Κεφάλαιο 3 ο : Εισαγωγή στο δέντρο επιθεµάτων (Suffix Tree) και στις Εφαρµογές του

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 3 ο : Εισαγωγή στο δέντρο επιθεµάτων (Suffix Tree) και στις Εφαρµογές του"

Transcript

1 Κεφάλαιο 3 ο : Εισαγωγή στο δέντρο επιθεµάτων (Suffix Tree) και στις Εφαρµογές του Στα πλαίσια αυτού του κεφαλαίου παρουσιάζουµε δυο ευέλικτες δενδρικές δοµές: το έντρο Επιθεµάτων (Suffix Tree) και το Γενικευµένο έντρο Επιθεµάτων (Generlized Suffix Tree), που επιτρέπουν την αποδοτική αποθήκευση και διαχείριση συµβολοσειρών. Στο τέλος του κεφαλαίου περιγράφουµε τις βασικές εφαρµογές τους σε προβλήµατα Μοριακής Βιολογίας και ειδικότερα στην ανάλυση Ακολουθιών Βιολογικών εδοµένων µε σκοπό την αναζήτηση επαναλαµβανόµενων µοτίβων. 3.1 Το έντρο Επιθεµάτων Πριν ξεκινήσουµε την περιγραφή του έντρου Επιθεµάτων (Suffix Tree), θυµίζουµε ότι για µια συµβολοσειρά x = wv, όπου w, v Σ +, η υποσυµβολοσειρά, v, ονοµάζεται κανονικό επίθεµα του x. Εποµένως µια συµβολοσειρά S, µήκους S =m, έχει m δυνατά µη κενά επιθέµατα που είναι τα ακόλουθα: S[1 m], S[2 m],. S[m-1 m] και S[m]. Για παράδειγµα για τη συµβολοσειρά "sequence", τα δυνατά επιθέµατα είναι: sequence, equence, quence, uence, ence, nce, ce, e. Το έντρο Επιθεµάτων (Suffix Tree), αποθηκεύει όλα τα δυνατά επιθέµατα της συµβολοσειράς S, όπως φαίνεται και στο ακόλουθο σχήµα. x w b x c c 1 c x b c u c 4 b x c Σχήµα 1: Το έντρο Επιθεµάτων για τη συµβολοσειρά S=xbx Ορισµός-1: Το έντρο Επιθεµάτων (Suffix Tree), Τ, µιας συµβολοσειρά S µεγέθους m ( S =m) ορίζεται ως η κατευθυνόµενη δενδρική δοµή µε ακριβώς m φύλλα τα οποία είναι αριθµηµένα από το 1 µέχρι το m. Κάθε εσωτερικός κόµβος,ο οποίος δεν είναι η ρίζα, έχει τουλάχιστον δύο παιδιά και κάθε πλευρά - 1 -

2 αντιστοιχίζεται σε µία µη-µηδενική υπο-συµβολοσειρά του S. Οι υποσυµβολοσειρές των πλευρών που εξέρχονται από τον ίδιο κόµβο δεν επιτρέπεται να έχουν κοινό τον πρώτο τους χαρακτήρα. Τέλος κύριο χαρακτηριστικό του δένδρου επιθεµάτων είναι το γεγονός ότι αν ενώσουµε τις ετικέτες µονοπατιών (pth lbels) που συναντάµε σε µια διαδροµή από τη ρίζα προς κάποιο από τα φύλλα, (έστω το φύλλο µε αριθµό i), σχηµατίζουµε το επίθεµα της συµβολοσειράς S που ξεκινά από την θέση i, δηλαδή το S[i..m]. Από τον παραπάνω ορισµό δεν εξασφαλίζεται ότι υπάρχει έντρο Επιθεµάτων για κάθε συµβολοσειρά S. Για παράδειγµα αν από την συµβολοσειρά S=xbxc που είδαµε στο προηγούµενο παράδειγµα αφαιρέσουµε το τελικό χαρακτήρα c προκύπτει η συµβολοσειρά S =xbx για την οποία το επίθεµα S[4 5]=x δεν καταλήγει σε κάποιο φύλλο αλλά σε εσωτερικό κόµβο, αφού αποτελεί ταυτόχρονα και πρόθεµα της συµβολοσειράς. Για να αποφύγουµε αυτό το πρόβληµα κάνουµε την ακόλουθη θεώρηση: σε κάθε συµβολοσειρά, S, προσθέτουµε έναν επιπλέον τελικό χαρακτήρα (τερµατικό χαρακτήρα), ο οποίος δεν ανήκει στο αλφάβητο της συµβολοσειράς, άρα δεν εµφανίζεται πουθενά αλλού στην συµβολοσειρά. Συνήθως προστίθεται ως τερµατικός χαρακτήρας (termintion symbol) ο χαρακτήρας "". Ορισµός-2: Ορίζουµε ως Ετικέτα Μονοπατιού (Pth Lbel), από τη ρίζα του δέντρου σε κάποιο κόµβο, τη συµβολοσειρά που προκύπτει από τη συνένωση των υπο-συµβολοσειρών που συναντάµε από τη ρίζα στον αντίστοιχο κόµβο. Μια απλοϊκή θεώρηση για την κατασκευή του έντρου Επιθεµάτων, για µια συµβολοσειρά S, περιλαµβάνει τα ακόλουθα βήµατα: 1. Ένθεση µιας πλευράς στο δέντρο για το επίθεµα S[1 m], 2. ιαδοχική ένθεση των επιθεµάτων S[i m], για i=2 m. Στο πρώτο βήµα ο αλγόριθµος θεωρεί ότι το δέντρο αποτελείται µόνο από τη ρίζα και εισάγει σε αυτό το επίθεµα S[1..m], (ολόκληρη δηλαδή τη συµβολοσειρά και τον τερµατικό χαρακτήρα), µε αποτέλεσµα το δέντρο Ν 1 να αποτελείται από µια πλευρά µε ετικέτα "S" και ένα φύλλο αριθµηµένο µε τον αριθµό "1". Σε κάθε επόµενο βήµα δηµιουργούµε το δέντρο N i+1, από το δέντρο N i, ως εξής: ξεκινώντας από τη ρίζα του δέντρου N i, βρίσκουµε το µέγιστο σε µήκος µονοπάτι από τη ρίζα, για το οποίο η ετικέτα µονοπατιού ταιριάζει µε κάποιο πρόθεµα του S[i+1..m], (συγκρίνοντας διαδοχικά τους χαρακτήρες). Έστω ότι στο χαρακτήρα S[k], µε k i, έχουµε µη-ταίριασµα. Σε αυτή τη θέση υπάρχουν δύο δυνατές καταστάσεις: είτε βρισκόµαστε σε κάποιο κόµβο w του δέντρου N i είτε στο µέσο κάποιας πλευράς, µεταξύ των κόµβων (u,v). Στη δεύτερη περίπτωση χωρίζουµε την πλευρά στη µέση εισάγοντας ένα νέο εσωτερικό κόµβο, έστω w, αµέσως µετά τον τελευταίο - 2 -

3 χαρακτήρα του δέντρου που ταίριαζε σε κάποιον χαρακτήρα στο S[i+1 m]. H νέα πλευρά (u, w), έχει ως ετικέτα µονοπατιού το τµήµα της πλευράς (u,v), που ταιριάζει στην υπο-συµβολοσειρά S[i+1 m], ενώ η πλευρά (w, v), αποκτά ως ετικέτα µονοπατιού το υπόλοιπο της πλευράς (u,v). Στη συνέχεια (το βήµα αυτό είναι κοινό και στην 1 η και στη 2 η περίπτωση), ο αλγόριθµος δηµιουργεί µια νέα πλευρά (w, i+1), η οποία εκτείνεται από τον κόµβο w, σε ένα νέο φύλλο µε αριθµό "i+1". H νέα αυτή πλευρά έχει ως ετικέτα µονοπατιού από τη ρίζα στο φύλλο "i+1", το επίθεµα S[i+1..m]. Η απλοϊκή θεώρηση κατασκευής του έντρου Επιθεµάτων στοιχίζει O(m 2 ) χρόνο, για ένα αλφάβητο πεπερασµένου µεγέθους. υο διαδοχικά βήµατα του αλγορίθµου φαίνονται στο ακόλουθο σχήµα. κοινό πρόθεµα x b x c 1 x w b x c c 1 c x b b x c c x b 4 b x c Σχήµα 2: Κατασκευή του έντρου Επιθεµάτων µε την απλοϊκή προσέγγιση. Από το δέντρο Ν3 µεταβαίνουµε στο Ν4 εισάγοντας το επίθεµα S[4 6]=xc. Ξεκινώντας από τη ρίζα, παρατηρούµε ότι το S[4 5] αποτελεί κοινό πρόθεµα και µετά τον τελευταίο κοινό χαρακτήρα προσθέτουµε το νέο κόµβο w. Πιο αποδοτικοί αλγόριθµοι για την κατασκευή του έντρου Επιθεµάτων, έχουν προταθεί στη σχετική βιβλιογραφία, ξεκινώντας µε τον αλγόριθµο που παρουσίασε ο Weiner το 1973 [1], ο McCreight [2] τo 1976 και τέλος το 1995 ο Ukkonen [3], ο οποίος απαιτεί γραµµικό χρόνο O(n). 3.2 Το Γενικευµένο έντρο Επιθεµάτων Το Γενικευµένο έντρο Επιθεµάτων (Generlized Suffix Tree), αποτελεί ένα Γενικευµένο έντρο Επιθεµάτων το οποίο αποθηκεύει όλα τα δυνατά επιθέµατα ενός συνόλου συµβολοσειρών S={S 1,S 2, S n }, (σχήµα 3). Ορισµός-3: Το Γενικευµένο έντρο Επιθεµάτων (Generlized Suffix Tree), GSΤ, ενός συνόλου συµβολοσειρών S ορίζεται ως η κατευθυνόµενη - 3 -

4 δενδρική δοµή µε ακριβώς S 1 + S 2 + S n. Κάθε µονοπάτι από την ρίζα προς κάποιο φύλλο αναπαριστά ένα επίθεµα το οποίο µπορεί να ανήκει σε µία ή παραπάνω συµβολοσειρές. Γι αυτό τον λόγο σε κάθε φύλλο σηµειώνονται οι συµβολοσειρές (ή συµβολοσειρά) στις οποίες ανήκει το αντίστοιχο επίθεµα καθώς και οι θέσεις που αρχίζει αυτό σε κάθε µία από αυτές. Για να κατασκευάσουµε το Γενικευµένο έντρο Επιθεµάτων (Generlized Suffix Tree), ενός συνόλου συµβολοσειρών {S 1,S 2,,S m }, µπορούµε να χρησιµοποιήσουµε οποιονδήποτε από τους αλγορίθµους που ήδη αναφέραµε για την κατασκευή του έντρου Επιθεµάτων, µία φορά για κάθε µία από τις συµβολοσειρές. Το µόνο που πρέπει να διευκρινιστεί είναι ότι κάθε εκτέλεση του αλγορίθµου πέραν της πρώτης δεν εισάγει τα επιθέµατα σε κάποια νέο δένδρο επιθέµατος αλλά σ αυτό που σχηµατίσθηκε από την πρώτη εκτέλεση. Επίσης ενηµερώνονται κατάλληλα οι πληροφορίες που υπάρχουν στα φύλλα. Συνολικά ο χρόνος που απαιτείται µέχρι την ολοκλήρωση της δηµιουργίας είναι γραµµικός στο άθροισµα των µηκών των συµβολοσειρών. 1,3 2,3 x b b 2,5 b x x b x 1,5 2,6 b x b b 2,2 2,4 1,1 1,4 1,2 2,1 Σχήµα 3: Το Γενικευµένο έντρο Επιθεµάτων για τις συµβολοσειρές S={xbx, bbxb} 3.3 Εφαρµογές στη Ανάλυση Ακολουθιών Βιολογικών εδοµένων Σε αυτή την παράγραφο θα αναφέρουµε Εφαρµογές του έντρου Επιθεµάτων σε προβλήµατα ανάλυσης Ακολουθιών Βιολογικών εδοµένων

5 Ακριβής Εύρεση Προτύπου Στο προηγούµενο κεφάλαιο, αναφερθήκαµε σε 3 βασικούς αλγορίθµους Ακριβούς Εύρεσης Προτύπου σε ακολουθίες, των οποίων η πολυπλοκότητα χρόνου είναι γραµµική ως προς το µήκος της ακολουθίας. Σε αυτή την παράγραφο θα περιγράψουµε πώς το έντρο Επιθεµάτων επιλύει µε αποδοτικό τρόπο το ίδιο πρόβληµα σε γραµµικό χρόνο ως προς το µήκος του προτύπου. Ας υποθέσουµε ότι η ακολουθία εισόδου T ( Τ = m), είναι εκ των προτέρων γνωστή και αναζητούµε το πρότυπο P, µεγέθους n. Το έντρο Επιθεµάτων επιλύει το πρόβληµα σε O(n+k) χρόνο, όπου k: το πλήθος των εµφανίσεων του P στο T. Όπως παρατηρούµε η πολυπλοκότητα είναι ανεξάρτητη από το µήκος της ακολουθίας, την οποία έχουµε αναπαραστήσει σε ένα προ-επεξεργαστικό βήµα, σε ένα έντρο Επιθεµάτων (θυµίζουµε ότι ο χρόνος κατασκευής του δέντρου επιθεµάτων είναι O( T )). Η µεθοδολογία είναι η εξής: 1. ηµιούργησε το έντρο Επιθεµάτων Τ, για την ακολουθία εισόδου Τ. 2. Στη συνέχεια ξεκινώντας από τη ρίζα, σύγκρινε έναν προς έναν τους χαρακτήρες του Ρ, ακολουθώντας το κατάλληλο µονοπάτι. Εάν εµφανιστεί κάποιο µη-ταίριασµα, τότε το πρότυπο δεν εµφανίζεται στην ακολουθία, διαφορετικά το πρότυπο εµφανίζεται και η λίστα των εµφανίσεων περιλαµβάνει όλα τα φύλλα του Τ, που βρίσκονται κάτω από τον κόµβο του τελευταίου χαρακτήρα του P. Ένα παράδειγµα φαίνεται στο ακόλουθο σχήµα. Το πρότυπο P=w, εµφανίζεται 3 φορές στα σηµεία 1,4,7.... y w x. z Σχήµα 4: Αναζήτηση του pttern P=w, στο δέντρο T=wywxwxz. Στην προηγούµενη προσέγγιση, η χρήση του έντρου Επιθεµάτων, είναι αποδοτική εφόσον η ακολουθία είναι εκ των προτέρων γνωστή οπότε για - 5 -

6 κάθε νέο πρότυπο που αναζητούµε δε χρειάζεται κάποιο βήµα προεπεξεργασίας. Στην αντίθετη περίπτωση, όταν το πρότυπο είναι γνωστό εκ των προτέρων οι αλγόριθµοι που παρουσιάσαµε στο προηγούµενο κεφάλαιο, απαιτούν O(n) χρόνο προ-επεξεργασίας του προτύπου και Ο(m) χρόνο για την αναζήτηση Ακριβής Εύρεση Πολλαπλών Προτύπων Στο προηγούµενο κεφάλαιο, παρουσιάσαµε και τον τρόπο κατασκευής του Aho- Corsick αυτοµάτου για την αναζήτηση ενός συνόλου προτύπων P ( Ρ =n) σε µια ακολουθία T, ( T =m) σε χρόνο O(n+m+k P ), όπου k P : το πλήθος των εµφανίσεων όλων των προτύπων. Στην περίπτωση που η ακολουθία είναι εκ των προτέρων γνωστή, όπως και στην προηγούµενη εφαρµογή, µπορούµε να χρησιµοποιήσουµε το έντρο Επιθεµάτων, το οποίο επιλύει το πρόβληµα Ακριβούς Εύρεσης ενός συνόλου προτύπων σε συνολικό χρόνο O(n+m+k P ). Η µεθοδολογία που περιγράψαµε στην προηγούµενη περίπτωση για ένα πρότυπο ακολουθείται για το σύνολο των προτύπων. Ποια είναι όµως τα πλεονεκτήµατα της χρήσης του έντρου Επιθεµάτων σε σχέση µε το αυτόµατο Aho- Corsick και πότε µπορεί να χρησιµοποιηθεί η κάθε µέθοδος. Συγκρίνοντας τις 2 µεθόδους παρατηρούµε ότι η πολυπλοκότητα χρόνου, είναι η ίδια. Παρόλα αυτά στην περίπτωση που το σύνολο των προτύπων έχει µεγαλύτερο µέγεθος από την ακολουθία, n > m, το έντρο Επιθεµάτων χρησιµοποιεί λιγότερο χώρο. Σε προβλήµατα Μοριακής Βιολογίας το σύνολο των προτύπων που αναζητούµεβιβλιοθήκη δοσµένων DNA ακολουθιών-, είναι συνήθως µεγαλύτερο σε σχέση µε την ακολουθία εισόδου. Στην αντίθετη περίπτωση µπορούµε να χρησιµοποιήσουµε το αυτόµατο Aho- Corsick, αν και το έντρο Επιθεµάτων απαιτεί λιγότερο χρόνο. Οπότε σε κάθε περίπτωση υπάρχει ένας συµβιβασµός στον απαιτούµενο χώρο και χρόνο, που µας καθοδηγεί ως προς ποια λύση θα χρησιµοποιήσουµε, ανάλογα µε τα δεδοµένα εισόδου Μέγιστη Κοινή Υπο-συµβολοσειρά 2 Ακολουθιών Ένα επίσης σηµαντικό πρόβληµα στην ανάλυση ακολουθιών είναι η εύρεση της µέγιστης σε µήκος κοινής υπο-συµβολοσειράς των ακολουθιών S 1 και S 2, που ονοµάζεται "longest common substring problem" στη διεθνή βιβλιογραφία. Για παράδειγµα οι ακολουθίες S 1 =superiorclifornilives και S 2 = seliver, έχουν ως µέγιστη κοινή υπο-συµβολοσειρά τη λέξη live. Ένας αποδοτικός τρόπος επίλυσης του παραπάνω προβλήµατος είναι η κατασκευή ενός Γενικευµένου έντρου Επιθεµάτων για τις ακολουθίες S 1 και S 2,, όπου κάθε φύλλο του δέντρου αναπαριστά είτε ένα επίθεµα µιας ακολουθίας είτε ένα κοινό επίθεµα που εµφανίζεται και στις 2 ακολουθίες. Σηµειώνουµε κάθε εσωτερικό κόµβο του δέντρου u, µε "1" ή "2", αν - 6 -

7 εµπεριέχει στο υπόδεντρο του u, κάποιο φύλλο που αναπαριστά κάποιο επίθεµα της ακολουθίας S 1 ή S 2. Η ετικέτα µονοπατιού - pth lbel, κάθε εσωτερικού κόµβου που σηµειώνεται ταυτόχρονα µε "1" και "2", αποτελεί µια κοινή υπο-συµβολοσειρά των δυο ακολουθιών S 1 και S 2,. Εντοπίζουµε όλες τις κοινές υπο-συµβολοσειρές και η µεγαλύτερη σε µήκος, αποτελεί την απάντηση στο πρόβληµα της µέγιστης κοινής υπο-συµβολοσειράς. Η κατασκευή του Γενικευµένου έντρου Επιθεµάτων, στοιχίζει γραµµικό χρόνο ως προς το συνολικό µήκος των ακολουθιών S 1 και S 2, (Ο( S 1 + S 2 ), ενώ η διαπέραση των εσωτερικών κόµβων µε γνωστές τεχνικές γραµµικού επίσης χρόνου. Άµεση εφαρµογή της εύρεσης της µέγιστης κοινής υπο-συµβολοσειράς δυο ακολουθιών στη Βιοπληροφορική αποτελεί το DNA Contmintion Problem. DNA Contmintion Problem: Για µια δοσµένη ακολουθία DNA S 1, που έχει πρόσφατα αποµονωθεί και ταυτοποιηθεί και µια ήδη γνωστή ακολουθία S 2, (επιµέρους τµήµατα που πιθανά έχουν µολυνθεί), αναζητούµε όλες τις υποσυµβολοσειρές της S 2 που εµφανίζονται στην S 1, µε µήκος µεγαλύτερο από l. To DNA Contmintion Problem, µπορεί να λυθεί σε γραµµικό χρόνο, επεκτείνοντας τη µεθοδολογία που περιγράψαµε για την εύρεση της µέγιστης κοινής υπο-συµβολοσειράς δυο ακολουθιών. Αρχικά κατασκευάζουµε το Γενικευµένο έντρο Επιθεµάτων για τις ακολουθίες S 1 και S 2. Σηµειώνουµε κάθε εσωτερικό κόµβο του δέντρου u, που εµπεριέχει στο υπόδεντρο του, κάποιο φύλλο που αναπαριστά κάποιο επίθεµα των ακολουθιών S 1 και S 2 και σε ένα τελευταίο βήµα αναφέρουµε όλους τους κόµβους µε βάθος string-depth(u) l. Αν δεν υπάρχουν τέτοιοι κόµβοι, τότε µε µεγάλη πιαθνότητα αλλά όχι µε απόλυτη σιγουριά, η ακολουθία DNA S 1 δεν έχει µολυνθεί από τα επιµέρους τµήµατα. Μια ευρύτερη θεώρηση του DNA Contmintion Problem είναι η ακόλουθη. Ας υποθέσουµε ότι διαθέτουµε ένα σύνολο συµβολοσειρών DNA P, που έχουν µολυνθεί (DNA string contminnts), και θέλουµε να εξετάσουµε αν µια πρόσφατα ταυτοποιηµένη ακολουθία DNA S 1, είναι µολυσµένη. Για να επιλύσουµε αυτό το πρόβληµα δηµιουργούµε ένα Γενικευµένο έντρο Επιθεµάτων για το σύνολο των προτύπων Ρ και την ακολουθία S 1, και αναζητούµε τους εσωτερικούς κόµβους που έχουν ως φύλλα στα υπόδεντρά τους κοινά επιθέµατα της ακολουθίας S 1 και ενός τουλάχιστον από τις συµβολοσειρές του συνόλου Ρ. Όλοι οι κόµβοι µε βάθος µεγαλύτερο του l, εµπεριέχουν ύποπτες υπο-συµβολοσειρές

8 Εύρεση Κοινών Μοτίβων σε 2 ή περισσότερες Βιολογικές Ακολουθίες Η αναζήτηση κοινών µοτίβων σε 2 ή περισσότερες ακολουθίες βιολογικών δεδοµένων (DNA, RNA, ή πρωτεϊνών) παρουσιάζει αρκετό ενδιαφέρον καθώς έχει µεγάλη βιολογική σηµασία. Η µετάλλαξη ακολουθιών του DNA, κατά την εξέλιξη 2 διαφορετικών ειδών, επηρεάζει τα τµήµατα των DNA και πρωτεϊνών, που είναι λιγότερο υπεύθυνα για τη λειτουργία των ζωντανών οργανισµών. Αντίθετα τα τµήµατα που επηρεάζουν τις βασικές λειτουργίες σε µοριακό επίπεδο, εµφανίζουν υψηλή σταθερότητα και σπάνια διαφοροποιούνται λόγω κάποιας µετάλλαξης. Εποµένως η εύρεση επαναλαµβανόµενων µοτίβων σε 2 ή περισσότερες ακολουθίες στοχεύει στην ανακάλυψη αυτών των υπο-συµβολοσειρών που ευθύνονται για τα δοµικά και λειτουργικά χαρακτηριστικά των βιολογικών µορίων (καθώς αυτά παραµένουν αναλλοίωτα). Ας δούµε πώς ορίζεται στο πρόβληµα. Το Πρόβληµα της Εύρεσης κοινών µοτιβων: Για ένα σύνολο Κ ακολουθιών µε συνολικό µήκος Σ( Κ )= n, και έναν ακέραιο k, (2<k<K), ορίζουµε ως l(k), το µήκος του µέγιστου µοτίβου που εµφανίζεται σε τουλάχιστον k υπο-συµβολοσειρές. Το πρόβληµα ανάγεται στον υπολογισµό όλων των δυνατών τιµών του l(k) και λύνεται σε γραµµικό χρόνο Ο(n), ως προς το µήκος των ακολουθιών εισόδου. Ας δούµε ένα παράδειγµα. Έστω Κ={sndollr, sndlot, hndler, grnd, pntry}. Οι τιµές του l(k), φαίνονται στον ακόλουθο πίνακα, παρουσιάζοντας και τα αντίστοιχα κοινά µοτίβα. k l(k) µοτίβο 2 4 snd 3 3 nd 4 3 nd 5 2 n Το πρόβληµα µπορεί να λυθεί γενικεύοντας τη µεθοδολογία που παρουσιάσαµε για την επίλυση της µέγιστης κοινής υπο-συµβολοσειράς 2 ακολουθιών για περισσότερες ακολουθίες Εύρεση Επαναλήψεων σε Βιολογικές Ακολουθίες Σε αυτή την παράγραφο θα περιγράψουµε ορισµένα επαναληπτικά µοτίβα σε ακολουθίες Βιολογικών εδοµένων. Την εύρεση - 8 -

9 επαναλαµβανόµενων µοτίβων- επαναλήψεων, διαδέχεται η µελέτη της λειτουργίας που επιτελούν στην εξέλιξη των ζωντανών οργανισµών. Οι επαναλήψεις σε βιολογικές ακολουθίες κατηγοριοποιούνται στις εξής 3 βασικές κατηγορίες: α) επαναλήψεις περιορισµένου µήκους που εµφανίζονται σε τοπικό επίπεδο, και των οποίων η λειτουργία είναι γνωστή, β) επαναλήψεις περιορισµένου µήκους που εµφανίζονται σε όλο το µήκος της ακολουθίας, και των οποίων η λειτουργία δεν είναι απόλυτα γνωστή, γ) δοµηµένες επαναλήψεις µεγάλου µήκους των οποίων η λειτουργία δεν έχει προσδιοριστεί. Αρχικά θα ορίσουµε ορισµένες από τις σηµαντικότερες επαναλήψεις σε βιολογικές ακολουθίες: Ορισµός-4: Ένα παλίνδροµο- plindrome αποτελεί την επαναλαµβανόµενη εµφάνιση της υπο-συµβολοσειράς που διαβάζεται ως ίδιο και προς τις 2 κατευθύνσεις (από αριστερά προς τα δεξιά και από δεξιά προς τα αριστερά). Για παράδειγµα η συµβολοσειρά: xyyx αποτελεί ένα παλίνδροµο. Ορισµός-5: Ένα παλίνδροµο σε µια ακολουθία DNA ή RNA, ονοµάζεται συµπληρωµατικό παλίνδροµο- complemented plindrome, αν προκύπτει από την αντικατάσταση όλων των χαρακτήρων από την αρχή έως τη µέση µε τις αντίστοιχες συµπληρωµατικές βάσεις. Για το DNA οι βάσεις Α & C είναι συµπληρωµατικές των Τ & G αντίστοιχα, ενώ για το RNA οι βάσεις Α & C είναι συµπληρωµατικές των U & G αντίστοιχα. Για παράδειγµα η συµβολοσειρά: Χ= gctcgcggct αποτελεί ένα συµπληρωµατικό παλίνδροµο, αφού προκύπτει µε την αντικατάσταση των χαρακτήρων Χ[1..6] µε τις συµπληρωµατικές βάσεις που τοποθετούνται στις θέσεις Χ[7 12]. Στην πρώτη κατηγορία επαναλήψεων ανήκουν: τα συµπληρωµατικά παλίνδροµα σε ακολουθίες DNA & RNA, που ρυθµίζουν τη µετεγγραφή του DNA, τα εµφωλευµένα συµπληρωµατικά παλίνδροµα σε ακολουθίες trna, µικρού µήκους απλές επαναλήψεις στο DNA (παλινδροµικές και µη), κ.α. Στη δεύτερη κατηγορία επαναλήψεων ανήκουν: οι συνεχόµενες επαναλήψεις- tndem repets, σε ακολουθίες DNA. Για παράδειγµα η συµβολοσειρά: ttggg εµφανίζεται στις άκρες κάθε ανθρώπινου - 9 -

10 χρωµοσώµατος. Μεγαλύτερου µήκους συνεχόµενες επαναλήψεις είναι και τα δορυφορικά τµήµατα DNA- stellite DNA, που υποδιαιρούνται σε micro & mini stellite DNA, και εµφανίζονται στα γονιδιώµατα των θηλαστικών. Τέλος στην τρίτη κατηγορία επαναλαµβανόµενων µοτίβων ανήκουν τα: SINE-Short Interspersed Nucler Sequences και LINE-Long Interspersed Nucler Sequences. Τυπικό παράδειγµα SINE, αποτελεί η Alu fmily, η οποία επαναλαµβάνεται φορές µέσα στο ανθρώπινο γονιδίωµα και καλύπτει σε µήκος το 5% περίπου του ανθρώπινου DNA και άλλων γονιδιωµάτων θηλαστικών. Η αναζήτηση επαναλαµβανόµενων µοτίβων, αποτελεί σηµαντικό υπολογιστικό πρόβληµα στη Βιοπληροφορική, ειδικά µετά τη χαρτογράφηση του ανθρώπινου γονιδιώµατος, αφού στοχεύει στην αναγνώριση δεικτώνmrkers, που υποδεικνύουν σηµαντικές θέσεις ή λειτουργικά τµήµατα στις βιολογικές ακολουθίες. Επίσης η αναζήτηση επαναλαµβανόµενων µοτίβων, µπορεί να στηρίζεται είτε στην ακριβή είτε στην προσεγγιστική προσέγγιση. Βιβλιογραφικές Αναφορές 1. P.Weiner. Liner pttern mtching lgorithms. Proc. of the 14 th IEEE Symp. on Switching nd Automt Theory, E.M. McCreight. A spce-economicl suffix tree construction lgorithm. Journl of ACM, E. Ukkonen. On-Line construction of suffix trees. Algorithmic, Ιssue 14, D.Gusfield. Algorithms on strings, trees nd sequences. Cmbridge University Press,

ΗΜΙΟΥΡΓΙΑ ΙΣΤΟΣΕΛΙ ΑΣ ΣΤΟ MICROSOFT WORD

ΗΜΙΟΥΡΓΙΑ ΙΣΤΟΣΕΛΙ ΑΣ ΣΤΟ MICROSOFT WORD ΗΜΙΟΥΡΓΙΑ ΙΣΤΟΣΕΛΙ ΑΣ ΣΤΟ MICROSOFT WORD Σε ορισµένες περιπτώσεις είναι ιδιαίτερα χρήσιµη η δηµιουργία ιστοσελίδων ενηµερωτικού περιεχοµένου οι οποίες στη συνέχεια µπορούν να δηµοσιευθούν σε κάποιο τόπο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)

ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις εδοµένων και την Access

Εισαγωγή στις Βάσεις εδοµένων και την Access Μάθηµα 1 Εισαγωγή στις Βάσεις εδοµένων και την Access Τι είναι οι βάσεις δεδοµένων Μία βάση δεδοµένων (Β..) είναι µία οργανωµένη συλλογή πληροφοριών, οι οποίες είναι αποθηκευµένες σε κάποιο αποθηκευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΑΝΑΖΗΤΗΣΗ ΣΕ ΗΛΕΚΤΡΟΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ

ΑΝΑΖΗΤΗΣΗ ΣΕ ΗΛΕΚΤΡΟΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ ΑΝΑΖΗΤΗΣΗ ΣΕ ΗΛΕΚΤΡΟΝΙΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ Μία από τις πιο σηµαντικές υπηρεσίες που προσφέρει το διαδίκτυο στην επιστηµονική κοινότητα είναι η αποµακρυσµένη πρόσβαση των χρηστών σε ηλεκτρονικές βιβλιοθήκες

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

υαδικό έντρο Αναζήτησης (BSTree)

υαδικό έντρο Αναζήτησης (BSTree) Εργαστήριο 6 υαδικό έντρο Αναζήτησης (BSTree) Εισαγωγή Οι περισσότερες δοµές δεδοµένων, που εξετάσαµε µέχρι τώρα (λίστες, στοίβες, ουρές) ήταν γραµ- µικές (ή δοµές δεδοµένων µιας διάστασης). Στην παράγραφο

Διαβάστε περισσότερα

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση-

3. Σηµειώσεις Access. # Εισαγωγή ψηφίου ή κενού διαστήµατος. Επιτρέπονται τα ση- Μάθηµα 3 Προχωρηµένες ιδιότητες πεδίων Μάσκες εισαγωγής Οι ιδιότητες Μορφή και Μάσκα εισαγωγής περιγράφονται µαζί γιατί έχουν κοινά χαρακτηριστικά που αφορούν την εµφάνιση. Με την ιδιότητα Μορφή καθορίζουµε

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέµα 1 ο Α. Να απαντήσετε τις παρακάτω ερωτήσεις τύπου Σωστό Λάθος (Σ Λ) 1. Σκοπός της συγχώνευσης 2 ή περισσοτέρων ταξινοµηµένων πινάκων είναι η δηµιουργία

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Ενότητα 10 Γράφοι (ή Γραφήµατα) Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους.

Μια οµάδα m σηµείων προσφοράς. Μια οµάδα n σηµείων ζήτησης. Οτιδήποτε µετακινείται απο σηµείο προσφοράς σε σηµείο ζήτησης είναι συνάρτηση κόστους. Να βρεθεί ΠΓΠ ώστε να ελαχιστοποιηθεί το κόστος µεταφοράς (το πρόβληµα βασίζεται σε αυτό των Aarik και Randolph, 975). Λύση: Για κάθε δυϊλιστήριο i (i=, 2, ) και πόλη j (j=, 2,, 4), θεωρούµε την µεταβλητή

Διαβάστε περισσότερα

Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων.

Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων. Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων. Βήµα 1 ο ηµιουργία Εταιρείας Από την Οργάνωση\Γενικές Παράµετροι\ ιαχείριση εταιρειών θα δηµιουργήσετε την νέα σας εταιρεία, επιλέγοντας µέσω των βηµάτων

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός

Διαβάστε περισσότερα

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος

Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Προσδιορισµός της φασµατικής ισχύος ενός σήµατος Το φάσµα ενός χρονικά εξαρτώµενου σήµατος µας πληροφορεί πόσο σήµα έχουµε σε µία δεδοµένη συχνότητα. Έστω µία συνάρτηση µίας µεταβλητής, τότε από το θεώρηµα

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ. Παύλος Αντωνίου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ. Παύλος Αντωνίου ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ Παύλος Αντωνίου Με μια ματιά: Εισαγωγή στη Βιολογία Ευθυγράμμιση Ακολουθιών Αναζήτηση ομοίων ακολουθιών από βάσεις δεδομενων Φυλογενετική πρόβλεψη Πρόβλεψη

Διαβάστε περισσότερα

Θα συµπληρώσετε τα απαραίτητα στοιχεία που βρίσκονται µε έντονα γράµµατα για να δηµιουργήσετε την νέα εταιρεία.

Θα συµπληρώσετε τα απαραίτητα στοιχεία που βρίσκονται µε έντονα γράµµατα για να δηµιουργήσετε την νέα εταιρεία. Αρχίστε αµέσως το πρόγραµµα xline Γενική Λογιστική. Βήµα 1 ο ηµιουργία Εταιρείας Από την Οργάνωση\Γενικές Παράµετροι\ ιαχείριση εταιρειών θα δηµιουργήσετε την νέα σας εταιρεία, επιλέγοντας µέσω των βηµάτων

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ

ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ΕΝΟΤΗΤΑ 5 ΥΝΑΜΙΚΑ ΛΕΞΙΚΑ ΙΣΟΖΥΓΙΣΜΕΝΑ ΕΝ ΡΑ ενδρικές οµές για Υλοποίηση υναµικών Λεξικών υναµικά λεξικά λειτουργίες LookUp( ), Insert( ) και Delete( ) Αναζητούµε δένδρα για την αποτελεσµατική υλοποίηση

Διαβάστε περισσότερα

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λεξικό, Union Find. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Λεξικό, Union Find ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαχείριση ιαμερίσεων Συνόλου Στοιχεία

Διαβάστε περισσότερα

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1

Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Δυναμικά Πολυεπίπεδα Ευρετήρια (Β-δένδρα) Μ.Χατζόπουλος 1 Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ.Χατζόπουλος 2 Δένδρο αναζήτησης είναι ένας ειδικός τύπος δένδρου που χρησιμοποιείται για να καθοδηγήσει την αναζήτηση μιας

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Καµπύλες Bézier και Geogebra

Καµπύλες Bézier και Geogebra Καµπύλες Bézier και Geogebra Κόλλιας Σταύρος Ένα από τα προβλήµατα στη σχεδίαση δυσδιάστατων εικόνων στα προγράµµατα γραφικών των υπολογιστών είναι η δηµιουργία οµαλών καµπυλών. Η λύση στο πρόβληµα αυτό

Διαβάστε περισσότερα

Εξισώσεις 2 ου βαθμού

Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Εξισώσεις 2 ου βαθμού Η εξίσωση της μορφής αχ 2 + βχ + γ = 0, α 0 λύνεται σύμφωνα με τον παρακάτω πίνακα. Δ = β 2 4αγ Η εξίσωση αχ 2 + βχ + γ = 0, α 0 αν Δ>0 αν Δ=0 αν Δ

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσα χωρίς

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής

Ελληνικό Ανοικτό Πανεπιστήµιο. Η Ανάλυση και ο Σχεδιασµός στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής 1 Ελληνικό Ανοικτό Πανεπιστήµιο Η και ο στην Ενοποιηµένη ιαδικασία ρ. Πάνος Φιτσιλής Περιεχόµενα Γενικές αρχές ανάλυσης και σχεδιασµού Τα βήµατα της ανάλυσης και του σχεδιασµού Συµπεράσµατα 2 3 Η ανάλυση

Διαβάστε περισσότερα

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD

7ο ΕΡΓΑΣΤΗΡΙΟ AAAABBBBAAAAABBBBBBCCCCCCCCCCCCCCBBABAAAABBBBBBCCCCD ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 1 Συμπίεση

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

ΟΜΑΔΑ Λ. Αναστασίου Κωνσταντίνος Δεληγιάννη Ισαβέλλα Ζωγοπούλου Άννα Κουκάκης Γιώργος Σταθάκη Αρετιάννα

ΟΜΑΔΑ Λ. Αναστασίου Κωνσταντίνος Δεληγιάννη Ισαβέλλα Ζωγοπούλου Άννα Κουκάκης Γιώργος Σταθάκη Αρετιάννα ΟΜΑΔΑ Λ Αναστασίου Κωνσταντίνος Δεληγιάννη Ισαβέλλα Ζωγοπούλου Άννα Κουκάκης Γιώργος Σταθάκη Αρετιάννα ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Τι είναι η βιοπληροφορική; Αποκαλείται ο επιστημονικός κλάδος ο οποίος προέκυψε από

Διαβάστε περισσότερα

1ο. Η αριθµητική του υπολογιστή

1ο. Η αριθµητική του υπολογιστή 1ο. Η αριθµητική του υπολογιστή 1.1 Τί είναι Αριθµητική Ανάλυση Υπάρχουν πολλά προβλήµατα στη µαθηµατική επιστήµη για τα οποία δεν υπάρχουν αναλυτικές εκφράσεις λύσεων. Στις περιπτώσεις αυτές έχουν αναπτυχθεί

Διαβάστε περισσότερα

Βιοπληροφορική Ι. Παντελής Μπάγκος. Παν/µιο Στερεάς Ελλάδας

Βιοπληροφορική Ι. Παντελής Μπάγκος. Παν/µιο Στερεάς Ελλάδας Βιοπληροφορική Ι Παντελής Μπάγκος Παν/µιο Στερεάς Ελλάδας Λαµία 2006 1 Βιοπληροφορική Ι Εισαγωγή: Ορισµός της Βιοπληροφορικής, Υποδιαιρέσεις της Βιοπληροφορικής, Τα είδη των δεδοµένων στη Βιοπληροφορική.

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Το Ηλεκτρονικό Ταχυδροµείο (e-mail) είναι ένα σύστηµα που δίνει την δυνατότητα στον χρήστη να ανταλλάξει µηνύµατα αλλά και αρχεία µε κάποιον άλλο

Το Ηλεκτρονικό Ταχυδροµείο (e-mail) είναι ένα σύστηµα που δίνει την δυνατότητα στον χρήστη να ανταλλάξει µηνύµατα αλλά και αρχεία µε κάποιον άλλο Το Ηλεκτρονικό Ταχυδροµείο (e-mail) είναι ένα σύστηµα που δίνει την δυνατότητα στον χρήστη να ανταλλάξει µηνύµατα αλλά και αρχεία µε κάποιον άλλο χρήστη µέσω υπολογιστή άνετα γρήγορα και φτηνά. Για να

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #2: Πολυωνυμικοί Αλγόριθμοι, Εισαγωγή στα Γραφήματα, Αναζήτηση κατά Βάθος, Τοπολογική Ταξινόμηση

Διαβάστε περισσότερα

(GNU-Linux, FreeBSD, MacOsX, QNX

(GNU-Linux, FreeBSD, MacOsX, QNX 1.7 διαταξεις (σελ. 17) Παράδειγµα 1 Θα πρέπει να κάνουµε σαφές ότι η επιλογή των λέξεων «προηγείται» και «έπεται» δεν έγινε απλώς για λόγους αφαίρεσης. Μπορούµε δηλαδή να ϐρούµε διάφορα παραδείγµατα στα

Διαβάστε περισσότερα

ΥΠ.ΕΣ. -.Μ.Η.Ε.Σ. ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΕΦΑΡΜΟΓΗΣ ΛΗΞΙΑΡΧΕΙΟΥ

ΥΠ.ΕΣ. -.Μ.Η.Ε.Σ. ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΕΦΑΡΜΟΓΗΣ ΛΗΞΙΑΡΧΕΙΟΥ ΥΠ.ΕΣ. -.Μ.Η.Ε.Σ. ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΕΦΑΡΜΟΓΗΣ ΛΗΞΙΑΡΧΕΙΟΥ V 1.3 εκέµβριος 2012 Πίνακας Περιεχοµένων 1. Εισαγωγή.. σελ. 3 2. Σύνδεση για πρώτη φορά µε την εφαρµογή 4 3. Είσοδος στην εφαρµογή 9 4. Αναζήτηση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΗΛΕΚΤΡΟΝΙΚΑ ΙΙ ΧΑΤΖΟΠΟΥΛΟΣ ΑΡΓΥΡΗΣ ΚΟΖΑΝΗ 2005 ΕΙΣΑΓΩΓΗ ΣΥΜΒΟΛΙΣΜΟΙ Για τον καλύτερο προσδιορισµό των µεγεθών που χρησιµοποιούµε στις εξισώσεις, χρησιµοποιούµε τους παρακάτω συµβολισµούς

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ & ΣΤΟΙΧΕΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ Περίγραµµα Εισαγωγή Στοιχεία Πολυπλοκότητας Ηλίας Κ. Σάββας Επίκουρος Καθηγητής Τμήμα: Τεχνολογίας Πληροφορικής & Τηλεπικοινωνιών Email: savvas@teilar teilar.gr Αλγόριθµοι

Διαβάστε περισσότερα

Περιεχόµενα...2 Βασικές Λειτουργίες...4 ηµιουργία και Αποθήκευση εγγράφων...4 Μετακίνηση µέσα στο έγγραφο...4 Επιλογή κειµένου...

Περιεχόµενα...2 Βασικές Λειτουργίες...4 ηµιουργία και Αποθήκευση εγγράφων...4 Μετακίνηση µέσα στο έγγραφο...4 Επιλογή κειµένου... EΝΟΤΗΤΑ 2 Η : ΕΠΕΞΕΡΓΑΣΙΑ ΚΕΙΜΕΝΟΥ WORD 2000 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόµενα...2 Βασικές Λειτουργίες...4 ηµιουργία και Αποθήκευση εγγράφων...4 Μετακίνηση µέσα στο έγγραφο...4 Επιλογή κειµένου...4 Αναίρεση και

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

2: 1.2 (login) 3: ATKOSOFT

2: 1.2 (login) 3: ATKOSOFT οµηµένο Σύστηµα Λογισµικού για ιαχείριση Ιατρικών Πληροφοριών ΠΕΡΙΕΧΟΜΕΝΑ 1 Βασικές Λειτουργίες της Εφαρµογής... 3 1.1 Επιφάνεια εργασίας εφαρµογής... 3 1.2 Εισαγωγή στο σύστηµα (login)... 4 1.3 Αλλαγή

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61

Διαβάστε περισσότερα

ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22 ΜΑΪΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ

ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22 ΜΑΪΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Β Α2. Γ Α3. Α Α4. Α5. Γ ΘΕΜΑ Β ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 22 ΜΑΪΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ B1. Α (Σωµατικά κύτταρα στην αρχή της µεσόφασης): 1, 4, 5, 6 Β (Γαµέτες): 2, 3, 7, 8 Β2. (Κάθε

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων &

η αποδοτική κατανοµή των πόρων αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα Οικονοµία των µεταφορών Η ανεπάρκεια των πόρων & 5 η αποδοτική κατανοµή των πόρων Οικονοµική αποδοτικότητα: Η αποτελεί θεµελιώδες πρόβληµα σε κάθε σύγχρονη οικονοµία. Το πρόβληµα της αποδοτικής κατανοµής των πόρων µπορεί να εκφρασθεί µε 4 βασικά ερωτήµατα

Διαβάστε περισσότερα

«Μηχανή Αναζήτησης Αρχείων» Ημερομηνία Παράδοσης: 30/04/2015, 09:00 π.μ.

«Μηχανή Αναζήτησης Αρχείων» Ημερομηνία Παράδοσης: 30/04/2015, 09:00 π.μ. ΕΡΓΑΣΙΑ 4 «Μηχανή Αναζήτησης Αρχείων» Ημερομηνία Παράδοσης: 30/04/2015, 09:00 π.μ. Στόχος Στόχος της Εργασίας 4 είναι να η εξοικείωση με την αντικειμενοστρέφεια (object oriented programming). Πιο συγκεκριμένα,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ Με το σχεδιασµό επιφάνειας (Custom επιφάνεια) µπορούµε να σχεδιάσουµε επιφάνειες και αντικείµενα που δεν υπάρχουν στους καταλόγους του 1992. Τι µπορούµε να κάνουµε µε το σχεδιασµό

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 21: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 2009 2010 Γραπτή Εργασία #3 Παράδοση: 28 Μαρτίου 2010 Άσκηση 1 (15 µονάδες) Ένας επεξεργαστής υποστηρίζει τόσο

Διαβάστε περισσότερα

Chapter 7, 8 : Completeness

Chapter 7, 8 : Completeness CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 21 Οκτωβρίου 2009 ΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ Η ανάγκη εισαγωγής της δεσµευµένης πιθανότητας αναφύεται στις περιπτώσεις όπου µία µερική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η

ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ0 Ε ρ γ α σ ί α η Ε ρ ω τ ή µ α τ α Ερώτηµα 1. (1) Να διατυπώστε αλγόριθµο που θα υπολογίζει το ν-οστό όρο της ακολουθίας a ν : ν = 1,,3,..., όπου a 1 = 1, a

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

Packet Tracer. ηµιουργία τοπολογίας Βήµα 1: Εκτελούµε το Packet Tracer

Packet Tracer. ηµιουργία τοπολογίας Βήµα 1: Εκτελούµε το Packet Tracer Packet Tracer Το Packet Tracer είναι ένα πρόγραµµα που προσοµοιώνει τη λειτουργία ενός δικτύου και των πρωτοκόλλων µε τα οποία λειτουργεί. Αναπτύχθηκε από τον Dennis Frezzo και την οµάδα του στη Cisco

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

Οδηγίες. για την υπηρεσία. Antispamming. (στα windows XP) Περιεχόµενα

Οδηγίες. για την υπηρεσία. Antispamming. (στα windows XP) Περιεχόµενα Οδηγίες για την υπηρεσία Antispamming (στα windows XP) Περιεχόµενα Ενεργοποίηση της υπηρεσίας (µέσω Internet Explorer)... σελ. 2 ηµιουργία φακέλου για spam στο Outlook Express... σελ. 5 ηµιουργία Κανόνα

Διαβάστε περισσότερα

Οδοραµα mobile ΑΠΟΘΗΚΗ

Οδοραµα mobile ΑΠΟΘΗΚΗ Οδοραµα mobile ΑΠΟΘΗΚΗ Όπως βλέπετε, η αρχική οθόνη της εφαρµογής διαθέτει 9 κουµπιά τα οποία σας επιτρέπουν να πλοηγηθείτε σε αυτό. Αρχίζοντας από πάνω αριστερά βλέπετε τα εξής: 1. Τιµολόγηση: Προβολή

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ

ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΜΑΘΗΜΑ 5 Ο ΠΟΣΟΤΙΚΕΣ ΜΕΘΟ ΟΙ ΣΤΗΝ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (εργαστήριο) ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013-ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΕΡΙΒΑΛΛΟΥΣΑΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ(DEA) Η ανάλυση DEA είναι πολύ ισχυρή και ιδιαίτερα διαδεδοµένη µέθοδο,

Διαβάστε περισσότερα

Outlook Express-User Instructions.doc 1

Outlook Express-User Instructions.doc 1 Οδηγίες προς τους υπαλλήλους του ήµου Θεσσαλονίκης για την διαχείριση της ηλεκτρονικής τους αλληλογραφίας µε το Outlook Express (Ver 1.0 22-3-2011) (Για οποιοδήποτε πρόβληµα ή απορία επικοινωνήστε µε τον

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΒΑΙΚΕ ΕΝΝΟΙΕ ΑΓΟΡΙΘΜΩΝ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΩΤΟΥ ΑΘΟΥ 1. ηµειώστε το γράµµα αν η πρόταση είναι σωστή και το γράµµα αν είναι λάθος. 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου

Διαβάστε περισσότερα

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα.

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα. Η ανάλυση ευαισθησίας και η δυϊκότητα είναι σηµαντικά τµήµατα της θεωρίας του γραµµικού προγραµµατισµού και εν γένει του µαθηµατικού προγραµµατισµού, αφού αφορούν την ανάλυση των προτύπων και την εξαγωγή

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ

ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ42 - ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΛΟΓΙΣΜΙΚΟΥ 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΑΪΚΟΥ ΕΤΟΥΣ 2009-2010 2 oς Τόµος ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ ΕΡΓΑΣΙΑ 2 i. υναµική τεχνική επικύρωσης:

Διαβάστε περισσότερα

η σύνθεση ενός υπολογιστή

η σύνθεση ενός υπολογιστή ιδακτικό υλικό µαθητή η σύνθεση ενός υπολογιστή Αν παρατηρήσουµε έναν υπολογιστή βλέπουµε ότι αποτελείται από τα ακόλουθα µέρη: Οθόνη Μονάδα συστήµατος Ποντίκι Πληκτρολόγιο τη µονάδα συστήµατος, όπου βρίσκονται

Διαβάστε περισσότερα

ΛΥΣΗ ΑΣΚΗΣΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΛΥΣΗ ΑΣΚΗΣΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΣΗ ΑΣΚΗΣΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ α) Αφού τα σωµατικά κύτταρα της γάτας έχουν 19 ζεύγη οµολόγων χρωµοσωµάτων, άρα περιέχουν 38 απλοειδή χρωµοσώµατα στην αρχή της Μεσόφασης (G 1 -φάση), πριν

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ).

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ). 7. Εισαγωγή στο διπολικό τρανζίστορ-ι.σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 7. TΟ ΙΠΟΛΙΚΟ ΤΡΑΝΖΙΣΤΟΡ Ανάλογα µε το υλικό διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και 2. τρανζίστορ πυριτίου

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α.

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α. ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΘΕΜΑ 1 Α. 1. Αν το Α έχει την τιµή 10 και το Β την τιµή 20 τότε η έκφραση (Α > 8 ΚΑΙ Β < 20) Ή (Α > 10 Ή Β = 10) είναι αληθής 2. Σε περίπτωση εµφωλευµένων βρόχων, ο εσωτερικός

Διαβάστε περισσότερα

Οι περιπτώσεις χρήσης

Οι περιπτώσεις χρήσης 1 Ελληνικό Ανοικτό Πανεπιστήµιο Οι περιπτώσεις χρήσης ρ. Πάνος Φιτσιλής 2 Περιεχόµενα Το µοντέλο των περιπτώσεων χρήσης Τα διαγράµµατα των περιπτώσεων χρήσης Λεκτική περιγραφή των περιπτώσεων χρήσης Τρόπος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΤΕΤΑΡΤΟ Insert, Update, Delete, Ένωση πινάκων Γιώργος Μαρκοµανώλης Περιεχόµενα Group By... 1 Having...1 Οrder By... 2 Εντολή Insert...

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία ΚΕΦΑΛΑΙΟ 4 ΠΙΝΑΚΕΣ ΠΟΛΛΑΠΛΩΝ ΚΙΝ ΥΝΩΝ (MULTIPLE DECREMENT TABLES) Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία αρχίζοντας από µια οµάδα γεννήσεων ζώντων που αποτελεί την ρίζα του πίνακα

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

internet είναι το δίκτυο των υπολογιστών που είναι συνδεδεµένοι µεταξύ τους.

internet είναι το δίκτυο των υπολογιστών που είναι συνδεδεµένοι µεταξύ τους. Πριν ξεκινήσουµε την περιγραφή του προγράµµατος καλό θα ήταν να αναφερθούµε στον ορισµό κάποιων εννοιών για τις οποίες θα γίνεται λόγος στο κεφάλαιο αυτό. Πρώτα από όλα πρέπει να καταλάβουµε την διαφορά

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο. Η ιαχείριση Απαιτήσεων στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής

Ελληνικό Ανοικτό Πανεπιστήµιο. Η ιαχείριση Απαιτήσεων στην Ενοποιηµένη ιαδικασία. ρ. Πάνος Φιτσιλής 1 Ελληνικό Ανοικτό Πανεπιστήµιο Η ιαχείριση Απαιτήσεων στην Ενοποιηµένη ιαδικασία ρ. Πάνος Φιτσιλής Περιεχόµενα Τι είναι διαχείριση απαιτήσεων Ποια είναι η ροή των εργασιών στη φάση της καταγραφής των

Διαβάστε περισσότερα