EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS"

Transcript

1 EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS. ) Clul os posiles vlores de,, pr que triz A verifique relión (A I), sendo I triz identidde de orde e triz nul de orde. ) Cl é soluión dun siste hooéneo de dús euións on dús inógnits, se triz de oefiientes é unh triz A verifindo relión (A I)?. ) Disute, segundo os vlores de, o siste ) Resólveo, se é posile, pr. y z y z. y z. ) Disute, segundo os vlores de, o siste de euións ) Resolve, se é posile, o siste ndo. y z y. y z 4. ) Disute, segundo os vlores do práetro, o seguinte siste de euións lineis: y z 9 y z y 5z ) Resolve, se é posile, o siste nterior pr o so ) Disute, segundo os vlores de, o siste ) Resólveo, se é posile, pr. y ( )z ( )y z. y 6. ) Disute, segundo os vlores do práetro, o seguinte siste de euións lineis: y z y z y z ) Resolve, se é posile, o siste nterior pr o so. 7. Cndo un siste de euións lineis se di hooéneo? Pode ser inoptile un siste de euións lineis hooéneo? Xustifi respost.

2 8. Dd triz A : ) Clul, segundo os vlores de, o rngo de A. ) Coinide A o sú invers pr lgún vlor de? Pr, lul A 6. ) Se e A é triz de oefiientes dun siste de tres euións lineis on tres inógnits, pódese firr que o siste ten soluión úni? Xustifi respost. 9. Dd triz A : ) Estud, segundo os vlores de, o rngo d triz A. ) Resolve, se é posile, o siste A z y pr o vlor.. Ddo o siste 4 z y 5 z y : ) Clul o vlor de α pr que o engdirlle euión α + y + z 9, resulte un siste optile indeterindo. Resólveo, se é posile, pr α. ) Eiste lgún vlor de α pr o l o siste on ests tres euións non ten soluión?

3 EXERCICIOS DE REFORZO: SISTEMAS DE ECUACIÓNS LINEAIS (SOLUCIONARIO). ) Clul os posiles vlores de,, pr que triz A verifique relión (A I), sendo I triz identidde de orde e triz nul de orde. ) Cl é soluión dun siste hooéneo de dús euións on dús inógnits, se triz de oefiientes é unh triz A verifindo relión (A I)? ) A I (A I) Polo tnto: (A I) ) Tendo en ont o prtdo nterior, triz de oefiientes do siste hooéneo serí A e polo tnto teríse: rng(a) n.º de inógnits Siste optile deterindo. Soluión úni. Coo trivil sepre é soluión dun siste hooéneo, onlúese que soluión é y.. ) Disute, segundo os vlores de, o siste z y z y z y. ) Resólveo, se é posile, pr. ) Fórse triz dos oefiientes e plid: A A. Coo urt olun d triz plid oinide o segund olun, pódese presindir d urt olun pr o álulo do rngo de A e polo tnto rngo(a) rngo( A ). Cálulo do rngo de A: rngo(a)

4 + 6; + 6 ou Disusión:, rngo(a) rngo( A ) < n.º de inógnits Siste optile indeterindo., rngo(a) rngo( A ) < n.º de inógnits Siste optile indeterindo. {, }, rngo(a) rngo( A ) n.º de inógnits Siste optile deterindo. ) Pr, é un siste optile indeterindo on infinits soluións. O siste ddo é equivlente o siste: y z y z 5z y z y z y 4z As infinits soluións son: 5λ y 4λ, λ R z λ. ) Disute, segundo os vlores de, o siste de euións ) Resolve, se é posile, o siste ndo. y z y. y z ) Fórse triz dos oefiientes e plid: A A Cálulo do rngo de A: rngo(a). Polo tnto, rngo(a). Cálulo do rngo de A : 4 rngo(a) se e rngo(a), se. Disusión:, rngo(a) rngo( A ) < n.º de inógnits Siste optile indeterindo., rngo(a) rngo( A ) Siste inoptile. 4

5 ) Pr, é un siste optile indeterindo on infinits soluións. O siste ddo é equivlente o siste: y z z y y z As infinits soluións son: λ y λ, λ R z λ 4. ) Disute, segundo os vlores do práetro, o seguinte siste de euións lineis: y z 9 y z y 5z ) Resolve, se é posile, o siste nterior pr o so 9. ) Fórse triz dos oefiientes e plid: A A Cálulo do rngo de A: 7 rngo(a) Polo tnto, se 9, entón rngo(a) e se 9, entón rngo(a) Clúlse o rngo de A pr 9 (nos deis sos, o rngo é pois sepre rngo( A ) rngo (A) e A ten fils). Pero pr 9, todos os eleentos d urt olun de A son, polo que se pode presindir del efetos do rngo e sí, neste so, tense que rngo( A ) rngo(a). Entón: 9 rngo( A ) 9 rngo( A ) Disusión: 9 rngo(a) rngo( A ) < n.º de inógnits Siste optile indeterindo. Infinits soluións. 9 rngo(a) rngo( A ) n.º de inógnits Siste optile deterindo. Soluión úni. ) 9 Tendo en ont o prtdo nterior, estse no so dun siste optile indeterindo. O siste é equivlente : 5

6 y z y z 9 y 6z 9 y z 9 z y As infinits soluións son: λ y λ, λ R z 5. ) Disute, segundo os vlores de, o siste ) Resólveo, se é posile, pr. y ( )z ( )y z. y ) Fórse triz dos oefiientes e plid: A A Cálulo do rngo de A: rngo(a) + ; + ou. Polo tnto: Se ou, entón rngo(a). Se {, }, entón rngo(a). Cálulo do rngo de A : Se {, }, entón rngo( A ) (sepre rngo( A ) > rngo(a)). Se : Se : rngo( A ). rngo( A ). Disusión: ou rngo(a) < rngo( A ) Siste inoptile. {, } rngo(a) rngo( A ) n.º de inógnits Siste optile deterindo. ) Pr, estse no so dun siste optile deterindo e polo tnto ten soluión úni. Clúlse soluión utilizndo regr de Crer: 6

7 7, y, z 6 Soluión:, y, z. 6. ) Disute, segundo os vlores do práetro, o seguinte siste de euións lineis: z y z y z y ) Resolve, se é posile, o siste nterior pr o so. ) Fórse triz dos oefiientes e plid: A A. Cálulo do rngo de A: rngo(a) + + ; + + ou Polo tnto: Se ou, entón rngo(a). Se e, entón rngo(a). Clúlse o rngo de A pr e pr (nos deis sos, o rngo é pois sepre rngo( A ) rngo (A) e A ten fils). Se : Se :

8 Entón: rngo( A ) rngo( A ) Disusión: rngo(a) rngo( A ) Siste inoptile. Non ten soluión. rngo(a) rngo( A ) < n.º de inógnits Siste optile indeterindo. Infinits soluións. e rngo(a) rngo( A ) n.º de inógnits Siste optile deterindo. Soluión úni. ) Tendo en ont o prtdo nterior, estse no so dun siste optile indeterindo. O siste é equivlente : y z z y z y As infinits soluións son: λ y ; λ R z λ 7. Cndo un siste de euións lineis se di hooéneo? Pode ser inoptile un siste de euións lineis hooéneo? Xustifi respost. Un siste de euións lineis dise hooéneo ndo os teros independentes son todos ero. Polo tnto, nun siste linel hooéneo sepre o rngo d triz de oefiientes oinide o rngo d triz plid, que o ser os teros independentes nulos olun que se engde non inflúe efetos do álulo do rngo. Polo tnto un siste de euións lineis hooéneo é sepre optile. 8. Dd triz A : ) Clul, segundo os vlores de, o rngo de A. ) Coinide A o sú invers pr lgún vlor de? Pr, lul A 6. ) Se e A é triz de oefiientes dun siste de tres euións lineis on tres inógnits, pódese firr que o siste ten soluión úni? Xustifi respost. ) rngo(a) + ; + ± Polo tnto: Se ±, entón rngo(a). Se ±, entón rngo(a). 8

9 9 ) A A A I A Polo tnto: A A Se, áse de oter que A I, entón A 6 (A ) I I. ) Viuse no prtdo ) que se, entón rngo(a). Coo o rngo d triz plid é ior ou igul que o rngo d triz de oefiientes e tpouo pode ser ior que, pois ten fils, estse nun so de rngo(a) rngo( A ) n.º de inógnits. Polo tnto, é un siste optile deterindo on soluión úni. 9. Dd triz A : ) Estud, segundo os vlores de, o rngo d triz A. ) Resolve, se é posile, o siste A z y pr o vlor. ) A ( + ) Clúlse, por Ruffini, s ríes de + : ± Polo tnto: A (ríz dore) Se : rngo(a) Se : rngo(a) Se : rngo(a) Se rngo(a) (s tres fils son iguis e hi un eleento non nulo).

10 Resuindo: Rngo(A), se,,. Rngo(A), se ou. Rngo(A), se. ) Neste so o siste é equivlente : + y + z. Coo rngo(a) rngo( A ) < n.º de inógnits, é un siste optile indeterindo. As infinits soluións son: λ μ y λ ; λ, μ R z μ y z 5. Ddo o siste : y z 4 ) Clul o vlor de α pr que o engdirlle euión α + y + z 9, resulte un siste optile indeterindo. Resólveo, se é posile, pr α. ) Eiste lgún vlor de α pr o l o siste on ests tres euións non ten soluión? ) Fórse triz dos oefiientes e plid: A A Cálulo do rngo de A: rngo(a) α Polo tnto: Se α, entón rngo(a). Se α, entón rngo(a). Coo sepre rngo( A ) rngo (A) e o siste será optile indeterindo ndo rngo(a) rngo( A ), lúlse rngo( A ) ndo α : 5 4 rngo( A ), se α. 9 Polo tnto, o siste é optile indeterindo ndo α. Cndo α, un siste equivlente é: y 5 z 5z y 4 z y 9 z As infinits soluións son: 5λ y 9 λ ; λ R z λ

11 ) Do prtdo nterior dedúese que: α rngo(a) rngo( A ) < n.º de inógnits Siste optile indeterindo. Infinits soluións. α rngo(a) rngo( A ) n.º de inógnits Siste optile deterindo. Soluión úni. Polo tnto, o siste sepre ten soluión.

EXERCICIOS DE REFORZO: DETERMINANTES., calcula a matriz X que verifica A X = A 1 B, sendo B =

EXERCICIOS DE REFORZO: DETERMINANTES., calcula a matriz X que verifica A X = A 1 B, sendo B = EXERCICIOS DE REORZO: DETERMINANTES Pr A, lul riz X que verifi AX A B, sendo B ) Define enor opleenrio e duno dun eleeno nunh riz drd ) Dd riz A : i Clul o rngo, segundo os vlores de λ, de A λi, sendo

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS. 2. Dada a ecuación lineal 2x 3y + 4z = 2, comproba que as ternas (3, 2, 2

EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS. 2. Dada a ecuación lineal 2x 3y + 4z = 2, comproba que as ternas (3, 2, 2 EXERCICIOS AUTOAVALIABLES: SISTEMAS DE ECUACIÓNS LINEAIS Dds s ecucións seguintes indic s que son lineis: ) + + b) + u c) + d) + Dd ecución linel + comprob que s terns ( ) e ( ) son lgunhs ds sús solucións

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: RECTAS E PLANOS

EXERCICIOS DE REFORZO: RECTAS E PLANOS EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =

Διαβάστε περισσότερα

MATRICES. 1º- Dadas as matrices: Calcula: 2º- Sexan as matrices: . Existe unha matriz A que verifique. 3º- Atopa unha matriz X tal que C.

MATRICES. 1º- Dadas as matrices: Calcula: 2º- Sexan as matrices: . Existe unha matriz A que verifique. 3º- Atopa unha matriz X tal que C. Eriios d ris rlos dl Río Váqu Rfl Vidl Mijón MTRIES º- Dds s ris: 8 9, lul:,,,,, º- Sn s ris: Eis unh ri qu vrifiqu? º- op unh ri X l qu X, sndo: ) ) º- Rsolv o sis riil: Y X Y X sndo: º- opro o vlor dos

Διαβάστε περισσότερα

Determinantes. 1. Introdución. 2. Determinantes de orde dúas. 1. Introdución 2. Determinantes de orde dúas. 3.3 Determinantes de orde tres

Determinantes. 1. Introdución. 2. Determinantes de orde dúas. 1. Introdución 2. Determinantes de orde dúas. 3.3 Determinantes de orde tres Determnntes. Introducón. Determnntes de orde dús. Determnntes de orde tres. Menor complementro dun elemento. dxunto dun elemento. Determnntes de orde tres. Propeddes dos determnntes de orde tres. Rngo

Διαβάστε περισσότερα

Introdución ao cálculo vectorial

Introdución ao cálculo vectorial Intoducón o cálculo ectol 1 Intoducón o cálculo ectol 1. MAGNITUDES ESCALARES E VECTORIAIS. Mgntude físc é todo qulo que se pode med. Mgntudes escles son quels que están detemnds po un lo numéco epesdo

Διαβάστε περισσότερα

Tema 3. Espazos métricos. Topoloxía Xeral,

Tema 3. Espazos métricos. Topoloxía Xeral, Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O? EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

MATEMÁTICAS I. Exercicio nº 1.- a) Clasifica os seguintes números segundo sexan naturais, enteiros, racionais ou reais: 3

MATEMÁTICAS I. Exercicio nº 1.- a) Clasifica os seguintes números segundo sexan naturais, enteiros, racionais ou reais: 3 MATEMÁTICAS I Eercicio nº.- ) Clsific os seguintes números segundo sen nturis, enteiros, rcionis ou reis: 5, 7,5 8 8 7 Indic se s seguintes firmcións son verddeirs ou flss, rzondo respost: Todos os números

Διαβάστε περισσότερα

Procedementos operatorios de unións non soldadas

Procedementos operatorios de unións non soldadas Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice

Διαβάστε περισσότερα

Números reais. Obxectivos. Antes de empezar. 1. Os números reais... páx. 4 Números irracionais. Números reais

Números reais. Obxectivos. Antes de empezar. 1. Os números reais... páx. 4 Números irracionais. Números reais Números reis Oectivos Nest quincen prenderás : Clsificr os números reis en rcionis e irrcionis. Aproimr números reis por truncmento e redondeo. Representr grficmente números reis. Comprr números reis.

Διαβάστε περισσότερα

Matrices. Chámase matriz de orde m x n a unha disposición en táboa rectangular de m x n números reais dispostos en m filas e n columnas

Matrices. Chámase matriz de orde m x n a unha disposición en táboa rectangular de m x n números reais dispostos en m filas e n columnas . Introdución. Mtrices: definición. Tipos de Mtrices. Opercións cos mtrices. Sum de mtrices. Diferenz de mtrices Mtrices. Produto dun número por unh mtriz. Produto de mtrices. Produto de mtrices cdrds.

Διαβάστε περισσότερα

ln x, d) y = (3x 5 5x 2 + 7) 8 x

ln x, d) y = (3x 5 5x 2 + 7) 8 x EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Puntuación máima dos eercicios de cada opción: eercicio 1= 3 puntos, eercicio = 3 puntos, eercicio

Διαβάστε περισσότερα

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo. XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que

Διαβάστε περισσότερα

5.1. Relaciones elementales. Dado el triángulo ABC, que se muestra en la figura

5.1. Relaciones elementales. Dado el triángulo ABC, que se muestra en la figura Cpítulo 5 Triángulos Hemos trbjdo on el triángulo retángulo en generl hor estudiremos un triángulo ulquier y sus reliones más importntes. 5.1. Reliones elementles Ddo el triángulo ABC, que se muestr en

Διαβάστε περισσότερα

TEMA 1: FUNCIÓNS. LÍMITES E CONTINUIDADE

TEMA 1: FUNCIÓNS. LÍMITES E CONTINUIDADE TEMA 1: FUNCIÓNS. LÍMITES E CONTINUIDADE Conceptos preliminres Unh función é unh relción entre dús mgnitudes, de tl mneir que cd vlor d primeir lle sign un único vlor d segund. Se A e B son dous conuntos,

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Páin 03 REFLEXION E RESOLVE Prolem Pr lulr ltur dun árore, podemos seguir o proedemento que utilizou Tles de Mileto pr lulr ltur dun pirámide de Eipto: omprr sú somr o dun vr vertil

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

Problemas resueltos del teorema de Bolzano

Problemas resueltos del teorema de Bolzano Problemas resueltos del teorema de Bolzano 1 S e a la fun ción: S e puede af irm a r que f (x) está acotada en el interva lo [1, 4 ]? P or no se r c ont i nua f (x ) e n x = 1, la f unció n no e s c ont

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson 1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes

Διαβάστε περισσότερα

Ονομαστική Γενική Αιτιατική Κλητική Αρσ. γλ υκοί γλ υκών γλ υκούς γλ υκοί Θηλ. γλ υκές γλ υκών γλ υκές γλ υκές Ουδ. γλ υκά γλ υκών γλ υκά γλ υκά

Ονομαστική Γενική Αιτιατική Κλητική Αρσ. γλ υκοί γλ υκών γλ υκούς γλ υκοί Θηλ. γλ υκές γλ υκών γλ υκές γλ υκές Ουδ. γλ υκά γλ υκών γλ υκά γλ υκά Επίθετα και Μετοχές Nic o las Pe lic ioni de OLI V EI RA 1 Apresentação Modelo de declinação de adjetivos e particípios (επίθετα και μετοχές, em grego) apresentado pela universidade Thessaloniki. Só é

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Académico Introducción

Académico Introducción - Σε αυτήν την εργασία/διατριβή θα αναλύσω/εξετάσω/διερευνήσω/αξιολογήσω... general para un ensayo/tesis Για να απαντήσουμε αυτή την ερώτηση, θα επικεντρωθούμε πρώτα... Para introducir un área específica

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 1 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) Opción 1. Dada a matriz a) Calcula os valores do parámetro m para os

Διαβάστε περισσότερα

Resistencia de Materiais. Tema 5. Relacións entre tensións e deformacións

Resistencia de Materiais. Tema 5. Relacións entre tensións e deformacións Resistencia de Materiais. Tema 5. Relacións entre tensións e deformacións ARTURO NORBERTO FONTÁN PÉREZ Fotografía. Ponte Coalbrookdale (Gran Bretaña, 779). Van principal: 30.5 m. Contido. Tema 5. Relacións

Διαβάστε περισσότερα

I. MATRICES. 1.- Matriz de orden mxn. Igualdade de matrices. 2.- Tipos de matrices

I. MATRICES. 1.- Matriz de orden mxn. Igualdade de matrices. 2.- Tipos de matrices I. TRICES.- riz de orde mx. Iguldde de mrices U coxuo de m. elemeos du corpo K (e xerl úmeros reis, elemeos do corpo R) disposos e m fils e colums, chámse mriz de dimesiós m. ou mriz do ipo (m, ) O ermo

Διαβάστε περισσότερα

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS

TEMA 6.- BIOMOLÉCULAS ORGÁNICAS IV: ÁCIDOS NUCLEICOS TEMA 6.- BIMLÉCULAS RGÁNICAS IV: ÁCIDS NUCLEICS A.- Características generales de los Ácidos Nucleicos B.- Nucleótidos y derivados nucleotídicos El esqueleto covalente de los ácidos nucleicos: el enlace

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

NÚMEROS COMPLEXOS. Páxina 147 REFLEXIONA E RESOLVE. Extraer fóra da raíz. Potencias de. Como se manexa k 1? Saca fóra da raíz:

NÚMEROS COMPLEXOS. Páxina 147 REFLEXIONA E RESOLVE. Extraer fóra da raíz. Potencias de. Como se manexa k 1? Saca fóra da raíz: NÚMEROS COMPLEXOS Páxina 7 REFLEXIONA E RESOLVE Extraer fóra da raíz Saca fóra da raíz: a) b) 00 a) b) 00 0 Potencias de Calcula as sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a) ( ) ( ) (

Διαβάστε περισσότερα

PÁGINA 106 PÁGINA a) sen 30 = 1/2 b) cos 120 = 1/2. c) tg 135 = 1 d) cos 45 = PÁGINA 109

PÁGINA 106 PÁGINA a) sen 30 = 1/2 b) cos 120 = 1/2. c) tg 135 = 1 d) cos 45 = PÁGINA 109 PÁGINA 0. La altura del árbol es de 8,5 cm.. BC m. CA 70 m. a) x b) y PÁGINA 0. tg a 0, Con calculadora: sß 0,9 t{ ««}. cos a 0, Con calculadora: st,8 { \ \ } PÁGINA 05. cos a 0,78 tg a 0,79. sen a 0,5

Διαβάστε περισσότερα

Filipenses 2:5-11. Filipenses

Filipenses 2:5-11. Filipenses Filipenses 2:5-11 Filipenses La ciudad de Filipos fue nombrada en honor de Felipe II de Macedonia, padre de Alejandro. Con una pequeña colonia judía aparentemente no tenía una sinagoga. El apóstol fundó

Διαβάστε περισσότερα

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119 Página 0. a) b) π 4 π x 0 4 π π / 0 π / x 0º 0 x π π. 0 rad 0 π π rad 0 4 π 0 π rad 0 π 0 π / 4. rad 4º 4 π π 0 π / rad 0º π π 0 π / rad 0º π 4. De izquierda a derecha: 4 80 π rad π / rad 0 Página 0. tg

Διαβάστε περισσότερα

POTENCIAL ESCALAR. R R o campo electrostático (1.8) póde expresarse como o gradente dun campo escalar: 1 R

POTENCIAL ESCALAR. R R o campo electrostático (1.8) póde expresarse como o gradente dun campo escalar: 1 R Apuntes de Electomgnetismo. Cpítulo POTENCIA ECAA Chámse potencil un cmpo, en xenel con sentido solo mtemático, do que se póde deiv un cmpo físico. O cmpo electostático E é unh mgnitude con sentido físico

Διαβάστε περισσότερα

PAU XUÑO 2016 MATEMÁTICAS II

PAU XUÑO 2016 MATEMÁTICAS II PAU XUÑO 06 Código: 6 MATEMÁTICAS II (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio = 3 puntos, exercicio = 3 puntos, exercicio

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

Tema 1 : TENSIONES. Problemas resueltos F 1 S. n S. O τ F 4 F 2. Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL.

Tema 1 : TENSIONES. Problemas resueltos F 1 S. n S. O τ F 4 F 2. Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SAL. Tea : TENSIONES S S u n S 4 O Probleas resuelos Prof: Jae Sano Dongo Sanllana EPS-Zaora (USL) - 8 -Las coponenes del esado de ensones en un puno son: N/ -5 N/ 8 N/ 4 N/ - N/ N/ Se pde deernar: ) Las ensones

Διαβάστε περισσότερα

ECUACIÓNS, INECUACIÓNS E SISTEMAS

ECUACIÓNS, INECUACIÓNS E SISTEMAS ECUACIÓNS, INECUACIÓNS E SISTEMAS Índice 1. Ecuacións de primeiro e segundo grao... 1 1.1. Ecuacións de primeiro grao... 1 1.. Ecuacións de segundo grao.... Outras ecuacións alébricas... 5.1. Ecuacións

Διαβάστε περισσότερα

Semellanza e trigonometría

Semellanza e trigonometría 7 Semellnz e trigonometrí Obxectivos Nest quincen prenderás : Recoñecer triángulos semellntes. Clculr distncis inccesibles, plicndo semellnz de triángulos. Nocións básics de trigonometrí. Clculr medid

Διαβάστε περισσότερα

Lógica Proposicional. Justificación de la validez del razonamiento?

Lógica Proposicional. Justificación de la validez del razonamiento? Proposicional educción Natural Proposicional - 1 Justificación de la validez del razonamiento? os maneras diferentes de justificar Justificar que la veracidad de las hipótesis implica la veracidad de la

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Sistemas e Inecuacións

Sistemas e Inecuacións Sistemas e Inecuacións 1. Introdución 2. Sistemas lineais 2.1 Resolución gráfica 2.2 Resolución alxébrica 3. Método de Gauss 4. Sistemas de ecuacións non lineais 5. Inecuacións 5.1 Inecuacións de 1º e

Διαβάστε περισσότερα

1. O ESPAZO VECTORIAL DOS VECTORES LIBRES 1.1. DEFINICIÓN DE VECTOR LIBRE

1. O ESPAZO VECTORIAL DOS VECTORES LIBRES 1.1. DEFINICIÓN DE VECTOR LIBRE O ESPAZO VECTORIAL DOS VECTORES LIBRES DEFINICIÓN DE VECTOR LIBRE MATEMÁTICA II 06 Exames e Textos de Matemática de Pepe Sacau ten unha licenza Creative Commons Atribución Compartir igual 40 Internacional

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente

την..., επειδή... Se usa cuando se cree que el punto de vista del otro es válido, pero no se concuerda completamente - Concordar En términos generales, coincido con X por Se usa cuando se concuerda con el punto de vista de otro Uno tiende a concordar con X ya Se usa cuando se concuerda con el punto de vista de otro Comprendo

Διαβάστε περισσότερα

Τ ο οριστ ικό άρθρο ΕΝΙΚΟΣ Ονομαστική Γενική Αιτιατική Κλ ητική Αρσενικός ο του το(ν) Θηλ υκός η της τη(ν) Ουδέτερο το του το ΠΛΗΘΥ ΝΤΙΚΟΣ

Τ ο οριστ ικό άρθρο ΕΝΙΚΟΣ Ονομαστική Γενική Αιτιατική Κλ ητική Αρσενικός ο του το(ν) Θηλ υκός η της τη(ν) Ουδέτερο το του το ΠΛΗΘΥ ΝΤΙΚΟΣ Apresentação Άρθρο και Ουσιαστικά Nic o las Pe lic ioni de OLI V EI RA 1 Modelo de declinação de artigos e substantivos (άρθρο και ουσιαστικά, em grego) apresentado pela universidade Thessaloniki. Só é

Διαβάστε περισσότερα

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο. 728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.

Διαβάστε περισσότερα

Très formel, le destinataire a un titre particulier qui doit être utilisé à la place de son nom

Très formel, le destinataire a un titre particulier qui doit être utilisé à la place de son nom - Ouverture Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Très formel, le destinataire a un titre particulier qui doit être utilisé à la place de son nom Αγαπητέ κύριε, Formel, destinataire masculin,

Διαβάστε περισσότερα

VII. RECTAS E PLANOS NO ESPAZO

VII. RECTAS E PLANOS NO ESPAZO VII. RETS E PLNOS NO ESPZO.- Ecuacións da recta Unha recta r no espao queda determinada por un punto, punto base, e un vector v non nulo que se chama vector director ou direccional da recta; r, v é a determinación

Διαβάστε περισσότερα

TEORÍA DE XEOMETRÍA. 1º ESO

TEORÍA DE XEOMETRÍA. 1º ESO TEORÍA DE XEOMETRÍA. 1º ESO 1. CORPOS XEOMÉTRICOS No noso entorno observamos continuamente obxectos de diversas formas: pelotas, botes, caixas, pirámides, etc. Todos estes obxectos son corpos xeométricos.

Διαβάστε περισσότερα

ENERXÍA, TRABALLO E POTENCIA

ENERXÍA, TRABALLO E POTENCIA NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente

Διαβάστε περισσότερα

90 LIBERTAS SEGUNDA ÉPOCA. Introducción: La necesidad de una Reforma Institucional

90 LIBERTAS SEGUNDA ÉPOCA. Introducción: La necesidad de una Reforma Institucional 1 3 - - Abstract - - - 90 LIBERTAS SEGUNDA ÉPOCA Introducción: La necesidad de una Reforma Institucional - - - - - - - - - UNA PROPUESTA DE REFORMA MONETARIA PARA ARGENTINA 91 1 políticas establecidas

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

M14/1/AYMGR/HP1/GRE/TZ0/XX

M14/1/AYMGR/HP1/GRE/TZ0/XX M14/1/AYMGR/HP1/GRE/TZ0/XX 22142045 MODERN GREEK A: LANGUAGE AND LITERATURE HIGHER LEVEL PAPER 1 GREC MODERNE A : LANGUE ET LITTÉRATURE NIVEAU SUPÉRIEUR ÉPREUVE 1 GRIEGO MODERNO A: LENGUA Y LITERATURA

Διαβάστε περισσότερα

VI. VECTORES NO ESPAZO

VI. VECTORES NO ESPAZO VI. VECTORES NO ESPAZO.- Vectores no espazo. Operacións Sexa E o espazo de pntos ordinario o intitio da xeometría elemental. Un segmento orientado AB con orixe no pnto A e extremo no pnto B recibe o nome

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

Lógica Proposicional

Lógica Proposicional Proposicional educción Natural Proposicional - 1 Justificación de la validez del razonamiento os maneras diferentes de justificar Justificar que la veracidad de las hipótesis implica la veracidad de la

Διαβάστε περισσότερα

Inscrição Carta de Referência

Inscrição Carta de Referência - Introdução Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatário do sexo masculino, nome desconhecido Αγαπητή κυρία, Αγαπητή κυρία, Formal, destinatário do sexo femino, nome desconhecido Αγαπητέ κύριε/κύρια,

Διαβάστε περισσότερα

Métodos Estadísticos en la Ingeniería

Métodos Estadísticos en la Ingeniería Métodos Estadísticos e la Igeiería INTERVALOS DE CONFIANZA Itervalo de cofiaza para la media µ de ua distribució ormal co variaza coocida: X ± z α/ µ = X = X i N µ X... X m.a.s. de X Nµ Itervalo de cofiaza

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

P r s r r t. tr t. r P

P r s r r t. tr t. r P P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str

Διαβάστε περισσότερα

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio

Polinomios. Obxectivos. Antes de empezar. 1.Polinomios... páx. 4 Grao. Expresión en coeficientes Valor numérico dun polinomio 3 Polinomios Obxectivos Nesta quincena aprenderás a: Achar a expresión en coeficientes dun polinomio e operar con eles. Calcular o valor numérico dun polinomio. Recoñecer algunhas identidades notables,

Διαβάστε περισσότερα

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Forêts aléatoires : aspects théoriques, sélection de variables et applications Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

A proba consta de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba consta de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 8 1. Formato da proba Formato A proba consta de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.50

Διαβάστε περισσότερα

A proba consta de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba consta de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 8 1. Formato da proba Formato A proba consta de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.50

Διαβάστε περισσότερα

f) cotg 300 ctg 60 2 d) cos 5 cos 6 Al ser un ángulo del primer cuadrante, todas las razones son positivas. Así, tenemos: tg α 3

f) cotg 300 ctg 60 2 d) cos 5 cos 6 Al ser un ángulo del primer cuadrante, todas las razones son positivas. Así, tenemos: tg α 3 .9. Calcula el valor de las siguientes razones trigonométricas reduciéndolas al primer cuadrante. a) sen 0 c) tg 0 e) sec 0 b) cos d) cosec f) cotg 00 Solucionario a) sen 0 sen 0 d) cosec sen sen b) cos

Διαβάστε περισσότερα

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure

Διαβάστε περισσότερα

MATEMÁTICAS. PRIMEIRA PARTE (Parte Común) ), cadradas de orde tres, tales que a 21

MATEMÁTICAS. PRIMEIRA PARTE (Parte Común) ), cadradas de orde tres, tales que a 21 PRIMEIRA PARTE (Parte Común) (Nesta primeira parte tódolos alumnos deben responder a tres preguntas. Unha soa pregunta de cada un dos tres bloques temáticos: Álxebra Lineal, Xeometría e Análise. A puntuación

Διαβάστε περισσότερα

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

REPÚBLICA DE ANGOLA EMBAIXADA DA REPÚBLICA DE ANGOLA NA GRÉCIA DIPLOMÁTICO OFICIAL ORDINÁRIO ΙΠΛΩΜΑΤΙΚΗ ΕΠΙΣΗΜΗ ΚΑΝΟΝΙΚΗ

REPÚBLICA DE ANGOLA EMBAIXADA DA REPÚBLICA DE ANGOLA NA GRÉCIA DIPLOMÁTICO OFICIAL ORDINÁRIO ΙΠΛΩΜΑΤΙΚΗ ΕΠΙΣΗΜΗ ΚΑΝΟΝΙΚΗ REPÚBLICA DE ANGOLA EMBAIXADA DA REPÚBLICA DE ANGOLA NA GRÉCIA PEDIDO DE VISTO ΑΙΤΗΣΗ ΓΙΑ ΒΙΖΑ FOTO ΦΩΤΟΓΡΑΦΙΑ DIPLOMÁTICO OFICIAL ORDINÁRIO ΙΠΛΩΜΑΤΙΚΗ ΕΠΙΣΗΜΗ ΚΑΝΟΝΙΚΗ TRÂNSITO TRABALHO F. RESIDÊNCIA

Διαβάστε περισσότερα

QUALITES DE VOL DES AVIONS

QUALITES DE VOL DES AVIONS QUALITES DE OL DES AIONS IPSA Philippe GUIETEAU ONERA/DPRS/PRE Tel : 69 93 63 54 : 69 93 63 Eil : philippe.uicheteu@oner.r Qulités de vol des vions (/4) 4 Petits ouveents lonitudinu 4. Principe de linéristion

Διαβάστε περισσότερα

Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO

Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO Química P.A.U. EQUILIBRIO QUÍMICO 1 EQUILIBRIO QUÍMICO PROBLEMAS FASE GAS 1. A 670 K, un recipiente de 2 dm 3 contén unha mestura gasosa en equilibrio de 0,003 moles de hidróxeno, 0,003 moles de iodo e

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior. ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...

Διαβάστε περισσότερα

XUÑO 2018 MATEMÁTICAS II

XUÑO 2018 MATEMÁTICAS II Proba de Avaliación do Bacharelato para o Acceso áuniversidade XUÑO 218 Código: 2 MATEMÁTICAS II (Responde só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.

Διαβάστε περισσότερα

Inecuacións. Obxectivos

Inecuacións. Obxectivos 5 Inecuacións Obxectivos Nesta quincena aprenderás a: Resolver inecuacións de primeiro e segundo grao cunha incógnita. Resolver sistemas de ecuacións cunha incógnita. Resolver de forma gráfica inecuacións

Διαβάστε περισσότερα

Tema 7. Glúcidos. Grados de oxidación del Carbono. BIOQUÍMICA-1º de Medicina Dpto. Biología Molecular Isabel Andrés. Alqueno.

Tema 7. Glúcidos. Grados de oxidación del Carbono. BIOQUÍMICA-1º de Medicina Dpto. Biología Molecular Isabel Andrés. Alqueno. Tema 7. Glúcidos. Funciones biológicas. Monosacáridos: nomenclatura y estereoisomería. Pentosas y hexosas. Disacáridos. Enlace glucídico. Polisacáridos de reserva: glucógeno y almidón. Polisacáridos estructurales:

Διαβάστε περισσότερα

EL AORISTO ejercicios. ἀόριστος

EL AORISTO ejercicios. ἀόριστος EL AORISTO ejercicios 3 ἀόριστος VOZ ACTIVA Indictivo Impertivo Infinitivo Prticipio 1ª sing. ἔ-βαλ-ο-ν 2ª sing. ἔ-βαλ-ε-ς βάλ-ε 3ª sing. ἔ-βαλ-ε(ν) βαλέτω F βαλοῦσα βαλεῖν 1ª pl. ἐ-βάλ-ο-μεν 2ª pl. ἐ-βάλ-ε-τε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΘΕΜΑ Α. Α1. γ. Α2. α. Α3. β. Α4. γ. Α5. α ΘΕΜΑ Β Β1. α)uh2 = - Δ[H2] = Uμ = 1 3. UH2 = 0.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΘΕΜΑ Α. Α1. γ. Α2. α. Α3. β. Α4. γ. Α5. α ΘΕΜΑ Β Β1. α)uh2 = - Δ[H2] = Uμ = 1 3. UH2 = 0. ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ Α2. α Α3. β Α4.

Διαβάστε περισσότερα

Για να ρωτήσετε αν κάποιος μπορεί να σας βοηθήσει να γεμίσετε μια φόρμα

Για να ρωτήσετε αν κάποιος μπορεί να σας βοηθήσει να γεμίσετε μια φόρμα - Γενικά Dónde tengo que pedir el formulario/impreso para? Για να ρωτήσετε που μπορείτε να βρείτε μια φόρμα Dónde tengo que pedir el formulario/impreso para? Cuál es la fecha de expedición de su (documento)?

Διαβάστε περισσότερα

Το ίκτυο Βιβλιοθηκών του Τµήµατος Κοινωνικού Έργου της Caja Madrid. La Red de Bibliotecas de Obra Social Caja Madrid

Το ίκτυο Βιβλιοθηκών του Τµήµατος Κοινωνικού Έργου της Caja Madrid. La Red de Bibliotecas de Obra Social Caja Madrid Το ίκτυο Βιβλιοθηκών του Τµήµατος Κοινωνικού Έργου της Caja Madrid La Red de Bibliotecas de Obra Social Caja Madrid Το ίκτυο Βιβλιοθηκών αποτελεί τµήµα ενός Χρηµατοπιστωτικού Φορέα που προορίζει ποσοστό

Διαβάστε περισσότερα

Tipologie installative - Installation types Type d installation - Installationstypen Tipos de instalación - Τυπολογίες εγκατάστασης

Tipologie installative - Installation types Type d installation - Installationstypen Tipos de instalación - Τυπολογίες εγκατάστασης AMPADE MOOCROMATICHE VIMAR DIMMERABII A 0 V~ - VIMAR 0 V~ DIMMABE MOOCHROME AMP AMPE MOOCHROME VIMAR VARIATEUR 0 V~ - DIMMERFÄHIGE MOOCHROMATICHE AMPE VO VIMAR MIT 0 V~ ÁMPARA MOOCROMÁTICA VIMAR REGUABE

Διαβάστε περισσότερα

1. A INTEGRAL INDEFINIDA 1.1. DEFINICIÓN DE INTEGRAL INDEFINIDA 1.2. PROPRIEDADES

1. A INTEGRAL INDEFINIDA 1.1. DEFINICIÓN DE INTEGRAL INDEFINIDA 1.2. PROPRIEDADES TEMA / CÁLCULO INTEGRAL MATEMÁTICA II 07 Eames e Tetos de Matemática de Pepe Sacau ten unha licenza Creative Commons Atriución Compartir igual.0 Internacional. A INTEGRAL INDEFINIDA.. DEFINICIÓN DE INTEGRAL

Διαβάστε περισσότερα

35-50 1969 ΑΝΘΕΜΙΟ ΜΕ ΛΟΥΛΟΥΔΙ

35-50 1969 ΑΝΘΕΜΙΟ ΜΕ ΛΟΥΛΟΥΔΙ 52. Ακροκέραμα 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1956 Ακροκέραμο γωνιακό παραθύρου νεοκλασικού αριστερό. Ύψος 20εκ. 240-280 1957 Ακροκέραμο μετωπικό παραθύρου νεοκλασικού.διαστ.

Διαβάστε περισσότερα