ΑΣΚΗΣΕΙΣ Επανάληψης 1 1. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΕΙΣ Επανάληψης 1 1. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός."

Transcript

1 ΑΣΚΗΣΕΙΣ Επανάληψης 1 1. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Να βρεθεί ποιος ήταν ο μεγαλύτερος αριθμός από αυτούς που δόθηκαν. 2. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Να βρεθεί ποιος ήταν ο μικρότερος αριθμός από τους θετικούς αριθμούς που δόθηκαν. 3. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Από τους αριθμούς που δόθηκαν και ήταν μεγαλύτεροι του 22, να βρεθεί ποιος ήταν ο μεγαλύτερος. 3. (β). Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Από τους αριθμούς που δόθηκαν και ήταν μεγαλύτεροι του 22, να βρεθεί ποιος ήταν ο μικρότερος. 3. (γ). Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Να βρεθεί ποιος ήταν ο μεγαλύτερος αριθμός από αυτούς που δόθηκαν και πόσοι θετικοί δόθηκαν. 4. Να βρεθεί αλγόριθμος υπολογισμού του Σ= Να βρεθεί αλγόριθμος υπολογισμού του Σ= Ν 6. Να βρεθεί αλγόριθμος υπολογισμού του Γ=1*2*3*...*10 7. Να βρεθεί αλγόριθμος υπολογισμού του Γ=1*2*3*...*Ν. (Ν παραγοντικό ή Ν!) 7.B Να βρεθεί αλγόριθμος υπολογισμού του X=(1*2*3*...*Ν)/( K) 8. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Να βρεθεί ποιος ήταν ο μεγαλύτερος αριθμός από αυτούς που δόθηκαν και πόσοι θετικοί δόθηκαν και σε ποια σειρά δόθηκε ο μεγαλύτερος. 9. Να βρεθεί αλγόριθμος υπολογισμού του Γ=3*5*...*(2Ν+1) 10. Να βρεθεί αλγόριθμος υπολογισμού του Γ=5*10*15*...*(5Ν) 11. Να βρεθεί αλγόριθμος υπολογισμού του Σ=5^2+10^2+15^2+...+(5*Ν)^2 12. Να βρεθεί αλγόριθμος υπολογισμού της παράστασης: Υ = ( Ν) * (2^2+4^2+...+(2Ν)^2) 13. Δεν έχεις στη διάθεσή σου την πράξη της ύψωσης σε δύναμη. Φτιάξε αλγόριθμο που να δέχεται δύο αριθμούς Χ και Υ, ο Υ να είναι θετικός ή μηδέν και ακέραιος και να βρίσκεις το Χ εις την Υ. 13. (β). Δεν έχεις στη διάθεσή σου την πράξη της ύψωσης σε δύναμη. Φτιάξε αλγόριθμο που να δέχεται δύο αριθμούς Χ και Υ και να βρίσκεις το Χ εις την Υ. Ο Χ μπορεί να είναι οποιοσδήποτε αριθμός και ο Υ οποιοσδήποτε ακέραιος. 14. Δίνονται αριθμοί μέχρι να ξεπεράσει το άθροισμα τους το 100. Βρες το ΜΟ τους. 15. Να βρεθεί αλγόριθμος υπολογισμού του Σ=1^Κ+2^Κ+3^Κ+...+(Ν^Κ). 16. Να φτιαχτεί αλγόριθμος που να δέχεται θετικούς ακεραίους μέχρι το άθροισμα των περιττών ή των άρτιων να γίνει ίσο ή να ξεπεράσει το 400. Ο αλγόριθμος θα δίνει αποτέλεσμα «άρτιοι» ή «περιττοί» ανάλογα με το ποια κατηγορία έφτασε να έχει άθροισμα πρώτη Να φτιαχτεί αλγόριθμος που να δέχεται θετικούς ακεραίους μέχρι το πλήθος των περιττών ή των άρτιων να γίνει ίσο με 5. Ο αλγόριθμος θα δίνει αποτέλεσμα «άρτιοι» ή «περιττοί» ανάλογα με το ποια κατηγορία έφτασε να έχει πλήθος 5 πρώτη. 1

2 18. Να φτιαχτεί αλγόριθμος που να δέχεται 2 θετικούς ακεραίους α, β. Ο αλγόριθμος θα βρίσκει πόσοι ακέραιοι βρίσκονται μεταξύ του α και του β (συμπεριλαμβανομένων αυτών) και διαιρούνται ακριβώς με το 3. (Θεωρείστε το α<=β). 18. Β.Ίδια με την 18 αλλά δεν ξέρουμε ποιο από τα α,β είναι το μαξ. 19. Να φτιαχτεί αλγόριθμος που να ζητά τις βαθμολογίες 30 μαθητών. Να βρίσκει τον μεγαλύτερο βαθμό καθώς και πόσοι ήταν οι άριστοι μαθητές (βαθμός >=18.5). 20. Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0 ή αρνητικό. Ζητείται να μετρηθεί το πλήθος των κιβωτίων που δόθηκαν (να μην υπολογίζεται το μηδενικό ή αρνητικό κιβώτιο). 21. Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0 ή αρνητικό. Ζητείται να μετρηθεί το συνολικό βάρος των κιβωτίων που δόθηκαν (να μην υπολογίζεται το μηδενικό ή αρνητικό κιβώτιο). 22. Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0 ή αρνητικό. Ζητείται να μετρηθεί το συνολικό βάρος των κιβωτίων που είναι μεγαλύτερα από 100 (κιλά) (να μην υπολογίζεται το μηδενικό ή αρνητικό κιβώτιο). 23. Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0. Ζητείται να μετρηθεί το πλήθος των κιβωτίων που έχουν βάρος μεγαλύτερο από 100 (κιλά). 23. (β) Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0. Ζητείται να μετρηθεί ο ΜΟ των κιβωτίων που έχουν βάρος μεγαλύτερο από 100 (κιλά). 24.!μεχρις_οτου! Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0 ή αρνητικό. Ζητείται να βρεθεί ο μέσος όρος των κιβωτίων που έχουν βάρος μικρότερο από 50 (κιλά) χωρίς να υπολογίζεται το τελευταίο μηδενικό ή αρνητικό κιβώτιο. 25.!για! Κατασκευάστε αλγόριθμο που να βρίσκει και να εκτυπώνει το άθροισμα των αρτίων αριθμών από το 1 μέχρι το 100. Επίσης να βρίσκει και να εκτυπώνει το άθροισμα των περιττών αριθμών από το 1 μέχρι το !όσο, μεχρις_οτου! Δίνεται από το πληκτρολόγιο ένας αριθμός χ. Κατόπιν δίνονται διαδοχικά άλλοι αριθμοί μέχρι να δοθεί το 0. Ζητάμε να ελεγχθεί αν υπήρξε έστω κι ένας αριθμός (από αυτούς που δόθηκαν μετά) που να ήταν ίσος με τον χ και αν υπήρξε έστω κι ένας, πόσοι ήταν τελικά αυτοί που ήταν ίσοι με τον χ; 27. Να βρεθεί ο αλγόριθμος υπολογισμού της παράστασης κ = ( Ν)*(5*Ν)*(4+2*Ν/N^2+3) 28. Να βρεθεί ο αλγόριθμος υπολογισμού του Γ = 3*6*9*...*(3Ν) 29. Να βρεθεί ο αλγόριθμος υπολογισμού της παράστασης : Σ=1^Κ+2^Κ+3^Κ+...+(Ν^Κ) 30. Να φτιαχτεί πρόγραμμα που να υπολογίζει το συνολικό αριθμό των σπόρων σιταριού που μαζεύονται σε μια σκακιέρα αν στο πρώτο τετράγωνο βάζουμε 1 σπόρο, στο 2 ο 2, στο 3 ο 4, στο 4 ο 8 και συνεχώς διπλασιάζουμε. 2

3 31. Δίνεται το παρακάτω τμήμα αλγορίθμου: Χ 2 Υ -1 ΟΣΟ Υ<= 5 επανέλαβε Χ Χ+1 Χ Χ+Υ Υ Υ+2 ΓΡΑΨΕ Χ, Υ Βρείτε τον αριθμό των επαναλήψεων και τι θα εμφανιστεί στην οθόνη. 32. Δίνεται το παρακάτω τμήμα αλγορίθμου: Α 3 Ι 0 Α Α+Ι Ι Ι+3 Α 5 Ι 0 Α Α+Ι^2 Ι Ι+5 Βρείτε τον αριθμό των επαναλήψεων κάθε επανάληψης και τι θα εμφανιστεί στην οθόνη. 32. Β. Δίνεται το παρακάτω τμήμα αλγορίθμου: Α 2 Ι 4 Α Α+Ι+4 Ι Ι+6 Α 5 Ι 9 Α Α+Ι^3 Ι Ι+5 Βρείτε τον αριθμό των επαναλήψεων κάθε επανάληψης και τι θα εμφανιστεί στην οθόνη. 3

4 ΑΣΚΗΣΕΙΣ Επανάληψης2 4. Σε ένα δάσος ζει μια κοινότητα κουνελιών με τα εξής χαρακτηριστικά: Στην αρχή κάθε χρόνου δυστυχώς :( 3 κουνελάκια εγκαταλείπουν το δάσος, από αυτά το 1 είναι αρσενικό και τα 2 θηλυκά. Στο τέλος κάθε 4ου έτους όμως αν στο δάσος έχει μείνει τουλάχιστον 1 αρσενικό και 1 θηλυκό, τότε αυτά αναπαράγονται :). Κάθε "ζευγάρι" κουνελιών που βρίσκεται στο δάσος γεννά 5 κουνελάκια (ας δεχτούμε χάριν ευκολίας ότι πάντα από τα 5 νεογέννητα, είναι το 1 αρσενικό και τα 4 θηλυκά) Θεωρούμε επίσης ότι ακόμη και πριν συμπληρώσουν ένα έτος ζωής, τα κουνελάκια μπορούν να αναπαράγονται αν ισχύουν οι απαραίτητες συνθήκες ζευγαρώματος. Να αναπτύξετε αλγόριθμο που α) Να διαβάζει τον αρχικό αριθμό Ν>=4 των κουνελιών που ζει στο δάσος. Θεωρήστε ότι αν ο Ν είναι άρτιος, έχουμε αρχικά ίσους πληθυσμούς αρσενικών και θηλυκών, ενώ αν ο Ν είναι περιττός, θεωρήστε ότι τα θηλυκά είναι, κατά ένα περισσότερα από τα αρσενικά. β) Να εμφανίζει στο τέλος κάθε έτους πόσα αρσενικά και πόσα θηλυκά κουνέλια έχουν μείνει στο δάσος. γ) Να υπολογίζει μετά από 20 χρόνια, τους αντίστοιχους πληθυσμούς, εκτός αν νωρίτερα έχουν εγκαταλείψει όλα τα κουνελάκια το δάσος, όποτε και θα πρέπει να εμφανίζει μετά από πόσα χρόνια θα συμβεί αυτό. 5. ΑΛΓΟΡΙΘΜΟΣ ΕΛΕΓΧΟΥ ΕΓΚΥΡΟΤΗΤΑΣ Α.Φ.Μ. Για να πιστοποιήσουμε αν ένας δοθείς εννεαψήφιος αριθμός μπορεί να είναι έγκυρος Α.Φ.Μ. ή όχι, φαρμόζουμε την παρακάτω διαδικασία: Έστω ότι ο δοθείς αριθμός είναι A1A2A3A4A5A6A7A8A9, όπου κάθε Ai αντιστοιχεί σε ένα ψηφίο του αριθμού. Υπολογίζουμε το άθροισμα Σ = 256*A *A2 +64*A3 + 32*A4 + 16*A5 + 8*A6 +4*A7 + 2*A8 Υπολογίζουμε το υπόλοιπο Υ της διαίρεσης του Σ με τον αριθμό 11. Αν το υπόλοιπο της διαίρεσης είναι 10 και A9=0 τότε ο αριθμός είναι έγκυρος Α.Φ.Μ. Αν το υπόλοιπο της διαίρεσης είναι Υ και A9=Υ τότε ο αριθμός είναι έγκυρος Α.Φ.Μ. Σε αντίθετη περίπτωση, ο αριθμός είναι δεν έγκυρος Α.Φ.Μ. 6. Ένα μαγαζί που πουλάει φιλμ χρεώνει κλιμακωτά τους πελάτες του ως εξής: Για τα πρώτα 10 φιλμ προς 3.50 Ευρώ το ένα Για τα επόμενα 20 φιλμ προς 3.10 Ευρώ το ένα Για τα επόμενα 40 φιλμ προς 2.70 Ευρώ το ένα Για τα υπόλοιπα φιλμ προς 2.20 το ένα Να γραφεί αλγόριθμος που να υπολογίζει τι πρέπει να πληρώσει κάποιος που θέλει να αγοράσει φιλμ. Επίσης, να διαβάζεται η μάρκα του φιλμ: Αν είναι KODAK να προστίθεται 0.40 Ευρώ στην τιμή του ενός φιλμ. Αν είναι AGFA να προστίθεται 0.30 Ευρώ στην τιμή του ενός φιλμ. Αν είναι FUJIFILM να προστίθεται 0.20 Ευρώ στην τιμή του ενός φιλμ. Ειδάλλως, να μην προστίθεται τίποτα. Τέλος, αν συνολικό κόστος πάνω από 900 τότε υπάρχει 15% έκπτωση. 7. Σε ένα μπλόκο της τροχαίας ακολουθείται το εξής σύστημα: Κάθε οδηγός υπόκειται σε αλκοτέστ, ο μετρητής του οποίου έχει ενδείξεις από 0 μέχρι 5 (0 = νηφάλιος). Αν η μέτρηση κάποιου οδηγού είναι μεγαλύτερη από 0, τότε το διπλάσιό της προστίθεται στο σύστημα πόντων (point 4

5 system) του οδηγού. Αν αυτός συγκεντρώσει: 1 έως 3 μονάδες, δεν υπάρχει πρόβλημα. 4 έως 6 μονάδες, του γίνεται σύσταση, 7 έως 9 μονάδες, πληρώνει πρόστιμο, περισσότερες από 9 μονάδες, του αφαιρείται το δίπλωμα. Αν του έχει αφαιρεθεί και άλλη φορά, κινείται δικαστική διαδικασία. Να γίνει πρόγραμμα το οποίο: α) Να ζητάει τους πόντους που είχε συγκεντρώσει ο οδηγός. β) Να ζητάει τη μέτρηση του αλκοτέστ και να αυξάνει όπως προβλέπεται τους πόντους του οδηγού. γ) Ανάλογα με τους πόντους που έφτασε τώρα ο οδηγός, να εμφανίζει ένα από τα μηνύματα "ΚΑΝΕΝΑ ΠΡΟΒΛΗΜΑ", "ΣΥΣΤΑΣΗ", "ΠΡΟΣΤΙΜΟ", "ΑΦΑΙΡΕΣΗ ΔΙΠΛΩΜΑΤΟΣ". δ) Σε περίπτωση που πρέπει να του αφαιρεθεί το δίπλωμα, το πρόγραμμα πρέπει να ρωτάει αν του έχει αφαιρεθεί και άλλη φορά. Αν η απάντηση είναι "ΝΑΙ" τότε να εμφανίζεται το μήνυμα "ΔΙΚΑΣΤΙΚΑ ΜΕΤΡΑ". Σε περίπτωση που η απάντηση δεν είναι ούτε "ΝΑΙ" ούτε "ΟΧΙ", θα πρέπει να επαναλαμβάνεται η ερώτηση. 8. Σύμφωνα 9. Να Γράψετε Πρόγραμμα το οποίο διαβάζει εναν ακέραιο θετικό αριθμό (εάν δοθεί αρνητικός χρησιμοποιούμαι τον αντίθετό του) και: 1) Να εμφανίζει τα ψηφία του αριθμού στην οθόνη (από το τελευταίο προς το πρώτο), 2) Να υπολογίζει (και να εμφανίζει) πόσα ψηφία έχει ο αριθμός 3) Να υπολογίζει τον αριθμό που έχει τα ίδια ψηφία με τον δεδομένο αριθμό, αλλά με ανάποδη σειρά (ας τον ονομάσουμε "ανάστροφο" αριθμό) και 4) Να ελέγχει εάν ο δεδομένος αριθμός είναι "καρκινικός" (= ο αριθμός ο οποίος από όποια μεριά και να διαβασθεί -είτε από δεξιά είτε από αριστερά- είναι ο ίδιος). 10. Να Γράψετε Πρόγραμμα το οποίο να εμφανίζει ενα Χριστουγεννιάτικο Δένδρο, οπως φαίνεται παρακάτω, σε 18 γραμμές και ή βάση του να είναι σε 3 γραμμές. Να χρησιμοποιηθούν μεταβλητές (παράμετροι) ώστε το πρόγραμμα να μην αλλάζει όταν αλλάζουν τα δεδομένα (τα 2 ύψη που δίνονται - σε γραμμές). * *** ***** ******* ********* *********** ************* *** *** 11. Να Γράψετε Πρόγραμμα το οποίο να Ζητάει έναν αριθμό και εμφανίζει αν είναι πρώτος ή όχι. Πρώτοι λέγονται οι αριθμοί που διαιρούνται μόνο από τη μονάδα και από τον εαυτό τους. 5

6 12. To κεντρικό αμφιθέατρο της Σχολής Θετικών Επιστημών (ΣΘΕ) έχει 30 σειρές εδράνων. Η κάτω-κάτω σειρά (1η σειρά) αποτελείται από 20 έδρανα και για κάθε σειρά πιο πάνω τα έδρανα αυξάνονται κατά 3. Η ΣΘΕ αποφάσισε να περάσει με βερνίκι όλα τα έδρανα. Κάθε έδρανο απαιτεί 2000 gr βερνικιού, και ο προμηθευτής στης ΣΘΕ, διαθέτει βερνίκι σε κουτιά των 7 Kg με κόστος 4 το καθένα. Να γίνει αλγόριθμος που να υπολογίζει πόσα έδρανα έχει συνολικά το αμφιθέατρο, πόσα κουτία βερνίκι απαιτούνται, και ποιο είναι το συνολικό κόστος. 13. Ένας καταθέτης έχει για κωδικό πρόσβασης (PIN) στη μαγνητική του κάρτα αναλήψεως έναν τετραψήφιο αριθμό xyzq, όπου γνωρίζουμε ότι το x είναι άρτιος αριθμός, το z περιττός και το q πολλαπλάσιο του 4. Γνωρίζουμε επίσης ότι όλα τα ψηφία που έχει επιλέξει είναι <> 0. Γνωρίζουμε επίσης ότι αν κωδικός του πενταπλασιαστεί και διαιρεθεί με το 3, έχει πάντα υπόλοιπο 1. Για παράδειγμα οι επόμενοι αριθμοί αποτελούν πιθανούς κωδικούς: 4394, 6434, 8558 Να γίνει αλγόριθμος που να μας εμφανίζει όλους τους πιθανούς κωδικούς, όπως και το πλήθος τους. 14. Άρτιος_ή_περιττός_χωρίς_mod 15. Βρες τον αριθμό των επαναλήψεων και τις τιμές των μεταβλητών στο τέλος κάθε επανάληψης, του παρακάτω τμήματος προγράμματος: Χ 1 Β 2 Α Β*Χ+1 ΓΙΑ ι από 6 μέχρι 1 με_βήμα -2 Β Β 2 Α Α+Β- Χ +ι Γ Α*2 Χ Χ+1 ΓΡΑΨΕ Α,Β,Γ,Χ, ι ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ 16. Βρες τον αριθμό των επαναλήψεων και τις τιμές των μεταβλητών στο τέλος κάθε επανάληψης, του παρακάτω τμήματος προγράμματος: Χ 5 Β 1 Α Β*Χ+1 ΟΣΟ Β<Χ ΕΠΑΝΕΛΑΒΕ Β Β + 2 Α Α+Β - Χ Γ Α*2 Χ Χ - 1 ΓΡΑΨΕ Α,Β,Γ,Χ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ 6

7 ΑΣΚΗΣΕΙΣ Επανάληψης

ΚΕΦΑΛΑΙΑ & 8.2 (ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ) ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΑ & 8.2 (ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ) ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΑ 2.4.5 & 8.2 (ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ) ΘΕΩΡΙΑ Ερωτήσεις Σωστό / Λάθος 1. Στη δομή Για... από... μέχρι η αρχική τιμή του μετρητή πρέπει να είναι πάντα μικρότερη από την τελική. 2. Η δομή Όσο... επανάλαβε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Διάρκεια: 3 ώρες Επίπεδο Δυσκολίας: 5/5 Ενότητες (2 6)

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Διάρκεια: 3 ώρες Επίπεδο Δυσκολίας: 5/5 Ενότητες (2 6) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 Διάρκεια: 3 ώρες Επίπεδο Δυσκολίας: 5/5 Ενότητες (2 6) Σημείωση: Απαντήστε στις κόλλες όλα τα θέματα. Παραδώστε καθαρογραμμένο γραπτό ΘΕΜΑ Α Α1. Απαντήστε

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008. Τμήμα ΓΤ1 Όνομα:...

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008. Τμήμα ΓΤ1 Όνομα:... ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008 Τμήμα ΓΤ1 Όνομα:... ΘΕΜΑ 1 ο. Α) Να γράψετε στο φύλλο απαντήσεών σας Σ εάν κρίνετε ότι η πρόταση είναι σωστή και

Διαβάστε περισσότερα

Μεθοδολογία προβλημάτων με Δομή Επανάληψης

Μεθοδολογία προβλημάτων με Δομή Επανάληψης Μεθοδολογία προβλημάτων με Δομή Επανάληψης Ενότητες βιβλίου: - Ώρες διδασκαλίας: 3 Μετρητές Σε πολλές ασκήσεις ζητείται να καταμετρηθεί το πλήθος των τιμών που ικανοποιούν μια συνθήκη (π.χ. είναι θετικοί

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1. Η ομάδα εντολών μέσα στην Αρχή_επανάληψης..μέχρις_ότου

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 A ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 A ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Ηµεροµηνία: Τετάρτη 4 Ιανουαρίου 2017 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 5x + 14y -2z = 6

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 5x + 14y -2z = 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Άσκηση_1 Να αναπτύξετε αλγόριθμο ο οποίος θα εκτυπώνει τις τιμές της συνάρτησης f( x) ΓΙΑ Χ ΑΠΟ -50 ΜΕΧΡΙ 50 ΑΝ Χ1 Η Χ2 ΤΟΤΕ ΤΙΜΗ Χ^2/(Χ^2-3*Χ+2) ΕΚΤΥΠΩΣΕ

Διαβάστε περισσότερα

Να γραφεί αλγόριθμος που θα υπολογίζει το ν! (ν παραγοντικό) Ν!=1 * 2 *3 *.. * Ν

Να γραφεί αλγόριθμος που θα υπολογίζει το ν! (ν παραγοντικό) Ν!=1 * 2 *3 *.. * Ν Δομή επανάληψης Να γραφεί αλγόριθμος που θα υπολογίζει το ν! (ν παραγοντικό) Ν!=1 * 2 *3 *.. * Ν Αλγόριθμος Ν_Παραγοντικό Διάβασε Ν Ρ 1 Για i από 1 μέχρι Ν Ρ Ρ* i Τέλος_επανάληψης Εμφάνισε Ρ Τέλος Ν_Παραγοντικό

Διαβάστε περισσότερα

επιµέλεια Θοδωρής Πιερράτος

επιµέλεια Θοδωρής Πιερράτος Ερωτήσεις Σωστό Λάθος 1. Στη δοµή επανάληψης Όσο... επανάλαβε ο έλεγχος της συνθήκης γίνεται στην αρχή, δηλαδή πριν εκτελεστεί οποιαδήποτε εντολή που περιέχεται στη δοµή. 2. Ο µετρητής που ελέγχει τη συνθήκη

Διαβάστε περισσότερα

επιστρέφει αριθµό που προκύπτει µε αντιστροφή των στοιχείων του πρώτου

επιστρέφει αριθµό που προκύπτει µε αντιστροφή των στοιχείων του πρώτου ΑΕσΠΠ-Κεφ.10 Υποπρογράµµατα 1 1. Να γραφεί µία συνάρτηση για κάθε ένα από τα παρακάτω: i. Να δέχεται την ακτίνα ενός κύκλου και να επιστρέφει το εµβαδόν του. ii. Να δέχεται την ακτίνα ενός κύκλου και να

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ ΑΣΚΗΣΕΙΣ Ακολουθίας Η δοµή Ακολουθίας είναι η πιο απλή δοµή του δοµηµένου προγραµµατισµού. Η κάθε εντολή ακολουθεί κάποια άλλη. Οι εντολές εκτελούνται ακριβώς µε τη σειρά όπως θα δοθούν στον αλγόριθµο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

Δομή Επιλογής Απαντήσεις Ασκήσεων

Δομή Επιλογής Απαντήσεις Ασκήσεων Δομή Επιλογής Απαντήσεις Ασκήσεων Άσκηση 1. Ποια θα είναι η τιμή της μεταβλητής x μετά την εκτέλεση καθενός από τα παρακάτω τμήματα προγραμμάτων (1 ο τμήμα) (2 ο τμήμα) X 5 X 7 AN X>5 TOTE AN X>5 TOTE

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ Καλλιόπη Μαγδαληνού ΕΠΙΚΕΦΑΛΙΔΑ ΠΡΟΓΡΑΜΜΑΤΟΣ ΔΗΛΩΣΕΙΣ ΣΤΑΘΕΡΩΝ ΔΗΛΩΣΕΙΣ ΜΕΤΑΒΛΗΤΩΝ ΕΝΤΟΛΕΣ πρόγραμμα τεστ σταθερές π = 3.14 μεταβλητές πραγματικές : εμβαδό, ακτίνα αρχή

Διαβάστε περισσότερα

Η Δομή Επανάληψης. Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες

Η Δομή Επανάληψης. Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες Η Δομή Επανάληψης Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες Οι 2 πρώτες διδακτικές ώρες στην τάξη Η τρίτη διδακτική ώρα στο εργαστήριο Γενικός Διδακτικός Σκοπός Ενότητας Να εξοικειωθούν

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς

Διαβάστε περισσότερα

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε Ναι Τέλος Α2 Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό

Διαβάστε περισσότερα

8. Επιλογή και επανάληψη

8. Επιλογή και επανάληψη 8. Επιλογή και επανάληψη 8.1 Εντολές Επιλογής ΕΣΕΠ06-Θ1Β5 Η ιεραρχία των λογικών τελεστών είναι µικρότερη των αριθµητικών. ΕΣ07-Θ1Γ5 Η σύγκριση λογικών δεδοµένων έχει έννοια µόνο στην περίπτωση του ίσου

Διαβάστε περισσότερα

6. Αφού δημιουργήσετε ένα πίνακα 50 θέσεων με ονόματα μαθητών να τον ταξινομήσετε αλφαβητικά με την μέθοδο της φυσαλίδας

6. Αφού δημιουργήσετε ένα πίνακα 50 θέσεων με ονόματα μαθητών να τον ταξινομήσετε αλφαβητικά με την μέθοδο της φυσαλίδας Ανάπτυξη εφαρμογών Γ' Λυκείου Τεχνολογικής κατεύθυνσης ΑΣΚΗΣΕΙΣ ΜΕ ΜΟΝΟΔΙΑΣΤΑΤΟΥΣ ΠΙΝΑΚΕΣ ΒΑΣΙΚΕΣ 1. Να γράψετε πρόγραμμα το οποίο:3. Να γράψετε αλγόριθμο ή πρόγραμμα το οποίο: α. Θα δημιουργεί ένα πίνακα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. Οι διαδικασίες μπορούν να εκτελέσουν οποιαδήποτε λειτουργία και δεν επιστρέφουν μια τιμή όπως οι συναρτήσεις. Κάθε διαδικασία έχει

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.27 Να αναπτυχθεί αλγόριθμος που θα εμφανίζει όλους τους τέλειους αριθμούς στο διάστημα [2,100]. Τέλειος είναι ο ακέραιος που ισούται με το άθροισμα των γνήσιων διαιρετών του. Oι τέλειοι Ο Πυθαγόρας

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6 ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασµένες

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

Ασκήσεις στη ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ. Α. εντολές όσο επανάλαβε & αρχή_επανάληψης μέχρις_ότου

Ασκήσεις στη ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ. Α. εντολές όσο επανάλαβε & αρχή_επανάληψης μέχρις_ότου Ασκήσεις στη ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Α. εντολές όσο επανάλαβε & αρχή_επανάληψης μέχρις_ότου 1. Πόσα * θα εμφανιστούν σε κάθε μια από τις παρακάτω περιπτώσεις Α έως Ε αν εκτελεστούν οι εντολές που βλέπετε; Να υλοποιήσετε

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008. Τµήµα ΓΤ2 Όνοµα:...

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008. Τµήµα ΓΤ2 Όνοµα:... ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008 Τµήµα ΓΤ2 Όνοµα:... ΘΕΜΑ 1 ο. Α) Να γράψετε στο φύλλο απαντήσεών σας Σ εάν κρίνετε ότι η πρόταση είναι σωστή και

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1) Ο έλεγχος μιας συνθήκης έχει μόνο δυο τιμές,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Παράδειγμα 5 Παράδειγμα 6 ΔΤ3 ΔΤ4 151

ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Παράδειγμα 5 Παράδειγμα 6  ΔΤ3 ΔΤ4  151 ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Σε ένα μετεωρολογικό κέντρο χρειάζεται να βρεθεί η μέγιστη και η ελάχιστη θερμοκρασία από τις μέσες ημερήσιες θερμοκρασίες ενός μήνα. Να γραφεί ένας αλγόριθμος που θα διαβάζει τη

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου 2.87 Να περιγραφεί η δομή επανάληψης Μέχρις_ότου Ημορφή της δομής επανάληψης Μέχρις_ότου είναι: Μέχρις_ότου Συνθήκη Η ομάδα εντολών στο εσωτερικό της επανάληψης, εκτελείται μέχρις ότου ισχύει η συνθήκη

Διαβάστε περισσότερα

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Παρασκευή 25 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ

Διαβάστε περισσότερα

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΚΠΑΙΔΕΥΤΙΚΉ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε

Διαβάστε περισσότερα

Παλλατίδειο ΓΕΛ Σιδηροκάστρου

Παλλατίδειο ΓΕΛ Σιδηροκάστρου Δομή Επανάληψης 2000 Θέμα 2 ο Έστω τμήμα αλγορίθμου με μεταβλητές A, B, C, D, X και Υ. D 2 Για Χ από 2 μέχρι 5 με_βήμα 2 Α 10 * Χ Β 5 * Χ + 10 C Α + Β (5 * Χ) D 3 * D - 5 Υ A + B C + D Να βρείτε τις τιμές

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ 1. Να εκτελέσετε το παρακάτω τµήµα αλγορίθµου, για Κ = 24 και L = 40. Να γράψετε στο τετράδιό σας τις τιµές

Διαβάστε περισσότερα

Φύλλο εργασίας 4 ο Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ.

Φύλλο εργασίας 4 ο Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ. Φύλλο εργασίας 4 ο Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ. Λίγοι αλγόριθμοι χρησιμοποιούν μόνο τις δομές ακολουθίας και επιλογής. Στα ρεαλιστικά προβλήματα χρειάζεται συνήθως μια σειρά εντολών

Διαβάστε περισσότερα

οµές Επανάληψης Π1. Να αναπτύξετε αλγόριθµο που θα εκτυπώνει τους αριθµούς από το 1 ως το 10.

οµές Επανάληψης Π1. Να αναπτύξετε αλγόριθµο που θα εκτυπώνει τους αριθµούς από το 1 ως το 10. Οι δοµές επανάληψης εφαρµόζονται στις περιπτώσεις, όπου µια οµάδα εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι κοινό. Οι τρεις µορφές δοµών επανάληψης είναι: 1. Επαναληπτική οµή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Α. ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΦΥΛΛΑΔΙΟ 2 ο ( Ενότητες 2.2.4-2.2.7.2 ) 1. Να δώσετε τους παρακάτω ορισμούς: α) σειριακός, β) παράλληλος, γ) επαναληπτικός και δ)

Διαβάστε περισσότερα

Αν χ mod 3 = 0 και χ mod 4 = 0 τότε

Αν χ mod 3 = 0 και χ mod 4 = 0 τότε 1. Να γραφεί αλγόριθμος ο οποίος θα δέχεται έναν ακέραιο αριθμό και αν αυτός είναι άρτιος θα εμφανίζει το διπλάσιο του, ενώ αν είναι περιττός θα εμφανίζει το τριπλάσιο του. Παρατήρηση: Σε ασκήσεις που

Διαβάστε περισσότερα

οµή Επιλογής Α. Κατηγορία προβληµάτων Β. Κριτήριο Αλγορίθµου Γ. Τρόπος αναπαράστασης αλγορίθµων . Είδος σταθεράς Ε. Λογική τιµή

οµή Επιλογής Α. Κατηγορία προβληµάτων Β. Κριτήριο Αλγορίθµου Γ. Τρόπος αναπαράστασης αλγορίθµων . Είδος σταθεράς Ε. Λογική τιµή οµή Επιλογής Θέµα Α Α1. Να χαρακτηρίσετε κάθε µία από τις παρακάτω προτάσεις µε Σ αν είναι σωστή ή Λ αν είναι λανθασµένη. 1. Όλες οι δοµές επιλογής κλείνουν µε την εντολή. 2. Η παρακάτω εντολή είναι σωστή

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ Ερωτήσεις Ανάπτυξης 1. Να περιγράψετε τη δομή της λίστας και τη διαδικασία εισαγωγής και διαγραφής ενός κόμβου. 3.9.1 Σελ 71-72

Διαβάστε περισσότερα

Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασμένες (Λ).

Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασμένες (Λ). ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 6 ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΣΧ... ΕΤΤΟΣΣ 22000099-22001100 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία

Διαβάστε περισσότερα

8.4. Δραστηριότητες - ασκήσεις

8.4. Δραστηριότητες - ασκήσεις 8.4. Δραστηριότητες - ασκήσεις ΣΤΗΝ ΤΑΞΗ ΔΤ1. ΔΤ2. ΔΤ3. ΔΤ4. Αν η μεταβλητή Α έχει την τιμή 10, η μεταβλητή Β έχει την τιμή 5 και η μεταβλητή Γ έχει την τιμή 3, ποιες από τις παρακάτω εκφράσεις είναι αληθείς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3 & 9 (ΠΙΝΑΚΕΣ)

ΚΕΦΑΛΑΙΑ 3 & 9 (ΠΙΝΑΚΕΣ) ΚΕΦΑΛΑΙΑ 3 & 9 (ΠΙΝΑΚΕΣ) ίνακες - Ερωτήσεις Σ/Λ ίνακες Ερωτήσεις Σ/Λ 1. Το ακριβές μέγεθος ενός πίνακα καθορίζεται κατά τη διάρκεια του προγραμματισμού και δεν μπορεί να τροποποιηθεί κατά τη διάρκεια εκτέλεσης

Διαβάστε περισσότερα

ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα

ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ 1 A. Να γράψετε τους κανόνες που πρέπει να ακολουθούνται στη χρήση των εμφωλευμένων βρόχων. B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) καθεμία από

Διαβάστε περισσότερα

Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1

Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1 Δομές Επανάληψης Όσο μέχρις ότου για 22/11/08 Ανάπτυξη εφαρμογών 1 Όσο. επανάλαβε Όσο Συνθήκη επανάλαβε Εντολή1 Εντολή2.. Ομάδα εντολών Συνθήκη Αληθής Ομάδα εντολών Εντολή Ν Τέλος_Επανάληψης Ψευδής 1.

Διαβάστε περισσότερα

Δομές Ακολουθίας- Επιλογής - Επανάληψης. Δομημένος Προγραμματισμός

Δομές Ακολουθίας- Επιλογής - Επανάληψης. Δομημένος Προγραμματισμός Δομές Ακολουθίας- Επιλογής - Επανάληψης Δομημένος Προγραμματισμός 1 Βασικές Έννοιες αλγορίθμων Σταθερές Μεταβλητές Εκφράσεις Πράξεις Εντολές 2 Βασικές Έννοιες Αλγορίθμων Σταθερά: Μια ποσότητα που έχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 03-11-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-4 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη

Διαβάστε περισσότερα

Αν χ >= 0 ΚΑΙ χ <= 9 τότε Εμφάνισε Θετικός Μονοψήφιος Τέλος_αν Αν Χ <= 99 τότε

Αν χ >= 0 ΚΑΙ χ <= 9 τότε Εμφάνισε Θετικός Μονοψήφιος Τέλος_αν Αν Χ <= 99 τότε ΓΕΛ Περάματος Μυλοποτάμου Διαγώνισμα Α Τετραμήνου στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Σχολικό Έτος 2016-17 Ονοματεπώνυμο: Τμήμα: ΘΕΜΑ Α: A1. Να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

3. Ασκήσεις στη Δομή Επανάληψης

3. Ασκήσεις στη Δομή Επανάληψης 3. Ασκήσεις στη Δομή Επανάληψης 301 Να γραφεί αλγόριθμος που θα διαβάζει έναν ακέραιο αριθμό n και θα υπολογίζει την παράσταση: 1 + 2 + 3 +... + n Y = + n 1* 3* 5*...* (2n + 1) 302 Να γραφεί αλγόριθμος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου: ΑΛΓΟΡΙΘΜΟΣ Θέμα1 ΔΕΔΟΜΕΝΑ // Ν // Σ 0 π 0 ΓΙΑ ι ΑΠΟ -10 ΜΕΧΡΙ Ν ΔΙΑΒΑΣΕ α, β Σ Σ + α+ β π

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΛΥΚΕΙΟΥ-ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 09/09/2012

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΛΥΚΕΙΟΥ-ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 09/09/2012 ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΛΥΚΕΙΟΥ-ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 09/09/2012 ΘΕΜΑ Α Α1. Δίνονται τα παρακάτω τμήματα αλγορίθμου σε φυσική γλώσσα. 1. Αν το ποσό των αγορών(ποσο_αγορων) ενός πελάτη είναι μεγαλύτερο

Διαβάστε περισσότερα

ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β»

ΑΝΙΣΟΤΗΤΕΣ. Αν α-β>0 τότε α>β «Αν η διαφορά είναι θετικός αριθμός τότε ο πρώτος αριθμός δηλαδή το α είναι μεγαλύτερος από τον δεύτερο δηλαδή το β» ΑΝΙΣΟΤΗΤΕΣ Μεταξύ δύο πραγματικών αριθμών μεγαλύτερος είναι εκείνος που βρίσκεται πιο δεξιά στον άξονα των πραγματικών αριθμών. Αν θέλουμε να συγκρίνουμε δύο αριθμούς α και β βρίσκουμε τη διαφορά τους

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΑΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 1 ο ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα

Διαβάστε περισσότερα

ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα

ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ 1 A. Να γράψετε τους κανόνες που πρέπει να ακολουθούνται στη χρήση των εμφωλευμένων βρόχων. Β. Na γίνει ο πολλαπλασιασμός 15 * 45 αλά ρώσικα και να γραφεί

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1Ο Α1. Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν Σωστό ή Λάθος. 1. Ο υπολογιστής είναι ο ταχύτερος μηχανισμός επεξεργασίας δεδομένων. 2. Οι εντολές

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012. Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012. Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012 ΘΕΜΑ Α Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις: 1. Κάθε βρόγχος που υλοποιείται με την εντολή Για μπορεί να

Διαβάστε περισσότερα

Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ

Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ 1.Σ, 2.Σ, 3. Λ, 4.Σ, 5.Σ Στο α) ανήκουν: 1,2,5,6,7 Στο β) ανήκουν: 3,4,8,9,10 1.-Λ, 2.-Λ, 3.-Σ, 4.-Σ, 5.-Σ 1. -Πραγματικός, 2. -Αρφαριθμητικός, 3.-Αλφαριθμητικός,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΑΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 1 ο ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΑΣΜΑ 12/10/2014

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΑΣΜΑ 12/10/2014 Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α [40 μόρια] ΔΙΑΓΩΝΙΣΜΑ α) Να επιλέξτε το γράμμα Σ, αν μια πρόταση είναι σωστή και

Διαβάστε περισσότερα

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν. Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΧΡΙΣΤΟΥΓΕΝΝΩΝ

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 1. Αλγόριθμος Ασκ_1 Διάβασε Χ ΒΥ Χ DIV 8 ΒΙ Χ MOD 8 ΚΒ ΒΥ DIV 1024 ΒΥ ΒΥ MOD 1024 ΜΒ ΚΒ DIV 1024 ΚΒ ΚΒ MOD 1024 GB MB DIV 1024 MB MB MOD 1024 Εμφάνισε "Χωρητικότητα",GB,"GΒ",ΜΒ,"ΜΒ",ΚΒ,"ΚΒ",ΒΥ,"ΒΥΤΕS",ΒΙ,"BITS"

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012) Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Α1.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις με τη λέξη Σωστή ή με τη λέξη Λάθος.

Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις με τη λέξη Σωστή ή με τη λέξη Λάθος. ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ- ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 08-11-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ- Α.ΚΑΤΡΑΚΗ - Π.ΣΙΟΤΡΟΠΟΣ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις

Διαβάστε περισσότερα

ΘΕΜΑ Β Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις Θεωρητική ή Εφαρμοσμένη:

ΘΕΜΑ Β Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις Θεωρητική ή Εφαρμοσμένη: ΕΝΟΤΗΤΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Κεφάλαιο 1.1. Επιστήμη των Υπολογιστών >ΕΝΟΤΗΤΑ 1/ΚΕΦ.1.1/ ΤΥΠΟΥ Β1: ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΟΥ GI_V_EIY_0_19373 Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Ασκήσεις στη οµή Επανάληψης

Ασκήσεις στη οµή Επανάληψης Άσκηση 1 Ασκήσεις στη οµή Επανάληψης Ένα τρένο ξεκινάει από Αθήνα για Θεσσαλονίκη έχοντας να κάνει στάση σε 12 ενδιάµεσους σταθµούς. Το τρένο έχει µέγιστη χωρητικότητα επιβατών 780 άτοµα. Να γραφεί αλγόριθµος

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ

ΚΕΦΑΛΑΙΟ 4 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΚΕΦΑΛΑΙΟ 4 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟΥ 4 4. Πότε χρησιμοποιείται η δομή επανάληψης και ποιες είναι οι τρεις επαναληπτικές δομές; 4.2 Να γράψετε τη σύνταξη των εντολών επανάληψης που γνωρίζετε.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Η αμοιβή ενός τεχνίτη κατασκευής δαπέδων εξαρτάται από το πλήθος των τετραγωνικών μέτρων που καλύπτει σε μια οικοδομή. Η χρέωση γίνεται ανά τετραγωνικό μέτρο και κλιμακωτά σύμφωνα

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ. (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες)

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ. (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες) ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ ΘΕΜΑ 1 ο (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες) (Β) Να σημειώσετε με κατάλληλο τρόπο ανάλογα

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ

Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΕΡΩΤΗΣΕΙΣ Να γράψετε στο γραπτό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-4 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν είναι λανθασμένη. 1. Ένας αλγόριθμος είναι μία πεπερασμένη

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΔΟΜΗ ΕΠΙΛΟΓΗΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΔΟΜΗ ΕΠΙΛΟΓΗΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΔΟΜΗ ΕΠΙΛΟΓΗΣ 1. Να γράψετε αλγόριθμο α) σε διάγραμμα ροής, β) σε ψευδογλώσσα και γ) σε πρόγραμμα ΓΛΩΣΣΑ, ο οποίος θα διαβάζει

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

Καθηγητής Ε. Χ. ΖΙΟΥΛΑΣ

Καθηγητής Ε. Χ. ΖΙΟΥΛΑΣ Καθηγητής Ε. Χ. ΖΙΟΥΛΑΣ http://www.zioulas.gr 1. Να γραφεί πρόγραµµα ΓΛΩΣΣΑΣ που διαβάζει την ακτίνα R ενός κύκλου και υπολογίζει και εµφανίζει στην οθόνη το εµβαδό του Ε. Το πρόγραµµα κάνει χρήση τριών

Διαβάστε περισσότερα

Επαναληπτικές Διαδικασίες

Επαναληπτικές Διαδικασίες Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

Τεχνικές Αναπαράστασης αλγορίθµων Ψευδοκώδικας Διάγραµµα Ροής Αλγοριθµικές δοµές (Ακολουθία Επιλογή Επανάληψη)

Τεχνικές Αναπαράστασης αλγορίθµων Ψευδοκώδικας Διάγραµµα Ροής Αλγοριθµικές δοµές (Ακολουθία Επιλογή Επανάληψη) Τεχνικές Αναπαράστασης αλγορίθµων Διάγραµµα Ροής Αλγοριθµικές δοµές (Ακολουθία Επιλογή ) 1 Βασικές έννοιες Τυποποίηση αναπαράστασης αλγορίθµου - Ανάγκη ύπαρξης ενός κοινού τρόπου αναπαράστασης αλγορίθµων

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

1. Όλα τα προβλήματα μπορούν να λυθούν με τη βοήθεια HY. 2. Ο υπολογισμός του εμβαδού τετραγώνου είναι πρόβλημα άλυτο.

1. Όλα τα προβλήματα μπορούν να λυθούν με τη βοήθεια HY. 2. Ο υπολογισμός του εμβαδού τετραγώνου είναι πρόβλημα άλυτο. Κεφάλαιο 2.1. Πρόβλημα >ΕΝΟΤΗΤΑ 2/ΚΕΦ.2.1/ ΤΥΠΟΥ Β1: ΣΩΣΤΟ-ΛΑΘΟΣ GI_V_EIY_0_19376 Β1. Να γράψετε στο γραπτό σας τον αριθμό κάθε πρότασης και δίπλα τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή τη λέξη Λάθος

Διαβάστε περισσότερα

ΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της

ΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της ΔΟΜΗ ΕΠΙΛΟΓΗΣ Οι διάφορες εκδοχές της Απλή επιλογή Ναι Ομάδα Εντολών Α Ισχύει η Συνθήκη; Χ Χ Χ Όχι Αν (Συνθήκη =Αληθινή) Τότε Ομάδα εντολών Τέλος_αν Λειτουργία: 1. Αν ισχύει η συνθήκη εκτελείται ΠΡΩΤΑ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο 3.07 Να γραφεί αλγόριθμος που θα δημιουργεί πίνακα 100 θέσεων στον οποίο τα περιττά στοιχεία του θα έχουν την τιμή 1 και τα άρτια την τιμή 0. ΛΥΣΗ Θα δημιουργήσω άσκηση βάση κάποιων κριτηρίων. Δηλ. δεν

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΛΕΓΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΛΕΓΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΕΠΙΛΕΓΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 1. Να γραφεί αλγόριθμος ο οποίος να διαβάζει τρεις ακέραιες τιμές, να υπολογίζει και να εμφανίζει το μέσο όρο τους. 2. Να γράψετε αλγόριθμο που να διαβάζει θερμοκρασία

Διαβάστε περισσότερα

Διαγώνισμα Προσομοι ώσης στην Α.Ε.Π.Π.

Διαγώνισμα Προσομοι ώσης στην Α.Ε.Π.Π. Διαγώνισμα Προσομοι ώσης στην Α.Ε.Π.Π. Επιμέλεια: Σ. Ασημέλλης Ζήτημα 1 Α. Να χαρακτηρίσετε καθεμιά από τις επόμενες προτάσεις ως σωστή (Σ) ή λανθασμένη (Λ). α. Σε έναν πίνακα 30x15 κάθε γραμμή έχει 30

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)

ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΑΣΚΗΣΗ 1 (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) Δίνεται ο παρακάτω αλγόριθμος : Αλγόριθμος Παράδειγμα_1 Διάβασε α Αν α < 0 τότε α α * 5 Τέλος_αν

Διαβάστε περισσότερα

επιµέλεια Θοδωρής Πιερράτος

επιµέλεια Θοδωρής Πιερράτος Ερωτήσεις Σωστό Λάθος 1. Οι διαστάσεις ενός πίνακα δεν µπορούν να µεταβάλλονται κατά την εκτέλση ενός αλγόριθµου. 2. Ο πίνακας είναι στατική δοµή δεδοµένων. 3. Ένας πίνακας δυο στηλών µπορεί να περιέχει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΑΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 1 ο ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: Β - Γ ΛΥΚΕΙΟΥ ΤΜΗΜΑΤΑ: Β(ΧΟΛΑΡΓΟΣ) HM/NIA: 15/1/2017

ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: Β - Γ ΛΥΚΕΙΟΥ ΤΜΗΜΑΤΑ: Β(ΧΟΛΑΡΓΟΣ) HM/NIA: 15/1/2017 ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: Β - Γ ΛΥΚΕΙΟΥ ΤΜΗΜΑΤΑ: Β(ΧΟΛΑΡΓΟΣ) HM/NIA: 15/1/2017 ΘΕΜΑ Α (Α1) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος).

Διαβάστε περισσότερα

Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. σύγχρονο Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 210 50 20 990 210 50 27 990 25ης Μαρτίου 74 ΠΕΤΡΟΥΠΟΛΗ 210 50 50 658 210 50 60 845 Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ

Διαβάστε περισσότερα

Δομές Επανάληψης - πακέτο 3 (ΝΕΕΣ ασκήσεις)

Δομές Επανάληψης - πακέτο 3 (ΝΕΕΣ ασκήσεις) Δομές Επανάληψης - πακέτο 3 (ΝΕΕΣ ασκήσεις) Άσκηση 33. Α. Δίνεται το παρακάνω τμήμα αλγορίθμου: S 0 i 5 Όσο (i > 1) επανάλαβε S S + i i i 1 Εμφάνισε i Εμφάνισε S Μπορείτε δημιουργήσετε κωδικοποίηση σε

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α [Α.1.1]. Από ποιους παράγοντες εξαρτάται η επιλογή της

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα