ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0"

Transcript

1 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x 2 + y 2 = 8 που διέρχεται από το σημείο Α( 2, 2)..(Αφού πρώτα υπολογίσετε την θέση του Α ως προς τον κύκλο) 3. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x 2 + y 2 = 4 που διέρχεται από το σημείο Α( 2, 2) (Αφού πρώτα υπολογίσετε την θέση του Α ως προς τον κύκλο) 4. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x 2 + y 2 =20 που είναι παράλληλη στην 4 x +2 y +5 =0 5. Να βρεθούν οι εξισώσεις των εφαπτομένων του κύκλου x 2 +y 2 =25 που διέρχονται από τα σημεία ι) Α ( 3,4) και Β( 4,5) (Αφού πρώτα υπολογίσετε τις θέσεις του Α και Β ως προς τον κύκλο) 6. Δίνεται ο κύκλος με εξίσωση χ 2 +ψ 2 =5. Να δειχθεί ότι οι εφαπτόμενες προς τον κύκλο αυτόν από το Α(-1,3) είναι κάθετες. 7. Από το σημείο Ρ(4,2) φέρνουμε τις εφαπτόμενες ΡΑ, ΡΒ προς τον κύκλο C : χ 2 +ψ 2 =10. Να βρεθεί η γωνία (ΡΑ,ΡΒ).(Αφού πρώτα υπολογίσετε την απόσταση (ΡΟ)) 8. Δίνεται η εξίσωση (2x 1) 2 + 2y(2y+1) = 0 (1) Να δειχτεί ότι η (1) παριστάνει κύκλο (C). Να βρεθεί το κέντρο και η ακτίνα του 9. Δίνεται η εξίσωση x 2 + y 2 4x + 3 = 0 (1) Α. Να δειχτεί ότι η (1) παριστάνει κύκλο (C). Να βρεθεί το κέντρο και η ακτίνα του. Β. Να βρεθεί το λ ώστε η ευθεία (ε) 3x 4y + λ = 0 να είναι εφαπτομένη του κύκλου (C). 10. Δίνεται η εξίσωση x 2 +y 2 4y 5=0 Α. Να αποδείξετε ότι η εξίσωση παριστάνει κύκλο του οποίου να βρεθεί το κέντρο Κ και η ακτίνα Β. Να βρεθούν τα σημεία τομής του κύκλου με την ευθεία ε : y = x 11.Δίνεται η εξίσωση x 2 +y 2 4λx+2λ y 5=0, λ R (1) Να δειχτεί ότι η (1) παριστάνει κύκλο για κάθε λ R Να αποδείξετε ότι όλοι οι κύκλοι που ορίζονται από την (1) διέρχονται από δύο σταθερά σημεία Να βρείτε την κοινή χορδή όλων των κύκλων που ορίζονται από την (1) 12.Να βρεθεί η εξίσωση του κύκλου που τα σημεία Α(5,1) και Β( 3, 5) είναι άκρα μιας διαμέτρου του 13.Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το Κ(4,3) και εφάπτεται της χ+2ψ-3= Να βρεθεί η εξίσωση του κύκλου που διέρχεται από τα σημεία Α(0,2), Β(1,1) και Γ(2. 2) 15. Να βρεθεί η εξίσωση του κύκλου που έχει το κέντρο του πάνω στην ευθεία χ-ψ+2=0, περνά από τα σημεία Α(3,0) και Β( 1,2)

2 16. Να βρεθεί η εξίσωση του περιγεγραμμένου κύκλου του τριγώνου με κορυφές τα Α(3,0), Β(1,1) και Γ( 2, 4) 17. Να βρεθεί η εξίσωση του κύκλου που έχει το κέντρο του πάνω στην ευθεία χ-ψ+2=0, περνά από το σημείο Α(1,1) και έχει ακτίνα ρ= Να βρεθεί η εξίσωση του κύκλου που έχει το κέντρο του πάνω στην ευθεία 2χ-ψ+5=0, ακτίνα ρ=1 και εφάπτεται στον Οχ 19. Να βρεθεί η εξίσωση της διαμέτρου του κύκλου x 2 +y 2 +4x 6y 3=0 που είναι παράλληλη στην διχοτόμο της xoy Ποια είναι η θέση της διχοτόμου ως προς τον κύκλο; 20. Να βρεθεί η εξίσωση της διαμέτρου του κύκλου x 2 +y 2 +4x 6y 17=0 που είναι κάθετη στην ε: 5x+2y 13=0 21. Δίνεται ο κύκλος (x+1) 2 +(y 1) 2 =100 και η ευθεία ε: x 2y+23=0 Να βρεθεί η εξίσωση της διαμέτρου του κύκλου που περνά από το μέσο της χορδής που ορίζουν τα σημεία τομής της ευθείας με τον κύκλο 22. ι) Να αποδειχθεί ότι η ευθεία ε: 5x+12y 14=0 τέμνει τον κύκλο x 2 +y 2 2x 8y 8=0 σε δύο σημεία ιι) Να υπολογισθεί το μήκος της χορδής 23. Δίνεται ο κύκλος x 2 +y 2 2x 8y 17=0 και η ευθεία 5x+12y 14=0 ι) Να αποδειχθεί ότι η ευθεία τέμνει τον κύκλο σε δύο σημεία Α,Β. ιι) Να βρεθεί το μήκος της χορδής ΑΒ και ιιι) Το εμβαδόν του τριγώνου ΚΑΒ αν Κ το κέντρο του κύκλου 24. Nα βρεθούν οι εξισώσεις των κύκλων που διέρχονται από τα Α( 1,2) και Β( 1 2) και εφάπτονται στην ευθεία (ε) : ψ=2χ Να βρεθούν οι εξισώσεις των δύο κύκλων που περνούν από τα σημεία Α(1,2) και Β(3,4) και εφάπτονται στην ευθεία (ε) : 3χ+ψ-3= Nα βρεθούν οι εξισώσεις των κύκλων που εφάπτονται στην ε: 2χ ψ+4=0 στο σημείο της Α( 1,2) και έχει ακτίνα ρ= Nα βρεθούν οι εξισώσεις των κύκλων που εφάπτονται στην ε: 3χ+4ψ 5=0 διέρχονται από το Α( 4,4) και έχουν ακτίνα ρ=1 28. Nα βρεθούν οι εξισώσεις των κύκλων που εφάπτονται στην ε: χ 2ψ+1=0 στο σημείο της Α(1,0) και στη ευθεία ε : χ+2ψ=0 29. Nα βρεθεί η εξίσωση του κύκλου που εφάπτεται εξωτερικά του κύκλου x 2 +y 2 4x 5=0 και έχει κέντρο το Λ(5,4) 30. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο στην (ε) : 2χ+ψ=0 και εφάπτεται των ευθειών (ε 1 ) : 4χ 3ψ+10=0, (ε 2 ) : 4χ 3ψ-30= Να βρεθεί η εξίσωση του κύκλου που διέρχεται από Α(1,3) και εφάπτεται των ευθειών (ε 1 ) : 2χ+ψ 13=0, (ε 2 ) : 2χ+ψ-3=0.

3 32. Να βρεθεί η εξίσωση του κύκλου που διέρχεται από Α(2,1) και εφάπτεται των ευθειών (ε 1 ) : χ 2ψ 2=0, (ε 2 ) : 2χ ψ+2= Να βρεθεί η εξίσωση του κύκλου του εγγεγραμμένου στο τρίγωνο που σχηματίζεται από τους δύο άξονες συντεταγμένων και την ευθεία που ορίζεται από την εξίσωση : 3χ-5ψ+15= Έστω ο κύκλος C : x 2 +y 2-4y+3=0 και το σημείο Α( 1,0) Ι) Να δείξετε ότι το Α είναι εξωτερικό σημείο του κύκλου ΙΙ) Να βρεθούν οι εφαπτόμενες του κύκλου που διέρχονται από το σημείο Α 35. Να βρεθούν οι εφαπτόμενες του κύκλου C : χ 2 +ψ 2-2χ+4ψ=0 που είναι κάθετες στην (ε) : χ-2ψ+9= Να βρεθούν οι εξισώσεις των εφαπτομένων του κύκλου (x 5) 2 +y 2 =9 που διέρχονται από την αρχή τον αξόνων 37. Να βρεθούν οι εξισώσεις των εφαπτομένων του κύκλου x 2 +y 2 6y 3=0 που διέρχονται από τα σημεία ι) Α ( 2 2,1) και ιι) Β( 2 3,2) 38. Δίνονται οι ευθείες ε 1 : x y+2=0 και ε 2 : x+y 14=0 ι) Να αποδειχθεί ότι οι ευθείες είναι κάθετες ιι) Να βρεθεί το σημείο τομής τους ιιι) Να αποδειχθεί ότι το κέντρο των κύκλο που εφάπτονται στις ευθείες είναι σημείο ευθείας παράλληλης στον χ χ ή στον ψ ψ. ιν) Να βρεθεί ο κύκλος που εφάπτεται στις ευθείες και διέρχεται από το Α(4,2) 39.*Να βρεθεί το κέντρο και η ακτίνα του κύκλου με εξίσωση 2χ 2 +2ψ 2 -χ=0. Δείξτε ότι εφάπτεται στον άξονα των ψ ψ στο (0,0) και να βρεθούν οι εξισώσεις των εφαπτόμενων του κύκλου που είναι παράλληλες προς τη διχοτόμο της πρώτης γωνίας χοψ. 40.Δίνεται ο κύκλος C: x 2 +y 2 4x=0 και το σημείο Α(3,1). Να δείξετε ότι το Α είναι εσωτερικό του κύκλου. Να βρείτε τον γεωμετρικό τόπο των μέσων των χορδών που διέρχονται από το Α 41.Δίνεται ο κύκλος x 2 + y 2 2x 6y 15 = 0 και το σημείο του Μ(4,7). 1. Να βρείτε το κέντρο και την ακτίνα του κύκλου. 2. Να βρείτε την εξίσωση της εφαπτομένης ε του κύκλου, με σημείο επαφής το Μ. 3. Να υπολογίσετε την απόσταση της αρχής των αξόνων Ο από την ευθεία ε. 42.Θεωρούμε την εξίσωση x 2 + y 2 + 4x + 2y 4 = 0 (1) και το σημείο A(1,3). Α) Να αποδείξετε ότι η παραπάνω εξίσωση παριστάνει κύκλο του οποίου να βρείτε το κέντρο Κ και την ακτίνα ρ. Β) Έστω Κ είναι το κέντρο του κύκλου C που παριστάνει η εξίσωση (1) και ε η ευθεία που διέρχεται από το σημείο A(1,3) και είναι κάθετη στην ευθεία ΑΚ. α. Να δείξετε ότι το σημείο A(1,3) είναι εξωτερικό του κύκλου C. β) Να βρείτε την εξίσωση της ευθείας ε. γ) Να δείξετε ότι η ευθεία ε και ο κύκλος C δεν έχουν κοινά σημεία. δ) Αν ένα σημείο Μ κινείται πάνω στον κύκλο C και ένα σημείο Λ βρίσκεται πάνω στην ευθεία ε, τότενα βρείτε την ελάχιστη τιμή που μπορεί να πάρει το μήκος (ΛΜ). 43. Έστω Ρ ένα σημείο του κύκλου C: x 2 +y 2 2λx 5=0 Αν η ευθεία ε: x+y 2=0 τέμνει τον κύκλο C στα σημεία Α,Β έτσι ώστε 0 APB 90 τότε α) Να βρείτε το λ

4 β) Για λ=2 να βρείτε την εφαπτομένη του κύκλου στα σημεία του Γ(1,μ) και Δ(1, μ) 44. Δίνεται ο κύκλος C : (x+2) 2 +(y 3) 2 =4 και η ευθεία (ε) : 3x+4y+λ=0 ι) Να αποδείξετε ότι υπάρχουν δύο τιμές του λ για τις οποίες η (ε) εφάπτεται στον κύκλο ιι) Για την θετική τιμή του λ να βρείτε το σημείο τομής της ευθείας και του κύκλου 45. Να βρείτε την εξίσωση του κύκλου που εφάπτεται στους θετικούς ημιάξονες Οχ και Οψ και εξωτερικά στον κύκλο (x 4) 2 +(y 4) 2 =4 46. Δίνεται ο κύκλος C : x 2 +y 2 +2x 4y+λ-1=0 και το σημείο Α(-2,3) ι) Να βρεθεί το λ ώστε ο κύκλος να διέρχεται από το Α ιι) Για την παραπάνω τιμή του λ που θα βρείτε να βρεθεί η εξίσωση της εφαπτομένης του κύκλου στο Α 47. Δίνεται το σημείο Α(1,4) και ο κύκλος x 2 +y 2-4x+6y-12=0 ι) Να αποδείξετε ότι το Α είναι εξωτερικό σημείο του κύκλου. ιι) Να βρεθούν οι εξισώσεις των εφαπτομένων του κύκλου που διέρχονται από το Α ιιι) Να βρεθεί η γωνία των δύο εφαπτομένων ιν) Να βρεθεί η ευθεία που ορίζουν τα σημεία τομής των εφαπτομένων με τον κύκλο και κατόπιν η απόσταση του Α από αυτήν 48. Να βρεθεί η εφαπτομένη του κύκλου x 2 +y 2 =20 σε σημείο του Μ η οποία τέμνει τους θετικούς ημιάξονες Οχ και Οψ στα Α και Β ώστε (ΜΒ)= 4 (ΑΜ) 49. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το Κ(3,3) και τέμνει την ευθεία ε : x 2y 7=0 στα σημεία Α,Β ώστε ΑΒ=4 50. Δείξτε ότι οι κύκλοι x 2 +y 2 4y+1=0, x 2 +y 2 2y 1=0 τέμνονται κάθετα. (Οι εφαπτόμενες στα σημεία τομής είναι κάθετες) 51. Δίνεται ο κύκλος με εξίσωση x 2 +y 2 =1 (1) και το σημείο Α(2,0). Ένας κύκλος με κέντρο Κ(α,β) και ακτίνα R διέρχεται από το Α και τέμνει τον κύκλο (1) σε δύο αντιδιαμετρικά σημεία του (1). Να δειχθεί ότι α= Να βρεθούν οι εξισώσεις των κοινών εφαπτόμενων δύο κύκλων που ορίζονται από τις εξισώσεις : α) x 2 +y 2 =4, (x 6) 2 +y 2 =9 β) x 2 +y 2 =1, x 2 +(y 2) 2 = ι) Να αποδείξετε ότι οι κύκλοι C 1 : (x 3) 2 +(y+2) 2 =36 και C 2 : x 2 +(y 2) 2 = 1 εφάπτονται εσωτερικά και ιι) Να βρείτε την εξίσωση της κοινής εφαπτομένης τους 54. Δίνεται η εξίσωση x 2 +y 2 +2μx-4(μ+1)y+3μ+14=0. Δείξτε ότι το κέντρο του κύκλου κινείται σε δύο ημιευθείες. 55. Να βρεθεί ο γ.τ. των μέσων χορδών του κύκλου (x 4) 2 +y 2 =16 που διέρχονται από την αρχή των αξόνων. 56. Να βρεθεί ο γ.τ. των μέσων χορδών του κύκλου x 2 +y 2-2αx=0 που διέρχονται από την αρχή των αξόνων. 57. Δίνεται ο κύκλος χ 2 +ψ 2-2αχ=0, α>0. Μια ευθεία (ε) διέρχεται από το κέντρο του και είναι παράλληλη στην χ+2ψ=0. Η (ε) τέμνει τον κύκλο στα Α και Β. Να βρεθεί το Εμβαδόν του ΟΑΒ.

5 58. Δίνεται ο κύκλος C : x 2 +y 2 x 2=0 και η ευθεία (ε) : x+2y 3=0 ι) Να αποδείξετε ότι τέμνονται σε δύο σημεία Α και Β. ιι)να αποδείξετε ότι η εξίσωση : (x 2 +y 2 x 2) +α(x+2y 3)=0 για κάθε χ παριστάνει κύκλο C ο οποίος διέρχεται από τα Α και Β. ιιι) Για ποια τιμή του α ο κύκλος διέρχεται από την αρχή των αξόνων; ιν) Να αποδείξετε ότι των κέντρων των κύκλων C είναι μία ευθεία 59. Να βρεθεί η ευθεία (x-y+2)+μ(2x+y-5)=0 που ορίζει στον κύκλο C:(x 1) 2 +(y+2) 2 =4 χορδή μήκους **Να βρεθούν οι εφαπτόμενες του C : x 2 +y 2 2x 6y+9=0 που σχηματίζουν γωνία 45 με την (ε) x y 4= Να προσδιορισθεί η τιμή του μ, ώστε η χορδή που ορίζει η ευθεία ε:2x-y+3=0 στον κύκλο C : x 2 +y 2 2μx 2μy=0 να φαίνεται από την αρχή των αξόνων υπό ορθή γωνία. 62.Δίνεται ο κύκλος C : χ 2 +ψ 2 =ρ 2. Στο σημείο Α(0,-ρ) φέρνουμε την εφαπτομένη (ε). Θεωρούμε τις ε 1, ε 2 μεταβλητές εφαπτόμενες του κύκλου που είναι παράλληλες. Αν Μ, Ν τα κοινά σημεία της ε με τις ε 1, ε 2 να δειχθεί ότι d(a,n) d(a,m)=ρ ***Δίνονται ο κύκλος C : χ 2 +ψ 2 =36 και η ευθεία ε : ψ= 3 χ. Αν κύκλος C 1 εφάπτεται στην ευθεία ε, στον θετικό ημιάξονα Οχ, εσωτερικά στον κύκλο C και βρίσκεται στο θετικό μέρος των αξόνων. α) Να βρεθεί η εξίσωση του κύκλου C 1 β) Να βρεθούν οι εφαπτόμενες του C 1 που είναι κάθετες στην ευθεία 4χ-3ψ+5=0. 64.Δίνονται τα σταθερά σημεία Α,Β που απέχουν απόσταση (ΑΒ)=3 Να βρεθεί ο γ.τ. των σημείων Μ του επιπέδου για τα οποία ισχύει AM(AM 2AB) Δίνεται ο κύκλος C: x 2 + y 2 2x + 4y 19 = 0. Να βρείτε: Α. το κέντρο και την ακτίνα του κύκλου Β. την εξίσωση του κύκλου C 1, ο οποίος είναι ομόκεντρος με τον κύκλο C και εφάπτεται στην ευθεία (ε): 3x 4y + 24 = 0 66.Δίνεται η εξίσωση: x 2 + y 2 6x + 4y + κ = 0 με κ R. (1) Α. Να βρεθούν οι τιμές του κ R ώστε η παραπάνω εξίσωση να παριστάνει κύκλο C. Β. Να δειχθεί ότι αν η ακτίνα του κύκλου C είναι ρ =1, τότε κ =12. Γ. Να δειχθεί ότι το σημείο Μ(4,2) είναι εξωτερικό του κύκλου C που προκύπτει από (1) για κ = 12. Στη συνέχεια να βρεθούν οι εξισώσεις των εφαπτομένων στον κύκλο αυτόν, που διέρχονται από το Μ. 67.Θεωρούμε την εξίσωση x 2 + y 2 2λx + λ 2 5 = 0 (1). Να αποδείξετε ότι η (1) είναι εξίσωση κύκλου για κάθε λ R. Να βρεθεί η τιμή του λ ώστε ο κύκλος να εφάπτεται στην ευθεία ε: y=2x 7 Για λ=1 να βρείτε την άλλη εφαπτομένη του κύκλου που διέρχεται από το σημείο τομής της ε με τον χ χ. 68.Δίνεται η εξίσωση C: x 2 + y 2 2x 4λx + 4λ = 0 (1) Α. Για ποιες τιμές του λ η εξίσωση (1) παριστάνει κύκλο, του οποίου να προσδιοριστεί το κέντρο και η ακτίνα συναρτήσει του λ. Β. Ποιος ο γεωμετρικός τόπος των κέντρων των κύκλων (C) Γ. Να δείξετε ότι όλοι οι κύκλοι που ορίζονται από την (1) διέρχονται από σταθερό

6 σημείο Α. Δ. Έστω Β, Γ τα σημεία τομής της ευθείας (ε): y = 6x με τον κύκλο (c). E. Να προσδιορίσετε το λ R ώστε. 69.Δίνονται οι ευθείες ε 1 : λx + y = λ και ε 2 : x λy = 3, λ R. Α. Δείξτε ότι η κάθε ευθεία διέρχεται από ένα σταθερό σημείο τα οποία να βρείτε. Β. Να δείξετε ότι ο γεωμετρικός τόπος των σημείων τομής Μ(x, y) είναι κύκλος. Γ. Δίνεται το σημείο Δ(3, 5). Να βρεθούν οι εξισώσεις των εφαπτομένων του κύκλου που διέρχονται από το Δ, καθώς και το μήκος των εφαπτομένων τμημάτων. 70.Δίνεται η εξίσωση (x 2y 3) + κ(3x + y 2) = 0 (1) με παράμετρο κ και ο κύκλος με εξίσωση: C: x 2 + (y 1) 2 = 5. Α. Να δείξετε ότι πάντα η εξίσωση (1) είναι οικογένεια ευθειών, δηλαδή παριστάνει ευθεία για κάθε κ. Β. Να δείξετε ότι όλες οι ευθείες της οικογένειας (1) διέρχονται από σταθερό σημείο Α, το οποίο και να προσδιορίσετε. Γ. Να δείξετε ότι για κ = 0 η ευθεία που προκύπτει από την οικογένεια των ευθειών (1) είναι εφαπτομένη του κύκλου c. Δ. Να βρείτε εκείνη την εξίσωση της ευθείας από την οικογένεια των ευθειών (1), που διέρχεται από το κέντρο του κύκλου C. 71.Δίνεται η εξίσωση: x 2 + y 2 2κx + 4κy = 0 (1) με κ R {0}. Α. Να δείξετε ότι η (1) για κάθε κ 0 παριστά κύκλο που περνά από την αρχή των αξόνων, του οποίου να βρείτε την ακτίνα και το κέντρο. Β. Για κ 0, να βρείτε το γεωμετρικό τόπο των κέντρων των παραπάνω κύκλων. Γ. Δίνεται η ευθεία ε: 2x y 4 = 0, να βρείτε την τιμή του κ 0 για την οποία η ευθεία (ε) τέμνει τον κύκλο της σχέσης (1) σε δύο σημεία Α και Β τέτοια ώστε η χορδή ΑΒ να σχηματίζει με το σημείο Ο(0,0) ορθογώνιο τρίγωνο στο Ο(0,0) 72.Δίνεται η οικογένεια ευθειών (ε): (1 + 2λ)x + (1 λ)y + 3 = 0 (1) και ο κύκλος (c): x 2 + y 2 2x + 4y +1 = 0 Α. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου (c) στο σημείο του με τεταγμένη Ο. Β. Δείξτε ότι ο κύκλος (c) έχει ένα τουλάχιστον κοινό σημείο με κάθε ευθεία της οικογένειας που παριστάνει η (1). Γ. Βρείτε τις ευθείες της οικογένειας (1) που ορίζουν χορδή στον κύκλο με μήκος Α. Δίνεται η εξίσωση x 2 + y 2 + 6μx + 8λy = 0, όπου μ, λ πραγματικοί αριθμοί διάφοροι του μηδενός. Να δείξετε ότι, για κάθε τιμή των μ, λ, η παραπάνω εξίσωση παριστάνει κύκλο που διέρχεται από την αρχή των αξόνων Ο. Β. Έστω ότι για τους πραγματικούς αριθμούς μ, λ ισχύει η σχέση 3μ + 2λ = 0. α. Να δείξετε ότι, όλοι οι κύκλοι που ορίζονται από την εξίσωση x 2 + y 2 + 6μx + 8λy = 0 για τις διάφορες τιμές των μ και λ, έχουν τα κέντρα τους σε ευθεία που διέρχεται από την αρχή των αξόνων. β. Να βρείτε τα μ, λ έτσι, ώστε, αν Α, Β είναι τα σημεία τομής του αντίστοιχου κύκλου με την ευθεία x + y + 2 = 0, να ισχύει 0. γ. Για τις τιμές των μ, λ που βρήκατε στο ερώτημα β να υπολογίσετε το εμβαδόν του τριγώνου ΑΟΒ.

7 74.Δίνεται η εξίσωση x 2 + y 2 2xσυνθ 2yημθ 1=0, 0 θ 2π. Α. Να αποδείξετε ότι για κάθε θ η εξίσωση αυτή παριστάνει κύκλο, του οποίου να προσδιορίσετε το κέντρο και την ακτίνα. π Β. Αν θ, να βρείτε την εξίσωση της εφαπτομένης του κύκλου στο σημείο Μ(1,2). 2 Γ. Να αποδείξετε ότι για τις διάφορες τιμές του θ τα κέντρα των παραπάνω κύκλων βρίσκονται σε κύκλο με κέντρο Ο(0,0) και ακτίνα ρ = Δίνεται η εξίσωση x 2 + y 2 4x + 2y + 3 = 0 και το σημείο Μ(2,1). α. Να αποδείξετε ότι η εξίσωση αυτή παριστάνει κύκλο με κέντρο το σημείο Κ(2, 1) και ακτίνα ρ = 2. β. Να βρείτε τις εξισώσεις των εφαπτομένων του κύκλου που διέρχονται από το σημείο Μ(2,1). γ. Αν Α, Β είναι τα σημεία επαφής των παραπάνω εφαπτομένων με τον κύκλο, να βρείτε το εμβαδόν του τριγώνου ΜΑΒ. 76.Δίνεται η εξίσωση C : x 2 + y 2 + (ημθ )x (συνθ )y = 2 όπου θ. (1) α) Να αποδείξετε ότι η (1) παριστάνει κύκλο του οποίου να βρείτε το κέντρο και την ακτίνα. β) Να αποδείξετε ότι, όταν το θ μεταβάλλεται, τα κέντρα των κύκλων C κινούνται σε κύκλο του οποίου να βρείτε την εξίσωση. γ) Να βρείτε τις τιμές του θ [0,π ) αν είναι γνωστό ότι ο κύκλος C διέρχεται από το σημείο Μ(1,-1). δ) Έστω Κ το κέντρο του κύκλου C και Α, Β τα σημεία τομής του με την ευθεία ΟΚ (όπου Ο η αρχή των αξόνων). Να υπολογίσετε τις αποστάσεις (ΟΑ) και (ΟΒ) Δίνεται ο κύκλος x y 25 και το σημείο του A (3,4). 1. Να βρεθεί η εξίσωση της εφαπτομένης (ε) του κύκλου στο σημείο Α. 2. Αν Ε είναι το σημείο τομής της (ε) με τον άξονα yy, να βρείτε την εξίσωση της παραβολής με εστία το Ε και κορυφή την αρχή των αξόνων Ο. 78.Δίνονται τα διανύσματα u, v με u 1, v 2 0 και η γωνία των διανυσμάτων Να υπολογιστούν η ακτίνα και το κέντρο του κύκλου C : x y (u v 5)x 2u v y Να βρεθούν οι εξισώσεις των εφαπτομένων που άγονται από το σημείο A(2,3) προς τον κύκλo 79.Δίνεται ένα τρίγωνο με κορυφές Α(2λ 1, 3λ+2), Β(1,2) και Γ(2,3) όπου λ IR με λ 2. Α. Να αποδείξετε ότι το σημείο Α κινείται σε ευθεία, καθώς το λ μεταβάλλεται στο IR. Β. Εάν λ=1, να βρείτε: α. το εμβαδόν του τριγώνου ΑΒΓ β. την εξίσωση του κύκλου, που έχει κέντρο την κορυφή Α(1,5) και εφάπτεται στην ευθεία ΒΓ. 80.Δίνονται τα μη μηδενικά διανύσματα, τα οποία σχηματίζουν μεταξύ τους γωνία φ =, και 3 η εξίσωση: x 2 + y 2 2 x y + = 0 (1) Α Να αποδείξετε ότι: α. 2. β. Η εξίσωση (1) παριστάνει κύκλο με ακτίνα ρ = 1 2 2

8 Β. Αν Κ(1, 1) είναι το κέντρο του παραπάνω κύκλου, να αποδείξετε ότι: α. = 1, = 2 και ρ = 1. β. Ο κύκλος εφάπτεται στην ευθεία 3x + 4y 12 = 0 γ. Η προβολή του στο είναι ίση με το. 81. Δίνονται τα διανύσματα, με = 2, x 2 + y 2 x + 2 y 10 = 0 (1) Α. Να αποδείξετε ότι = 2 και 2 =2., και η εξίσωση: 3 Β. Να αποδείξετε ότι η εξίσωση (1) παριστάνει κύκλο C για κάθε τιμή του και να βρείτε το κέντρο και την ακτίνα του κύκλου. Γ. Να βρείτε το γεωμετρικό τόπο των κέντρων των κύκλων C. Δ. Να υπολογίσετε την τιμή του ώστε η ευθεία (ε) με εξίσωση: 2x + y 10 = 0 να εφάπτεται στον κύκλο C. Ε. Να αποδείξετε ότι όλοι οι κύκλοι C διέρχονται από δύο σταθερά σημεία 82.Δίνονται τα σημεία A( 1, 2), B( 3, 1), Γ(3, 2) και Δ(4, 1) ενός ορθοκανονικού συστήματος αξόνων. A. Να αναλύσετε το διάνυσμα σε δύο κάθετες μεταξύ τους συνιστώσες από τις οποίες η μία να έχει τη διεύθυνση του διανύσματος AB. Β. Να δείξετε ότι η γραμμή που γράφουν τα σημεία Μ(x, y) του επιπέδου για τα οποία ισχύει AM M = 0, είναι κύκλος του οποίου να βρείτε το κέντρο και την ακτίνα. Γ. Να βρείτε την εξίσωση της εφαπτομένης του κύκλου του προηγούμενου ερωτήματος που είναι κάθετη στο διάνυσμα u προβ 83. ίνονται οι παράλληλες ευθείες ε 1 : 3x+ 4y +6 = 0 και ε 2 : 3x + 4y +16=0. Α. Να βρείτε την απόσταση των παράλληλων ευθειών ε 1 και ε 2. Β. Να βρείτε την εξίσωση της µεσοπαράλληλης ευθείας των ε 1 και ε 2. Γ. Να βρείτε την εξίσωση του κύκλου που έχει κέντρο το σηµείο τοµής της ευθείας ε 1 µε τον άξονα x x και αποκόπτει από την ευθεία ε 2 χορδή µήκους d = Δίνεται η εξίσωση 2 x 2 y 5λ 10 x 3λy 2λ 9 0, η οποία παριστάνει κύκλο για κάθε R. A) Να βρείτε τον γεωμετρικό τόπο των κέντρων των κύκλων για κάθε R B) Να βρεθεί ο κύκλος C λ, που έχει το κέντρο του στον άξονα x x. Γ) Αν 0 M 3, 2, να βρείτε την εξίσωση της χορδής του κύκλου C λ που έχει μέσον το σημείο 85. Δίνεται το σημείο Α(2,0) και ο κύκλος x 2 + y 2 =1. Α. Να αποδειχτεί ότι οι εφαπτόμενες του κύκλου που διέρχονται από το Α(2,0) είναι: (ε 1 ): x 3 y + 2= 0 και (ε 2 ): x+ 3 y +2= 0. Β. Να βρεθεί η γωνία των εφαπτομένων αυτών. Γ. Να αποδείξετε ότι οι ευθείες αυτές είναι κοινές εφαπτόμενες του εν λόγω κύκλου και του κύκλου: (x 3) 2 + y 2 =25/4 Δ. Να εξεταστεί αν υπάρχει και άλλη κοινή εφαπτόμενη

Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100

Ασκήσεις Κύκλος. 6. Για ποια τιμή του λ το σημείο Μ(2λ + 1, λ) ανήκει στον κύκλο με εξίσωση (x 3) 2 + (y + 4) 2 = 100 Ασκήσεις Κύκλος 1. Να βρείτε το κέντρο και την ακτίνα του κύκλου (x + 5) + (y 5) =. Να βρείτε το κέντρο και την ακτίνα του κύκλου x + y 8x + 4y + 11 = 0 3. Ποια πρέπει να είναι η ακτίνα του κύκλου (x 1)

Διαβάστε περισσότερα

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η

201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ Α. ΘΕΩΡΙΑ. i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η 201 5 ΘΕΜΑΤΑ Σ ΤΟΝ ΚΥ ΚΛΟ - 1-1. Να αποδείξετε ότι: Α. ΘΕΩΡΙΑ i. η εξίσωση του κύκλου με κέντρο Ο(0,0) και ακτίνα ρ είναι η C : x 2 y 2 ρ 2. Να αποδείξετε ότι η εφαπτομένη του κύκλου C: χ 2 + ψ 2 = ρ 2

Διαβάστε περισσότερα

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα

φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα 1. Δίνεται ο κύκλος + y ρ, όπου ρ>0. Από το σημείο A( - ρ,0) του C C :x = φέρουμε μια οποιαδήποτε χορδή ΑΒ του κύκλου και την προεκτείνουμε κατά τμήμα BM = AB. Να αποδείξετε ότι το Μ κινείται πάνω σε ένα

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος

Μαθηµατικά Κατεύθυνσης Β Λυκείου Κύκλος. Ασκήσεις Κύκλος Ασκήσεις Κύκλος 1. Να βρείτε αν οι παρακάτω εξισώσεις παριστάνουν κύκλο. Έπειτα να βρείτε το κέντρο και την ακτίνα τους. i) x 2 + y 2 2x 4y + 1 = 0 (Απ.: (x 1) 2 + (y 2) 2 = 4) x 2 + y 2 2x + 4y + 5 =

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΛΛΕΙΨΗ EΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΕΛΛΕΙΨΗΣ 1. Να βρείτε την εξίσωση της έλλειψης όταν: α) Έχει εστία Ε (-8,0) και μεγάλο άξονα 0 β) Έχει εστία Ε(0,3) και μεγάλο άξονα 8 γ) Έχει εστία Ε(4,0) και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΑΒΟΛΗ ΕΞΙΣΩΣΗ ΠΑΡΑΒΟΛΗΣ 8. Να βρεθεί η εξίσωση της παραβολής με κορυφή το (0, 0) στις παρακάτω περιπτώσεις: α) είναι συμμετρική ως προς το θετικό ημιάξονα Οx και έχει παράμετρο p = 5 β)

Διαβάστε περισσότερα

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1.

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1. Ασκήσεις στην ευθεία 1. Να βρείτε τα σηµεία τοµής των γραµµών µε εξισώσεις : α) 7x-11y+1=0, x+y-=0 β) y-3x-=0, x +y =4 γ) x +y =α, 3x+y+α=0. Θεωρούµε την γραµµή µε εξίσωση x +y -x+y-5=0. Βρείτε τα σηµεία

Διαβάστε περισσότερα

Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός

Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός ΕΥΘΕΙΑ Να προσέχεις ότι: Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός Ax+By+Γ=0, με κάποιο Η εξίσωση της ευθείας που διέρχεται από ένα σημείο Α(x 0,y 0 ) και έχει συντελεστή

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ

ΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ 1 ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΚΥΚΛΟΣ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 1. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά να κυκλώσετε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 1. Να σχεδιάσετε την καμπύλη που παριστάνει η εξίσωση x y x 2 y. x y 2. Να βρεθεί η εξίσωση της ευθείας, η οποία τέμνει : i) τον άξονα χ'χ σε σημείο με τετμημένη

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν: ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΚΑΤΕΥΘΥΝΣΗΣ 1. Για τα διανύσματα α, β δίνεται ότι α =1, β = και u α β, v α - β.να υπολογίσετε: π (α,β). Έστω τα διανύσματα α. το εσωτερικό γινόμενο α β β. τα μέτρα u, v των διανυσμάτων

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

Συνδυαστικά θέματα στον κύκλο

Συνδυαστικά θέματα στον κύκλο Συνδυαστικά θέματα στον κύκλο 1. Δίνεται ο κύκλος C που έχει κέντρο την αρχή των αξόνων και διέρχεται από το σημείο Α(-3,4).Να βρείτε : i) εξίσωση του κύκλου ii) την εφαπτομένη του κύκλου στο σημείο Α,

Διαβάστε περισσότερα

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8. ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0

ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΚΥΚΛΟΣ ΠΑΡΑΒΟΛΗ ΕΛΛΕΙΨΗ. Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ) (χ-χ 0 ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ ΚΥΚΟ Εξίσωση Κέντρο Ακτίνα Εφαπτομένη στο Α( x ), y + y = r χ +ψ =ρ Κ(0,0) ρ x x y (χ-χ 0 ) +(ψ-ψ 0 ) =ρ Κ(χ 0,ψ 0 ) ρ (χ-χ 0 ) (χ -χ 0 )+(ψ-ψ 0 ) (ψ-ψ )=ρ Παρατήρηση : Η εξίσωση : χ +ψ

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9

ΘΕΜΑΤΑ. Μονάδες 8 Β. η εξίσωση της μεσοκάθετης της ΑΓ Μονάδες 9 ΓΕΛ ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β 331 Α. α. Τι ονομάζουμε εσωτερικό γινόμενο των μη μηδενικών διανυσμάτων α, β. Μονάδες 5 β. Εάν ορίζονται οι συντελεστές διεύθυνσης των διανυσμάτων α, β αντιστοίχως να δείξετε ότι:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2

ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2 ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 4. α) Να βρεθεί η απόσταση του σημείου

Διαβάστε περισσότερα

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να βρείτε τον συντελεστή διεύθυνσης μιας ευθείας ε, που σχηματίζει με τον άξονα x x γωνία: π 3 α) ω = β) ω = γ) ω = π 3. Να βρείτε τη γωνία ω που σχηματίζει με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (16) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα.

Διαβάστε περισσότερα

ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ΣΤΟΝ ΚΥΚΛΟ Μαθηματικά θετικού προσανατολισμού β λυκείου

ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ΣΤΟΝ ΚΥΚΛΟ Μαθηματικά θετικού προσανατολισμού β λυκείου ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ΣΤΟΝ ΚΥΚΛΟ Μαθηματικά θετικού προσανατολισμού β λυκείου 016-017 Σε αυτή την προσπάθεια πρωτοστάτησε ο Βασίλης Μαυροφρύδης και έδωσαν το παρόν αξιόλογοι συνάδελφοι, προτείνοντας και λύνοντας

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7) ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ

ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ Στο ορθογώνιο σύστημα αξόνων Οxy θεωρούμε τα σημεία Α, Β, τα οποία έχουν τετμημένες τις ρίζες της εξίσωσης x - (4λ+6μ)x - 005 = 0 και τεταγμένες τις ρίζες της εξίσωσης y + ( 5λ + μ)y

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v,

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v, ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 1. Δίνονται τα διανύσματα a, για τα οποία ισχύουν : 4, 5 και α)να αποδείξετε ότι 10 β)να βρείτε τη γωνία των και. 5. 8 γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα

Διαβάστε περισσότερα

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ Ε4 ΘΕΜΑ 1 Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο δ = ( β, α). (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ 1. Η απόσταση του 0(0,0) από την x + y + = 0 είναι.. Η εξίσωση y = xy παριστάνει

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητής : Νικόλαος. Κατσίπης 19 Απριλίου 2013 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας εύχοµαι καλό διάβασµα και...

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΟΡΙΣΜΟΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ 1. Να υπολογιστεί το εσωτερικό γινόμενο a δύο διανυσμάτων a και αν: ι) a a 5, 7,(, ) 5, ιι) a 5,,( a, ). 6 6. Το διάνυσμα

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004

Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-2004 Θέµατα Εξετάσεων Β Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 1999-004 Περιεχόµενα 1 Θέµατα 1999.......................................... 3 Θέµατα 000..........................................

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο Α) Συµπληρώστε τα κενά στις παρακάτω προτάσεις: 1) Ο κύκλος µε κέντρο Κ(α, β) και ακτίνα ρ > έχει εξίσωση... ) Η εξίσωση του κύκλου µε κέντρο στην αρχή

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία

Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία 1 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Εξίσωση Γραμμής Μια εξίσωση με δύο αγνώστους, λέγεται εξίσωση μιας γραμμής C, όταν οι συντεταγμένες των σημείων της C, και μόνο αυτές, την επαληθεύουν.

Διαβάστε περισσότερα

Μαθηματικά προσαματολισμού Β Λσκείοσ

Μαθηματικά προσαματολισμού Β Λσκείοσ Μαθηματικά προσαματολισμού Β Λσκείοσ Ο κύκλος Στέλιος Μιταήλογλοσ wwwaskisopolisgr Κύκλος Εξίσωση κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με M x, y του κέντρο το σημείο 0

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος

Διαβάστε περισσότερα

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ)

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΥΘΕΙΑ Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) 1. Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία με τον

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη

Διαβάστε περισσότερα

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a=

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= 32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= ( xy, ). Να ορίσετε τις έννοιες α)μέτρο του διανύσματος και β) συντελεστής διεύθυνσης του διανύσματος Α2) Να γράψετε τους τύπους

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3 Ερωτήσεις ανάπτυξης 1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = 2π 3 γ) ω = π 2. * Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα

Διαβάστε περισσότερα

Μαθηματικά Κατεύθυνσης (Προσανατολισμού)

Μαθηματικά Κατεύθυνσης (Προσανατολισμού) Θέματα ενδοσχολικών εξετάσεων στα Μαθηματικά Προσανατολισμού Β Λυκείου Σχ έτος 03-04, Ν Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μαθηματικά Κατεύθυνσης (Προσανατολισμού) ΣΧΟΛΙΚΟ

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Ζήτηµα ο Α.. Να γράψετε την εξίσωση του κύκλου που έχει κέντρο Κ(x 0,y 0 ) και ακτίνα ρ. (Μονάδες ) Α.. Πότε η εξίσωση x + y + Ax + By + Γ 0

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ. Ε. i) Να βρείτε τη σχετική θέση των τροχιών του 4ου και του 12ου μαθητή.

ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ. Ε. i) Να βρείτε τη σχετική θέση των τροχιών του 4ου και του 12ου μαθητή. ΑΣΚΗΣΗ ΣΤΟΝ ΚΥΚΛΟ Θεωρούμε μια ομάδα 5 μαθητών Κάθε μαθητής χαρακτηρίζεται από έναν αριθμό μ =,,,,5 και κινείται στο καρτεσιανό επίπεδο Ο xy διαγράφοντας τροχιά με εξίσωση: Cμ x y μx μy μ μ : + + + 6 6

Διαβάστε περισσότερα

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου

3.1 Ο ΚΥΚΛΟΣ. 1. Εξίσωση κύκλου (Ο, ρ) 2. Παραµετρικές εξισώσεις κύκλου. 3. Εφαπτοµένη κύκλου 3. Ο ΚΥΚΛΟΣ ΘΕΩΡΙΑ. Εξίσωση κύκλου (Ο, ρ) + y ρ. Παραµετρικές εξισώσεις κύκλου ρσυνφ και y ρηµφ 3. Εφαπτοµένη κύκλου + yy ρ 4. Εξίσωση κύκλου µε κέντρο το σηµείο Κ( o, y ο ) και ακτίνα ρ ( o ) + (y y ο

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ Το σύνολο C των μιγαδικών αριθμών είναι ένα υπερσύνολο του R, του συνόλου των πραγματικών αριθμών, στο οποίο ισχύουν: Επεκτείνονται οι πράξεις της πρόσθεσης του πολλαπλασιασμού έτσι ώστε, να έχουν τις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΙΓΑΔΙΚΩΝ ΑΣΚΗΣΗ 1 Να αποδειχθεί ότι οι γεωμετρικές εικόνες των μιγαδικών ριζών της εξίσωσης (συν θ)z (4συνθ)z + (5 συν θ) = 0 με θ π, π κινούνται σε υπερβολή, της οποίας να ευρεθούν τα στοιχεί ΑΣΚΗΣΗ Στο μιγαδικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Επανάληψη Επιμέλεια Αυγερινός Βασίλης ΚΕΦΑΛΑΙΟ ο ΔΙΑΝΥΣΜΑΤΑ SOS ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Θέμα ο Να γράψετε και να αποδείξετε την σχέση της διανυσματικής ακτίνας του μέσου ενός τμήματος

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός εφαπτομένης καμπύλης Αν μία συνάρτηση f είναι παραγωγίσιμη στο x, τότε ορίζουμε ως εφαπτομένη της γραφικής παράστασης της f στο σημείο Α(x, f(x )) την

Διαβάστε περισσότερα

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688. Ε. ΛΙΑΤΣΟΣ Μαθηµατικός 1 1 ο Αχαρνών 197 Αγ Νικόλαος 10865196 ο Αγγ Σικελιανού 4 Περισσός 10718688 Ε ΛΙΑΤΣΟΣ Μαθηµατικός 1 1 Α ίνονται τα διανύσµατα á, â, x, y 1 για τα οποία ισχύουν: x+ â = y+ á και 11 y+ 11 â = á x Να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ : ΒΑΣΙΛΗΣ ΚΡΑΝΙΑΣ - ΒΑΣΙΛΟΠΟΥΛΟΣ ΔΗΜΗΤΡΗΣ. Έστω σημεία Α,Β,Γ του επιπέδου και Ο σημείο αναφοράς.αν ισχύει 2, 2

ΕΠΙΜΕΛΕΙΑ : ΒΑΣΙΛΗΣ ΚΡΑΝΙΑΣ - ΒΑΣΙΛΟΠΟΥΛΟΣ ΔΗΜΗΤΡΗΣ. Έστω σημεία Α,Β,Γ του επιπέδου και Ο σημείο αναφοράς.αν ισχύει 2, 2 Άσκηση 1 η Έστω σημεία Α,Β,Γ του επιπέδου και Ο σημείο αναφοράς.αν ισχύει,, 1 και 4 5 0. i. Να δείξετε ότι τα σημεία Α,Β,Γ είναι συνευθειακά. ii. iii. Να υπολογίσετε την τιμή της παράστασης Να βρεθεί το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

Θέματα. , για. a 0. (8 μονάδες) Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις:

Θέματα. , για. a 0. (8 μονάδες)  Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: Θέματα Θέμα 1 Α. Να δώσετε τον ορισμό της παραβολής. (5 μονάδες) Β. Να αποδείξετε ότι a v a, για a 0. (8 μονάδες) Γ. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ισχύει Σ Λ ii)

Διαβάστε περισσότερα

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13,

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13, 1 Η Ευθεία στο Επίπεδο Η Ευθεία στο Επίπεδο 1 Να βρεθεί το είδος των γωνιών του τριγώνου που οι πλευρές του κείνται στις ευθείες : 4χ-3ψ+3=0, 3χ+4ψ+4=0, χ-7ψ+8=0. (90, 45, 45 ) 2 Να βρεθεί το μήκος των

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50

Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης. Διανύσματα ΚΑΤΗΓΟΡΙΑ 8. Εσωτερικό γινόµενο διανυσµάτων. Ασκήσεις προς λύση 1-50 Μαθηµατικά Β Λυκείου Θετικής - τεχνολογικής κατεύθυνσης Διανύσματα Εσωτερικό γινόµενο διανυσµάτων. ΚΑΤΗΓΟΡΙΑ 8 Ασκήσεις προς λύση 1-50 1. Θεωρούμε τα σημεία Α(1,2), Β(4,1). Να βρείτε σημείο Μ του άξονα

Διαβάστε περισσότερα

Ερωτήσεις σωστού-λάθους

Ερωτήσεις σωστού-λάθους ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Α ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) ΚΕΦ ο : Μιγαδικοί Αριθμοί Φυλλάδιο ο Κεφ..: Η Έννοια του Μιγαδικού Αριθμού Κεφ..: Πράξεις στο Σύνολο C των Mιγαδικών Κεφ..: Πράξεις στο Σύνολο

Διαβάστε περισσότερα

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001

Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 2001 Μαθηµατικά Θετικής & Τεχν/κής Κατεύθυνσης Β Λυκείου 00 Ζήτηµα ο Α.. Έστω α, β, γ ακέραιοι αριθµοί. Να δείξετε ότι ισχύουν οι επόµενες ιδιότητες: α. Αν α β, τότε α λβ για κάθε ακέραιο λ. β. Αν α β και α

Διαβάστε περισσότερα