Κατατάξεις πτυχιούχων ΑΕΙ και ΤΕΙ στο Τμήμα ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ για το έτος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κατατάξεις πτυχιούχων ΑΕΙ και ΤΕΙ στο Τμήμα ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ για το έτος 2013-14"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Πανεπιστημιούπολη, Βούτες Ηρακλείου Κρήτης, (Τ.Θ. 2208) Τηλ.: (2810) , , , , , Fax: (2810) , Ιστοσελίδα: & Κατατάξεις πτυχιούχων ΑΕΙ και ΤΕΙ στο Τμήμα ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ για το έτος Σύμφωνα με το νέο ΦΕΚ 3185/ , από το ακαδημαϊκό έτος , η επιλογή για κατάταξη πτυχιούχων στα Πανεπιστήμια και ΤΕΙ θα γίνεται αποκλειστικά με κατατακτήριες εξετάσεις με θέματα ανάπτυξης σε τρία μαθήματα. Η κατάταξη αφορά σε πτυχιούχους Πανεπιστημίου, Τ.Ε.Ι. η ισότιμων προς αυτά, Α.Σ.ΠΑΙ.Τ.Ε, της Ελλάδος ή του εξωτερικού (αναγνωρισμένα από τον Δ.Ο.Α.Τ.Α.Π.) και ο αριθμός των κατατάξεων ορίζεται σε ποσοστό 10% επί του αριθμού των εισακτέων σε κάθε τμήμα Πανεπιστημίου. Ο αριθμός των κατατάξεων για το Τμήμα Μαθηματικών & Εφαρμοσμένων Μαθηματικών του Πανεπιστημίου Κρήτης για το ανέρχεται στο 32 (τριάντα δύο). Η σειρά επιτυχίας των υποψηφίων καθορίζεται από το άθροισμα της βαθμολογίας όλων των εξεταζόμενων μαθημάτων. Στη σειρά αυτή περιλαμβάνονται όσοι έχουν συγκεντρώσει συνολική βαθμολογία τουλάχιστον τριάντα (30) μονάδες και με την προϋπόθεση ότι έχουν συγκεντρώσει, δέκα (10) μονάδες τουλάχιστον σε καθένα από τα τρία (3) μαθήματα. Η κατάταξη γίνεται κατά φθίνουσα σειρά βαθμολογίας μέχρι να καλυφθεί το προβλεπόμενο ποσοστό. Αν υπάρχουν περισσότεροι υποψήφιοι με την ίδια συνολική βαθμολογία, για την αποφυγή της υπέρβασης, λαμβάνεται υπόψη η κατοχή πτυχίου Τμήματος με συναφή μαθήματα με το Τμήμα κατάταξης, όπως αυτά ορίζονται από τα αντίστοιχα προγράμματα σπουδών. Αν και ο αριθμός των συναφών μαθημάτων είναι ίδιος μεταξύ των ισοβαθμούντων υποψηφίων, γίνεται κλήρωση μεταξύ των ισοδύναμων υποψηφίων. Δεν επιτρέπεται επιλογή υποψηφίων που ισοβαθμούν με τον τελευταίο κατατασσόμενο στο Τμήμα υποδοχής ως υπεράριθμων. Το εξάμηνο κατάταξης πτυχιούχων στο Τμήμα ορίζεται από τα αρμόδια όργανα της Σχολής και δεν μπορεί να είναι μεγαλύτερο του 5ου εξαμήνου για το Τμήμα Μαθηματικών & Εφαρμοσμένων Μαθηματικών του Π.Κ. που είναι τετραετούς φοίτησης. Με απόφαση Με απόφαση της Συνέλευσης του Τμήματος του Πανεπιστημίου ή του Τ.Ε.Ι. ή της Α.Σ.ΠΑΙ.Τ.Ε., κατά περίπτωση οι κατατασσόμενοι απαλλάσσονται από την εξέταση μαθημάτων ή ασκήσεων του προγράμματος σπουδών του Τμήματος υποδοχής που διδάχθηκαν πλήρως ή επαρκώς στο Τμήμα ή τη Σχολή προέλευσης. Με την ίδια απόφαση, οι κατατασσόμενοι υποχρεώνονται να εξεταστούν σε μαθήματα ή ασκήσεις, τα οποία

2 σύμφωνα με το πρόγραμμα σπουδών κρίνεται ότι δεν διδάχθηκαν πλήρως ή επαρκώς στο Τμήμα ή τη Σχολή προέλευσης. Σε κάθε περίπτωση οι κατατασσόμενοι απαλλάσσονται από την εξέταση των μαθημάτων στα οποία εξετάστηκαν για την κατάταξή τους, εφόσον τα μαθήματα αυτά αντιστοιχούν σε μαθήματα του Προγράμματος σπουδών του Τμήματος υποδοχής. Δικαιολογητικά Χρόνος διενέργειας εξετάσεων. 1. Η αίτηση και τα δικαιολογητικά των πτυχιούχων που επιθυμούν να καταταγούν στα Τμήματα της Τριτοβάθμιας Εκπαίδευσης υποβάλλονται στη Γραμματεία του Τμήματος (υπόψιν: κ. Αριάδνης Αρχοντάκη) κατά το χρονικό διάστημα 13 έως 23 Ιανουαρίου ειδικά για το τρέχον ακαδημαϊκό έτος. Αιτήσεις και δικαιολογητικά που έχουν υποβληθεί στα Τμήματα των Πανεπιστημίων, των Τ.Ε.Ι ή στην Α.Σ.ΠΑΙ.Τ.Ε. πριν από την προαναφερόμενη ημερομηνία, θεωρούνται ότι έχουν υποβληθεί εμπροθέσμως και δεν απαιτείται επανυποβολή τους. Διεύθυνση για αποστολή της αίτησης: Πανεπιστήμιο Κρήτης Τμήμα Μαθηματικών & Εφαρμοσμένων Μαθηματικών Γραμματεία Τμήματος, Γραφείο Α323 Πανεπιστημιούπολη, Βούτες Ηρακλείου Κρήτης Τηλ. Επικοινωνίας: , 2. Τα δικαιολογητικά αυτά είναι τα εξής: α) Αίτηση του ενδιαφερομένου (Word, PDF ). β) Αντίγραφο πτυχίου ή πιστοποιητικό ολοκλήρωσης σπουδών. Προκειμένου για πτυχιούχους εξωτερικού συνυποβάλλεται και βεβαίωση ισοτιμίας του τίτλου σπουδών τους από τον Διεπιστημονικό Οργανισμό Αναγνώρισης Τίτλων Ακαδημαϊκών και Πληροφόρησης (Δ.Ο.Α.Τ.Α.Π.) ή από το όργανο που έχει την αρμοδιότητα αναγνώρισης του τίτλου σπουδών. 3. Ειδικά για το τρέχον ακαδημαϊκό έτος οι εξετάσεις θα διενεργηθούν από 19/2/2014 έως 28/2/ Το πρόγραμμα εξετάσεων ανακοινώνεται από το Τμήμα υποδοχής του Πανεπιστημίου τουλάχιστον οκτώ (8) ημέρες πριν την έναρξη εξέτασης του πρώτου μαθήματος. Όσον αφορά στο Τμήμα Μαθηματικών & Εφαρμοσμένων Μαθηματικών του Π.Κ., το σχετικό πρόγραμμα δεν έχει ακόμα οριστικοποιηθεί. Σύντομα θα ανακοινωθεί το πρόγραμμα. Η αίτηση και η ύλη των τριών μαθημάτων στα οποία θα εξετασθούν οι υποψήφιοι προς κατάταξη επισυνάπτονται παρακάτω.

3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Πανεπιστημιούπολη, Βούτες Ηρακλείου Κρήτης, (Τ.Θ. 2208) Τηλ.: (2810) , , , , , Fax: (2810) , Ιστοσελίδα: & Προς τη Γραμματεία του Τμήματος Μαθηματικών & Εφαρμοσμένων Μαθηματικών Α.Π.. Ημερομηνία Α Ι Τ Η Σ Η Γ Ι Α Κ Α Τ Α Τ Α Κ Τ Η Ρ Ι Ε Σ Σ Τ Η Ν Κ Α Τ Ε Υ Θ Υ Ν Σ Η Μ Α Θ Η Μ Α Τ Ι Κ Α ή Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Α Μ Α Θ Η Μ Α Τ Ι Κ Α (υπογραμμίστε την επιλογή σας) Του/της... Αρ. Δελτίου Ταυτότητας. Δ/νση κατοικίας... Τηλ.. Παρακαλώ όπως γίνει δεκτή η αίτησή μου για κατατακτήριες εξετάσεις στο.... έτος Συνημμένα υποβάλλω τα ακόλουθα: Α) Αντίγραφο του πτυχίου μου ή πιστοποιητικό ολοκλήρωσης σπουδών... Πανεπιστημίου. Προκειμένου για πτυχιούχους εξωτερικού συνυποβάλλεται και βεβαίωση ισοτιμίας του τίτλου σπουδών τους από τον Διεπιστημονικό Οργανισμό Αναγνώρισης Τίτλων Ακαδημαϊκών και Πληροφόρησης (Δ.Ο.Α.Τ.Α.Π.) ή από το όργανο που έχει την αρμοδιότητα αναγνώρισης του τίτλου σπουδών. Ο/H Αιτών / ούσα Ηράκλειο,... /2014

4 Ύλη κατατακτηρίων εξετάσεων Η Γενική Συνέλευση του Τµήµατος Μαθηµατικών στην 645 η / συνεδρίασή της αποφάσισε ότι στο εξής, στις εξετάσεις για κατάταξη πτυχιούχων, θα εξετάζονται τα παρακάτω µαθήµατα, ανάλογα µε το εξάµηνο στο οποίο πρόκειται να γίνει η κατάταξη. 1 ο εξάµηνο Αναλυτική Γεωµετρία: Η ύλη που περιλαµβάνεται στο σχολικό βιβλίο της Β Λυκείου, στα Κεφάλαια: 1. ιανύσµατα 2. Η ευθεία στο επίπεδο 3. Κωνικές τοµές Απειροστικός Λογισµός : Η ύλη που περιλαµβάνεται στο σχολικό βιβλίο της Γ Λυκείου, Μέρος Β, στα Κεφάλαια: 1. Όριο συνέχεια συνάρτησης 2. ιαφορικός Λογισµός 3. Ολοκληρωτικός Λογισµός Θεωρία Αριθµών Μιγαδικοί Αριθµοί : Η ύλη που περιλαµβάνεται στα σχολικά βιβλία της Β Λυκείου, στο Κεφάλαιο 4. Θεωρία Αριθµών και στο βιβλίο της Γ Λυκείου, Μέρος Α, στο Κεφάλαιο 2. Μιγαδικοί Αριθµοί Η επιτυχία στις Κατατακτήριες Εξετάσεις σε αυτά τα µαθήµατα δεν συνεπάγεται την αναγνώριση µαθηµάτων του Προγράµµατος Σπουδών µε το ίδιο ή παρόµοιο όνοµα. 3 ο εξάµηνο 5 ο εξάµηνο ΜΑΘ-1113 Επίπεδο και Χώρος ΜΑΘ-1121 Απειροστικός Λογισµός ΙΙ ΜΑΘ-1122 Γραµµική Άλγεβρα Ι ΜΑΘ-1211 Ανάλυση Ι ΜΑΘ-1222 Άλγεβρα ΜΑΘ-1216 Θεωρία Πιθανοτήτων Ι Η ύλη των µαθηµάτων που εξετάζονται για το 3 ο και 5 ο εξάµηνο είναι η αναφερόµενη στον Οδηγό Σπουδών. Η επιτυχία στις Κατατακτήριες Εξετάσεις σε αυτά τα µαθήµατα συνεπάγεται την αναγνώριση των αντίστοιχων µαθηµάτων του Προγράµµατος Σπουδών. εν θα γίνονται εξετάσεις για κατάταξη στο 7 ο εξάµηνο.

5 ΥΛΗ ΚΑΤΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΕΜ Λόγω αλλαγής του Προγράµµατος Σπουδών, του Τµήµατος Εφαρµοσµένων Μαθηµατικών, αποφασίσθηκε οι απόφοιτοι άλλων Τµηµάτων για να εισαχθούν στο ΤΕΜ να επιτύχουν στις κατατακτήριες εξετάσεις των παρακάτω µαθηµάτων : Α! ΕΤΟΣ ΣΠΟΥ ΩΝ : Γραπτές εξετάσεις στα παρακάτω µαθήµατα : 1. Απειροστικός Λογισµός Ι Ύλη : Ακολουθίες, Συναρτήσεις, Όρια συναρτήσεων, Συνέχεια, Παραγώγιση, Εφαρµογές της παραγώγισης, Παράγωγοι ανώτερης τάξης, υναµοσειρές, Ορισµένο ολοκλήρωµα συνεχώς συναρτήσεων, Αριθµητική ολοκλήρωση, Αόριστο ολοκλήρωµα, Τεχνικές ολοκλήρωσης, Εφαρµογές της ολοκλήρωσης, Γενικευµένα ολοκληρώµατα. 2. Απειροστικός Λογισµός ΙΙ Ύλη : Καµπύλες, Συναρτήσεις πολλών µεταβλητών, Μερικές παράγωγοι, Μερικές παράγωγοι ανώτερης τάξης, Μέγιστα και ελάχιστα συναρτήσεων πολλών µεταβλητών, Πεπλεγµένες συναρτήσεις, ιπλά ολοκληρώµατα, Τριπλά ολοκληρώµατα. 3. Γραµµική Άλγεβρα και Αναλυτική Γεωµετρία Ύλη : Αναλυτική γεωµετρία στο επίπεδο. Ευθύγραµµο τµήµα, άλγεβρα διανυσµάτων, γραµµική εξάρτηση. Εσωτερικό γινόµενο, εξισώσεις ευθείας, σχέσεις ευθειών µεταξύ τους. Εξίσωση περιφερείας κύκλου, σχέση περιφέρειας και ευθείας. Αλλαγές αξόνων (µεταφορά, στροφή). Πολικές συντεταγµένες. Έλλειψη, υπερβολή, παραβολή. Η γενική εξίσωση β! βαθµού. Αναλυτική Γεωµετρία στο χώρο. Άλγεβρα διανυσµάτων στο χώρο. Εσωτερικό γινόµενο. Μικτό γινόµενο. Εξίσωση επιπέδου, ευθείας. Επιφάνεια β! βαθµού, ελλειψοειδής, παραβολοειδές, υπερβολοειδές. Κώνοι, επιφάνειες εκ περιστροφής. Γραµµική Άλγεβρα. Συστήµατα γραµµικών εξισώσεων. Σύνδεση µε Αναλυτική Γεωµετρία. Γεωµετρική περιγραφή στο επίπεδο και στο χώρο. ιανύσµατα (n-άδες πραγµατικών αριθµών). Γραµµικοί συνδυασµοί. Επίλυση συστήµατος µε απαλοιφή Gauss και ανάδροµη αντικατάσταση. Πίνακες. Πρόσθεση και πολλαπλασιασµός πινάκων. Ιδιότητες πράξεων. Έκφραση της απαλοιφής Gauss ως παραγοντοποίηση πινάκων. Εναλλαγές γραµµών, πίνακες µεταθέσεων. Αντίστροφοι πίνακες, διαδικασία Gauss-Jordan. Ανάστροφοι πίνακες. Γραµµικοί υπόχωροι του (n) Χώρος στηλών και µηδενόχωρος ενός πίνακα. Σύστηµα m εξισώσεων µε n αγνώστους. Πίνακες σε κλιµακωτή µορφή. Λύσεις οµογενούς και µη οµογενούς συστήµατος. Γραµµική εξάρτηση και ανεξαρτησία. Παράγον υποσύνολο ενός υποχώρου. Βάση ενός υποχώρου. ιάσταση ενός υποχώρου. Οι τέσσερις θεµελιώδεις υπόχωροι ενός πίνακα. Εύρεση βάσεων των θεµελιωδών υποχώρων. Ορίζουσα, ιδιότητες, µοναδικότητα. Υπολογισµός µε απαλοιφή Gauss. Έκφραση ως πολυώνυµο [η απόδειξη προαιρετικά]. Συµπαράγοντες. Συζυγής πίνακας. Υπολογισµός αντιστρόφου. Κανόνας Cramer. Β! ΕΤΟΣ ΣΠΟΥ ΩΝ : Γραπτές εξετάσεις στα παρακάτω µαθήµατα 1. Γραµµική Άλγεβρα & Αναλυτική Γεωµετρία και Γλώσσα Προγραµµατισµού Η/Υ Ύλη : (Η ύλη του µαθήµατος ΤΕΜ 111-Γραµµική Άλγεβρα & Αναλυτική Γεωµετρία περιγράφεται παραπάνω) Γλώσσα Προγραµµατισµού Η/Υ Ύλη : Σχεδίαση, υλοποίηση, διόρθωση και τεκµηρίωση προγραµµάτων. Έµφαση στο δοµηµένο προγραµµατισµό. ιδασκαλία της γλώσσας C πίνακες, δείκτες, δοµές (structs), ενώσεις (unions), εντολές εισόδου/εξόδου, δυναµική παραχώρηση µνήµης, ή πρότυπη βιβλιοθήκη. Αριθµητική κινητής υποδιαστολής. 2. Aπειροστικός Λογισµός Ύλη : Η ύλη του Απειροστικού Λογισµού Ι και ΙΙ περιγράφεται παραπάνω 3. Πιθανότητες Ύλη : Ανεξαρτησία, δεσµευµένη πιθανότητα, τύπος του Βayes. ιακριτές τυχαίες µεταβλητές, αναµενόµενη τιµή, διασπορά. ιωνυµική, κατανοµή, κατανοµές Bernoulli και Poisson. Συνεχείς τυχαίες µεταβλητές, αναµενόµενη τοµή, διασπορά, ροπογεννήτριες συναρτήσεις, οµοιόµορφη, κανονική και εκθετική κατανοµή. Συναρτήσεις τυχαίας µεταβλητής. Από κοινού τυχαίες µεταβλητές, από κοινού κατανοµές, συνδιασπορά, περιθώριες κατανοµές. Ανεξαρτησία,

6 δεσµευµένη κατανοµή (διακριτών και συνεχών τυχαίων µεταβλητών), υπολογισµοί για πολυδιάστατες κανονικές τυχαίες µεταβλητές. Αθροίσµατα ανεξάρτητων τυχαίων µεταβλητών, σύγκλιση κατά πιθανότητα, σχεδόν παντού, κατά κατανοµή. Ασθενής νόµος των µεγάλων αριθµών, ο τύπος του Stirling, κεντρικό οριακό θεώρηµα. Γ! ΕΤΟΣ ΣΠΟΥ ΩΝ : Γραπτές εξετάσεις στα παρακάτω µαθήµατα 1. Ανάλυση Ύλη : Πραγµατικοί αριθµοί. Ακολουθίες, Συνέχεια συναρτήσεων. Εκθετικές και λογαριθµικές συναρτήσεις. Οµοιόµορφη συνέχεια. Ολοκλήρωµα Riemann. Παραγώγιση. Τοπολογία του R. Μετρικοί χώροι, Συµπάγεια, Σειρές, Ακολουθίες συναρτήσεων. Θεώρηµα Stone-Weierstrass, Σειρές συναρτήσεων, Γενικευµένα ολοκληρώµατα. 2. Εφαρµοσµένα Μαθηµατικά Ύλη : Συνήθεις ιαφορικές Εξισώσεις : Εξισώσεις πρώτης και δευτέρας τάξεως. Μη οµογενείς εξισώσεις. Συστήµατα πρώτης τάξεως. Πραγµατικές, µιγαδικές ιδιοτιµές. Στοιχεία µιγαδικών αριθµών και συναρτήσεων (πολική και εκθετική µορφή, δυνάµεις και ρίζες, εκθετικές, τριγωνοµετρικές και υπερβολικές συναρτήσεις). Στοιχειώδης µέθοδοι βασισµένες στο µετασχηµατισµό Laplace. Εφαρµογές σε προβλήµατα µηχανικής. Θεωρία Sturm Liouville. Γραµµικές και µη γραµµικές Μ..Ε. 1η; Τάξης. Η εξίσωση µεταφοράς. Η γενική γραµµική Μ..Ε. 1ης τάξης. Η µέθοδος των χαρακτηριστικών. ιανυσµατικός Λογισµός : Επικαµπύλια και επιφανειακά ολοκληρώµατα. Θεωρήµατα Green- Gauss και Stokes και εφαρµογές των. Βασικά προβλήµατα κλασικών Μ Ε : Καλώς τεθειµένα προβλήµατα (γενικές ιδέες). Ταξινόµηση Μ Ε δευτέρας τάξεως. Βασικά προβλήµατα αρχικών/συνοριακών τιµών για τις εξισώσεις Laplace, θερµότητας, κύµατος. Λύση D Alembert της εξίσωσης κύµατος. Εξίσωση θερµότητας. Προβλήµατα αρχικών-συνοριακών τιµών (ΠΑΣΤ) µε χωρισµό µεταβλητών και σειρές Fourier. Εξίσωση Laplace σε δύο διαστάσεις. Κυµατική Εξίσωση : ΠΑΣΤ µε χωρισµό µεταβλητών, και σειρές Fourier. Aπόδειξη µοναδικότητας της λύσεως. 3. Αριθµητική Ανάλυση και Αριθµητική Επίλυση Συνήθων ιαφορικών Εξισώσεων Ύλη : Αριθµητική κινητής υποδιαστολής, σφάλµα στρογγύλευσης. Αριθµητική λύση µη γραµµικών εξισώσεων (µέθοδος διχοτόµησης γενική επαναληπτική µέθοδος, µέθοδος Newton και τέµνουσας). Αριθµητική ολοκλήρωση (µέθοδος τραπεζίου, Simpson, Gauss, ολοκλήρωση Romberg). Συστήµατα εξισώσεων (Απαλοιφή Gauss για γραµµικά συστήµατα, οδήγηση και εισαγωγή στην ευστάθεια συστηµάτων και αλγορίθµων. Εισαγωγή σε επαναληπτικές µεθόδους. Η µέθοδος Newton για µη γραµµικά συστήµατα). Παρεµβολή και προσέγγιση (παρεµβολή µε πολυώνυµο Lagrange, παρεµβολή µε τµηµατικά γραµµικά και κυβικά πολυώνυµα, Splines, µέθοδος ελαχίστων τετραγώνων). Αριθµητική λύση του προβλήµατος αρχικών τιµών για Σ..Ε. : Μέθοδοι Euler, Runge-Kutta, πολυβηµατικές µέθοδοι. Συνέπεια, ευστάθεια, σύγκλιση, εκτιµήσεις σφαλµάτων. Εφαρµογές σε προβλήµατα από την Φυσική, Βιολογία, Οικονοµία, κ. α. µέθοδοι διαφορών και Galerkin για το συνοριακό πρόβληµα δύο σηµείων.! ΕΤΟΣ ΣΠΟΥ ΩΝ : Γραπτές εξετάσεις στα παρακάτω µαθήµατα : ΕΙ ΙΚΕΥΣΗ 1η 1. Ανάλυση Ύλη : ( Η ύλη περιγράφεται παραπάνω) 2. Αριθµητική Ανάλυση και Αριθµητική Επίλυση Συνήθων ιαφορικών Εξισώσεων Ύλη : (Η ύλη περιγράφεται παραπάνω) 3. Σχεδίαση και Ανάλυση Αλγορίθµων Ύλη : Βασικές έννοιες σχεδιασµού και ανάλυσης αλγορίθµων και αλγοριθµικής πολυπλοκότητας. Αλγοριθµικές τεχνικές. Αλγόριθµοι ταξινόµησης, εύρεσης και επιλογής. υναµικός προγραµµατισµός. Άπληστοι αλγόριθµοι. Στοιχειώδεις αλγόριθµοι γραφηµάτων. Αλγόριθµοι ελαχίστων επικαλυπτόντων δέντρων και ελαχίστων µονοπατίων. Αλγόριθµοι ροής σε δίκτυα. Αλγόριθµοι υπολογιστικής γεωµετρίας, θεωρίας πινάκων, θεωρία αριθµών και συνδυαστικής. Ε ΙΚΕΥΣΗ 2η και 3η 1. Ανάλυση Ύλη : (Η ύλη περιγράφεται παραπάνω) 2. Αριθµητική Ανάλυση και Αριθµητική Επίλυση Συνήθων ιαφορικών Εξισώσεων Ύλη : (Η ύλη περιγράφεται παραπάνω) 2. Στοχαστικές Ανελίξεις Ι

7 Ύλη : Μαρκοβιανές αλυσίδες διακριτού χώρου. Συνάρτηση µετάβασης και αρχική κατανοµή. Παραδείγµατα απλών Μαρκοβιανών αλυσίδων. Υπολογισµοί µε χρήση της συνάρτησης µετάβασης. Χρόνοι αφίξεως. Παροδικές και επανερχόµενες καταστάσεις. Σχέση επικοινωνίας στο χώρο καταστάσεων. Μελέτη τυχαίων περιπάτων, αλυσίδων γεννήσεως-θανάτου, κλαδωτών αλυσίδων και αλυσίδων ουρών. Στάσιµες κατανοµές και ιδιότητες. Μέσος αριθµός επισκέψεων επανερχοµένων καταστάσεων. Μηδενικά και θετικά επανερχόµενες καταστάσεις. Ύπαρξη και µοναδικότητα στάσιµης κατανοµής. Θεώρηµα Perron-Frobenius. Σύγκλιση προς τη στάσιµη κατανοµή. Στοιχεία µεθόδων Monte Carlo και Markov Chain Monte Carlo, Αλγόριθµος Metropolis

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Ηράκλειο, 13/11/2014 Α.Π.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Ηράκλειο, 13/11/2014 Α.Π. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ & ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Πανεπιστημιούπολη, 700 13 Βούτες Ηρακλείου Κρήτης, (Τ.Θ. 2208) Τηλ.: (2810) 393800, 393751, 393898,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ Πειραιάς, 2/10/2014 ΑΝΑΚΟΙΝΩΣΗ ΚΑΤΑΤΑΚΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 Η κατάταξη των υποψηφίων στο Τμήμα για το ακαδημαϊκό έτος 2014-15, θα

Διαβάστε περισσότερα

http://kesyp.didefth.gr/ 1

http://kesyp.didefth.gr/ 1 248_Τµήµα Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης, Ηράκλειο Προπτυχιακό Πρόγραµµα Σκοπός του Τµήµατος Εφαρµοσµένων Μαθηµατικών είναι η εκαπαίδευση επιστηµόνων ικανών όχι µόνο να υπηρετήσουν και να

Διαβάστε περισσότερα

Α Ν Α Κ Ο Ι Ν Ω Σ Η. Σέρρες, 17 / 01 / 2014

Α Ν Α Κ Ο Ι Ν Ω Σ Η. Σέρρες, 17 / 01 / 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ & ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Σέρρες, 17 / 01 / 2014 Α Ν Α Κ Ο Ι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΚΟΙΝΩΣΗ Πειραιάς, 19-04-2016 Θέμα: Κατατάξεις Πτυχιούχων για το Ακαδημαϊκό Έτος 2016-2017

Διαβάστε περισσότερα

Α Ν Α Κ Ο Ι Ν Ω Σ Η σχετικά με κατατακτήριες εξετάσεις, για το ακαδημαϊκό έτος 2014-2015.

Α Ν Α Κ Ο Ι Ν Ω Σ Η σχετικά με κατατακτήριες εξετάσεις, για το ακαδημαϊκό έτος 2014-2015. Αριθ. πρωτ.3505 Αθήνα 3 Σεπτεμβρίου 2014 Α Ν Α Κ Ο Ι Ν Ω Σ Η σχετικά με κατατακτήριες εξετάσεις, για το ακαδημαϊκό έτος 2014-2015. Ι. Ποσοστά κατατασσόμενων. Σύμφωνα με την Υπουργική απόφαση Φ1/192329/Β3/16.12.2013

Διαβάστε περισσότερα

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων.

Επίσης, γίνεται αναφορά σε µεθόδους πεπερασµένων στοιχείων και νευρονικών δικτύων. Πανεπιστήµιο Κύπρου Το µάθηµα περιλαµβάνει Αριθµητικές και Υπολογιστικές Μεθόδους για Μηχανικούς, µε έµφαση στις µεθόδους: αριθµητικής ολοκλήρωσης/παραγώγισης, αριθµητικών πράξεων µητρώων, λύσεων µητρώων

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1

ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς

Διαβάστε περισσότερα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1 Σφάλματα 1.1 Εισαγωγή...17 1.2 Αρχικά Σφάλματα (σφάλματα μετρήσεων)...18 1.2.1 Απλές μετρήσεις...18 1.2.2 Σύνθετες μετρήσεις...19 1.2.3 Σημαντικά ψηφία και

Διαβάστε περισσότερα

ΑΔΑ: ΒΕΝ546ΨΖΥ1-ΡΑΡ Α Ν Α Κ Ο Ι Ν Ω Σ Η. Φ.2/125186/Β3/22-11-2006 και Φ.2/63260/Β3/15-6-2007.

ΑΔΑ: ΒΕΝ546ΨΖΥ1-ΡΑΡ Α Ν Α Κ Ο Ι Ν Ω Σ Η. Φ.2/125186/Β3/22-11-2006 και Φ.2/63260/Β3/15-6-2007. ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΙΑ ΙΚΤΥΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ξάνθη, 20/5/2013 Α Ν Α Κ Ο Ι Ν Ω Σ Η Ανακοινώνονται τα κάτωθι στους αποφοίτους των Ανωτάτων Εκπαιδευτικών

Διαβάστε περισσότερα

ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ

ΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί Lorentz 3. Δυναμική ενός σωματιδίου (Νόμοι της δυναμικής-ορμή-στροφορμήσυστήματα

Διαβάστε περισσότερα

ΝΟΜΟΣ 4186 Άρθρο 57 To άρθρο 15 του ν. 3404/2005 τροποποιείται ως εξής:

ΝΟΜΟΣ 4186 Άρθρο 57 To άρθρο 15 του ν. 3404/2005 τροποποιείται ως εξής: ΝΟΜΟΣ 4186 Άρθρο 57 To άρθρο 15 του ν. 3404/2005 τροποποιείται ως εξής: ΝΟΜΟΣ 3404 Άρθρο 15 Κατατάξεις πτυχιούχων στην τριτοβάθμια εκπαίδευση 1. Από το ακαδημαϊκό έτος 2005 2006 το ποσοστό των κατατάξεων

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα

Διαβάστε περισσότερα

Α Ν Α Κ Ο Ι Ν Ω Σ Η 1) Α Π Ο Φ Ο Ι Τ Ο Ι Α.Ε.Ι. ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ. ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ξάνθη, 22-6-2015 Αρ. Πρωτ.

Α Ν Α Κ Ο Ι Ν Ω Σ Η 1) Α Π Ο Φ Ο Ι Τ Ο Ι Α.Ε.Ι. ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ. ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ξάνθη, 22-6-2015 Αρ. Πρωτ. ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΑΝΑΡΤΗΤΕΑ ΣΤΟ ΙΑ ΙΚΤΥΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ξάνθη, 22-6-2015 Αρ. Πρωτ. 1860 Α Ν Α Κ Ο Ι Ν Ω Σ Η Ανακοινώνονται τα κάτωθι στους αποφοίτους των Ανωτάτων

Διαβάστε περισσότερα

ΚΑΤΑΤΑΞΕΙΣ ΠΤΥΧΙΟΥΧΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2013-2014. Η Συνέλευση του Τμήματος στη συνεδρίαση της 29.5.2013 και αφού έλαβε υπόψη τις διατάξεις,

ΚΑΤΑΤΑΞΕΙΣ ΠΤΥΧΙΟΥΧΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2013-2014. Η Συνέλευση του Τμήματος στη συνεδρίαση της 29.5.2013 και αφού έλαβε υπόψη τις διατάξεις, ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Αθήνα, 3.6.2013 Αριθ.Πρωτ. 375 ΚΑΤΑΤΑΞΕΙΣ ΠΤΥΧΙΟΥΧΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2013-2014 Η Συνέλευση του Τμήματος στη συνεδρίαση της 29.5.2013

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 ΚΕΦΑΛΑΙΟ 2: ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΣΤΑΘΜΙΚΕΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ 35

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 ΚΕΦΑΛΑΙΟ 2: ΣΥΝΑΡΤΗΣΕΙΣ ΙΣΟΣΤΑΘΜΙΚΕΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ 35 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ. 5 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 7 ΚΕΦΑΛΑΙΟ 1: ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 15 1. Γενικά.. 15 Επιφάνεια 15 Ευθειογενεί επιφάνειε. 15 Επιφάνειε δευτέρου βαθμού.. 16 2. Μερικέ επιφάνειε δευτέρου

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας

Διαβάστε περισσότερα

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Η κατάταξη πτυχιούχων ΑΕΙ & ΤΕΙ στη Σχολή ΗΜΜΥ, για το ακαδημαϊκό έτος 2010-11, θα γίνει με κατατακτήριες

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ WWW.TEM.UOC.GR ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ο ΗΓΟΣ ΣΠΟΥ ΩΝ 2010 Τμήμα Εφαρμοσμένων Μαθηματικών Οδηγός Σπουδών 2010 1 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1.

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

ΕΝΗΜΕΡΩΤΙΚΟ ΕΝΤΥΠΟ ΓΙΑ ΤΟΥΣ ΥΠΟΨΗΦΙΟΥΣ ΚΑΤΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΟΘΕΡΑΠΕΙΑΣ ΑΤΕΙ-Θ. Για το ακαδ. έτος

ΕΝΗΜΕΡΩΤΙΚΟ ΕΝΤΥΠΟ ΓΙΑ ΤΟΥΣ ΥΠΟΨΗΦΙΟΥΣ ΚΑΤΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΟΘΕΡΑΠΕΙΑΣ ΑΤΕΙ-Θ. Για το ακαδ. έτος ΕΝΗΜΕΡΩΤΙΚΟ ΕΝΤΥΠΟ ΓΙΑ ΤΟΥΣ ΥΠΟΨΗΦΙΟΥΣ ΚΑΤΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΟΘΕΡΑΠΕΙΑΣ ΑΤΕΙ-Θ Για το ακαδ. έτος 2016 2017 Η Συνέλευση του Τμήματος αφού έλαβε υπόψη: 1. Την παρ. 2 του άρθρου 15 του

Διαβάστε περισσότερα

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17

Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...

Διαβάστε περισσότερα

Α Ν Α Κ Ο Ι Ν Ω Σ Η ΚΑΤΑΤΑΞΕΙΣ ΠΤΥΧΙΟΥΧΩΝ ΑΚΑΔ. ΕΤΟΥΣ 2009 2010

Α Ν Α Κ Ο Ι Ν Ω Σ Η ΚΑΤΑΤΑΞΕΙΣ ΠΤΥΧΙΟΥΧΩΝ ΑΚΑΔ. ΕΤΟΥΣ 2009 2010 Κατατακτήριες 2009-2010 1 ΠΑΝΤΕΙΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ & ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Αθήνα: 13.04.2009 Αρ.Πρωτ. 496 Α Ν Α Κ Ο Ι Ν Ω Σ Η ΚΑΤΑΤΑΞΕΙΣ ΠΤΥΧΙΟΥΧΩΝ ΑΚΑΔ. ΕΤΟΥΣ 2009 2010 Σύμφωνα

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

1 Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

1 Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Αθήνα, 30.4. 2012 Α Ν Α Κ Ο Ι Ν Ω Σ Η ΚΑΤΑΤΑΚΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔ. ΕΤΟΥΣ 2012-13 Ανακοινώνονται τα παρακάτω στους αποφοίτους

Διαβάστε περισσότερα

2. Προγραμματισμός (Βασικές Αρχές Προγραμματισμού, Προηγμένες Τεχνικές Προγραμματισμού :

2. Προγραμματισμός (Βασικές Αρχές Προγραμματισμού, Προηγμένες Τεχνικές Προγραμματισμού : Α.Π.Θ. ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Α Ν Α Κ Ο Ι Ν Ω Σ Η (πτυχιούχοι ΑΕΙ) Ανακοινώνεται, ότι η Γενική Συνέλευση του Τμήματος Πληροφορικής του Α.Π.Θ. στη συνεδρίασή της αριθμ. 228/15-5-2013αποφάσισε

Διαβάστε περισσότερα

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )

Γράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

ΠANEΠIΣTHMIO AIΓAIOY ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Α Ν Α Κ Ο Ι Ν Ω Σ Η

ΠANEΠIΣTHMIO AIΓAIOY ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Α Ν Α Κ Ο Ι Ν Ω Σ Η ΠANEΠIΣTHMIO AIΓAIOY ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Α Ν Α Κ Ο Ι Ν Ω Σ Η Α.Π. 7223 Ρόδος 27.10.2015 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ Η Συνέλευση του

Διαβάστε περισσότερα

Περιεχόµενα I ΜΙΓΑ ΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1

Περιεχόµενα I ΜΙΓΑ ΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 Περιεχόµενα I ΜΙΓΑ ΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 1 ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ 3 1.1 Στοιχειώδεις παρατηρήσεις.................... 3 1.2 + Ορισµός και άλγεβρα των µιγαδικών αριθµών........ 6 1.3 Γεωµετρική παράσταση των µιγαδικών

Διαβάστε περισσότερα

Πλατεία Τσιριγώτη , Κέρκυρα Βασίλειος Αρβανάκος

Πλατεία Τσιριγώτη , Κέρκυρα Βασίλειος Αρβανάκος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΜΟΥΣΙΚΗΣ ΚΑΙ ΟΠΤΙΚΟΑΚΟΥΣΤΙΚΩΝ ΤΕΧΝΩΝ ΤΜΗΜΑ ΤΕΧΝΩΝ ΗΧΟΥ ΚΑΙ ΕΙΚΟΝΑΣ Ταχ. Δ/νση: Ταχ. Kώδικας: Πληρ.: Τηλέφωνο: Fax: E-mail: Πλατεία Τσιριγώτη 7 49100, Κέρκυρα

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

415 Μαθηματικών και Στατιστικής Κύπρου

415 Μαθηματικών και Στατιστικής Κύπρου 415 Μαθηματικών και Στατιστικής Κύπρου Το "Τμήμα Μαθηματικών και Στατιστικής" ιδρύθηκε το έτος 1989, ανήκει στη Σχολή Θετικών και Εφαρμοσμένων Επιστημών του Πανεπιστημίου Κύπρου (με έδρα του τη Λευκωσία)

Διαβάστε περισσότερα

ΤΡΟΠΟΠΟΙΗΣΗ ΜΟΝΑ ΩΝ ECTS ΣΤΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΩΝ

ΤΡΟΠΟΠΟΙΗΣΗ ΜΟΝΑ ΩΝ ECTS ΣΤΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΩΝ ΤΡΟΠΟΠΟΙΗΣΗ ΜΟΝΑ ΩΝ ΣΤΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΙΩΑΝΝΙΝΩΝ Στην υπ αριθµ. 361/30-11-2009 Γ.Σ. το Τµήµα Φυσικής του Πανεπιστηµίου Ιωαννίνων υιοθέτησε, σε εναρµόνιση µε το

Διαβάστε περισσότερα

ΠANEΠIΣTHMIO AIΓAIOY ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Α Ν Α Κ Ο Ι Ν Ω Σ Η

ΠANEΠIΣTHMIO AIΓAIOY ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Α Ν Α Κ Ο Ι Ν Ω Σ Η ΠANEΠIΣTHMIO AIΓAIOY ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Α.Π. 1335 Ρόδος 21.05.2013 Α Ν Α Κ Ο Ι Ν Ω Σ Η Η Γενική Συνέλευση του Τμήματος

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Αθήνα: 31.5.2011 Αρ.Πρωτ. 441 Κ Α Τ Α Τ Α Ξ Ε Ι Σ Π Τ Υ Χ Ι Ο Υ Χ Ω Ν Α Κ Α Δ. Ε Τ Ο Υ Σ 2 0 1 1 2 0 1 2

ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Αθήνα: 31.5.2011 Αρ.Πρωτ. 441 Κ Α Τ Α Τ Α Ξ Ε Ι Σ Π Τ Υ Χ Ι Ο Υ Χ Ω Ν Α Κ Α Δ. Ε Τ Ο Υ Σ 2 0 1 1 2 0 1 2 1 ΠΑΝΤΕΙΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ & ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Αθήνα: 31.5.2011 Αρ.Πρωτ. 441 Κ Α Τ Α Τ Α Ξ Ε Ι Σ Π Τ Υ Χ Ι Ο Υ Χ Ω Ν Α Κ Α Δ. Ε Τ Ο Υ Σ 2 0 1 1 2 0 1 2 Σύμφωνα με τις διατάξεις

Διαβάστε περισσότερα

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου

Τα διανύσματα xy, R είναι κάθετα αν και μόνο αν x y 0. Για το εσωτερικό γινόμενο των διανυσμάτων. Το ορθογώνιο συμπλήρωμα ενός υπόχωρου ΤΥΠΟΛΟΓΙΟ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ο ανάστροφος πίνακας του [ j ] σημειώνεται με [ j ] (δηλαδή οι γραμμές γίνονται στήλες αντίστροφα Ιδιότητες: ( ( B B ( R ( B B Ο αντίστροφος ενός τετραγωνικού πίνακα [ j ]

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΑΙ ΑΓΩΓΙΚΗ ΣΧΟΛΗ ---------------------------------------------------- ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΚΑΤΑΤΑΞΗ ΠΤΥΧΙΟΥΧΩΝ Ανακοινώνεται ότι η Κατάταξη Πτυχιούχων

Διαβάστε περισσότερα

Τυπικό Εξάµηνο σπουδών Υπεύθυνο Τµήµα Κατηγορία/Επίπεδο µαθήµατος

Τυπικό Εξάµηνο σπουδών Υπεύθυνο Τµήµα Κατηγορία/Επίπεδο µαθήµατος Μαθηµατικός Λογισµός Ι 1ο Προαπαιτούµενα µαθήµατα - Σκοπός του µαθήµατος είναι να διδαχθούν οι φοιτητές θέµατα από τον Αλγεβρικό και Απειροστικό Λογισµό τα οποία βρίσκουν εφαρµογή στην οικονοµία και διοίκηση.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανυσματικοί Χώροι Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διανυσματικός Χώρος επί του F Αλγεβρική δομή που αποτελείται

Διαβάστε περισσότερα

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Κάθε γνήσιο αντίτυπο υπογράφεται από τη συγγραφέα ΑΡΙΘΜΗΤΙΚΗ

Διαβάστε περισσότερα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα

Περιεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και

Διαβάστε περισσότερα

Μάστερ στην Εφαρµοσµένη Στατιστική

Μάστερ στην Εφαρµοσµένη Στατιστική Μάστερ στην Εφαρµοσµένη Στατιστική Πρότυπο Πρόγραµµα Master Εξάµηνο Σπουδών Κωδικός Τίτλος Μαθήµατος ιδακτικές Μονάδες 1 ο Εξάµηνο ΜΑΣ650 Μαθηµατική Στατιστική 10 ΜΑΣ655 ειγµατοληψία 10 ΜΑΣ658 Στατιστικά

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη

Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη ΘΩΜΑΣ Α. ΚΥΒΕΝΤΙΔΗΣ Γεννήθηκε το 1947 στο Νέο Πετρίτσι του Ν. Σερρών. Το 1965 αποφοίτησε από το εξατάξιο Γυμνάσιο Σιδηροκάστρου του Ν. Σερρών και εγγράφηκε

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7

ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...

Διαβάστε περισσότερα

β. Διδακτορικό Δίπλωμα (ΔΔ) στην Πληροφορική. Η παρούσα ανακοίνωση αφορά την εισαγωγή μεταπτυχιακών φοιτητών για απόκτηση ΜΔΕ στα πλαίσια του ΠΜΣ.

β. Διδακτορικό Δίπλωμα (ΔΔ) στην Πληροφορική. Η παρούσα ανακοίνωση αφορά την εισαγωγή μεταπτυχιακών φοιτητών για απόκτηση ΜΔΕ στα πλαίσια του ΠΜΣ. ΑΝΑΚΟΙΝΩΣΗ Για εισαγωγή Μεταπτυχιακών Φοιτητών στο Πρόγραμμα Μεταπτυχιακών Σπουδών του Τμήματος Πληροφορικής του Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης για το ακαδημαϊκό έτος 2014-2015 Από το Τμήμα Πληροφορικής

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii

Περιεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΕΑΡΙΝΗ ΕΞΕΤΑΣΤΙΚΗ

ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΕΑΡΙΝΗ ΕΞΕΤΑΣΤΙΚΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΕΥΤΕΡΑ 23/1/2017 ΤΡΙΤΗ 24/1/2017 1η 1ο ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ, 4 3ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ, 4 Γαλλικά (9.00 11.00)

Διαβάστε περισσότερα

Μακράκης Μήτσης Ζουράρης Ροζάκης ΜΑΘΗΜΑΤΑ ΑΛΛΩΝ ΤΜΗΜΑΤΩΝ Μαθηματικά Ι Χημείας 4 Χ Πλατής

Μακράκης Μήτσης Ζουράρης Ροζάκης ΜΑΘΗΜΑΤΑ ΑΛΛΩΝ ΤΜΗΜΑΤΩΝ Μαθηματικά Ι Χημείας 4 Χ Πλατής Ανάθεση διδασκαλία 2015-16 15/9/2015 Οι αναθέσει για το εαρινό εξάμηνο ενδέχεται να υποστούν αλλαγέ. Κωδικό Τ 101 102 103 104 105 106 107 10 8 10 9 211 21 2 221 222 251 261 271 ΥΠΟΧΡΕΩΤΙΚΑ Aπειροστικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Πρόλογος. Κατάλογος Σχημάτων

Πρόλογος. Κατάλογος Σχημάτων Περιεχόμενα Πρόλογος Κατάλογος Σχημάτων v xv 1 ΜΔΕ πρώτης τάξης 21 1.1 Γενικότητες........................... 21 1.2 Εισαγωγή............................ 24 1.2.1 Γεωμετρικές θεωρήσεις στο πρόβλημα της

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΙΟΝΙΩΝ ΝΗΣΩΝ ΔΙΟΙΚΟΥΣΑ ΕΠΙΤΡΟΠΗ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΙΟΝΙΩΝ ΝΗΣΩΝ ΔΙΟΙΚΟΥΣΑ ΕΠΙΤΡΟΠΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΙΟΝΙΩΝ ΝΗΣΩΝ ΔΙΟΙΚΟΥΣΑ ΕΠΙΤΡΟΠΗ ΑΠΟΣΠΑΣΜΑ ΠΡΑΚΤΙΚΟΥ ΤΗΣ ΔΙΟΙΚΟΥΣΑΣ ΕΠΙΤΡΟΠΗΣ ΤΟΥ Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΗΣ ΣΥΝΕΔΡΙΑΣΗΣ ΜΕ ΑΡΙΘΜΟ 47 Στην Αθήνα

Διαβάστε περισσότερα

ΘΕΜΑ: Επικύρωση αποτελεσµάτων κατατακτηρίων εξετάσεων έτους

ΘΕΜΑ: Επικύρωση αποτελεσµάτων κατατακτηρίων εξετάσεων έτους Ε Λ Λ Η Ν Ι Κ Η ΗΜΟΚΡΑΤΙΑ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ Ρ Α Κ Η Σ ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ 6 Ο χλµ AΛΕΞ/ΠΟΛΗΣ-ΜΑΚΡΗΣ 68100 ΑΛΕΞΑΝ ΡΟΥΠΟΛΗ Τ Μ Η ΜΑ Ι Α Τ Ρ Ι Κ Η Σ Γ Ρ Α Μ Μ Α Τ Ε Ι Α H E L L E N I C R E P U B L I

Διαβάστε περισσότερα

Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3.

Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3. Στόχοι 1. Σχεδιασμός υψηλού επιπέδου προγραμμάτων σπουδών 2. Η προαγωγή των Μαθηματικών επιστημών μέσω της επιστημονικής έρευνας 3. Η δημιουργία ικανών και άριστα εκπαιδευμένων επιστημόνων Γιατί Μαθηματικά

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης Δυναμική Μηχανών I 9 1 Σύνοψη Εξεταστέας Ύλης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Ύλη Δυναμικής Μηχανών

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη ΘΕΜΑ : Καθορισµός και διαχείριση διδακτέας ύλης Θετικών Μαθηµάτων των Β και Γ τάξεων Ηµερήσιου και Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2011 12. Μετά από σχετική εισήγηση του Τµήµατος ευτεροβάθµιας

Διαβάστε περισσότερα

viii 20 Δένδρα van Emde Boas 543

viii 20 Δένδρα van Emde Boas 543 Περιεχόμενα Πρόλογος xi I Θεμελιώδεις έννοιες Εισαγωγή 3 1 Ο ρόλος των αλγορίθμων στις υπολογιστικές διαδικασίες 5 1.1 Αλγόριθμοι 5 1.2 Οι αλγόριθμοι σαν τεχνολογία 12 2 Προκαταρκτικές έννοιες και παρατηρήσεις

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΠΑΡΑΣΚΕΥΗ 2/9/2016 ΠΕΜΠΤΗ 1/9/2016 ΤΕΤΑΡΤΗ 31/8/2016 ΤΡΙΤΗ 30/8/2016 ΔΕΥΤΕΡΑ 29/8/2016 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ Θεσ/νίκη, 21/06/2013 Α Ν Α Κ Ο Ι Ν Ω Σ Η

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ Θεσ/νίκη, 21/06/2013 Α Ν Α Κ Ο Ι Ν Ω Σ Η ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ Θεσ/νίκη, 21/06/2013 Α Ν Α Κ Ο Ι Ν Ω Σ Η Η Συνέλευση του Τμήματος Γεωλογίας στην υπ αριθμ. 443/14-06-2013 συνεδρίασή της,

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-15 (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 2)

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2014-15 (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 2) ΠΑΡΑΣΚΕΥΗ 4/9/2015 ΠΕΜΠΤΗ 3/9/2015 ΤΕΤΑΡΤΗ 2/9/2015 ΤΡΙΤΗ 1/9/2015 ΔΕΥΤΕΡΑ 31/8/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

= x. = x1. math60.nb

= x. = x1. math60.nb MH ΓΡΑΜΜΙΚΑ ΑΥΤΟΝΟΜΑ ΥΝΑΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΙΑΣΤΑΣΕΩΝ Χώρος Φάσεων : Επίπεδο (, Φασικές Τροχιές : Επίπεδες µονοπαραµετρικές καµπύλες (t (t χωρίς εγκάρσιες τοµές. Οι φασικές τροχιές µπορούν να υπολογιστούν από

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 22 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

ΤΟ ΕΝ ΡΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΟ ΕΝ ΡΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟ ΕΝ ΡΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΥΠΟ ΙΑΙΡΕΣΕΙΣ ΤΟΥ Jahrbuch uber die Fortschritte der Mathematik, 1868 1. ΙΣΤΟΡΙΑ ΚΑΙ ΦΙΛΟΣΟΦΙΑ 2. ΑΛΓΕΒΡΑ 3. ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 4. ΠΙΘΑΝΟΤΗΤΕΣ 5. ΣΕΙΡΕΣ 6. ΙΑΦΟΡΙΚΟΣ ΚΑΙ ΟΛΟΚΛΗΡΩΤΙΚΟΣ

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ

ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΡΑΓΙΑΝΝΑΚΗΣ ΔΗΜΗΤΡΙΟΣ _CONT_.indd iii τίτλος: ΔΙΑΚΡΙΤΕΣ ΚΑΙ ΣΥΝΕΧΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΜΕΘΟΔΟΙ συγγραφέας: Καραγιαννάκης Δημήτριος 2014 Εκδόσεις Δίσιγμα Για την ελληνική

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012 ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: : : : ma 3 για κάθε Να αποδείξετε ότι για κάθε ισχύει: 3 3 Τι συμπεραίνετε για τις παραπάνω νόρμες του Αν θεωρήσουμε

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 2009 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 5 Ιουλίου 009 Θέμα (0 μονάδες) Έστω U = (, y, z, w) = z, y = w υποσύνολο του και V ο υπόχωρος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΑΣΤΙΚΟΥ ΠΡΑΣΙΝΟΥ» ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΑΣΤΙΚΟΥ ΠΡΑΣΙΝΟΥ» ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΜΗΜΑ ΔΑΣΟΠΟΝΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 4 )

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 4 ) ΠΑΡΑΣΚΕΥΗ 19/6/2015 ΠΕΜΠΤΗ 18/6/2015 ΤΕΤΑΡΤΗ 17/6/2015 ΤΡΙΤΗ 16/6/2015 ΔΕΥΤΕΡΑ 15/6/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ( )

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ( ) ΠΑΡΑΣΚΕΥΗ 4/9/2015 ΠΕΜΠΤΗ 3/9/2015 ΤΕΤΑΡΤΗ 2/9/2015 ΤΡΙΤΗ 1/9/2015 ΔΕΥΤΕΡΑ 31/8/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Α ΤΟΜΟΣ

ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Α ΤΟΜΟΣ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Α ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-516-026-9

Διαβάστε περισσότερα

ΠΡΟΤΑΣΗ ΑΝΑΔΙΑΡΘΡΩΣΗΣ ΤΟΥ ΠΡΟΠΤΥΧΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ

ΠΡΟΤΑΣΗ ΑΝΑΔΙΑΡΘΡΩΣΗΣ ΤΟΥ ΠΡΟΠΤΥΧΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΠΡΟΤΑΣΗ ΑΝΑΔΙΑΡΘΡΩΣΗΣ ΤΟΥ ΠΡΟΠΤΥΧΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ Κάθε πρόγραμμα (προπτυχιακών και μεταπτυχιακών) σπουδών είναι απότοκο της άποψης των διαμορφωτών του για την θέση και αποστολή του Πανεπιστημίου

Διαβάστε περισσότερα

ΠΡΟΣΧΕΔΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ( )

ΠΡΟΣΧΕΔΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ( ) ΠΑΡΑΣΚΕΥΗ 4/9/2015 ΠΕΜΠΤΗ 3/9/2015 ΤΕΤΑΡΤΗ 2/9/2015 ΤΡΙΤΗ 1/9/2015 ΔΕΥΤΕΡΑ 31/8/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΣΧΕΔΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ

Διαβάστε περισσότερα

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ)

ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) ΤΜΗΜΑ Α ΠΕΡΙΓΡΑΦΗ Π.Μ.Σ (ΥΠΟΕΡΓΟΥ) Α1. ΣΥΝΤΟΜΗ ΠΕΡΙΓΡΑΦΗ ΦΥΣΙΚΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ Tο Πρόγραµµα Μεταπτυχιακών Σπουδών του Τµήµατος Μαθηµατικών του Πανεπιστηµίου Κρήτης είναι ένα από τα πρώτα οργανωµένα µεταπτυχιακά

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/ Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: 0 2 xx, που ισχύει.

ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/ Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: 0 2 xx, που ισχύει. ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: Ν : = + + + Ν : = + + + Ν : = ma 3 για κάθε = ( ) Να αποδείξετε ότι για κάθε = ( ) ισχύει: Ν ( ) Ν ( ) Ν ( ) Ν (

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Περιεχόµενα διαλέξεων 2ης εβδοµάδας

Περιεχόµενα διαλέξεων 2ης εβδοµάδας Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού

Διαβάστε περισσότερα

Τμήμα Μαθηματικών και Στατιστικής

Τμήμα Μαθηματικών και Στατιστικής Τμήμα Μαθηματικών και Στατιστικής ΠPOEΔPOΣ Xριστόδουλος Σοφοκλέους ΑΝΤΙΠΡΟΕΔΡΟΣ Xρίστος Ξενοφώντος KAΘHΓHTΕΣ Aλέκος Bίδρας Γιώργος Γεωργίου Παντελής Δαμιανού Aνδρέας Kαραγιώργης Σταμάτης Kουμάντος Γεώργιος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 3-4 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 3 ΗΜ/ΝΙΑ 1ο-2ο Φυσική Φυσικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα