντέλο (Π.Ι., 2007). Έρευνες για τη χρήση των υπολογιστών στη διδασκαλία και τη μάθηση των μαθηματικών έδειξαν ότι κάτω από ορισμένες συνθήκες: 1) ο υπολογιστής, ως εργαλείο μέσα στην τάξη, βοηθά τους μαθητές να κατανοήσουν καλύτερα αφηρημένες μαθηματικές έννοιες προσφέροντας τη δυνατότητα οπτικοποίησης και συγκεκριμένης επεξεργασίας τους, 2) οι μαθητές που χρησιμοποιούν υπολογιστές διαμορφώνουν μια καλύτερη στάση απέναντι στα μαθηματικά, ενώ αυξάνεται η αυτοπεποίθησή τους για τις μαθηματικές τους ικανότητες, 3) η διδασκαλία που υποβοηθείται από υπολογιστή είναι πιο αποτελεσματική όσον αφορά στην άνοδο της επίδοσης ιδιαίτερα των αδύνατων και των πολύ καλών μαθητών, 4) η διδασκαλία με χρήση Η/Υ συμβάλλει στην ενεργοποίηση και παρακίνηση όλων των μαθητών και ιδιαίτερα αυτών που δείχνουν μια παθητική στάση απέναντι στα μαθηματικά (Ferrara κ.ά., 2006, McCoy, 1991, Kaput & Thompson, 1994). Επιπλέον, πέρα από τη βελτίωση στο γνωστικό τομέα, οι νέες τεχνολογίες στην εκπαίδευση κάτω από ορισμένες συνθήκες μπορούν να δώσουν τη δυνατότητα: 1)

3 Χριστοφόρου Δ., Κουρουνιώτης Χ., Μπιζά Ε., Ναρδή Ε. 483 να αυξηθούν και να αλλάξουν οι τρόποι με τους οποίους οι μαθητές αλληλεπιδρούν και συνεργάζονται μεταξύ τους και με τους καθηγητές τους, 2) να υποστηρίξουν την ανάπτυξη της αυτονομίας και την αύξηση του εύρους, του βάθους, της συνθετότητας και της πρωτοτυπίας της σκέψης και της παραγωγής τους, 3) να επιτρέψουν στους μαθητές να αναλάβουν μεγαλύτερη ευθύνη στη μάθηση μέσα σε διδακτικές αίθουσες περισσότερο μαθητοκεντρικές και μαθητοελεγχόμενες και 4) να επιτρέψουν στους μαθητές να συμμετέχουν σε περισσότερο διαφοροποιημένες διδακτικές δραστηριότητες, οι οποίες να ταιριάζουν στα ενδιαφέροντα, τις ανάγκες και τις δυνατότητές τους (Μπαραλός & Πολιτίδου, 2008). Με βάση τα παραπάνω, στην παρούσα εργασία επιχειρείται η διερεύνηση των α- κόλουθων ερωτημάτων: 1. Αν και κατά πόσο η χρήση λογισμικού Δυναμικής Γεωμετρίας στη διδασκαλία των συναρτήσεων σε μαθητές της Β Γυμνασίου στο εργαστήριο Πληροφορικής, μπορεί να βοηθήσει στην καλύτερη κατανόηση της έννοιας της συνάρτησης. 2. Αν και κατά πόσο μια τέτοια σειρά μαθημάτων, σχεδιασμένη με ευαισθησία ως προς τις δυσκολίες και τις ανάγκες των μαθητών, συντελεί στην κινητοποίηση, ενεργοποίηση και καλύτερη επίδοση των μαθητών της τάξης και γενικότερα στην αλλαγή της στάσης των μαθητών απέναντι στα μαθηματικά. Η μεθοδολογία που ακολουθήσαμε είναι η Έρευνα Δράσης (Action Research, Elliott, 1991) και αποτελείται από τέσσερα στάδια: σύλληψη του προβλήματος και σχεδιασμός, εφαρμογή και αξιολόγηση της διδακτικής παρέμβασης. 3. Σχεδιασμός της διδακτικής παρέμβασης Η διδακτική παρέμβαση πραγματοποιήθηκε σε μια τάξη Β Γυμνασίου με 15 μαθητές και 7 μαθήτριες από την πρώτη συγγραφέα που τη χρονιά εκείνη ήταν η καθηγήτρια μαθηματικών της τάξης, σε συνεργασία με την καθηγήτρια πληροφορικής του σχολείου. Στο τμήμα υπήρχαν λίγοι μαθητές με ευχέρεια στα μαθηματικά, οι περισσότεροι είχαν πολλές δυσκολίες και ήταν αδιάφοροι προς το μάθημα και υπήρχαν κάποιοι μαθητές που εκδήλωναν αρνητική στάση προς τα μαθηματικά. Τα μαθήματα έλαβαν χώρα είτε στο εργαστήριο πληροφορικής είτε στην τάξη, ανάλογα με το περιεχόμενο του μαθήματος. Συνολικά πραγματοποιήθηκαν 15 μαθήματα (το κάθε μάθημα διαρκούσε όσο μια διδακτική ώρα). Τα 6 μαθήματα έγιναν στο εργαστήριο πληροφορικής και τα υπόλοιπα 9 στην τάξη. Στα μαθήματα χρησιμοποιήθηκαν Η/Υ (ένας υπολογιστής ανά δύο ή τρεις μαθητές), ο κεντρικός υπολογιστής που χειριζόταν άλλες φορές η καθηγήτρια μαθηματικών και άλλες φορές η καθηγήτρια πληροφορικής, ο προβολέας, τα φύλλα εργασίας και ο πίνακας.

4 484 3 ο Συνέδριο ΕΝΕΔΙΜ Τα περιβάλλοντα για τη διδασκαλία της συνάρτησης βασίστηκαν στο διερευνητικό λογισμικό Δυναμικής Γεωμετρίας EucliDraw (έκδοση 2.2.7) το οποίο παρέχει και εργαλεία διαχείρισης συναρτήσεων που διευκολύνουν το σχεδιασμό και δυναμικό χειρισμό γραφικών παραστάσεων (http://www.euclidraw.com/). Η διδακτική παρέμβαση αφορούσε στην έννοια της συνάρτησης. Πέρα από τους γνωστικούς στόχους που αναφέρονται στο Βιβλίο του Εκπαιδευτικού (Βλάμος κ.ά., 2007), με τις δραστηριότητες που δημιουργήσαμε με το EucliDraw, επιδιώξαμε οι μαθητές να ανακαλύψουν: 1) την αναγκαιότητα χρήσης των καρτεσιανών συντεταγμένων για τον ακριβή προσδιορισμό της θέσης ενός σημείου στο επίπεδο, 2) το πρόσημο των συντεταγμένων ενός σημείου ανάλογα με το τεταρτημόριο που βρίσκεται το σημείο, 3) τις διαφορές των γραφικών παραστάσεων συναρτήσεων με ίδιο τύπο αλλά διαφορετικό πεδίο ορισμού, 4) πότε ένα σημείο ανήκει ή όχι στη γραφική παράσταση μιας συνάρτησης και 5) το ρόλο του α για τη γραφική παράσταση της συνάρτησης με τύπο ψ = αx. Επίσης, με αυτή την παρέμβαση επιδιώξαμε, σε συναισθηματικό επίπεδο: 1) να κάνουμε πιο ενεργό το ρόλο των μαθητών στην τάξη μέσω της συμμετοχής τους, 2) να προκαλέσουμε το ενδιαφέρον των μαθητών με δραστηριότητες που θα τους εντυπωσιάσουν, 3) να βοηθήσουμε μαθητές που έχουν αποστασιοποιηθεί από το μάθημα, για παράδειγμα λόγω κάποιων άσχημων εμπειριών με τα μαθηματικά, να τα απομυθοποιήσουν και να τους ενθαρρύνουμε να ασχοληθούν ξανά χωρίς το φόβο της αποτυχίας. 4. Εφαρμογή διδακτικής παρέμβασης Στη συνέχεια θα παρουσιάσουμε πέντε δραστηριότητες που συνδέονται με τους γνωστικούς στόχους που περιγράψαμε στην προηγούμενη ενότητα. 4.1 Η αναγκαιότητα χρήσης των καρτεσιανών συντεταγμένων Στη δραστηριότητα αυτή ζητήθηκε από τους μαθητές να παρατηρήσουν τη θέση του σημείου (Σχήμα 1) που έβλεπαν στην οθόνη του βιντεοπροβολέα και να τη περιγράψουν με λόγια χωρίς να δείξουν με το χέρι. Όταν δεν μπόρεσαν να το κάνουν με ακρίβεια, προσθέσαμε πλέγμα στο σχεδιαστικό φύλλο (Σχήμα 2). Τότε οι μαθητές απάντησαν ακριβέστερα με τη βοήθεια του πλέγματος. Στη συνέχεια, κουνήσαμε το σχεδιαστικό φύλλο με αποτέλεσμα η θέση του σημείου να αλλάξει. Έτσι, αναδείξαμε την αναγκαιότητα ενός σταθερού σημείου αναφοράς.

5 Χριστοφόρου Δ., Κουρουνιώτης Χ., Μπιζά Ε., Ναρδή Ε. 485 Σχήμα 1: Το σημείο στο σχ. φύλλο Σχήμα 2: Η βοήθεια του πλέγματος 4.2 Το πρόσημο των συντεταγμένων του σημείου ανάλογα με το τεταρτημόριο Στη δραστηρίοτητα αυτή ζητήθηκε από τους μαθητές να βρουν, στο αρχείο που είχαμε ήδη σχεδιάσει, το πρόσημο των συντεταγμένων του σημείου ανάλογα με το τεταρτημόριο στο οποίο ανήκε. Σε αυτή τη δραστηριότητα με το σύρσιμο του ποντικιού μεταβάλλεται η θέση του σημείου και βλέπεις στα δεξιά τις συντεταγμένες του και συνεπώς βλέπεις και το πρόσημό τους (Σχήμα 3). Σχήμα 3: Το πρόσημο των συντεταγμένων του σημείου 4.3 Γραφικές παραστάσεις συναρτήσεων με ίδιο τύπο αλλά διαφορετικό πεδίο ορισμού Στη δραστηριότητα αυτή οι μαθητές κλήθηκαν να παρατηρήσουν στην οθόνη του βιντεοπροβολέα τις διαφορές που υπάρχουν στις γραφικές παραστάσεις συναρτήσεων με ίδιο τύπο, αλλά διαφορετικό πεδίο ορισμού με το πάτημα των κόκκινων κουμπιών (Σχήμα 4). Με αυτή τη δραστηριότητα διδάχθηκε η σχεδίαση της γραφικής παράστασης της συνάρτησης με τύπο ψ = x 2 και πεδίο ορισμού πρώτα τις ακέραιες τιμές και έπειτα όλο και περισσότερες τιμές του διαστήματος [-3, 3].

6 486 3 ο Συνέδριο ΕΝΕΔΙΜ Σχήμα 4: Γραφήματα συναρτήσεων με ίδιο τύπο και διαφορετικό πεδίο ορισμού 4.4 Σημείο σε γράφημα δοθείσας συνάρτησης Στη δραστηριότητα αυτή αρχικά δόθηκε στους μαθητές η γραφική παράσταση της συνάρτησης ψ = x 2 και ένα σημείο μακριά από αυτήν ώστε να αποφανθούν αν το σημείο βρίσκεται πάνω στη γραφική παράσταση. Έπειτα τους προβάλαμε με τον βιντεοπροβολέα την εικόνα στο Σχήμα 5, ώστε να αποφανθούν για το ίδιο πράγμα. Τότε οι μαθητές απάντησαν πως προφανώς το σημείο ανήκει στη γραφική παράσταση αφού το έβλεπαν. Τότε μεγεθύναμε την εικόνα (Σχήμα 6), ώστε να δουν ότι μπορεί να φαίνεται ότι ανήκει, αλλά στην πραγματικότητα δεν ανήκει και συνεπώς δεν αρκεί πάντα να δούμε για να αποφανθούμε, αλλά πρέπει να το ελέγξουμε με τη βοήθεια του τύπου της συνάρτησης και των συντεταγμένων του σημείου. Σχήμα 5: Ανήκει το σημείο στη γρ. παράσταση; Σχήμα 6: Σε μεγέθυνση

7 Χριστοφόρου Δ., Κουρουνιώτης Χ., Μπιζά Ε., Ναρδή Ε Ο ρόλος του α στη γραφική παράσταση της ψ = αx Σε αυτή τη δραστηριότητα οι μαθητές άλλαζαν το α στη συνάρτηση με τύπο ψ = αx με το πάτημα του ποντικιού και έβλεπαν την ευθεία να περιστρέφεται (Σχήμα 7). Έτσι, ανακάλυψαν το ρόλο του α στη γραφική παράσταση και τη μορφή που αυτή παίρνει όταν το α είναι θετικό, αρνητικό ή μηδέν. Σχήμα 7: Ο ρόλος του α 5. Αξιολόγηση της εφαρμογής Η αξιολόγηση της επίδρασης που είχε η διδακτική παρέμβαση στη μαθησιακή ε- μπειρία των μαθητών έγινε σε δύο επίπεδα: γνωστικό και συναισθηματικό. Για το πρώτο χρησιμοποιήθηκε δίωρο διαγώνισμα μαθηματικού περιεχομένου το οποίο έλεγχε τις γνώσεις των μαθητών τις οποίες επιδιώξαμε να αποκτήσουν με την ε- φαρμογή. Για το δεύτερο χρησιμοποιήθηκε ανώνυμο ερωτηματολόγιο με ερωτήσεις ανοικτού και κλειστού τύπου που έλεγχε τη στάση των μαθητών απέναντι στα μαθηματικά μετά την εφαρμογή. 5.1 Απαντήσεις των μαθητών στο διαγώνισμα Θα αναφέρουμε ενδεικτικά κάποια αποτελέσματα από τις επιδόσεις των μαθητών στο διαγώνισμα αναφορικά με ερωτήσεις που σχετίζονταν με την εύρεση συντεταγμένων σημείων, σχεδίαση γραφικής παράστασης, τον ορισμό συνάρτησης, συμπλήρωση πίνακα τιμών συνάρτησης από τη γραφική παράσταση και σύνδεση ευθείας με τον τύπο της αντίστοιχης συνάρτησης και το πεδίο ορισμού της. Οι μαθητές, με ποσοστό επιτυχίας πάνω από 70%, απάντησαν σωστά σε ερώτημα εύρεσης των συντεταγμένων δοθέντων σημείων και σε ερωτήματα συμπλήρωσης του πίνακα τιμών δοθείσης συνάρτησης. Παρουσιάστηκε δυσκολία στις απαντήσεις όταν κάποια από τις συντεταγμένες του σημείου ήταν μηδέν και στη συμπλήρωση του πίνακα τιμών όταν απαιτούνταν πράξεις μεταξύ ετερόσημων αριθμών. Επίσης, δυσκολία παρουσιάστηκε στη σχεδίαση γραφικής παράστασης δοθείσης συνάρτησης, όπου το ποσοστό επιτυχίας ήταν 20%, γιατί πολλοί μαθητές μπερδεύ-

8 488 3 ο Συνέδριο ΕΝΕΔΙΜ τηκαν με σημεία που προϋπήρχαν στο σύστημα αξόνων από προηγούμενο ερώτημα της άσκησης. Σε ερώτηση για το πώς αντιλαμβάνονται τη συνάρτηση, οι μαθητές απάντησαν ότι την αντιλαμβάνονται ως: αντιστοιχία (54%), μηχανή εισόδου-εξόδου (9%), γραφική παράσταση (5%), τύπο (5%) ή κάτι άλλο (5%). Τον παραλληλισμό της συνάρτησης με μηχανή εισόδου-εξόδου (κατά τους Tall, McGowen & DeMarois, 2000), που χρησιμοποίησαν μερικοί μαθητές τον είχαμε αναφέρει στη διδασκαλία και δύο, μάλιστα μαθητές έκαναν και αντίστοιχα σχήματα στο γραπτό τους. Το 22% των μαθητών δεν έδωσε κάποια απάντηση σε αυτό το ερώτημα. Ήταν εκείνοι οι μαθητές που ήταν ιδιαίτερα αδύνατοι στα μαθηματικά και μπόρεσαν να απαντήσουν μόνο σε λίγα ερωτήματα. Οι μαθητές συμπλήρωσαν με άνεση τον πίνακα τιμών συνάρτησης με τη βοήθεια της γραφικής της παράστασης, αφού το ποσοστό επιτυχίας ήταν πάνω από 85%. Επιπλέον, το 41% των μαθητών απάντησε σωστά σε ερώτημα στο οποίο τους δόθηκε μια γραφική παράσταση ευθείας και τρεις τύποι συναρτήσεων και τους ζητήθηκε να επιλέξουν από ποιον από τους τύπους έχει προκύψει αυτή η γραφική παράσταση. Ενδιαφέρον παρουσιάζει το γεγονός ότι, ενώ λίγοι μαθητές αιτιολόγησαν πλήρως την απάντησή τους, πολλοί ήταν εκείνοι που στην αιτιολόγησή τους αναφέρθηκαν στο συντελεστή του x και τα τεταρτημόρια από τα οποία πρέπει να διέρχεται η ευθεία. Υποθέτουμε ότι στην επιλογή αυτή έπαιξε σημαντικό ρόλο η δραστηριότητα που παρουσιάσαμε στην ενότητα 4.5, όπου αλλαγές στο συντελεστή του x στη συνάρτηση με τύπο ψ = αx προκαλούσε περιστροφή της προβαλλόμενης ευθείας. Το ένα τρίτο των μαθητών απάντησε σωστά ή απάντησε μερικώς σωστά σε ερώτημα όπου δίνονταν τρεις παράλληλες ευθείες και ο τύπος της μιας και οι μαθητές έπρεπε να βρουν τον τύπο των άλλων δύο ευθειών. Ιδιαίτερη δυσκολία αντιμετώπισαν οι μαθητές στην αιτιολόγηση των επιλογών τους ακόμα και όταν αυτές ήταν σωστές. Τέλος, το 14% των μαθητών εντόπισε το λάθος στο πεδίο ορισμού σε δοθείσα γραφική παράσταση, όπου τους δόθηκε μια γραφική παράσταση μιας ευθείας, ο τύπος της συνάρτησης από τον οποίο υποτίθεται ότι είχε προκύψει το γράφημα και το υποτιθέμενο πεδίο ορισμού και τους ζητήθηκε να αποφανθούν αν είναι σωστό το δοθέν γράφημα. Το ερώτημα αυτό βέβαια ήταν ιδιαίτερα δύσκολο για μαθητές της Β Γυμνασίου και ειδικά για τόσο αδύνατους μαθητές. Να σημειώσουμε ότι το σχολικό βιβλίο δεν κάνει αναφορά στο πεδίο ορισμού. Ωστόσο στα μαθήματά μας δώσαμε ιδιαίτερη έμφαση σε αυτό, αφού το πεδίο ορισμού έχει καθοριστικό ρόλο στον ορισμό της συνάρτησης και κατ επέκταση στην εννοιολογική κατανόησή της. Παρόλο που, όπως είδαμε και παραπάνω, υπήρχαν ερωτήματα που δυσκόλεψαν τους μαθητές, η επίδοση των μαθητών στο διαγώνισμα ήταν καλύτερη από αυτή σε

9 Χριστοφόρου Δ., Κουρουνιώτης Χ., Μπιζά Ε., Ναρδή Ε. 489 προηγούμενες αξιολογήσεις. Σημαντικότερη βελτίωση παρουσίασαν οι μέτριοι και αδύνατοι μαθητές. Μάλιστα ακόμα και αδύνατοι μαθητές, που συνήθως έδιναν λευκή κόλλα, απάντησαν σε κάποια ερωτήματα του διαγωνίσματος. 5.2 Απαντήσεις των μαθητών στο ερωτηματολόγιο Στο ερωτηματολόγιο που συμπλήρωσαν οι μαθητές φάνηκε ότι τους άρεσαν πολύ αυτά τα μαθήματα (86%). Όλοι δήλωσαν ότι τα μαθήματα αυτά τους φάνηκαν ενδιαφέροντα ή πολύ ενδιαφέροντα και ότι τους άρεσε ή τους άρεσε πολύ να δουλεύουν σε ομάδα με τους συμμαθητές τους. Το 90% των μαθητών ισχυρίστηκε ότι βελτιώθηκε η συμμετοχή του στο μάθημα κατά τη διάρκεια της διδακτικής παρέμβασης. Ενδεικτικές απαντήσεις στην ερώτηση για το τι άρεσε περισσότερο στο μάθημα στους μαθητές ήταν ότι: «χρησιμοποιούσαμε τους υπολογιστές και έτσι το μάθημα έγινε πιο ενδιαφέρον», «συνεργαζόμασταν με τους συμμαθητές μου», «δεν ήταν δύσκολα και ήμασταν και σε ομάδες», «συμμετείχε όλη η τάξη στο μάθημα». Ενώ στην ερώτηση για το τι τους άρεσε λιγότερο στα μαθήματα αυτά, ενδεικτικά απάντησαν ότι: «κάναμε λίγες ώρες» και «δεν υπάρχει κάτι που να μην μου άρεσε». Τέλος, όταν ζητήθηκε από τους μαθητές να γράψουν αν έχουν κάποιο σχόλιο για τα μαθήματα αυτά, απάντησαν: «ελπίζω να το ξανακάνουμε», «θα μου άρεσε να συνεχίζαμε να κάνουμε μάθημα στο εργαστήριο», «όλα ήταν καλά και εύκολα», «τα μαθήματα αυτά ήταν καλύτερα από τα μαθήματα μέσα στην τάξη». 6. Συζήτηση συμπεράσματα Στο παρόν άρθρο παρουσιάσαμε αποτελέσματα από διδακτική παρέμβαση που έγινε σε μία τάξη Β Γυμνασίου με χρήση περιβάλλοντος Δυναμικής Γεωμετρίας για τη διδασκαλία των συναρτήσεων. Συνολικά παρατηρήσαμε ότι, συγκριτικά με τη στάση που είχαν οι μαθητές πριν την εφαρμογή, η συμμετοχή τους στο μάθημα αυξήθηκε, έδειξαν να ενθουσιάζονται και να κατανοούν καλύτερα τη νέα γνώση. Η εργασία σε ομάδες βοήθησε όλους τους μαθητές, τους αδύνατους επειδή δέχονταν τη βοήθεια των άλλων και τους καλούς επειδή, προσπαθώντας να βοηθήσουν τους άλλους, εμπέδωναν καλύτερα τη νέα γνώση. Ενδιαφέρον είναι ότι η παρέμβαση κατάφερε να εμπλέξει σε δραστηριότητες μαθητές που μέχρι τότε εκφράζονταν σαφώς αρνητικά και δε συμμετείχαν στην τάξη των μαθηματικών. Το αποτέλεσμα ήταν όχι μόνο να βελτιωθούν, έστω και λίγο, οι επιδόσεις αδύνατων μαθητών αλλά να διαμορφωθεί μία θετικότερη στάση για τα μαθηματικά που μέχρι εκείνη τη στιγμή φαινόταν μη εφικτή. Αυτή η μεταστροφή συνάδει με αποτελέσματα που έχουν καταγραφεί στη βιβλιογραφία (Ferrara κ.ά., 2006, McCoy, 1991, Kaput & Thompson, 1994, Μπαραλός & Πολιτίδου, 2008) και ε- γείρει την ανάγκη για πιο συστηματική μελέτη αντιστοίχων παρεμβάσεων στο ελληνικό εκπαιδευτικό πλαίσιο.

10 490 3 ο Συνέδριο ΕΝΕΔΙΜ 7. Βιβλιογραφία Abu-Naja, M. (2008). The effect of graphic calculators on Negev Arab pupils learning of the concept of families of functions. Research in Mathematics Education, 10(2), Elliot, J. (1991). Action research for educational change. Buckingham, UK: Open University. EucliDraw. (2009). Retrieved 20 April 2009, from Ferrara, F., Pratt, D., & Robutti, O. (2006). The role and uses of technologies for the teaching of Algebra and Calculus. In A. Gutierrez & P. Boero (Eds.), Handbook of Research on the Psychology of Mathematics Education: Past, Present and Future (pp ). Rotterdam, The Netherlands: Sense Publishers. Gagatsis, A., & Shiakalli, M. (2004). Ability to translate from one representation of the concept of function to another and mathematical problem solving. Educational Psychology, 24(5), Kaput, J., & Thompson P. (1994). Technology in mathematics education research: The first 25 years in JRME. Journal for Research in Mathematics Education, 25(6), Lagrange, J.B. (2005). Curriculum, classroom practices, and tool design in the learning of functions through technology-aided experimental approaches. International Journal of Computers for Mathematical Learning, 10, McCoy, L. (1991). The effect of geometry tool software on high school geometry achievement. Journal of Computers in Mathematics and Science Teaching, 10(3), Sierpinska, A. (1992). On understanding the notion of function. In E. Dubinsky & G. Harel (Eds.), The concept of function. Aspects of epistemology and pedagogy (pp ). United States: The Mathematical Association of America. Tall, D.O., & Bakar, M. (1991). Students mental prototypes for functions and graphs. In F. Furinghetti (Ed.), Proceedings of PME 15 (Vol. 1, pp ). Tall, D.O., McGowen, M., & DeMarois, P. (2000). The Function Machine as a Cognitive Root for building a rich concept image of the Function Concept. In M. L. Fernandez (Ed.), Proceedings of PME 22 (Vol. 1, pp ). Βλάμος, Π., Δρούτσας, Π., Πρέσβης, Γ., & Ρεκούμης, Κ. (2007). Βιβλίο Εκπαιδευτικού, Μαθηματικά Β Γυμνασίου. Αθήνα, Ελλάδα: ΟΕΒΔ.

11 Χριστοφόρου Δ., Κουρουνιώτης Χ., Μπιζά Ε., Ναρδή Ε. 491 Μπαραλός, Γ., & Πολιτίδου, Ε. (2008). Οι στάσεις των μαθητών και μαθητριών της Α Γυμνασίου για τη χρήση των υπολογιστών στη διδασκαλία των Μαθηματικών. Πρακτικά 25 ου Συνεδρίου Ε.Μ.Ε. (σσ ). Παιδαγωγικό Ινστιτούτο (2007). Οδηγίες για τη διδακτέα ύλη και τη διδασκαλία των Μαθηματικών κατά το σχολικό έτος Αθήνα, Ελλάδα: ΟΕΒΔ. Τουμάσης, Μπ., & Αρβανίτης, Τ. (2008). Διδασκαλία Μαθηματικών με χρήση Η/Υ. Αθήνα, Ελλάδα: Σαββάλας. Χριστοφόρου, Δ. (2009). Εναλλακτική μορφή διδασκαλίας των συναρτήσεων στη Β Γυμνασίου με χρήση νέων τεχνολογιών. Αδημοσίευτη Μεταπτυχιακή Εργασία, Πανεπιστήμιο Κρήτης, Ηράκλειο, Ελλάδα.

ΑΝΤΙΛΗΨΕΙΣ ΓΙΑ ΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ Ο ΡΟΛΟΣ ΤΟΥ ΑΝΑΠΑΡΑΣΤΑΤΙΚΟΥ ΠΛΑΙΣΙΟΥ

ΑΝΤΙΛΗΨΕΙΣ ΓΙΑ ΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ Ο ΡΟΛΟΣ ΤΟΥ ΑΝΑΠΑΡΑΣΤΑΤΙΚΟΥ ΠΛΑΙΣΙΟΥ ΑΝΤΙΛΗΨΕΙΣ ΓΙΑ ΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ Ο ΡΟΛΟΣ ΤΟΥ ΑΝΑΠΑΡΑΣΤΑΤΙΚΟΥ ΠΛΑΙΣΙΟΥ Μ. Καλδρυμίδου, Ε. Μορόγλου Π. Τ. Ν. - Πανεπιστήμιο Ιωαννίνων mkaldrim@uoi.gr, manmo@otenet.gr Στην εργασία αυτή επιχειρείται

Διαβάστε περισσότερα

Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών.

Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών. Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών. Α. Πέρδος 1, I. Σαράφης, Χ. Τίκβα 3 1 Ελληνογαλλική Σχολή Καλαμαρί perdos@kalamari.gr

Διαβάστε περισσότερα

H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ

H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 495 H ΒΑΣΙΣΜΕΝΗ ΣΤΟΝ Η.Υ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΩΣ ΕΡΓΑΛΕΙΟ ΚΑΤΑΝΟΗΣΗΣ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ Τσιπουριάρη Βάσω Ανώτατη Σχολή Παιδαγωγικής

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΣΤΑΣΗΣ ΜΑΘΗΤΩΝ ΕΝΑΝΤΙ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΟΣ ΙΣΤΟΡΙΑΣ ΜΕ Η ΧΩΡΙΣ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ

ΣΥΓΚΡΙΤΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΣΤΑΣΗΣ ΜΑΘΗΤΩΝ ΕΝΑΝΤΙ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΟΣ ΙΣΤΟΡΙΑΣ ΜΕ Η ΧΩΡΙΣ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ 556 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΣΥΓΚΡΙΤΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΣΤΑΣΗΣ ΜΑΘΗΤΩΝ ΕΝΑΝΤΙ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΟΣ ΙΣΤΟΡΙΑΣ ΜΕ Η ΧΩΡΙΣ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ Ματούλας Γεώργιος Δάσκαλος ΔΣ Ευξινούπολης

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II. 9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Y404. ΔΙΜΕΠΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΣΜΟΥ ΜΕ ΜΑΘΗΤΗ ΔΙΔΑΣΚΩΝ: ΧΑΡΑΛΑΜΠΟΣ ΛΕΜΟΝΙΔΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΗΜΗΤΡΙΑΔΗΣ ΗΡΑΚΛΗΣ ΑΕΜ: 3734 Περιεχόμενα

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 415 ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ Μεταφετζής Γιώργος Δάσκαλος, 1ο ΔΣ Βόλου gmetafetz@in.gr

Διαβάστε περισσότερα

Λέξεις κλειδιά : Διδακτική παρέμβαση, γεωμετρικοί μετασχηματισμοί, δυναμική γεωμετρία.

Λέξεις κλειδιά : Διδακτική παρέμβαση, γεωμετρικοί μετασχηματισμοί, δυναμική γεωμετρία. Το πιλοτικό πρόγραμμα σπουδών στο γυμνάσιο: Μετασχηματισμοί Δημήτρης Διαμαντίδης 2 ο Πρότυπο Πειραματικό Γυμνάσιο Φιλήμονος 38 & Τσόχα, Αθήνα dimdiam@sch.gr Περίληψη Στο κείμενο περιγράφεται μια διδακτική

Διαβάστε περισσότερα

Πιλοτική Εφαρμογή της Πολιτικής για Επαγγελματική Ανάπτυξη και Μάθηση

Πιλοτική Εφαρμογή της Πολιτικής για Επαγγελματική Ανάπτυξη και Μάθηση Υπουργείο Παιδείας και Πολιτισμού Παιδαγωγικό Ινστιτούτο Κύπρου Πιλοτική Εφαρμογή της Πολιτικής για Επαγγελματική Ανάπτυξη και Μάθηση 390 παιδιά Το πλαίσιο εφαρμογής 18 τμήματα Μονάδα Ειδικής Εκπαίδευσης

Διαβάστε περισσότερα

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ

«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ «ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Διδάσκουσες:

Διαβάστε περισσότερα

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Κιούφτη Ροϊδούλα 1 1 Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης, rkioufti@hotmail.com

Διαβάστε περισσότερα

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013.

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. Πρακτικές και καινοτομίες στην εκπαίδευση και την έρευνα. Άγγελος Μπέλλος Καθηγητής Μαθηματικών

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη

Διαβάστε περισσότερα

ΑΥΘΕΝΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ. Κατερίνα Κασιμάτη Επίκ. Καθηγήτρια, Γενικό Τμήμα Παιδαγωγικών Μαθημάτων Α.Σ.ΠΑΙ.Τ.Ε.

ΑΥΘΕΝΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ. Κατερίνα Κασιμάτη Επίκ. Καθηγήτρια, Γενικό Τμήμα Παιδαγωγικών Μαθημάτων Α.Σ.ΠΑΙ.Τ.Ε. ΑΥΘΕΝΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ Κατερίνα Κασιμάτη Επίκ. Καθηγήτρια, Γενικό Τμήμα Παιδαγωγικών Μαθημάτων Α.Σ.ΠΑΙ.Τ.Ε. Ερωτήσεις.. Πώς το παραδοσιακό διδακτικό πλαίσιο διαμορφώνει το αξιολογικό

Διαβάστε περισσότερα

(π.χ. Thompson, 1999, McIntosh, 1990, Reys, 1984, Wandt & Brown, 1957). Οι βασικές αιτίες για αυτήν την αλλαγή στη θεώρηση των δύο ειδών υπολογισμού

(π.χ. Thompson, 1999, McIntosh, 1990, Reys, 1984, Wandt & Brown, 1957). Οι βασικές αιτίες για αυτήν την αλλαγή στη θεώρηση των δύο ειδών υπολογισμού ΕΙΣΑΓΩΓΗ Τα Μαθηματικά της Φύσης και της Ζωής, που αναφέρονται στοn τίτλο του βιβλίου αυτού, αποτελούν την επωνυμία της ομάδας των επιστημόνων που εργάζονται για τον εκσυγχρονισμό της διδασκαλίας των μαθηματικών

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ Βασίλης Καραγιάννης Η παρέμβαση πραγματοποιήθηκε στα τμήματα Β2 και Γ2 του 41 ου Γυμνασίου Αθήνας και διήρκησε τρεις διδακτικές ώρες για κάθε τμήμα. Αρχικά οι μαθητές συνέλλεξαν

Διαβάστε περισσότερα

ΣΥΓΚΡΙΤΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΣΤΑΣΗΣ ΜΑΘΗΤΩΝ ΕΝΑΝΤΙ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΟΣ ΙΣΤΟΡΙΑΣ ΜΕ Η ΧΩΡΙΣ ΕΚΠΑΙ ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ

ΣΥΓΚΡΙΤΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΣΤΑΣΗΣ ΜΑΘΗΤΩΝ ΕΝΑΝΤΙ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΟΣ ΙΣΤΟΡΙΑΣ ΜΕ Η ΧΩΡΙΣ ΕΚΠΑΙ ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ 556 3 Ο ΣΥΝΕ ΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙ ΕΥΣΗ ΣΥΓΚΡΙΤΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΛΕΤΗ ΣΤΑΣΗΣ ΜΑΘΗΤΩΝ ΕΝΑΝΤΙ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΟΣ ΙΣΤΟΡΙΑΣ ΜΕ Η ΧΩΡΙΣ ΕΚΠΑΙ ΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ Ματούλας Γεώργιος άσκαλος Σ Ευξινούπολης

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟΦΟΒΙΑ: Μήπως ο φόβος για τα μαθηματικά είναι τελικά αδικαιολόγητος;

ΜΑΘΗΜΑΤΙΚΟΦΟΒΙΑ: Μήπως ο φόβος για τα μαθηματικά είναι τελικά αδικαιολόγητος; ΜΑΘΗΜΑΤΙΚΟΦΟΒΙΑ: Μήπως ο φόβος για τα μαθηματικά είναι τελικά αδικαιολόγητος; ΟΡΙΣΜΟΣ: Μαθηματικοφοβία είναι το άγχος, ο φόβος, η ανασφάλεια που αισθάνονται οι μαθητές για το μάθημα των μαθηματικών και

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

ανάπτυξη μαθηματικής σκέψης

ανάπτυξη μαθηματικής σκέψης ανάπτυξη μαθηματικής σκέψης (έννοιες, αντιλήψεις, αναπαραστάσεις) οργάνωση περιεχομένου μαθηματικών, εννοιολογικές αντιλήψεις στα μαθηματικά και στους μαθητές Μαρία Καλδρυμίδου θέματα οργάνωση περιεχομένου

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών

Διαβάστε περισσότερα

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης

Διαβάστε περισσότερα

ΕΚΘΕΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ

ΕΚΘΕΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΕΚΘΕΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Σχολείο & Τμήμα: Ημερομηνία: Ι. Μαθησιακή Εξέλιξη των Μαθητών/Ενισχυτική Διδασκαλία (ΕΔ) α/α ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ Σχολιασμός και αιτιολόγηση της επίδοσης στο

Διαβάστε περισσότερα

Φύλο και διδασκαλία των Φυσικών Επιστημών

Φύλο και διδασκαλία των Φυσικών Επιστημών Πηγή: Δημάκη, Α. Χαϊτοπούλου, Ι. Παπαπάνου, Ι. Ραβάνης, Κ. Φύλο και διδασκαλία των Φυσικών Επιστημών: μια ποιοτική προσέγγιση αντιλήψεων μελλοντικών νηπιαγωγών. Στο Π. Κουμαράς & Φ. Σέρογλου (επιμ.). (2008).

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΝΩ ΣΥΓΚΡΙΣΕΙΣ ΜΕ ΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΤΩΝ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ ΧΡΗΣΙΜΟΠΟΙΩΝΤΑΣ ΤΟ ΛΟΓΙΣΜΙΚΟ «SKETCHPADGR» Γιάννης Μόκιας ΜΑΘΑΙΝΩ ΓΙΑ ΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΤΟ ΕΜΒΑΔΟ

Διαβάστε περισσότερα

Σας εύχομαι καλή μελέτη και επιτυχία.

Σας εύχομαι καλή μελέτη και επιτυχία. ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό αποτελεί συνέχεια του Α τεύχους και απευθύνεται κυρίως στους μαθητές της Α Λυκείου, αλλά και στους καθηγητές που διδάσκουν το μάθημα «Άλγεβρα και στοιχεία πιθανοτήτων» της Α Λυκείου.

Διαβάστε περισσότερα

Τι δυσκολίες αντιμετώπισαν οι μαθητές στη διερευνητική διαδικασία;

Τι δυσκολίες αντιμετώπισαν οι μαθητές στη διερευνητική διαδικασία; Αναστοχασμός Αναφορά (report) υλοποίησης 1 ης δραστηριότητας: ΑΝΑΔΑΣΜΟΣ Συγγραφέας: Λύρη Αναστασία Μαθηματικός, ΠΕ03 Πως δούλεψαν οι μαθητές (ομαδικά/ατομικά); Οι μαθητές δούλεψαν σε ομάδες των 4 ατόμων.

Διαβάστε περισσότερα

Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής

Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής Εξ αποστάσεως υποστήριξη του έργου των Εκπαιδευτικών μέσω των δικτύων και εργαλείων της Πληροφορικής Ε. Κολέζα, Γ. Βρέταρος, θ. Δρίγκας, Κ. Σκορδούλης Εισαγωγή Ο εκπαιδευτικός κατά τη διάρκεια της σχολικής

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

Εισαγωγή των εννοιών μέσης και στιγμιαίας ταχύτητας σε περιβάλλον όπου αξιοποιούνται οι

Εισαγωγή των εννοιών μέσης και στιγμιαίας ταχύτητας σε περιβάλλον όπου αξιοποιούνται οι 3ο ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ 1. Τίτλος διδακτικού σεναρίου: Η ΜΕΣΗ ΚΑΙ Η ΣΤΙΓΜΙΑΙΑ ΤΑΧΥΤΗΤΑ 2. Γνωστικό αντικείμενο: ΦΥΣΙΚΗ 3. Τάξη: Β 4. Μάθημα: 2.2 Η ΕΝΝΟΙΑ ΤΗΣ ΤΑΧΥΤΗΤΑΣ 5. Γενική ενότητα: ΚΕΦΑΛΑΙΟ 2ο ΚΙΝΗΣΕΙΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

ΚΑΝΟΝΙΣΜΟΣ ΕΚΠΟΝΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ

ΚΑΝΟΝΙΣΜΟΣ ΕΚΠΟΝΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ ΚΑΝΟΝΙΣΜΟΣ ΕΚΠΟΝΗΣΗΣ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ 1. Ο κανονισμός ερμηνεύει τον κανονισμό λειτουργίας άρθρο 8 Διαδικασία Εκπόνησης της Διπλωματικής Εργασίας. 2. Σκοπός και προσδοκώμενα αποτελέσματα. Η εκπόνηση

Διαβάστε περισσότερα

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)......

Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)...... 4. Βασικά Στοιχεία ιδακτικής της Άλγεβρας µε τη χρήση Ψηφιακών Τεχνολογιών Οι ψηφιακές τεχνολογίες που έχουν µέχρι τώρα αναπτυχθεί για τη διδασκαλία και τη µάθηση εννοιών της Άλγεβρας µπορούν να χωριστούν

Διαβάστε περισσότερα

Γνωριμία και παιχνίδι με το δυαδικό σύστημα

Γνωριμία και παιχνίδι με το δυαδικό σύστημα Γνωριμία και παιχνίδι με το δυαδικό σύστημα Δότσος Παύλος, Σπανουδάκη Αργυρώ dotsos_1@hotmail.com, argspan25@yahoo.gr Καθηγητής Πληροφορικής Μέσης Εκπαίδευσης, Καθηγήτρια Πληροφορικής Μέσης Εκπαίδευσης

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία Διδακτικές προσεγγίσεις στην Πληροφορική Η εποικοδομιστική προσέγγιση για τη γνώση ως ενεργητική και όχι παθητική διαδικασία ως κατασκευή και όχι ως μετάδοση ως αποτέλεσμα εμπειρίας και όχι ως μεταφορά

Διαβάστε περισσότερα

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου

Διαβάστε περισσότερα

έσποινας Χριστοφόρου

έσποινας Χριστοφόρου Πανεπιστήµιο Κρήτης Σχολή Θετικών και Τεχνολογικών Επιστηµών ιατµηµατικό Πρόγραµµα Μεταπτυχιακών Σπουδών "Μαθηµατικά και Εφαρµογές τους" ΕΝΑΛΛΑΚΤΙΚΗ ΜΟΡΦΗ Ι ΑΣΚΑΛΙΑΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΤΗ Β ΓΥΜΝΑΣΙΟΥ ΜΕ

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΣΥΝΤΕΛΕΣΤΕΣ Συγγραφική Ομάδα Βλάμος Παναγιώτης Δρούτσας Παναγιώτης Πρέσβης Γεώργιος Ρεκούμης Κωνσταντίνος Φιλολογική Επιμέλεια Βελάγκου Ευγενία Σκίτσα Βρανάς Θεοδόσης Υπεύθυνος Παιδαγωγικού

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Όνοµα: Τάσος Αναστάσιος Επώνυµο: Μικρόπουλος Τίτλος: Αναπληρωτής Καθηγητής, Εργαστήριο Εφαρµογών Εικονικής Πραγµατικότητας στην Εκπαίδευση, Πανεπιστήµιο Ιωαννίνων

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αναπνευστικό σύστηµα» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά.

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. Γ. Οι μαθητές και τα Μαθηματικά. Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. ΠΙΝΑΚΑΣ 55 Στάση

Διαβάστε περισσότερα

Αναφορά (reports) υλοποίησης 2 ης δραστηριότητας: Αναδιαμόρφωση της κεντρικής πλατείας

Αναφορά (reports) υλοποίησης 2 ης δραστηριότητας: Αναδιαμόρφωση της κεντρικής πλατείας Αναστοχασμός Αναφορά (reports) υλοποίησης 2 ης δραστηριότητας: Αναδιαμόρφωση της κεντρικής πλατείας Συγγραφέας: Λύρη Αναστασία Μαθηματικός, ΠΕ03 Πως δούλεψαν οι μαθητές (ομαδικά/ατομικά); Οι μαθητές δούλεψαν

Διαβάστε περισσότερα

ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΡΕΥΝΑ TIMSS

ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΡΕΥΝΑ TIMSS ΕΘΝΙΚΟ ΚΕΝΤΡΟ TIMSS 2015 ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΡΕΥΝΑ TIMSS Τι είναι η Έρευνα TIMSS; Η Έρευνα Trends in International Mathematics and Science Study (TIMSS) του Διεθνούς Οργανισμού για την Αξιολόγηση

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 167 ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES Καστανιώτης Δημήτρης Μαθηματικός-επιμορφωτής

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

«Μια διδακτική προσέγγιση της γραμμικής συνάρτησης μέσω επίλυσης προβλήματος συνεργατικά και με τη χρήση του εκπαιδευτικού λογισμικού Function Probe»

«Μια διδακτική προσέγγιση της γραμμικής συνάρτησης μέσω επίλυσης προβλήματος συνεργατικά και με τη χρήση του εκπαιδευτικού λογισμικού Function Probe» «Ψηφιακές και Διαδικτυακές εφαρμογές στην Εκπαίδευση» «Μια διδακτική προσέγγιση της γραμμικής συνάρτησης μέσω επίλυσης προβλήματος συνεργατικά και με τη χρήση του εκπαιδευτικού λογισμικού Function Probe»

Διαβάστε περισσότερα

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 7

Διαβάστε περισσότερα

Καρτσιώτου Θωμαϊς M.Sc. Δασκάλα Δ.Σ. Παληού Καβάλας tzoymasn@hol.gr. Περίληψη

Καρτσιώτου Θωμαϊς M.Sc. Δασκάλα Δ.Σ. Παληού Καβάλας tzoymasn@hol.gr. Περίληψη 33 Πρόταση διδασκαλίας με τη χρήση των ΤΠΕ στο μάθημα της Μελέτης Περιβάλλοντος της Δ τάξης Δημοτικού: Μαθαίνω για τα σημαντικά έργα που υπάρχουν στην Ελλάδα μέσα από το google earth Καρτσιώτου Θωμαϊς

Διαβάστε περισσότερα

Δημοτικό Σχολείο Σωτήρας Β Η δική μας πρόταση- εμπειρία

Δημοτικό Σχολείο Σωτήρας Β Η δική μας πρόταση- εμπειρία Δημοτικό Σχολείο Σωτήρας Β Η δική μας πρόταση- εμπειρία Συμμετοχή στο Πρόγραμμα του Παιδαγωγικού Ινστιτούτου ΥΠΟΣΤΗΡΙΞΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΜΑΘΗΣΗΣ ΜΕΣΩ ΕΡΕΥΝΑΣ-ΔΡΑΣΗΣ Σχολική χρονιά: 2015-2016 ΤΟ ΠΡΟΦΙΛ ΤΗΣ

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ

ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ 176 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ Σωτηρόπουλος Παναγιώτης 1 -

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αγωγοί και µονωτές» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

Εισαγωγή στην έννοια της συνάρτησης

Εισαγωγή στην έννοια της συνάρτησης Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο

Παιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών

Διαβάστε περισσότερα

Αναλυτικό Πρόγραμμα Μαθηματικών

Αναλυτικό Πρόγραμμα Μαθηματικών Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. ΕΨΑΡΜΟΓΕΣ ΛΟΓΙΣΜΙΚΟΥ Για την Γ' τάξη του Ενιαίου Λυκείου

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. ΕΨΑΡΜΟΓΕΣ ΛΟΓΙΣΜΙΚΟΥ Για την Γ' τάξη του Ενιαίου Λυκείου ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΕΨΑΡΜΟΓΕΣ ΛΟΓΙΣΜΙΚΟΥ Για την Γ' τάξη του Ενιαίου Λυκείου ΑΘΗΝΑ 1999 ΕΦΑΡΜΟΓΕΣ ΛΟΓΙΣΜΙΚΟΥ Βιβλίο Καθηγητή «ΕΦΑΡΜΟΓΕΣ ΛΟΓΙΣΜΙΚΟΥ» ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Μαθηματικά Ε Δημοτικού

Μαθηματικά Ε Δημοτικού Μαθηματικά Ε Δημοτικού Πέτρος Κλιάπης 2014 Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ: ΜΕΛΕΤΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ 1 ου ΒΑΘΜΟΥ

ΔΙΔΑΣΚΑΛΙΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ: ΜΕΛΕΤΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ 1 ου ΒΑΘΜΟΥ 386 ΔΙΔΑΣΚΑΛΙΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ: ΜΕΛΕΤΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ 1 ου ΒΑΘΜΟΥ Λαμπρινίδης Κωνσταντίνος Καθηγητής Δευτεροβάθμιας Εκπαίδευσης. mail@14gm-perist.att.sch.gr ΠΕΡΙΛΗΨΗ Α) Αναλυτική χάραξη

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA)

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA) ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA) ΕΙΣΑΓΩΓΗ Θεωρώντας ότι η διδακτική σας εμπειρία είναι πολύτιμη στην έρευνά μας θα σας παρακαλούσαμε

Διαβάστε περισσότερα

Εργασία 1 η Ενεργή παρακολούθηση του Διεθνούς Συνεδρίου Scinte2015 με θέμα «Science in Technology»

Εργασία 1 η Ενεργή παρακολούθηση του Διεθνούς Συνεδρίου Scinte2015 με θέμα «Science in Technology» ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΣΧΕΔΙΑΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ Εργασία 1 η Ενεργή παρακολούθηση του Διεθνούς Συνεδρίου Scinte2015

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας

Διαβάστε περισσότερα

Οι φορητοί υπολογιστές στην εκπαίδευση: Μελέτη περίπτωσης ως προς τις συνέπειες στη διδασκαλία και το μιντιακό γραμματισμό

Οι φορητοί υπολογιστές στην εκπαίδευση: Μελέτη περίπτωσης ως προς τις συνέπειες στη διδασκαλία και το μιντιακό γραμματισμό Παιδαγωγικά ρεύματα στο Αιγαίο Προσκήνιο 1 Οι φορητοί υπολογιστές στην εκπαίδευση: Μελέτη περίπτωσης ως προς τις συνέπειες στη διδασκαλία και το μιντιακό γραμματισμό Δημήτρης Σπανός 1 dimitris.spanos@gmail.com

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

Μπολοτάκης Γιώργος. Μαθηματικός, Επιμορφωτής Β επιπέδου, συγγραφέας του βιβλίου «GeoGebra εύκολα και απλά»

Μπολοτάκης Γιώργος. Μαθηματικός, Επιμορφωτής Β επιπέδου, συγγραφέας του βιβλίου «GeoGebra εύκολα και απλά» «Αξιοποίηση των Τ.Π.Ε. στη Διδακτική Πράξη» «Διδασκαλία μαθήματος μαθηματικών Άλγεβρας Α Λυκείου, με εφαρμογή του λογισμικού GeoGebra και χρήση φύλλων εργασίας, «Εξίσωση-Ανίσωση 2ου βαθμού, Μορφές - Πρόσημο

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία

Διαβάστε περισσότερα

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της

Διαβάστε περισσότερα

ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ

ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ ΒΙΒΛΙΟΓΡΑΦΙΚΕΣ ΠΑΡΑΠΟΜΠΕΣ ΚΑΙ ΑΝΑΦΟΡΕΣ Κάθε αναφορά απόψεις που προέρχεται από εξωτερικές πηγές -βιβλία, περιοδικά, ηλεκτρονικά αρχεία, πρέπει να επισημαίνεται, τόσο μέσα στο κείμενο όσο και στη βιβλιογραφία,

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής Διδακτική της Πληροφορικής ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ Ανδρέας Σ. Ανδρέου (Αναπλ. Καθηγητής ΤΕΠΑΚ - Συντονιστής) Μάριος Μιλτιάδου, Μιχάλης Τορτούρης (ΕΜΕ Πληροφορικής) Νίκος Ζάγκουλος, Σωκράτης Μυλωνάς (Σύμβουλοι Πληροφορικής)

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση

Διαβάστε περισσότερα

Οδηγίες για τη διδασκαλία µαθηµάτων Πληροφορικής του Ενιαίου Λυκείου

Οδηγίες για τη διδασκαλία µαθηµάτων Πληροφορικής του Ενιαίου Λυκείου Οδηγίες για τη διδασκαλία µαθηµάτων Πληροφορικής του Ενιαίου Λυκείου Εγγραφο Γ2/4769/4-9-1998 ΣΧΕΤ. 2794/23-6-98 έγγραφο του Παιδαγωγικού Ινστιτούτου Σας αποστέλλουµε οδηγίες για τη διδασκαλία των µαθηµάτων

Διαβάστε περισσότερα

Ο ΔΙΑΚΡΙΤΟΣ ΡΟΛΟΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ. Κατσούγκρη Αναστασία

Ο ΔΙΑΚΡΙΤΟΣ ΡΟΛΟΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ. Κατσούγκρη Αναστασία Ο ΔΙΑΚΡΙΤΟΣ ΡΟΛΟΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Κατσούγκρη Αναστασία akatsou0708@gmail.com Διαφοροποίηση στη διδασκαλία Προϋπόθεση για την συνεκπαίδευση Η προσαρμογή της διδασκαλίας για να ανταποκριθεί σε διαφορετικές

Διαβάστε περισσότερα