ΑΣΚΗΣΕΙΣ Επανάληψης 1 1. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΕΙΣ Επανάληψης 1 1. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός."

Transcript

1 ΑΣΚΗΣΕΙΣ Επανάληψης 1 1. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Να βρεθεί ποιος ήταν ο μεγαλύτερος αριθμός από αυτούς που δόθηκαν. 2. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Να βρεθεί ποιος ήταν ο μικρότερος αριθμός από τους θετικούς αριθμούς που δόθηκαν. 3. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Από τους αριθμούς που δόθηκαν και ήταν μεγαλύτεροι του 22, να βρεθεί ποιος ήταν ο μεγαλύτερος. 3. (β). Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Από τους αριθμούς που δόθηκαν και ήταν μεγαλύτεροι του 22, να βρεθεί ποιος ήταν ο μικρότερος. 3. (γ). Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Να βρεθεί ποιος ήταν ο μεγαλύτερος αριθμός από αυτούς που δόθηκαν και πόσοι θετικοί δόθηκαν. 4. Να βρεθεί αλγόριθμος υπολογισμού του Σ= Να βρεθεί αλγόριθμος υπολογισμού του Σ= Ν 6. Να βρεθεί αλγόριθμος υπολογισμού του Γ=1*2*3*...*10 7. Να βρεθεί αλγόριθμος υπολογισμού του Γ=1*2*3*...*Ν. (Ν παραγοντικό ή Ν!) 7.B Να βρεθεί αλγόριθμος υπολογισμού του X=(1*2*3*...*Ν)/( K) 8. Να γραφτεί αλγόριθμος που να δέχεται από το πληκτρολόγιο θετικούς ακέραιους μέχρι να δοθεί το 0 ή αρνητικός. Να βρεθεί ποιος ήταν ο μεγαλύτερος αριθμός από αυτούς που δόθηκαν και πόσοι θετικοί δόθηκαν και σε ποια σειρά δόθηκε ο μεγαλύτερος. 9. Να βρεθεί αλγόριθμος υπολογισμού του Γ=3*5*...*(2Ν+1) 10. Να βρεθεί αλγόριθμος υπολογισμού του Γ=5*10*15*...*(5Ν) 11. Να βρεθεί αλγόριθμος υπολογισμού του Σ=5^2+10^2+15^2+...+(5*Ν)^2 12. Να βρεθεί αλγόριθμος υπολογισμού της παράστασης: Υ = ( Ν) * (2^2+4^2+...+(2Ν)^2) 13. Δεν έχεις στη διάθεσή σου την πράξη της ύψωσης σε δύναμη. Φτιάξε αλγόριθμο που να δέχεται δύο αριθμούς Χ και Υ, ο Υ να είναι θετικός ή μηδέν και ακέραιος και να βρίσκεις το Χ εις την Υ. 13. (β). Δεν έχεις στη διάθεσή σου την πράξη της ύψωσης σε δύναμη. Φτιάξε αλγόριθμο που να δέχεται δύο αριθμούς Χ και Υ και να βρίσκεις το Χ εις την Υ. Ο Χ μπορεί να είναι οποιοσδήποτε αριθμός και ο Υ οποιοσδήποτε ακέραιος. 14. Δίνονται αριθμοί μέχρι να ξεπεράσει το άθροισμα τους το 100. Βρες το ΜΟ τους. 15. Να βρεθεί αλγόριθμος υπολογισμού του Σ=1^Κ+2^Κ+3^Κ+...+(Ν^Κ). 16. Να φτιαχτεί αλγόριθμος που να δέχεται θετικούς ακεραίους μέχρι το άθροισμα των περιττών ή των άρτιων να γίνει ίσο ή να ξεπεράσει το 400. Ο αλγόριθμος θα δίνει αποτέλεσμα «άρτιοι» ή «περιττοί» ανάλογα με το ποια κατηγορία έφτασε να έχει άθροισμα πρώτη Να φτιαχτεί αλγόριθμος που να δέχεται θετικούς ακεραίους μέχρι το πλήθος των περιττών ή των άρτιων να γίνει ίσο με 5. Ο αλγόριθμος θα δίνει αποτέλεσμα «άρτιοι» ή «περιττοί» ανάλογα με το ποια κατηγορία έφτασε να έχει πλήθος 5 πρώτη. 1

2 18. Να φτιαχτεί αλγόριθμος που να δέχεται 2 θετικούς ακεραίους α, β. Ο αλγόριθμος θα βρίσκει πόσοι ακέραιοι βρίσκονται μεταξύ του α και του β (συμπεριλαμβανομένων αυτών) και διαιρούνται ακριβώς με το 3. (Θεωρείστε το α<=β). 18. Β.Ίδια με την 18 αλλά δεν ξέρουμε ποιο από τα α,β είναι το μαξ. 19. Να φτιαχτεί αλγόριθμος που να ζητά τις βαθμολογίες 30 μαθητών. Να βρίσκει τον μεγαλύτερο βαθμό καθώς και πόσοι ήταν οι άριστοι μαθητές (βαθμός >=18.5). 20. Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0 ή αρνητικό. Ζητείται να μετρηθεί το πλήθος των κιβωτίων που δόθηκαν (να μην υπολογίζεται το μηδενικό ή αρνητικό κιβώτιο). 21. Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0 ή αρνητικό. Ζητείται να μετρηθεί το συνολικό βάρος των κιβωτίων που δόθηκαν (να μην υπολογίζεται το μηδενικό ή αρνητικό κιβώτιο). 22. Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0 ή αρνητικό. Ζητείται να μετρηθεί το συνολικό βάρος των κιβωτίων που είναι μεγαλύτερα από 100 (κιλά) (να μην υπολογίζεται το μηδενικό ή αρνητικό κιβώτιο). 23. Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0. Ζητείται να μετρηθεί το πλήθος των κιβωτίων που έχουν βάρος μεγαλύτερο από 100 (κιλά). 23. (β) Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0. Ζητείται να μετρηθεί ο ΜΟ των κιβωτίων που έχουν βάρος μεγαλύτερο από 100 (κιλά). 24.!μεχρις_οτου! Δίνονται διαδοχικά από το πληκτρολόγιο τα βάρη (σε κιλά) μερικών κιβωτίων. Το τελευταίο κιβώτιο θα έχει βάρος 0 ή αρνητικό. Ζητείται να βρεθεί ο μέσος όρος των κιβωτίων που έχουν βάρος μικρότερο από 50 (κιλά) χωρίς να υπολογίζεται το τελευταίο μηδενικό ή αρνητικό κιβώτιο. 25.!για! Κατασκευάστε αλγόριθμο που να βρίσκει και να εκτυπώνει το άθροισμα των αρτίων αριθμών από το 1 μέχρι το 100. Επίσης να βρίσκει και να εκτυπώνει το άθροισμα των περιττών αριθμών από το 1 μέχρι το !όσο, μεχρις_οτου! Δίνεται από το πληκτρολόγιο ένας αριθμός χ. Κατόπιν δίνονται διαδοχικά άλλοι αριθμοί μέχρι να δοθεί το 0. Ζητάμε να ελεγχθεί αν υπήρξε έστω κι ένας αριθμός (από αυτούς που δόθηκαν μετά) που να ήταν ίσος με τον χ και αν υπήρξε έστω κι ένας, πόσοι ήταν τελικά αυτοί που ήταν ίσοι με τον χ; 27. Να βρεθεί ο αλγόριθμος υπολογισμού της παράστασης κ = ( Ν)*(5*Ν)*(4+2*Ν/N^2+3) 28. Να βρεθεί ο αλγόριθμος υπολογισμού του Γ = 3*6*9*...*(3Ν) 29. Να βρεθεί ο αλγόριθμος υπολογισμού της παράστασης : Σ=1^Κ+2^Κ+3^Κ+...+(Ν^Κ) 30. Να φτιαχτεί πρόγραμμα που να υπολογίζει το συνολικό αριθμό των σπόρων σιταριού που μαζεύονται σε μια σκακιέρα αν στο πρώτο τετράγωνο βάζουμε 1 σπόρο, στο 2 ο 2, στο 3 ο 4, στο 4 ο 8 και συνεχώς διπλασιάζουμε. 2

3 31. Δίνεται το παρακάτω τμήμα αλγορίθμου: Χ 2 Υ -1 ΟΣΟ Υ<= 5 επανέλαβε Χ Χ+1 Χ Χ+Υ Υ Υ+2 ΓΡΑΨΕ Χ, Υ Βρείτε τον αριθμό των επαναλήψεων και τι θα εμφανιστεί στην οθόνη. 32. Δίνεται το παρακάτω τμήμα αλγορίθμου: Α 3 Ι 0 Α Α+Ι Ι Ι+3 Α 5 Ι 0 Α Α+Ι^2 Ι Ι+5 Βρείτε τον αριθμό των επαναλήψεων κάθε επανάληψης και τι θα εμφανιστεί στην οθόνη. 32. Β. Δίνεται το παρακάτω τμήμα αλγορίθμου: Α 2 Ι 4 Α Α+Ι+4 Ι Ι+6 Α 5 Ι 9 Α Α+Ι^3 Ι Ι+5 Βρείτε τον αριθμό των επαναλήψεων κάθε επανάληψης και τι θα εμφανιστεί στην οθόνη. 3

4 ΑΣΚΗΣΕΙΣ Επανάληψης2 4. Σε ένα δάσος ζει μια κοινότητα κουνελιών με τα εξής χαρακτηριστικά: Στην αρχή κάθε χρόνου δυστυχώς :( 3 κουνελάκια εγκαταλείπουν το δάσος, από αυτά το 1 είναι αρσενικό και τα 2 θηλυκά. Στο τέλος κάθε 4ου έτους όμως αν στο δάσος έχει μείνει τουλάχιστον 1 αρσενικό και 1 θηλυκό, τότε αυτά αναπαράγονται :). Κάθε "ζευγάρι" κουνελιών που βρίσκεται στο δάσος γεννά 5 κουνελάκια (ας δεχτούμε χάριν ευκολίας ότι πάντα από τα 5 νεογέννητα, είναι το 1 αρσενικό και τα 4 θηλυκά) Θεωρούμε επίσης ότι ακόμη και πριν συμπληρώσουν ένα έτος ζωής, τα κουνελάκια μπορούν να αναπαράγονται αν ισχύουν οι απαραίτητες συνθήκες ζευγαρώματος. Να αναπτύξετε αλγόριθμο που α) Να διαβάζει τον αρχικό αριθμό Ν>=4 των κουνελιών που ζει στο δάσος. Θεωρήστε ότι αν ο Ν είναι άρτιος, έχουμε αρχικά ίσους πληθυσμούς αρσενικών και θηλυκών, ενώ αν ο Ν είναι περιττός, θεωρήστε ότι τα θηλυκά είναι, κατά ένα περισσότερα από τα αρσενικά. β) Να εμφανίζει στο τέλος κάθε έτους πόσα αρσενικά και πόσα θηλυκά κουνέλια έχουν μείνει στο δάσος. γ) Να υπολογίζει μετά από 20 χρόνια, τους αντίστοιχους πληθυσμούς, εκτός αν νωρίτερα έχουν εγκαταλείψει όλα τα κουνελάκια το δάσος, όποτε και θα πρέπει να εμφανίζει μετά από πόσα χρόνια θα συμβεί αυτό. 5. ΑΛΓΟΡΙΘΜΟΣ ΕΛΕΓΧΟΥ ΕΓΚΥΡΟΤΗΤΑΣ Α.Φ.Μ. Για να πιστοποιήσουμε αν ένας δοθείς εννεαψήφιος αριθμός μπορεί να είναι έγκυρος Α.Φ.Μ. ή όχι, φαρμόζουμε την παρακάτω διαδικασία: Έστω ότι ο δοθείς αριθμός είναι A1A2A3A4A5A6A7A8A9, όπου κάθε Ai αντιστοιχεί σε ένα ψηφίο του αριθμού. Υπολογίζουμε το άθροισμα Σ = 256*A *A2 +64*A3 + 32*A4 + 16*A5 + 8*A6 +4*A7 + 2*A8 Υπολογίζουμε το υπόλοιπο Υ της διαίρεσης του Σ με τον αριθμό 11. Αν το υπόλοιπο της διαίρεσης είναι 10 και A9=0 τότε ο αριθμός είναι έγκυρος Α.Φ.Μ. Αν το υπόλοιπο της διαίρεσης είναι Υ και A9=Υ τότε ο αριθμός είναι έγκυρος Α.Φ.Μ. Σε αντίθετη περίπτωση, ο αριθμός είναι δεν έγκυρος Α.Φ.Μ. 6. Ένα μαγαζί που πουλάει φιλμ χρεώνει κλιμακωτά τους πελάτες του ως εξής: Για τα πρώτα 10 φιλμ προς 3.50 Ευρώ το ένα Για τα επόμενα 20 φιλμ προς 3.10 Ευρώ το ένα Για τα επόμενα 40 φιλμ προς 2.70 Ευρώ το ένα Για τα υπόλοιπα φιλμ προς 2.20 το ένα Να γραφεί αλγόριθμος που να υπολογίζει τι πρέπει να πληρώσει κάποιος που θέλει να αγοράσει φιλμ. Επίσης, να διαβάζεται η μάρκα του φιλμ: Αν είναι KODAK να προστίθεται 0.40 Ευρώ στην τιμή του ενός φιλμ. Αν είναι AGFA να προστίθεται 0.30 Ευρώ στην τιμή του ενός φιλμ. Αν είναι FUJIFILM να προστίθεται 0.20 Ευρώ στην τιμή του ενός φιλμ. Ειδάλλως, να μην προστίθεται τίποτα. Τέλος, αν συνολικό κόστος πάνω από 900 τότε υπάρχει 15% έκπτωση. 7. Σε ένα μπλόκο της τροχαίας ακολουθείται το εξής σύστημα: Κάθε οδηγός υπόκειται σε αλκοτέστ, ο μετρητής του οποίου έχει ενδείξεις από 0 μέχρι 5 (0 = νηφάλιος). Αν η μέτρηση κάποιου οδηγού είναι μεγαλύτερη από 0, τότε το διπλάσιό της προστίθεται στο σύστημα πόντων (point 4

5 system) του οδηγού. Αν αυτός συγκεντρώσει: 1 έως 3 μονάδες, δεν υπάρχει πρόβλημα. 4 έως 6 μονάδες, του γίνεται σύσταση, 7 έως 9 μονάδες, πληρώνει πρόστιμο, περισσότερες από 9 μονάδες, του αφαιρείται το δίπλωμα. Αν του έχει αφαιρεθεί και άλλη φορά, κινείται δικαστική διαδικασία. Να γίνει πρόγραμμα το οποίο: α) Να ζητάει τους πόντους που είχε συγκεντρώσει ο οδηγός. β) Να ζητάει τη μέτρηση του αλκοτέστ και να αυξάνει όπως προβλέπεται τους πόντους του οδηγού. γ) Ανάλογα με τους πόντους που έφτασε τώρα ο οδηγός, να εμφανίζει ένα από τα μηνύματα "ΚΑΝΕΝΑ ΠΡΟΒΛΗΜΑ", "ΣΥΣΤΑΣΗ", "ΠΡΟΣΤΙΜΟ", "ΑΦΑΙΡΕΣΗ ΔΙΠΛΩΜΑΤΟΣ". δ) Σε περίπτωση που πρέπει να του αφαιρεθεί το δίπλωμα, το πρόγραμμα πρέπει να ρωτάει αν του έχει αφαιρεθεί και άλλη φορά. Αν η απάντηση είναι "ΝΑΙ" τότε να εμφανίζεται το μήνυμα "ΔΙΚΑΣΤΙΚΑ ΜΕΤΡΑ". Σε περίπτωση που η απάντηση δεν είναι ούτε "ΝΑΙ" ούτε "ΟΧΙ", θα πρέπει να επαναλαμβάνεται η ερώτηση. 8. Σύμφωνα 9. Να Γράψετε Πρόγραμμα το οποίο διαβάζει εναν ακέραιο θετικό αριθμό (εάν δοθεί αρνητικός χρησιμοποιούμαι τον αντίθετό του) και: 1) Να εμφανίζει τα ψηφία του αριθμού στην οθόνη (από το τελευταίο προς το πρώτο), 2) Να υπολογίζει (και να εμφανίζει) πόσα ψηφία έχει ο αριθμός 3) Να υπολογίζει τον αριθμό που έχει τα ίδια ψηφία με τον δεδομένο αριθμό, αλλά με ανάποδη σειρά (ας τον ονομάσουμε "ανάστροφο" αριθμό) και 4) Να ελέγχει εάν ο δεδομένος αριθμός είναι "καρκινικός" (= ο αριθμός ο οποίος από όποια μεριά και να διαβασθεί -είτε από δεξιά είτε από αριστερά- είναι ο ίδιος). 10. Να Γράψετε Πρόγραμμα το οποίο να εμφανίζει ενα Χριστουγεννιάτικο Δένδρο, οπως φαίνεται παρακάτω, σε 18 γραμμές και ή βάση του να είναι σε 3 γραμμές. Να χρησιμοποιηθούν μεταβλητές (παράμετροι) ώστε το πρόγραμμα να μην αλλάζει όταν αλλάζουν τα δεδομένα (τα 2 ύψη που δίνονται - σε γραμμές). * *** ***** ******* ********* *********** ************* *** *** 11. Να Γράψετε Πρόγραμμα το οποίο να Ζητάει έναν αριθμό και εμφανίζει αν είναι πρώτος ή όχι. Πρώτοι λέγονται οι αριθμοί που διαιρούνται μόνο από τη μονάδα και από τον εαυτό τους. 5

6 12. To κεντρικό αμφιθέατρο της Σχολής Θετικών Επιστημών (ΣΘΕ) έχει 30 σειρές εδράνων. Η κάτω-κάτω σειρά (1η σειρά) αποτελείται από 20 έδρανα και για κάθε σειρά πιο πάνω τα έδρανα αυξάνονται κατά 3. Η ΣΘΕ αποφάσισε να περάσει με βερνίκι όλα τα έδρανα. Κάθε έδρανο απαιτεί 2000 gr βερνικιού, και ο προμηθευτής στης ΣΘΕ, διαθέτει βερνίκι σε κουτιά των 7 Kg με κόστος 4 το καθένα. Να γίνει αλγόριθμος που να υπολογίζει πόσα έδρανα έχει συνολικά το αμφιθέατρο, πόσα κουτία βερνίκι απαιτούνται, και ποιο είναι το συνολικό κόστος. 13. Ένας καταθέτης έχει για κωδικό πρόσβασης (PIN) στη μαγνητική του κάρτα αναλήψεως έναν τετραψήφιο αριθμό xyzq, όπου γνωρίζουμε ότι το x είναι άρτιος αριθμός, το z περιττός και το q πολλαπλάσιο του 4. Γνωρίζουμε επίσης ότι όλα τα ψηφία που έχει επιλέξει είναι <> 0. Γνωρίζουμε επίσης ότι αν κωδικός του πενταπλασιαστεί και διαιρεθεί με το 3, έχει πάντα υπόλοιπο 1. Για παράδειγμα οι επόμενοι αριθμοί αποτελούν πιθανούς κωδικούς: 4394, 6434, 8558 Να γίνει αλγόριθμος που να μας εμφανίζει όλους τους πιθανούς κωδικούς, όπως και το πλήθος τους. 14. Άρτιος_ή_περιττός_χωρίς_mod 15. Βρες τον αριθμό των επαναλήψεων και τις τιμές των μεταβλητών στο τέλος κάθε επανάληψης, του παρακάτω τμήματος προγράμματος: Χ 1 Β 2 Α Β*Χ+1 ΓΙΑ ι από 6 μέχρι 1 με_βήμα -2 Β Β 2 Α Α+Β- Χ +ι Γ Α*2 Χ Χ+1 ΓΡΑΨΕ Α,Β,Γ,Χ, ι ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ 16. Βρες τον αριθμό των επαναλήψεων και τις τιμές των μεταβλητών στο τέλος κάθε επανάληψης, του παρακάτω τμήματος προγράμματος: Χ 5 Β 1 Α Β*Χ+1 ΟΣΟ Β<Χ ΕΠΑΝΕΛΑΒΕ Β Β + 2 Α Α+Β - Χ Γ Α*2 Χ Χ - 1 ΓΡΑΨΕ Α,Β,Γ,Χ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ 6

7 ΑΣΚΗΣΕΙΣ Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Διάρκεια: 3 ώρες Επίπεδο Δυσκολίας: 5/5 Ενότητες (2 6)

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Διάρκεια: 3 ώρες Επίπεδο Δυσκολίας: 5/5 Ενότητες (2 6) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 Διάρκεια: 3 ώρες Επίπεδο Δυσκολίας: 5/5 Ενότητες (2 6) Σημείωση: Απαντήστε στις κόλλες όλα τα θέματα. Παραδώστε καθαρογραμμένο γραπτό ΘΕΜΑ Α Α1. Απαντήστε

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008. Τμήμα ΓΤ1 Όνομα:...

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008. Τμήμα ΓΤ1 Όνομα:... ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008 Τμήμα ΓΤ1 Όνομα:... ΘΕΜΑ 1 ο. Α) Να γράψετε στο φύλλο απαντήσεών σας Σ εάν κρίνετε ότι η πρόταση είναι σωστή και

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1. Η ομάδα εντολών μέσα στην Αρχή_επανάληψης..μέχρις_ότου

Διαβάστε περισσότερα

επιµέλεια Θοδωρής Πιερράτος

επιµέλεια Θοδωρής Πιερράτος Ερωτήσεις Σωστό Λάθος 1. Στη δοµή επανάληψης Όσο... επανάλαβε ο έλεγχος της συνθήκης γίνεται στην αρχή, δηλαδή πριν εκτελεστεί οποιαδήποτε εντολή που περιέχεται στη δοµή. 2. Ο µετρητής που ελέγχει τη συνθήκη

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 5x + 14y -2z = 6

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 5x + 14y -2z = 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Άσκηση_1 Να αναπτύξετε αλγόριθμο ο οποίος θα εκτυπώνει τις τιμές της συνάρτησης f( x) ΓΙΑ Χ ΑΠΟ -50 ΜΕΧΡΙ 50 ΑΝ Χ1 Η Χ2 ΤΟΤΕ ΤΙΜΗ Χ^2/(Χ^2-3*Χ+2) ΕΚΤΥΠΩΣΕ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ

ΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ ΑΣΚΗΣΕΙΣ Ακολουθίας Η δοµή Ακολουθίας είναι η πιο απλή δοµή του δοµηµένου προγραµµατισµού. Η κάθε εντολή ακολουθεί κάποια άλλη. Οι εντολές εκτελούνται ακριβώς µε τη σειρά όπως θα δοθούν στον αλγόριθµο

Διαβάστε περισσότερα

Δομή Επιλογής Απαντήσεις Ασκήσεων

Δομή Επιλογής Απαντήσεις Ασκήσεων Δομή Επιλογής Απαντήσεις Ασκήσεων Άσκηση 1. Ποια θα είναι η τιμή της μεταβλητής x μετά την εκτέλεση καθενός από τα παρακάτω τμήματα προγραμμάτων (1 ο τμήμα) (2 ο τμήμα) X 5 X 7 AN X>5 TOTE AN X>5 TOTE

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε Ναι Τέλος Α2 Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό

Διαβάστε περισσότερα

8. Επιλογή και επανάληψη

8. Επιλογή και επανάληψη 8. Επιλογή και επανάληψη 8.1 Εντολές Επιλογής ΕΣΕΠ06-Θ1Β5 Η ιεραρχία των λογικών τελεστών είναι µικρότερη των αριθµητικών. ΕΣ07-Θ1Γ5 Η σύγκριση λογικών δεδοµένων έχει έννοια µόνο στην περίπτωση του ίσου

Διαβάστε περισσότερα

6. Αφού δημιουργήσετε ένα πίνακα 50 θέσεων με ονόματα μαθητών να τον ταξινομήσετε αλφαβητικά με την μέθοδο της φυσαλίδας

6. Αφού δημιουργήσετε ένα πίνακα 50 θέσεων με ονόματα μαθητών να τον ταξινομήσετε αλφαβητικά με την μέθοδο της φυσαλίδας Ανάπτυξη εφαρμογών Γ' Λυκείου Τεχνολογικής κατεύθυνσης ΑΣΚΗΣΕΙΣ ΜΕ ΜΟΝΟΔΙΑΣΤΑΤΟΥΣ ΠΙΝΑΚΕΣ ΒΑΣΙΚΕΣ 1. Να γράψετε πρόγραμμα το οποίο:3. Να γράψετε αλγόριθμο ή πρόγραμμα το οποίο: α. Θα δημιουργεί ένα πίνακα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. Οι διαδικασίες μπορούν να εκτελέσουν οποιαδήποτε λειτουργία και δεν επιστρέφουν μια τιμή όπως οι συναρτήσεις. Κάθε διαδικασία έχει

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.27 Να αναπτυχθεί αλγόριθμος που θα εμφανίζει όλους τους τέλειους αριθμούς στο διάστημα [2,100]. Τέλειος είναι ο ακέραιος που ισούται με το άθροισμα των γνήσιων διαιρετών του. Oι τέλειοι Ο Πυθαγόρας

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6 ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασµένες

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1) Ο έλεγχος μιας συνθήκης έχει μόνο δυο τιμές,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Παράδειγμα 5 Παράδειγμα 6 ΔΤ3 ΔΤ4 151

ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Παράδειγμα 5 Παράδειγμα 6  ΔΤ3 ΔΤ4  151 ΚΕΦΑΛΑΙΟ 2 Παράδειγμα 3 Σε ένα μετεωρολογικό κέντρο χρειάζεται να βρεθεί η μέγιστη και η ελάχιστη θερμοκρασία από τις μέσες ημερήσιες θερμοκρασίες ενός μήνα. Να γραφεί ένας αλγόριθμος που θα διαβάζει τη

Διαβάστε περισσότερα

Ασκήσεις στη ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ. Α. εντολές όσο επανάλαβε & αρχή_επανάληψης μέχρις_ότου

Ασκήσεις στη ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ. Α. εντολές όσο επανάλαβε & αρχή_επανάληψης μέχρις_ότου Ασκήσεις στη ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Α. εντολές όσο επανάλαβε & αρχή_επανάληψης μέχρις_ότου 1. Πόσα * θα εμφανιστούν σε κάθε μια από τις παρακάτω περιπτώσεις Α έως Ε αν εκτελεστούν οι εντολές που βλέπετε; Να υλοποιήσετε

Διαβάστε περισσότερα

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Παρασκευή 25 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008. Τµήµα ΓΤ2 Όνοµα:...

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008. Τµήµα ΓΤ2 Όνοµα:... ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008 Τµήµα ΓΤ2 Όνοµα:... ΘΕΜΑ 1 ο. Α) Να γράψετε στο φύλλο απαντήσεών σας Σ εάν κρίνετε ότι η πρόταση είναι σωστή και

Διαβάστε περισσότερα

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΚΠΑΙΔΕΥΤΙΚΉ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Να περιγραφεί η δομή επανάληψης Αρχή_επανάληψης Μέχρις_ότου 2.87 Να περιγραφεί η δομή επανάληψης Μέχρις_ότου Ημορφή της δομής επανάληψης Μέχρις_ότου είναι: Μέχρις_ότου Συνθήκη Η ομάδα εντολών στο εσωτερικό της επανάληψης, εκτελείται μέχρις ότου ισχύει η συνθήκη

Διαβάστε περισσότερα

Φύλλο εργασίας 4 ο Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ.

Φύλλο εργασίας 4 ο Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ. Φύλλο εργασίας 4 ο Δομή επανάληψης Εισαγωγή στις Αρχές της Επιστήμης Η/Υ. Λίγοι αλγόριθμοι χρησιμοποιούν μόνο τις δομές ακολουθίας και επιλογής. Στα ρεαλιστικά προβλήματα χρειάζεται συνήθως μια σειρά εντολών

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ 1. Να εκτελέσετε το παρακάτω τµήµα αλγορίθµου, για Κ = 24 και L = 40. Να γράψετε στο τετράδιό σας τις τιµές

Διαβάστε περισσότερα

Αν χ mod 3 = 0 και χ mod 4 = 0 τότε

Αν χ mod 3 = 0 και χ mod 4 = 0 τότε 1. Να γραφεί αλγόριθμος ο οποίος θα δέχεται έναν ακέραιο αριθμό και αν αυτός είναι άρτιος θα εμφανίζει το διπλάσιο του, ενώ αν είναι περιττός θα εμφανίζει το τριπλάσιο του. Παρατήρηση: Σε ασκήσεις που

Διαβάστε περισσότερα

ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα

ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ 1 A. Να γράψετε τους κανόνες που πρέπει να ακολουθούνται στη χρήση των εμφωλευμένων βρόχων. B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) καθεμία από

Διαβάστε περισσότερα

Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασμένες (Λ).

Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασμένες (Λ). ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 6 ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΣΧ... ΕΤΤΟΣΣ 22000099-22001100 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 03-11-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-4 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη

Διαβάστε περισσότερα

Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1

Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1 Δομές Επανάληψης Όσο μέχρις ότου για 22/11/08 Ανάπτυξη εφαρμογών 1 Όσο. επανάλαβε Όσο Συνθήκη επανάλαβε Εντολή1 Εντολή2.. Ομάδα εντολών Συνθήκη Αληθής Ομάδα εντολών Εντολή Ν Τέλος_Επανάληψης Ψευδής 1.

Διαβάστε περισσότερα

οµές Επανάληψης Π1. Να αναπτύξετε αλγόριθµο που θα εκτυπώνει τους αριθµούς από το 1 ως το 10.

οµές Επανάληψης Π1. Να αναπτύξετε αλγόριθµο που θα εκτυπώνει τους αριθµούς από το 1 ως το 10. Οι δοµές επανάληψης εφαρµόζονται στις περιπτώσεις, όπου µια οµάδα εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι κοινό. Οι τρεις µορφές δοµών επανάληψης είναι: 1. Επαναληπτική οµή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΛΥΚΕΙΟΥ-ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 09/09/2012

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΛΥΚΕΙΟΥ-ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 09/09/2012 ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΛΥΚΕΙΟΥ-ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 09/09/2012 ΘΕΜΑ Α Α1. Δίνονται τα παρακάτω τμήματα αλγορίθμου σε φυσική γλώσσα. 1. Αν το ποσό των αγορών(ποσο_αγορων) ενός πελάτη είναι μεγαλύτερο

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου: ΑΛΓΟΡΙΘΜΟΣ Θέμα1 ΔΕΔΟΜΕΝΑ // Ν // Σ 0 π 0 ΓΙΑ ι ΑΠΟ -10 ΜΕΧΡΙ Ν ΔΙΑΒΑΣΕ α, β Σ Σ + α+ β π

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Διαιρετότητα Μαθαίνω Πολλαπλάσια ενός φυσικού αριθμού α είναι όλοι οι αριθμοί που προκύπτουν από τον πολλαπλασιασμό του με όλους τους φυσικούς αριθμούς, δηλαδή οι αριθμοί: 0, α, 2 α, 3 α, 4 α,... Το μηδέν

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΑΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 1 ο ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1Ο Α1. Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν Σωστό ή Λάθος. 1. Ο υπολογιστής είναι ο ταχύτερος μηχανισμός επεξεργασίας δεδομένων. 2. Οι εντολές

Διαβάστε περισσότερα

Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις με τη λέξη Σωστή ή με τη λέξη Λάθος.

Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις με τη λέξη Σωστή ή με τη λέξη Λάθος. ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ- ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 08-11-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ- Α.ΚΑΤΡΑΚΗ - Π.ΣΙΟΤΡΟΠΟΣ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις

Διαβάστε περισσότερα

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν.

1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. Σ Λ 2. * Οι αριθμοί 2ν και 2ν + 2 είναι διαδοχικοί άρτιοι για κάθε ν Ν. Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ερωτήσεις του τύπου «Σωστό-Λάθος» ν 1. * Ο αριθμός, ν Ν, είναι ανάγωγο κλάσμα για κάθε ν Ν. 3 Σ Λ. * Οι αριθμοί ν και ν + είναι διαδοχικοί άρτιοι για κάθε ν Ν. 3. * Αν ένας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012) Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός

Διαβάστε περισσότερα

Ασκήσεις στη οµή Επανάληψης

Ασκήσεις στη οµή Επανάληψης Άσκηση 1 Ασκήσεις στη οµή Επανάληψης Ένα τρένο ξεκινάει από Αθήνα για Θεσσαλονίκη έχοντας να κάνει στάση σε 12 ενδιάµεσους σταθµούς. Το τρένο έχει µέγιστη χωρητικότητα επιβατών 780 άτοµα. Να γραφεί αλγόριθµος

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΘΕΜΑ Β Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις Θεωρητική ή Εφαρμοσμένη:

ΘΕΜΑ Β Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις Θεωρητική ή Εφαρμοσμένη: ΕΝΟΤΗΤΑ 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Κεφάλαιο 1.1. Επιστήμη των Υπολογιστών >ΕΝΟΤΗΤΑ 1/ΚΕΦ.1.1/ ΤΥΠΟΥ Β1: ΣΥΜΠΛΗΡΩΣΗΣ ΚΕΝΟΥ GI_V_EIY_0_19373 Β1. Να συμπληρώσετε τις παρακάτω προτάσεις χρησιμοποιώντας τις λέξεις

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Η αμοιβή ενός τεχνίτη κατασκευής δαπέδων εξαρτάται από το πλήθος των τετραγωνικών μέτρων που καλύπτει σε μια οικοδομή. Η χρέωση γίνεται ανά τετραγωνικό μέτρο και κλιμακωτά σύμφωνα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης ΕΠ.1 Να αναπτυχθεί αλγόριθμος που θα εκτυπώνει τους διψήφιους άρτιους ακέραιους. Η άσκηση στην ουσία θα πρέπει να εκτυπώσει του αριθμούς 10, 12, 14,.,96, 98. Μεμιαπρώτηματιάθαμπορούσαμενατηνλύσουμεμετοναπροσπελάσουμετιςτιμές

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ. (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες)

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ. (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες) ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ ΘΕΜΑ 1 ο (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες) (Β) Να σημειώσετε με κατάλληλο τρόπο ανάλογα

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΔΟΜΗ ΕΠΙΛΟΓΗΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΔΟΜΗ ΕΠΙΛΟΓΗΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο - ΑΣΚΗΣΕΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΔΟΜΗ ΕΠΙΛΟΓΗΣ 1. Να γράψετε αλγόριθμο α) σε διάγραμμα ροής, β) σε ψευδογλώσσα και γ) σε πρόγραμμα ΓΛΩΣΣΑ, ο οποίος θα διαβάζει

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΑΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 1 ο ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο 3.07 Να γραφεί αλγόριθμος που θα δημιουργεί πίνακα 100 θέσεων στον οποίο τα περιττά στοιχεία του θα έχουν την τιμή 1 και τα άρτια την τιμή 0. ΛΥΣΗ Θα δημιουργήσω άσκηση βάση κάποιων κριτηρίων. Δηλ. δεν

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΛΕΓΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΛΕΓΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΕΠΙΛΕΓΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 1. Να γραφεί αλγόριθμος ο οποίος να διαβάζει τρεις ακέραιες τιμές, να υπολογίζει και να εμφανίζει το μέσο όρο τους. 2. Να γράψετε αλγόριθμο που να διαβάζει θερμοκρασία

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Διαγώνισμα Προσομοι ώσης στην Α.Ε.Π.Π.

Διαγώνισμα Προσομοι ώσης στην Α.Ε.Π.Π. Διαγώνισμα Προσομοι ώσης στην Α.Ε.Π.Π. Επιμέλεια: Σ. Ασημέλλης Ζήτημα 1 Α. Να χαρακτηρίσετε καθεμιά από τις επόμενες προτάσεις ως σωστή (Σ) ή λανθασμένη (Λ). α. Σε έναν πίνακα 30x15 κάθε γραμμή έχει 30

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)

ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΑΣΚΗΣΕΙΣ ΣΤΗ ΟΜΗ ΕΠΙΛΟΓΗΣ (ΑΝΑΦΕΡΟΝΤΑΙ ΟΣΑ ΠΡΟΕΡΧΟΝΤΑΙ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΑΣΚΗΣΗ 1 (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) Δίνεται ο παρακάτω αλγόριθμος : Αλγόριθμος Παράδειγμα_1 Διάβασε α Αν α < 0 τότε α α * 5 Τέλος_αν

Διαβάστε περισσότερα

Δομές Επανάληψης - πακέτο 3 (ΝΕΕΣ ασκήσεις)

Δομές Επανάληψης - πακέτο 3 (ΝΕΕΣ ασκήσεις) Δομές Επανάληψης - πακέτο 3 (ΝΕΕΣ ασκήσεις) Άσκηση 33. Α. Δίνεται το παρακάνω τμήμα αλγορίθμου: S 0 i 5 Όσο (i > 1) επανάλαβε S S + i i i 1 Εμφάνισε i Εμφάνισε S Μπορείτε δημιουργήσετε κωδικοποίηση σε

Διαβάστε περισσότερα

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ: Φιλολάου & Εκφαντίδου 26 : 210/76.01.470 210/76.00.179 ΘΕΜΑ Α [Α.1.1]. Από ποιους παράγοντες εξαρτάται η επιλογή της

Διαβάστε περισσότερα

Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. σύγχρονο Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 210 50 20 990 210 50 27 990 25ης Μαρτίου 74 ΠΕΤΡΟΥΠΟΛΗ 210 50 50 658 210 50 60 845 Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΑΣΤΙΚΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 1 ο ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΣΚΗΣΕΙΣ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ Σημειώστε αν είναι

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015

Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015 ΘΕΜΑ Α Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015 Α1.Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα να σημειώσετε

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΑΣΜΑ 21/4/2013

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΑΣΜΑ 21/4/2013 Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ Α [40 μόρια] α) Να επιλέξτε το γράμμα Σ, αν μια πρόταση είναι σωστή και

Διαβάστε περισσότερα

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =

Διαβάστε περισσότερα

Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο: ,

Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο: , Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο:210-61.24.000, http://www.akadimos.gr ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ 2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιμέλεια θεμάτων

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΚΕΦΑΛΑΙΟ 1-2β)

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΚΕΦΑΛΑΙΟ 1-2β) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΚΕΦΑΛΑΙΟ 1-2β) ΘΕΜΑ 1 ο (Μονάδες 40) A. Γράψτε τον αριθµό καθεµιάς από τις παρακάτω προτάσεις και διπλά τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος,

Διαβάστε περισσότερα

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι :

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι : ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 010 Χρόνος: 60 λεπτά Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Η τιμή της αριθμητικής παράστασης Α = 010 009 + 008 007 + 006 005 +...+ 4 3 + 1 είναι

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Επαναληπτικό: 1 2 κεφάλαιο ΗΜ/ΝΙΑ :.. ΟΝΟΜΑΤΕΠΩΝΥΜΟ :.. ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-10 και δίπλα τη λέξη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ HM/NIA: 21/2/2016

ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ HM/NIA: 21/2/2016 ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ HM/NIA: 21/2/2016 ΘΕΜΑ A (Α1) Να σημειώσετε με κατάλληλο τρόπο ανάλογα με το αν θεωρείτε σωστή ή λανθασμένη κάθε μία από τις

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα Α

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα Α Α1. Δίνονται οι παρακάτω εντολές από ένα τμήμα προγράμματος: ΔΙΑΒΑΣΕ α, β x α > β Να χαρακτηρίσετε αν κάθε μία από τις παρακάτω προτάσεις είναι

Διαβάστε περισσότερα

Φάσμα. προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Φάσμα. προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. σύγχρονο Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο 25ης Μαρτίου 111 - ΠΕΤΡΟΥΠΟΛΗ - 210 50 20 990-210 50 27 990 25ης Μαρτίου 74 - ΠΕΤΡΟΥΠΟΛΗ - 210 50 50 658-210 50 60 845 Γραβιάς 85 -

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΑ 2 ΚΑΙ 8

ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΑ 2 ΚΑΙ 8 ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΑ 2 ΚΑΙ 8 1. Ο Διευθυντής του σχολείου θέλει να κλείσει έναν αριθμό λεωφορείων για την εκδρομή της Γ Λυκείου. Με δεδομένο ότι όλα τα τμήματα έχουν τον ίδιο αριθμό μαθητών να γίνει ΠΡΟΓΡΑΜΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Στο παραπάνω τμήμα υπάρχουν περιττοί έλεγχοι. Να γράψετε ξανά το παραπάνω τμήμα χωρίς τους περιττούς ελέγχους.

Στο παραπάνω τμήμα υπάρχουν περιττοί έλεγχοι. Να γράψετε ξανά το παραπάνω τμήμα χωρίς τους περιττούς ελέγχους. ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 Α. Χαρακτηρίστε με τη λέξη Σωστή ή τη λέξη Λάθος καθεμία από τις παρακάτω προτάσεις: 1 Ο Γιάννης έχει ύψος 1.83εκ. και βάρος 82 κιλά. Ο Γιάννης χαρακτηρίζεται κανονικός. Το βάρος και

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ 3 ΩΡΕΣ

ΘΕΜΑ 1 ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ 3 ΩΡΕΣ ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ 3 ΩΡΕΣ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Κανάρη 36, Δάφνη Τηλ. 210 9713934 & 210 9769376 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ο.Π. ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα Α A1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα :

ΠΑΡΑΤΗΡΗΣΕΙΣ. 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗ ΕΠΑΓΩΓΗ 1. Η μέθοδος της μαθηματικής επαγωγής αποτελείται από δυο βήματα : Βήμα 1 ο : Δείχνουμε ότι η πρόταση Ρ( ν ) είναι αληθής για το μικρότερο φυσικό για τον οποίο ζητείται

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 2.1 Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 1) Η τιμή του χ είναι,χ Ητιμή του χ είναι 5 Ηεντολή εμφανίζει ότι υπάρχει στα διπλά εισαγωγικά ως έχει.

Διαβάστε περισσότερα

Παραδείγματα Χρήσης του DrJava

Παραδείγματα Χρήσης του DrJava Παραδείγματα Χρήσης του DrJava Version 1.1 Επιμέλεια: Κόγιας Δημήτρης, Χαράλαμπος Πατρικάκης, Εργαστήριο Αντικειμενοστραφούς προγραμματισμού [1] Πίνακας Περιεχομένων Κεφάλαιο 1. Προγράμματα για εξάσκηση...

Διαβάστε περισσότερα

β. Ποια είναι η «τιμή φρουρός» στο παρακάτω τμήμα αλγορίθμου γραμμένο σε «ψευδογλώσσα»; Διάβασε όνομα Όσο όνομα < > ΤΕΛΟΣ επανάλαβε Εμφάνισε όνομα

β. Ποια είναι η «τιμή φρουρός» στο παρακάτω τμήμα αλγορίθμου γραμμένο σε «ψευδογλώσσα»; Διάβασε όνομα Όσο όνομα < > ΤΕΛΟΣ επανάλαβε Εμφάνισε όνομα ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΘΕΜΑ Α. Α1. Δίνεται το παρακάτω τμήμα αλγορίθμου γραμμένο σε «ψευδογλώσσα» το οποίο παραβιάζει δύο(2) αλγοριθμικά κριτήρια: Κ 1 Λ 0 Αρχή_επανάληψης

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1

Διαβάστε περισσότερα

2. Στον παραπάνω πίνακα προσθέτουμε (εφόσον χρειάζεται) μια ακόμη στήλη που την ονομάζουμε έξοδο και στην οποία γράφουμε ότι εμφανίζεται.

2. Στον παραπάνω πίνακα προσθέτουμε (εφόσον χρειάζεται) μια ακόμη στήλη που την ονομάζουμε έξοδο και στην οποία γράφουμε ότι εμφανίζεται. Κατηγορία 1 η Πίνακες τιμών Τρόπος αντιμετώπισης: 1. Για να παρακολουθούμε τις τιμές των μεταβλητών δημιουργούμε ένα πίνακα τιμών ο οποίος έχει τόσες στήλες όσες και οι διαφορετικές μεταβλητές που υπάρχουν

Διαβάστε περισσότερα

2.2.3 Η εντολή Εκτύπωσε

2.2.3 Η εντολή Εκτύπωσε 2.2.3 Η εντολή Εκτύπωσε Η εντολή Εκτύπωσε χρησιµοποιείται προκειµένου να εµφανίσουµε κάτι στην οθόνη του υπολογιστή. Για τον λόγο αυτό ονοµάζεται και εντολή εξόδου. Ισοδύναµα µπορεί να χρησιµοποιηθεί και

Διαβάστε περισσότερα

ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα

ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ 1 A. Na αναφέρετε τα κριτήρια που πρέπει να πληροί ένας αλγόριθμος (ονομαστικά) Να αναφέρετε με τεκμηρίωση ποια από τα κριτήρια δεν πληροί ο παρακάτω

Διαβάστε περισσότερα

Δραστηριότητα Περίπτωσης. Τίτλος: Οι διαφορές της απλής, της σύνθετης και της εμφωλευμένης δομής επιλογής

Δραστηριότητα Περίπτωσης. Τίτλος: Οι διαφορές της απλής, της σύνθετης και της εμφωλευμένης δομής επιλογής Δραστηριότητα Περίπτωσης Τίτλος: Οι διαφορές της απλής, της σύνθετης και της εμφωλευμένης δομής επιλογής Γενικός Διδακτικός Στόχος: Να κατανοήσουν οι μαθητές τις διαφορές της απλής, της σύνθετης και της

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΑΠΑΝΤΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΑΠΑΝΤΗΣΕΙΣ Σελίδα 1 από 6 ΑΠΑΝΤΗΣΕΙΣ Θέμα1 Α. Χαρακτηρίστε με τη λέξη Σωστή ή τη λέξη Λάθος καθεμία από τις παρακάτω προτάσεις: 1 Ο Γιάννης έχει ύψος 1.83εκ. και βάρος 82 κιλά. Ο Γιάννης χαρακτηρίζεται κανονικός.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Ακολουθιακή ομή

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Ακολουθιακή ομή ΑΔ.1 Να αναπτυχθεί αλγόριθμος που θα διαβάζει την ημερομηνία γέννησης (ημέρα, μήνας, χρόνος) καθώς και την τρέχουσα ημερομηνία,και θα υπολογίζει την ηλικία του. Για να λύσουμε την άσκηση θα υπολογίσουμε

Διαβάστε περισσότερα

Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής:

Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής: ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 12 ΙΑΝΟΥΑΡΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

Α2. Να αναφέρετε ονομαστικά τις βασικές λειτουργίες που εκτελεί ένας υπολογιστής (Μονάδες 3)

Α2. Να αναφέρετε ονομαστικά τις βασικές λειτουργίες που εκτελεί ένας υπολογιστής (Μονάδες 3) Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΘΕΜΑ Α Α1. Να χαρακτηρίσετε σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις: 1. Ένα επιλύσιμο πρόβλημα είναι και δομημένο. 2. Ένας από τους

Διαβάστε περισσότερα

Χρησιμοποιείται για να αποφασίσει το πρόγραμμα αν θα κάνει κάτι σε ένα σημείο της εκτέλεσής του, εξετάζοντας αν ισχύει ή όχι μια συνθήκη.

Χρησιμοποιείται για να αποφασίσει το πρόγραμμα αν θα κάνει κάτι σε ένα σημείο της εκτέλεσής του, εξετάζοντας αν ισχύει ή όχι μια συνθήκη. Εργαστήριο 4: 4.1 Η Δομή Ελέγχου if Χρησιμοποιείται για να αποφασίσει το πρόγραμμα αν θα κάνει κάτι σε ένα σημείο της εκτέλεσής του, εξετάζοντας αν ισχύει ή όχι μια συνθήκη. Γενική Μορφή: Παρατηρήσεις:

Διαβάστε περισσότερα

Ονοματεπώνυμο: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Δομή Ακολουθίας και Επιλογής Κεφ: 2.1, 2.3, , 6.3, , 8.1, 8.1.

Ονοματεπώνυμο: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Δομή Ακολουθίας και Επιλογής Κεφ: 2.1, 2.3, , 6.3, , 8.1, 8.1. Ονοματεπώνυμο: Μάθημα: Υλη: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Δομή Ακολουθίας και Επιλογής Κεφ: 2.1, 2.3, 2.4.1-2.4.4, 6.3, 7.1-7.10, 8.1, 8.1.1 Επιμέλεια διαγωνίσματος: Ρομπογιαννάκη Ι.Αικατερίνη

Διαβάστε περισσότερα

Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ Γ Λ Υ Κ Ε Ι Ο Υ ΑΣΚΗΣΗ

Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ Γ Λ Υ Κ Ε Ι Ο Υ ΑΣΚΗΣΗ Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ Γ Λ Υ Κ Ε Ι Ο Υ ΑΣΚΗΣΗ Ένα μαιευτήριο παρέχει τον παρακάτω τιμοκατάλογο στις μητέρες που θα το επιλέξουν για την νοσηλεία

Διαβάστε περισσότερα