ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0"

Transcript

1 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x 2 + y 2 = 8 που διέρχεται από το σημείο Α( 2, 2)..(Αφού πρώτα υπολογίσετε την θέση του Α ως προς τον κύκλο) 3. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x 2 + y 2 = 4 που διέρχεται από το σημείο Α( 2, 2) (Αφού πρώτα υπολογίσετε την θέση του Α ως προς τον κύκλο) 4. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x 2 + y 2 =20 που είναι παράλληλη στην 4 x +2 y +5 =0 5. Να βρεθούν οι εξισώσεις των εφαπτομένων του κύκλου x 2 +y 2 =25 που διέρχονται από τα σημεία ι) Α ( 3,4) και Β( 4,5) (Αφού πρώτα υπολογίσετε τις θέσεις του Α και Β ως προς τον κύκλο) 6. Δίνεται ο κύκλος με εξίσωση χ 2 +ψ 2 =5. Να δειχθεί ότι οι εφαπτόμενες προς τον κύκλο αυτόν από το Α(-1,3) είναι κάθετες. 7. Από το σημείο Ρ(4,2) φέρνουμε τις εφαπτόμενες ΡΑ, ΡΒ προς τον κύκλο C : χ 2 +ψ 2 =10. Να βρεθεί η γωνία (ΡΑ,ΡΒ).(Αφού πρώτα υπολογίσετε την απόσταση (ΡΟ)) 8. Δίνεται η εξίσωση (2x 1) 2 + 2y(2y+1) = 0 (1) Να δειχτεί ότι η (1) παριστάνει κύκλο (C). Να βρεθεί το κέντρο και η ακτίνα του 9. Δίνεται η εξίσωση x 2 + y 2 4x + 3 = 0 (1) Α. Να δειχτεί ότι η (1) παριστάνει κύκλο (C). Να βρεθεί το κέντρο και η ακτίνα του. Β. Να βρεθεί το λ ώστε η ευθεία (ε) 3x 4y + λ = 0 να είναι εφαπτομένη του κύκλου (C). 10. Δίνεται η εξίσωση x 2 +y 2 4y 5=0 Α. Να αποδείξετε ότι η εξίσωση παριστάνει κύκλο του οποίου να βρεθεί το κέντρο Κ και η ακτίνα Β. Να βρεθούν τα σημεία τομής του κύκλου με την ευθεία ε : y = x 11.Δίνεται η εξίσωση x 2 +y 2 4λx+2λ y 5=0, λ R (1) Να δειχτεί ότι η (1) παριστάνει κύκλο για κάθε λ R Να αποδείξετε ότι όλοι οι κύκλοι που ορίζονται από την (1) διέρχονται από δύο σταθερά σημεία Να βρείτε την κοινή χορδή όλων των κύκλων που ορίζονται από την (1) 12.Να βρεθεί η εξίσωση του κύκλου που τα σημεία Α(5,1) και Β( 3, 5) είναι άκρα μιας διαμέτρου του 13.Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το Κ(4,3) και εφάπτεται της χ+2ψ-3= Να βρεθεί η εξίσωση του κύκλου που διέρχεται από τα σημεία Α(0,2), Β(1,1) και Γ(2. 2) 15. Να βρεθεί η εξίσωση του κύκλου που έχει το κέντρο του πάνω στην ευθεία χ-ψ+2=0, περνά από τα σημεία Α(3,0) και Β( 1,2)

2 16. Να βρεθεί η εξίσωση του περιγεγραμμένου κύκλου του τριγώνου με κορυφές τα Α(3,0), Β(1,1) και Γ( 2, 4) 17. Να βρεθεί η εξίσωση του κύκλου που έχει το κέντρο του πάνω στην ευθεία χ-ψ+2=0, περνά από το σημείο Α(1,1) και έχει ακτίνα ρ= Να βρεθεί η εξίσωση του κύκλου που έχει το κέντρο του πάνω στην ευθεία 2χ-ψ+5=0, ακτίνα ρ=1 και εφάπτεται στον Οχ 19. Να βρεθεί η εξίσωση της διαμέτρου του κύκλου x 2 +y 2 +4x 6y 3=0 που είναι παράλληλη στην διχοτόμο της xoy Ποια είναι η θέση της διχοτόμου ως προς τον κύκλο; 20. Να βρεθεί η εξίσωση της διαμέτρου του κύκλου x 2 +y 2 +4x 6y 17=0 που είναι κάθετη στην ε: 5x+2y 13=0 21. Δίνεται ο κύκλος (x+1) 2 +(y 1) 2 =100 και η ευθεία ε: x 2y+23=0 Να βρεθεί η εξίσωση της διαμέτρου του κύκλου που περνά από το μέσο της χορδής που ορίζουν τα σημεία τομής της ευθείας με τον κύκλο 22. ι) Να αποδειχθεί ότι η ευθεία ε: 5x+12y 14=0 τέμνει τον κύκλο x 2 +y 2 2x 8y 8=0 σε δύο σημεία ιι) Να υπολογισθεί το μήκος της χορδής 23. Δίνεται ο κύκλος x 2 +y 2 2x 8y 17=0 και η ευθεία 5x+12y 14=0 ι) Να αποδειχθεί ότι η ευθεία τέμνει τον κύκλο σε δύο σημεία Α,Β. ιι) Να βρεθεί το μήκος της χορδής ΑΒ και ιιι) Το εμβαδόν του τριγώνου ΚΑΒ αν Κ το κέντρο του κύκλου 24. Nα βρεθούν οι εξισώσεις των κύκλων που διέρχονται από τα Α( 1,2) και Β( 1 2) και εφάπτονται στην ευθεία (ε) : ψ=2χ Να βρεθούν οι εξισώσεις των δύο κύκλων που περνούν από τα σημεία Α(1,2) και Β(3,4) και εφάπτονται στην ευθεία (ε) : 3χ+ψ-3= Nα βρεθούν οι εξισώσεις των κύκλων που εφάπτονται στην ε: 2χ ψ+4=0 στο σημείο της Α( 1,2) και έχει ακτίνα ρ= Nα βρεθούν οι εξισώσεις των κύκλων που εφάπτονται στην ε: 3χ+4ψ 5=0 διέρχονται από το Α( 4,4) και έχουν ακτίνα ρ=1 28. Nα βρεθούν οι εξισώσεις των κύκλων που εφάπτονται στην ε: χ 2ψ+1=0 στο σημείο της Α(1,0) και στη ευθεία ε : χ+2ψ=0 29. Nα βρεθεί η εξίσωση του κύκλου που εφάπτεται εξωτερικά του κύκλου x 2 +y 2 4x 5=0 και έχει κέντρο το Λ(5,4) 30. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο στην (ε) : 2χ+ψ=0 και εφάπτεται των ευθειών (ε 1 ) : 4χ 3ψ+10=0, (ε 2 ) : 4χ 3ψ-30= Να βρεθεί η εξίσωση του κύκλου που διέρχεται από Α(1,3) και εφάπτεται των ευθειών (ε 1 ) : 2χ+ψ 13=0, (ε 2 ) : 2χ+ψ-3=0.

3 32. Να βρεθεί η εξίσωση του κύκλου που διέρχεται από Α(2,1) και εφάπτεται των ευθειών (ε 1 ) : χ 2ψ 2=0, (ε 2 ) : 2χ ψ+2= Να βρεθεί η εξίσωση του κύκλου του εγγεγραμμένου στο τρίγωνο που σχηματίζεται από τους δύο άξονες συντεταγμένων και την ευθεία που ορίζεται από την εξίσωση : 3χ-5ψ+15= Έστω ο κύκλος C : x 2 +y 2-4y+3=0 και το σημείο Α( 1,0) Ι) Να δείξετε ότι το Α είναι εξωτερικό σημείο του κύκλου ΙΙ) Να βρεθούν οι εφαπτόμενες του κύκλου που διέρχονται από το σημείο Α 35. Να βρεθούν οι εφαπτόμενες του κύκλου C : χ 2 +ψ 2-2χ+4ψ=0 που είναι κάθετες στην (ε) : χ-2ψ+9= Να βρεθούν οι εξισώσεις των εφαπτομένων του κύκλου (x 5) 2 +y 2 =9 που διέρχονται από την αρχή τον αξόνων 37. Να βρεθούν οι εξισώσεις των εφαπτομένων του κύκλου x 2 +y 2 6y 3=0 που διέρχονται από τα σημεία ι) Α ( 2 2,1) και ιι) Β( 2 3,2) 38. Δίνονται οι ευθείες ε 1 : x y+2=0 και ε 2 : x+y 14=0 ι) Να αποδειχθεί ότι οι ευθείες είναι κάθετες ιι) Να βρεθεί το σημείο τομής τους ιιι) Να αποδειχθεί ότι το κέντρο των κύκλο που εφάπτονται στις ευθείες είναι σημείο ευθείας παράλληλης στον χ χ ή στον ψ ψ. ιν) Να βρεθεί ο κύκλος που εφάπτεται στις ευθείες και διέρχεται από το Α(4,2) 39.*Να βρεθεί το κέντρο και η ακτίνα του κύκλου με εξίσωση 2χ 2 +2ψ 2 -χ=0. Δείξτε ότι εφάπτεται στον άξονα των ψ ψ στο (0,0) και να βρεθούν οι εξισώσεις των εφαπτόμενων του κύκλου που είναι παράλληλες προς τη διχοτόμο της πρώτης γωνίας χοψ. 40.Δίνεται ο κύκλος C: x 2 +y 2 4x=0 και το σημείο Α(3,1). Να δείξετε ότι το Α είναι εσωτερικό του κύκλου. Να βρείτε τον γεωμετρικό τόπο των μέσων των χορδών που διέρχονται από το Α 41.Δίνεται ο κύκλος x 2 + y 2 2x 6y 15 = 0 και το σημείο του Μ(4,7). 1. Να βρείτε το κέντρο και την ακτίνα του κύκλου. 2. Να βρείτε την εξίσωση της εφαπτομένης ε του κύκλου, με σημείο επαφής το Μ. 3. Να υπολογίσετε την απόσταση της αρχής των αξόνων Ο από την ευθεία ε. 42.Θεωρούμε την εξίσωση x 2 + y 2 + 4x + 2y 4 = 0 (1) και το σημείο A(1,3). Α) Να αποδείξετε ότι η παραπάνω εξίσωση παριστάνει κύκλο του οποίου να βρείτε το κέντρο Κ και την ακτίνα ρ. Β) Έστω Κ είναι το κέντρο του κύκλου C που παριστάνει η εξίσωση (1) και ε η ευθεία που διέρχεται από το σημείο A(1,3) και είναι κάθετη στην ευθεία ΑΚ. α. Να δείξετε ότι το σημείο A(1,3) είναι εξωτερικό του κύκλου C. β) Να βρείτε την εξίσωση της ευθείας ε. γ) Να δείξετε ότι η ευθεία ε και ο κύκλος C δεν έχουν κοινά σημεία. δ) Αν ένα σημείο Μ κινείται πάνω στον κύκλο C και ένα σημείο Λ βρίσκεται πάνω στην ευθεία ε, τότενα βρείτε την ελάχιστη τιμή που μπορεί να πάρει το μήκος (ΛΜ). 43. Έστω Ρ ένα σημείο του κύκλου C: x 2 +y 2 2λx 5=0 Αν η ευθεία ε: x+y 2=0 τέμνει τον κύκλο C στα σημεία Α,Β έτσι ώστε 0 APB 90 τότε α) Να βρείτε το λ

4 β) Για λ=2 να βρείτε την εφαπτομένη του κύκλου στα σημεία του Γ(1,μ) και Δ(1, μ) 44. Δίνεται ο κύκλος C : (x+2) 2 +(y 3) 2 =4 και η ευθεία (ε) : 3x+4y+λ=0 ι) Να αποδείξετε ότι υπάρχουν δύο τιμές του λ για τις οποίες η (ε) εφάπτεται στον κύκλο ιι) Για την θετική τιμή του λ να βρείτε το σημείο τομής της ευθείας και του κύκλου 45. Να βρείτε την εξίσωση του κύκλου που εφάπτεται στους θετικούς ημιάξονες Οχ και Οψ και εξωτερικά στον κύκλο (x 4) 2 +(y 4) 2 =4 46. Δίνεται ο κύκλος C : x 2 +y 2 +2x 4y+λ-1=0 και το σημείο Α(-2,3) ι) Να βρεθεί το λ ώστε ο κύκλος να διέρχεται από το Α ιι) Για την παραπάνω τιμή του λ που θα βρείτε να βρεθεί η εξίσωση της εφαπτομένης του κύκλου στο Α 47. Δίνεται το σημείο Α(1,4) και ο κύκλος x 2 +y 2-4x+6y-12=0 ι) Να αποδείξετε ότι το Α είναι εξωτερικό σημείο του κύκλου. ιι) Να βρεθούν οι εξισώσεις των εφαπτομένων του κύκλου που διέρχονται από το Α ιιι) Να βρεθεί η γωνία των δύο εφαπτομένων ιν) Να βρεθεί η ευθεία που ορίζουν τα σημεία τομής των εφαπτομένων με τον κύκλο και κατόπιν η απόσταση του Α από αυτήν 48. Να βρεθεί η εφαπτομένη του κύκλου x 2 +y 2 =20 σε σημείο του Μ η οποία τέμνει τους θετικούς ημιάξονες Οχ και Οψ στα Α και Β ώστε (ΜΒ)= 4 (ΑΜ) 49. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το Κ(3,3) και τέμνει την ευθεία ε : x 2y 7=0 στα σημεία Α,Β ώστε ΑΒ=4 50. Δείξτε ότι οι κύκλοι x 2 +y 2 4y+1=0, x 2 +y 2 2y 1=0 τέμνονται κάθετα. (Οι εφαπτόμενες στα σημεία τομής είναι κάθετες) 51. Δίνεται ο κύκλος με εξίσωση x 2 +y 2 =1 (1) και το σημείο Α(2,0). Ένας κύκλος με κέντρο Κ(α,β) και ακτίνα R διέρχεται από το Α και τέμνει τον κύκλο (1) σε δύο αντιδιαμετρικά σημεία του (1). Να δειχθεί ότι α= Να βρεθούν οι εξισώσεις των κοινών εφαπτόμενων δύο κύκλων που ορίζονται από τις εξισώσεις : α) x 2 +y 2 =4, (x 6) 2 +y 2 =9 β) x 2 +y 2 =1, x 2 +(y 2) 2 = ι) Να αποδείξετε ότι οι κύκλοι C 1 : (x 3) 2 +(y+2) 2 =36 και C 2 : x 2 +(y 2) 2 = 1 εφάπτονται εσωτερικά και ιι) Να βρείτε την εξίσωση της κοινής εφαπτομένης τους 54. Δίνεται η εξίσωση x 2 +y 2 +2μx-4(μ+1)y+3μ+14=0. Δείξτε ότι το κέντρο του κύκλου κινείται σε δύο ημιευθείες. 55. Να βρεθεί ο γ.τ. των μέσων χορδών του κύκλου (x 4) 2 +y 2 =16 που διέρχονται από την αρχή των αξόνων. 56. Να βρεθεί ο γ.τ. των μέσων χορδών του κύκλου x 2 +y 2-2αx=0 που διέρχονται από την αρχή των αξόνων. 57. Δίνεται ο κύκλος χ 2 +ψ 2-2αχ=0, α>0. Μια ευθεία (ε) διέρχεται από το κέντρο του και είναι παράλληλη στην χ+2ψ=0. Η (ε) τέμνει τον κύκλο στα Α και Β. Να βρεθεί το Εμβαδόν του ΟΑΒ.

5 58. Δίνεται ο κύκλος C : x 2 +y 2 x 2=0 και η ευθεία (ε) : x+2y 3=0 ι) Να αποδείξετε ότι τέμνονται σε δύο σημεία Α και Β. ιι)να αποδείξετε ότι η εξίσωση : (x 2 +y 2 x 2) +α(x+2y 3)=0 για κάθε χ παριστάνει κύκλο C ο οποίος διέρχεται από τα Α και Β. ιιι) Για ποια τιμή του α ο κύκλος διέρχεται από την αρχή των αξόνων; ιν) Να αποδείξετε ότι των κέντρων των κύκλων C είναι μία ευθεία 59. Να βρεθεί η ευθεία (x-y+2)+μ(2x+y-5)=0 που ορίζει στον κύκλο C:(x 1) 2 +(y+2) 2 =4 χορδή μήκους **Να βρεθούν οι εφαπτόμενες του C : x 2 +y 2 2x 6y+9=0 που σχηματίζουν γωνία 45 με την (ε) x y 4= Να προσδιορισθεί η τιμή του μ, ώστε η χορδή που ορίζει η ευθεία ε:2x-y+3=0 στον κύκλο C : x 2 +y 2 2μx 2μy=0 να φαίνεται από την αρχή των αξόνων υπό ορθή γωνία. 62.Δίνεται ο κύκλος C : χ 2 +ψ 2 =ρ 2. Στο σημείο Α(0,-ρ) φέρνουμε την εφαπτομένη (ε). Θεωρούμε τις ε 1, ε 2 μεταβλητές εφαπτόμενες του κύκλου που είναι παράλληλες. Αν Μ, Ν τα κοινά σημεία της ε με τις ε 1, ε 2 να δειχθεί ότι d(a,n) d(a,m)=ρ ***Δίνονται ο κύκλος C : χ 2 +ψ 2 =36 και η ευθεία ε : ψ= 3 χ. Αν κύκλος C 1 εφάπτεται στην ευθεία ε, στον θετικό ημιάξονα Οχ, εσωτερικά στον κύκλο C και βρίσκεται στο θετικό μέρος των αξόνων. α) Να βρεθεί η εξίσωση του κύκλου C 1 β) Να βρεθούν οι εφαπτόμενες του C 1 που είναι κάθετες στην ευθεία 4χ-3ψ+5=0. 64.Δίνονται τα σταθερά σημεία Α,Β που απέχουν απόσταση (ΑΒ)=3 Να βρεθεί ο γ.τ. των σημείων Μ του επιπέδου για τα οποία ισχύει AM(AM 2AB) Δίνεται ο κύκλος C: x 2 + y 2 2x + 4y 19 = 0. Να βρείτε: Α. το κέντρο και την ακτίνα του κύκλου Β. την εξίσωση του κύκλου C 1, ο οποίος είναι ομόκεντρος με τον κύκλο C και εφάπτεται στην ευθεία (ε): 3x 4y + 24 = 0 66.Δίνεται η εξίσωση: x 2 + y 2 6x + 4y + κ = 0 με κ R. (1) Α. Να βρεθούν οι τιμές του κ R ώστε η παραπάνω εξίσωση να παριστάνει κύκλο C. Β. Να δειχθεί ότι αν η ακτίνα του κύκλου C είναι ρ =1, τότε κ =12. Γ. Να δειχθεί ότι το σημείο Μ(4,2) είναι εξωτερικό του κύκλου C που προκύπτει από (1) για κ = 12. Στη συνέχεια να βρεθούν οι εξισώσεις των εφαπτομένων στον κύκλο αυτόν, που διέρχονται από το Μ. 67.Θεωρούμε την εξίσωση x 2 + y 2 2λx + λ 2 5 = 0 (1). Να αποδείξετε ότι η (1) είναι εξίσωση κύκλου για κάθε λ R. Να βρεθεί η τιμή του λ ώστε ο κύκλος να εφάπτεται στην ευθεία ε: y=2x 7 Για λ=1 να βρείτε την άλλη εφαπτομένη του κύκλου που διέρχεται από το σημείο τομής της ε με τον χ χ. 68.Δίνεται η εξίσωση C: x 2 + y 2 2x 4λx + 4λ = 0 (1) Α. Για ποιες τιμές του λ η εξίσωση (1) παριστάνει κύκλο, του οποίου να προσδιοριστεί το κέντρο και η ακτίνα συναρτήσει του λ. Β. Ποιος ο γεωμετρικός τόπος των κέντρων των κύκλων (C) Γ. Να δείξετε ότι όλοι οι κύκλοι που ορίζονται από την (1) διέρχονται από σταθερό

6 σημείο Α. Δ. Έστω Β, Γ τα σημεία τομής της ευθείας (ε): y = 6x με τον κύκλο (c). E. Να προσδιορίσετε το λ R ώστε. 69.Δίνονται οι ευθείες ε 1 : λx + y = λ και ε 2 : x λy = 3, λ R. Α. Δείξτε ότι η κάθε ευθεία διέρχεται από ένα σταθερό σημείο τα οποία να βρείτε. Β. Να δείξετε ότι ο γεωμετρικός τόπος των σημείων τομής Μ(x, y) είναι κύκλος. Γ. Δίνεται το σημείο Δ(3, 5). Να βρεθούν οι εξισώσεις των εφαπτομένων του κύκλου που διέρχονται από το Δ, καθώς και το μήκος των εφαπτομένων τμημάτων. 70.Δίνεται η εξίσωση (x 2y 3) + κ(3x + y 2) = 0 (1) με παράμετρο κ και ο κύκλος με εξίσωση: C: x 2 + (y 1) 2 = 5. Α. Να δείξετε ότι πάντα η εξίσωση (1) είναι οικογένεια ευθειών, δηλαδή παριστάνει ευθεία για κάθε κ. Β. Να δείξετε ότι όλες οι ευθείες της οικογένειας (1) διέρχονται από σταθερό σημείο Α, το οποίο και να προσδιορίσετε. Γ. Να δείξετε ότι για κ = 0 η ευθεία που προκύπτει από την οικογένεια των ευθειών (1) είναι εφαπτομένη του κύκλου c. Δ. Να βρείτε εκείνη την εξίσωση της ευθείας από την οικογένεια των ευθειών (1), που διέρχεται από το κέντρο του κύκλου C. 71.Δίνεται η εξίσωση: x 2 + y 2 2κx + 4κy = 0 (1) με κ R {0}. Α. Να δείξετε ότι η (1) για κάθε κ 0 παριστά κύκλο που περνά από την αρχή των αξόνων, του οποίου να βρείτε την ακτίνα και το κέντρο. Β. Για κ 0, να βρείτε το γεωμετρικό τόπο των κέντρων των παραπάνω κύκλων. Γ. Δίνεται η ευθεία ε: 2x y 4 = 0, να βρείτε την τιμή του κ 0 για την οποία η ευθεία (ε) τέμνει τον κύκλο της σχέσης (1) σε δύο σημεία Α και Β τέτοια ώστε η χορδή ΑΒ να σχηματίζει με το σημείο Ο(0,0) ορθογώνιο τρίγωνο στο Ο(0,0) 72.Δίνεται η οικογένεια ευθειών (ε): (1 + 2λ)x + (1 λ)y + 3 = 0 (1) και ο κύκλος (c): x 2 + y 2 2x + 4y +1 = 0 Α. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου (c) στο σημείο του με τεταγμένη Ο. Β. Δείξτε ότι ο κύκλος (c) έχει ένα τουλάχιστον κοινό σημείο με κάθε ευθεία της οικογένειας που παριστάνει η (1). Γ. Βρείτε τις ευθείες της οικογένειας (1) που ορίζουν χορδή στον κύκλο με μήκος Α. Δίνεται η εξίσωση x 2 + y 2 + 6μx + 8λy = 0, όπου μ, λ πραγματικοί αριθμοί διάφοροι του μηδενός. Να δείξετε ότι, για κάθε τιμή των μ, λ, η παραπάνω εξίσωση παριστάνει κύκλο που διέρχεται από την αρχή των αξόνων Ο. Β. Έστω ότι για τους πραγματικούς αριθμούς μ, λ ισχύει η σχέση 3μ + 2λ = 0. α. Να δείξετε ότι, όλοι οι κύκλοι που ορίζονται από την εξίσωση x 2 + y 2 + 6μx + 8λy = 0 για τις διάφορες τιμές των μ και λ, έχουν τα κέντρα τους σε ευθεία που διέρχεται από την αρχή των αξόνων. β. Να βρείτε τα μ, λ έτσι, ώστε, αν Α, Β είναι τα σημεία τομής του αντίστοιχου κύκλου με την ευθεία x + y + 2 = 0, να ισχύει 0. γ. Για τις τιμές των μ, λ που βρήκατε στο ερώτημα β να υπολογίσετε το εμβαδόν του τριγώνου ΑΟΒ.

7 74.Δίνεται η εξίσωση x 2 + y 2 2xσυνθ 2yημθ 1=0, 0 θ 2π. Α. Να αποδείξετε ότι για κάθε θ η εξίσωση αυτή παριστάνει κύκλο, του οποίου να προσδιορίσετε το κέντρο και την ακτίνα. π Β. Αν θ, να βρείτε την εξίσωση της εφαπτομένης του κύκλου στο σημείο Μ(1,2). 2 Γ. Να αποδείξετε ότι για τις διάφορες τιμές του θ τα κέντρα των παραπάνω κύκλων βρίσκονται σε κύκλο με κέντρο Ο(0,0) και ακτίνα ρ = Δίνεται η εξίσωση x 2 + y 2 4x + 2y + 3 = 0 και το σημείο Μ(2,1). α. Να αποδείξετε ότι η εξίσωση αυτή παριστάνει κύκλο με κέντρο το σημείο Κ(2, 1) και ακτίνα ρ = 2. β. Να βρείτε τις εξισώσεις των εφαπτομένων του κύκλου που διέρχονται από το σημείο Μ(2,1). γ. Αν Α, Β είναι τα σημεία επαφής των παραπάνω εφαπτομένων με τον κύκλο, να βρείτε το εμβαδόν του τριγώνου ΜΑΒ. 76.Δίνεται η εξίσωση C : x 2 + y 2 + (ημθ )x (συνθ )y = 2 όπου θ. (1) α) Να αποδείξετε ότι η (1) παριστάνει κύκλο του οποίου να βρείτε το κέντρο και την ακτίνα. β) Να αποδείξετε ότι, όταν το θ μεταβάλλεται, τα κέντρα των κύκλων C κινούνται σε κύκλο του οποίου να βρείτε την εξίσωση. γ) Να βρείτε τις τιμές του θ [0,π ) αν είναι γνωστό ότι ο κύκλος C διέρχεται από το σημείο Μ(1,-1). δ) Έστω Κ το κέντρο του κύκλου C και Α, Β τα σημεία τομής του με την ευθεία ΟΚ (όπου Ο η αρχή των αξόνων). Να υπολογίσετε τις αποστάσεις (ΟΑ) και (ΟΒ) Δίνεται ο κύκλος x y 25 και το σημείο του A (3,4). 1. Να βρεθεί η εξίσωση της εφαπτομένης (ε) του κύκλου στο σημείο Α. 2. Αν Ε είναι το σημείο τομής της (ε) με τον άξονα yy, να βρείτε την εξίσωση της παραβολής με εστία το Ε και κορυφή την αρχή των αξόνων Ο. 78.Δίνονται τα διανύσματα u, v με u 1, v 2 0 και η γωνία των διανυσμάτων Να υπολογιστούν η ακτίνα και το κέντρο του κύκλου C : x y (u v 5)x 2u v y Να βρεθούν οι εξισώσεις των εφαπτομένων που άγονται από το σημείο A(2,3) προς τον κύκλo 79.Δίνεται ένα τρίγωνο με κορυφές Α(2λ 1, 3λ+2), Β(1,2) και Γ(2,3) όπου λ IR με λ 2. Α. Να αποδείξετε ότι το σημείο Α κινείται σε ευθεία, καθώς το λ μεταβάλλεται στο IR. Β. Εάν λ=1, να βρείτε: α. το εμβαδόν του τριγώνου ΑΒΓ β. την εξίσωση του κύκλου, που έχει κέντρο την κορυφή Α(1,5) και εφάπτεται στην ευθεία ΒΓ. 80.Δίνονται τα μη μηδενικά διανύσματα, τα οποία σχηματίζουν μεταξύ τους γωνία φ =, και 3 η εξίσωση: x 2 + y 2 2 x y + = 0 (1) Α Να αποδείξετε ότι: α. 2. β. Η εξίσωση (1) παριστάνει κύκλο με ακτίνα ρ = 1 2 2

8 Β. Αν Κ(1, 1) είναι το κέντρο του παραπάνω κύκλου, να αποδείξετε ότι: α. = 1, = 2 και ρ = 1. β. Ο κύκλος εφάπτεται στην ευθεία 3x + 4y 12 = 0 γ. Η προβολή του στο είναι ίση με το. 81. Δίνονται τα διανύσματα, με = 2, x 2 + y 2 x + 2 y 10 = 0 (1) Α. Να αποδείξετε ότι = 2 και 2 =2., και η εξίσωση: 3 Β. Να αποδείξετε ότι η εξίσωση (1) παριστάνει κύκλο C για κάθε τιμή του και να βρείτε το κέντρο και την ακτίνα του κύκλου. Γ. Να βρείτε το γεωμετρικό τόπο των κέντρων των κύκλων C. Δ. Να υπολογίσετε την τιμή του ώστε η ευθεία (ε) με εξίσωση: 2x + y 10 = 0 να εφάπτεται στον κύκλο C. Ε. Να αποδείξετε ότι όλοι οι κύκλοι C διέρχονται από δύο σταθερά σημεία 82.Δίνονται τα σημεία A( 1, 2), B( 3, 1), Γ(3, 2) και Δ(4, 1) ενός ορθοκανονικού συστήματος αξόνων. A. Να αναλύσετε το διάνυσμα σε δύο κάθετες μεταξύ τους συνιστώσες από τις οποίες η μία να έχει τη διεύθυνση του διανύσματος AB. Β. Να δείξετε ότι η γραμμή που γράφουν τα σημεία Μ(x, y) του επιπέδου για τα οποία ισχύει AM M = 0, είναι κύκλος του οποίου να βρείτε το κέντρο και την ακτίνα. Γ. Να βρείτε την εξίσωση της εφαπτομένης του κύκλου του προηγούμενου ερωτήματος που είναι κάθετη στο διάνυσμα u προβ 83. ίνονται οι παράλληλες ευθείες ε 1 : 3x+ 4y +6 = 0 και ε 2 : 3x + 4y +16=0. Α. Να βρείτε την απόσταση των παράλληλων ευθειών ε 1 και ε 2. Β. Να βρείτε την εξίσωση της µεσοπαράλληλης ευθείας των ε 1 και ε 2. Γ. Να βρείτε την εξίσωση του κύκλου που έχει κέντρο το σηµείο τοµής της ευθείας ε 1 µε τον άξονα x x και αποκόπτει από την ευθεία ε 2 χορδή µήκους d = Δίνεται η εξίσωση 2 x 2 y 5λ 10 x 3λy 2λ 9 0, η οποία παριστάνει κύκλο για κάθε R. A) Να βρείτε τον γεωμετρικό τόπο των κέντρων των κύκλων για κάθε R B) Να βρεθεί ο κύκλος C λ, που έχει το κέντρο του στον άξονα x x. Γ) Αν 0 M 3, 2, να βρείτε την εξίσωση της χορδής του κύκλου C λ που έχει μέσον το σημείο 85. Δίνεται το σημείο Α(2,0) και ο κύκλος x 2 + y 2 =1. Α. Να αποδειχτεί ότι οι εφαπτόμενες του κύκλου που διέρχονται από το Α(2,0) είναι: (ε 1 ): x 3 y + 2= 0 και (ε 2 ): x+ 3 y +2= 0. Β. Να βρεθεί η γωνία των εφαπτομένων αυτών. Γ. Να αποδείξετε ότι οι ευθείες αυτές είναι κοινές εφαπτόμενες του εν λόγω κύκλου και του κύκλου: (x 3) 2 + y 2 =25/4 Δ. Να εξεταστεί αν υπάρχει και άλλη κοινή εφαπτόμενη

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να βρείτε τον συντελεστή διεύθυνσης μιας ευθείας ε, που σχηματίζει με τον άξονα x x γωνία: π 3 α) ω = β) ω = γ) ω = π 3. Να βρείτε τη γωνία ω που σχηματίζει με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (16) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004 Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-004 Περιεχόµενα 1 Θέµατα 1999.......................................... 3 Θέµατα 000..........................................

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΣΚΗΣΗ 1 Να αποδειχθεί ότι οι γεωμετρικές εικόνες των μιγαδικών ριζών της εξίσωσης (συν θ)z (4συνθ)z + (5 συν θ) = 0 με θ π, π κινούνται σε υπερβολή, της οποίας να ευρεθούν τα στοιχεί ΑΣΚΗΣΗ Στο μιγαδικό

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ Το σύνολο C των μιγαδικών αριθμών είναι ένα υπερσύνολο του R, του συνόλου των πραγματικών αριθμών, στο οποίο ισχύουν: Επεκτείνονται οι πράξεις της πρόσθεσης του πολλαπλασιασμού έτσι ώστε, να έχουν τις

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1 1 ο Αχαρνών 197 Αγ Νικόλαος 10865196 ο Αγγ Σικελιανού 4 Περισσός 10718688 Ε ΛΙΑΤΣΟΣ Μαθηµατικός 1 1 Α ίνονται τα διανύσµατα á, â, x, y 1 για τα οποία ισχύουν: x+ â = y+ á και 11 y+ 11 â = á x Να αποδείξετε

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΚΥΚΛΟΣ

ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΚΥΚΛΟΣ [7] ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΚΥΚΛΟΣ ΟΡΙΣΜΟΣ Κύκλος µε κέντρο Κ και ακτίνα ρ λέγεται ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν από το Κ απόσταση ίση µε ρ. ΕΞΙΣΩΣΗ ΚΥΚΛΟΥ Αν ο κύκλος έχει κέντρο

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

Κεφάλαιο 10 Γεωμετρικές κατασκευές Στα αιτήματα του Ευκλείδη περιλαμβάνονται μόνο τρία που αναφέρονται στη δυνατότητα κατασκευής ενός σχήματος. Ηιτήσθω από παντός σημείου επί παν σημείον ευθείαν γραμμήν

Διαβάστε περισσότερα

Θέματα από τους μιγαδικούς

Θέματα από τους μιγαδικούς 6/0/0 Θέματα από τους μιγαδικούς Μπάμπης Στεργίου Σεπτέμβριος 0 Θέμα ο ***Οι λύσεις έγιναν από τον Αλέξη Μιχαλακίδη Δίνονται τα σύνολα : A C/ και α) Να εκφράσετε γεωμετρικά το σύνολο Α BwC/w,A β) Να βρείτε

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

ΣΠΥΡΟΣ ΧΡΙΣΤΙΑΣ ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΣΠΥΡΟΣ ΧΡΙΣΤΙΑΣ ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΠΥΡΟΣ ΧΡΙΣΤΙΑΣ ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΘΗΝΑ 009 1. ΜΕΘΟ ΟΛΟΓΙΑ ΚΑΙ ΑΣΚΗΣΕΙΣ ΣΤΑ ΙΑΝΥΣΜΑΤΑ Α. ΘΕΩΡΙΑ ΜΕΘΟ ΟΛΟΓΙΑ ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΙΑΝΥΣΜΑΤΩΝ

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων 9 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Β -- ΓΕΩΜΕΤΡΙΙΑ Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων Β. 1. 1 44. Τι ονομάζεται εμβαδόν μιας επίπεδης επιφάνειας και από τι εξαρτάται; Ονομάζεται εμβαδόν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ. Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α 1 1. α) Να γίνει γινόµενο το τριώνυµο λ -3λ+. β) Να βρεθεί το λ έτσι ώστε η εξίσωση λ(λχ-1)χ(3λ-)-λ i) να είναι αδύνατη ii) να είναι αόριστη iii) να έχει µία µόνο λύση

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο 14 1 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:9 ο _18997 ΘΕΜΑ Β Ένας άνθρωπος σπρώχνει ένα κουτί προς τα πάνω στη ράµπα του παρακάτω σχήµατος. α) Να αποδείξετε ότι για το ύψος y, που απέχει το κουτί από

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

, y 1. y y y y = x ( )

, y 1. y y y y = x ( ) ΚΕΦΑΛΑΙΟ Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕ Ο ΠΑΡΑΓΡΑΦΟΣ. ΕΞΙΣΩΣΗ ΓΡΑΜΜΗΣ Μία εξίσωση µε αγνώστους x, y λέγεται εξίσωση µίας γραµµής C, όταν οι συντεταγµένες των σηµείων της C και µόνο αυτές την επαληθεύουν. Αν έχουµε

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών

6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών 6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη

Διαβάστε περισσότερα

log( x 7) log( x 2) log( x 1)

log( x 7) log( x 2) log( x 1) ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 01-13 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 013 Ημερομηνία: 0/5/013 Ημέρα:Δευτέρα Μάθημα (Μαθηματικά Κατεύθυνσης) Τάξη Β Ώρα:10.30-13.00 Χρόνος:,5 ώρες Οδηγίες:

Διαβάστε περισσότερα