ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ΜΙΧΑΗΛ ΒΕΛΓΑΚΗΣ, ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ Φροντιστήριο ο : Εξίσωση κίνησης των σωµάτων και επίλυση (ΣΤΗ ΜΕΤΑΦΟΡΙΚΗ ΚΙΝΗΣΗ Παράειµα ο (αρµονική ταλάντωση: Επί (σηµειακού σώµατος εφαρµόζεται ύναµη επαναφοράς της µορφής: =. Να προσιοριστεί η κίνηση του σώµατος, λαµβάνοντας υπόψη και τις εξωτερικές τριβές που ασκούνται πάνω στο σώµα (παρεµπιπτόντως, υπάρχουν και εσωτερικές υνάµεις τριβής. Recittin, Physics I By M. Velgis

2 Στο σύστηµα καρτεσιανών συντεταµένων: ιάνυσµα θέσης του σώµατος: ( t = i + yj+ z (, y,z ( t y z Ταχύτης του σώµατος: υ = i + j+ ( υ,υy,υz Επιτάχυνση του σώµατος: υ( t υ υy = i + j+ υ z = i + y j+ z (, y, z Ο ος νόµος του Nεύτωνα: Η επιτάχυνση ενός σώµατος είναι ανάλοος της (συνολικής ύναµης που ρα πάνω στο σώµα, ηλ. καρτεσιανές συντεταµένες: =, η οποία αναλύεται σε y z = = = y z ή y z = = = z y (α (β ( Οι εξισώσεις (α, (β, ( είναι ακριβώς ίιες [απλά η εξηρτηµένη µεταβλητή στην (α συµβολίζεται µε, στην (β µε y, και στην ( µε z]. Άρα ουλεύουµε µόνο την (α, η οποία ράφεται: = ( τριβής ιακρίνουµε ιάφορες περιπτώσεις ια τη ύναµη τριβής τριβής : Recittin, Physics I 008-9

3 α Μπορεί η ύναµη τριβής να είναι σταθερά, ηλ. τριβής =α, οπότε η ( ράφεται: =, και η οποία µπορεί να πάρει τη µορφή = (3 Θεωρώντας την αλλαή µεταβλητών: παρατηρούµε ότι: ράφεται: = +, = και =, οπότε η (3 + = 0 (4 Η εξίσωση (4 καλείται οµοενής ιαφορική εξίσωση ας τάξεως. Επιλύουµε την (4 παρακάτω και βρίσκουµε τη λύση: = Asin( ωt+ φ, όπου ω=, ω R, και ω>0, και Α,φ είναι σταθερές ολοκλήρωσης, ο οποίες µπορούν να υπολοιστούν από τις αρχικές συνθήκες, εοµένων των ποσοτήτων =(t=0 και υ ο =υ(t=0 ια t=0. Η λύση αυτή παριστάνει ταλάντωση (ή απλή αρµονική κίνηση. α Αξίζει να σηµειωθεί η περίπτωση =0, ηλ. όταν εν εφαρµόζεται καµιά ραµµική ύναµη επαναφοράς. Τότε η λύση της (3 θα έχει τη µορφή (µετά από απλή ολοκλήρωση: Recittin, Physics I

4 = + υοt t, η νωστή µας σχέση ια την οµαλώς επιβραυνόµενη µεταφορική κίνηση, µε επιβράυνση α/. Οι σταθερές ολοκλήρωσης, =(t=0 και υ ο =υ(t=0 υπολοίζονται από τις αρχικές συνθήκες ια t=0. β Μπορεί η ύναµη τριβής να είναι ανάλοος της ταχύτητας, ηλ. τριβής =-αυ [όπου η σταθερά α καλείται σταθερά απόσβεσης. Το µείον εώ σηµαίνει ότι η ύναµη τριβής έχει αντίθετη φορά µε εκείνη της ταχύτητας, αλλά να µην αντικαταστήσουµε στη ( το µείον ύο φορές!! ]. Η ( λοιπόν ράφεται: υ =, ή + + = 0 (5 Η εξίσωση (5 καλείται (οµοενής ραµµική ιαφορική εξίσωση ας τάξεως, την οποία θα επιλύσουµε παρακάτω. Θα βρούµε ότι η λύση της (5 έχει τη µορφή: = Ae t cs( ωt+ φ, όπου ω= (, ω R, και ω>0, και Α,φ σταθερές ολοκλήρωσης, ο οποίες µπορούν να υπολοιστούν από τις αρχικές συνθήκες, εοµένων των ποσοτήτων =(t=0 και υ ο =υ(t=0 ια t=0. Η λύση αυτή παριστάνει ταλάντωση µε απόσβεση (pe scilltin. β Για να κλείσουµε τη παράραφο αυτή, θεωρούµε τη περίπτωση της εξανακασµένης ταλάντωσης, κατά την οποίαν πάνω στο σώµα ρα και µια εξωτερική περιοική Recittin, Physics I

5 ύναµη, ας πούµε της µορφής: = sin ωt. Τώρα η εξίσωση κίνησης (5 θα έχει τη µορφή: ή + + υ= sin ωt, + + = sin ωt (6 Η εξίσωση (6 καλείται µη-ραµµική ιαφορική εξίσωση ας τάξης, την οποία θα επιλύσουµε παρακάτω [Θα ξανασυναντήσουµε την εξίσωση (6 στις ταλαντώσεις ηλεκτρικών κυκλωµάτων που ιεείρονται από εξωτερική εναλλασσόµενη τάση]. Θα βρούµε παρακάτω ότι οι λύσεις της (6 είναι το άθροισµα των λύσεων της οµοενούς ιαφ. εξίς. (5 συν µια µερική λύση (pticul slutin, µερική (t, την οποίαν θα προσιορίσουµε, ηλ. ( t = Ae t cs( ω t+ φ + µερική ( t, όπου ω ( =. Κατ αρχήν, η λύση της οµοενούς (5 (η οποία λέεται και µεταβατική λύση µηενίζεται µέσα σε πολύ σύντοµο χρονικό ιάστηµα (είαµε ότι ια t>5τ η λύση αυτή είναι αµελητέα. Άρα, στην ουσία µας ενιαφέρει η λύση που θα επιζεί ια πεπερασµένους χρόνους t και αυτή είναι µόνο η µερική λύση, µερική (t, η οποία όπως θα βρούµε έχει τη µορφή, ή( t = A sin( ωt, µερικ + όπου tn ω / = και ( ω ω A= ( ω ω / + ( ω / Recittin, Physics I

6 ηλαή στην εξανακασµένη ταλάντωση το σώµα εκτελεί ίια ταλάντωση (µε κάποια ιαφορά φάσης µε εκείνη του εξωτερικού ιεέρτη (µε την ίια συχνότητα, αλλά µε πλάτος ταλάντωσης Α=f(ω, του οποίου η συµπεριφορά απεικονίζεται στο ακόλουθο σχήµα. Όταν ω ω ο, λέµε ότι το σύστηµα συντονίζεται µε τον εξωτερικό ιεέρτη και καθώς οι εσωτερικές τριβές α 0, το πλάτος ταλάντωσης του συστήµατος µεαλώνει ( Αναλυτικοί υπολοισµοί : Επίλυση της (4: Σηµειώνουµε ότι ο είκτης- στην εξηρτηµένη µεταβλητή εξ. (4 εν παίζει κανένα ρόλο, εποµένως τον παραλείπουµε στη συνέχεια. Πολλαπλασιάζοµε και τα ύο µέλη της (4 επί (όπου υποηλώνει τη παράωο, οπότε έχουµε: =-/, η οποία ράφεται: (' ( ' = ή [ + ] = 0, που σηµαίνει ότι η ποσότης µέσα στην ακύλη είναι σταθερά, ηλ. ( ' + = c, όπου c είναι η σταθερά ολοκλήρωσης. Λύνοµε τη τελευταία σχέση ως προς : c ' = ± c ή, οπότε η προηούµενη σχέση ράφεται: ' c = ±. Ορίζουµε τις σταθερές: ' = ± ή ω ω και = ±. Η ω σχέση αυτή ολοκληρώνεται ιαχωρίζοντας τις µεταβλητές: =± ω = ± ω, απ όπου παίρνοµε sin ( =± ωt+, όπου είναι η νέα σταθερά ολοκλήρωσης. Η τελευταία συνάρτηση αντιστρέφεται και παίρνουµε: = sin( ± ωt+ =± sin( ωt± = Α sin( ωt+ φ, όπου Α= και φ=. Βρήκαµε λοιπόν ή Recittin, Physics I

7 τη λύση: = Α sin( ωt+ φ, όπου ω= µια σταθερά που καλείται συχνότητα ταλάντωσης, οι ε σταθερές ολοκλήρωσης Α,φ προσιορίζονται από τις αρχικές συνθήκες ια t=0. Επίλυση της (5: Η εξίσωση (5 οµοενής ιαφορική εξίσωση ας τάξεως (αλλά εν λύνεται τόσο λt = Ae, οπότε εύκολα µε απλή ολοκλήρωση. Για να λυθεί οκιµάζουµε λύσεις της µορφής: λt υπολοίζουµε τις παραώους:. Αντικαθιστώντας στην (5 παίρνουµε: ή H λύση του τριωνύµου αυτού είναι: ' = λae και είναι πολύ µικρός (συνήθως, η ιακρίνουσα ω λ '' = Ae λt λ α λ + λ+ = 0 α λ + λ+ = 0. α α ± (, =. Επειή ο όρος της τριβής ( > 0, οι λύσεις λ, ράφονται: λ, ± iω µονάα. Εποµένως οι ύο λύσεις της (5 θα είναι: = ( είναι αρνητική (συνήθως. Καλώντας =, όπου i είναι η φανταστική λt = A e και λt = A e, όπου Α, Α οι ύο σταθερές ολοκλήρωσης. Συνεπώς, η ενική λύση της (5 θα είναι το άθροισµα των ύο επιµέρους λύσεων (θεωρία ιαφορικών εξισώσεων, ηλ. λ t λ t t + iωt iωt = + = A e + A e = e ( A e + A e. (α Η παρένθεση µπορεί να ραφεί ισούναµα ως εξής: A cs( ωt+ φ (ιατί;. Οπότε, η ενική λύση της (5 θα έχει τη µορφή: = Ae t cs( ωt+ φ, όπου ω (. Ακολουθεί η απόειξη του προηούµενου ισχυρισµού: Πράµατι, θεωρούµε την παρένθεση στο ο ± µέρος της (α. Χρησιµοποιώντας την ταυτότητα του Eule: e i ε = cs ε ± i sin ε (όπου ε είναι το όρισµα της τρι. συνάρτησης, η παρένθεση στην (α ράφεται: + iωt iωt Ae + Ae = A (cs ωt+ i sin ωt + A (cs ωt i sin ωt A + Α cs ωt+ i( Α A sinωt = ( (β Βάζουµε κοινό παράοντα στο ο µέρος της (β τη ποσότητα (Α +Α, οπότε η (β ισούται i( Α A = ( A + Α {cs ωt+ sin ωt }. ( ( A + Α Καλούµε το κλάσµα µέσα στη ακύλη tnφ (ή ctnφ, ιατί;, ηλ. ισούται tn φ i( Α ( A A + Α =, οπότε η ( τότε θα προέκυπτε η τριωνοµετρική συνάρτηση sin(ωt+φ! Recittin, Physics I

8 = A + Α {cs ωt tnφ sin ωt } ( ( Αναπτύσσοντας την εφαπτοµένη σε ηµίτονο και συνηµίτονο, παίρνοµε: {cs ωt cs φ sin φ sin ωt } ( A + Α = ( A + Α = cs( ωt+ φ (ε cs φ cs φ ( A Α Α + cs φ Καλούµε το σταθερό παράοντα στην (ε Α, ηλ. = Ae b t cs( ωt+ φ, όπου ω, οπότε τελικά η (α ράφεται: (. Οι σταθερές Α,φ είναι οι σταθερές ολοκλήρωσης, οι οποίες υπολοίζονται από τις αρχικές συνθήκες ια t=0. Η ποσότης ω καλείται ιιοσυχνότητα του συστήµατος και η ποσότης εκθέτη (που έχει µονάες χρόνου καλείται σταθερά χρόνου. Για t 5τ, ο εκθετικός παράοντας, ηλ. τότε 0 και το σώµα σχεόν ηρεµεί!! ισούται µε e 5 = τ = στον Στη περίπτωση α η ιακρίνουσα <0 (αποσβενόµενη ταλάντωση, στη περίπτωση b είναι =0 (κρίσιµη αποσβεννόµενη κίνηση, και στη περίπτωση c είναι >0 (υπερ-αποσβεννόµενη κίνηση Επίλυση της (6: Η εξίσωση (6 είναι µη-ραµµική ιαφορική εξίσωση ας τάξεως. Επειή ο µηραµµικός όρος στην (6 έχει τριωνοµετρική µορφή, οκιµάζουµε ως µερική λύση τριωνοµετρική συνάρτηση της µορφής: Recittin, Physics I

9 ή ( t = A sin( ωt µερικ + (στ Αντικαθιστώντας την (στ στην (6 παίρνουµε, Aω sin( ωt+ + Aωcs( ωt+ + Asin( ωt+ = sin ωt Αναπτύσσουµε τις τριωνοµετρικές συναρτήσεις: sin( ωt = sin ωt cs + cs ωt sin +, κλπ ( ω ( sin ωt cs ω + cs ωt sin + ( cs ωt cs sin ωt sin = sin ωt Α Μετά από αναωή ίιων όρων, λαµβάνουµε, ( ω ω ω cs sin sin ωt+ ( ω sin + cs cs ωt = 0 (ζ Α Επειή οι συναρτήσεις sinωt, csωt είναι ραµµικώς ανεξάρτητοι, θα πρέπει οι συντελεστές τους στην εξίσωση (ζ να µηενίζονται, ηλ. προκύπτει το σύστηµα: ω ( ω cs sin = 0 (η Α ω ( ω sin + cs = 0 (η Η εξίσωση (η ίει αµέσως: tn ω / ( ω = ή tn ω / ( ω ω =, όπου ω. Υπολοίζουµε πρώτα τις συναρτήσεις sin, cs, συναρτήσει της tn: sin = tn + tn = ( ω ω / ω + ( ω cs = + tn = ( ω ( ω ω ω + ( ω τις οποίες αντικαθιστώντας στην (η, λαµβάνουµε, ή ω ( ω + Α ω ω + ( = ( ω ω ( Θα µπορούσαµε να είχαµε επιλέξει ισούναµα τριωνοµετρικές συναρτήσεις της µορφής: Α cs(ωt+ ή Α sinωt + Β csωt Recittin, Physics I

10 A= ( ω ω / + ( ω Η µερική λύση λοιπόν της (6 έχει τη µορφή: ή ( t = A sin( ωt, όπου µερικ + tn ω / ( ω ω =, A= ( ω ω / + ( ω Παράειµα ο (επιβραυνόµενη µεταφορική κίνηση Να υπολοιστεί η ταχύτητα ενός σώµατος συναρτήσει του χρόνου, το οποίο κινείται µέσα σε ιξώες ρευστό, ηλ. η ύναµη της αντίστασης του ρευστού έχει τη µορφή: f = Kηυ, όπου Κ είναι σταθερά που εξαρτάται από το σχήµα του σώµατος (π.χ. ια σφαιρικό σχήµα Κ=6πR, υ είναι η ταχύτητα του σώµατος, και η µια σταθερά που καλείται συντελεστής ιξώους του ρευστού (π.χ. ια το νερό ισούται µε Pise στους 0 C, ια το καστορέλαιο Pise, Σηµ.: Pise=0 - Pscl sec. Λύση: Οι υνάµεις που έχεται το σώµα είναι το βάρος του (µε κατεύθυνση κατακόρυφα προς τα κάτω, η άνωση από το ρευστό Α=ρ ρευ gv (µε φορά κατακόρυφα προς τα πάνω, όπου ρ ρευ είναι η πυκνότητα του ρευστού και η αντίσταση που έχεται το σώµα κατά τη κίνηση από το ρευστό f = Kηυ (το µείον απλά τονίζει το εονός ότι ο φορά της ύναµης είναι πάντοτε αντίθετη προς τη ταχύτητα (Υποθέτουµε ότι το σώµα πέφτει προς τα Recittin, Physics I

11 κάτω, χωρίς να χάνεται η ενικότητα. Θα µπορούσαµε να εξετάζουµε τη κίνηση ενός µπαλονιού στον αέρα, πότε η κίνηση θα ήταν προς τα πάνω. Η εξίσωση κίνησης (β ράφεται ια τη περίπτωση, y = g Kηυ ρ gv (7 ρευ [Στο σηµείο αυτό πρέπει να κάνουµε µια αυτοκριτική, αν έχουµε ιαλέξει σωστά τα πρόσηµα στη σχέση (7. Πριν όµως ξεκινήσουµε τη λύση, θα έπρεπε να έχουµε αποφασίσει πού ορίζουµε την αρχή των συντεταµένων 0, ει υνατόν µε κάποιο παρατιθέµενο σχήµα. Ορίζουµε λοιπόν την αρχή των αξόνων πάνω στην ελεύθερη επιφάνεια του ρευστού, όπου υποθέτουµε ότι αφήνουµε το σώµα να πέσει ( αφήνουµε σηµαίνει ότι η αρχική ταχύτης: υ ο =0! Σηµαίνει ακόµη ότι µε αυτή την επιλοή της αρχής συντεταµένων που κάναµε: y =0!. Οπότε η φορά της ταχύτητας είναι θετική προς τα κάτω, το βάρος g είναι θετικό προς τα κάτω, και οι υπόλοιπες υνάµεις κατευθύνονται προς τα πάνω, άρα είναι αρνητικές, άρα τελικά, τα πρόσηµα στην (7 είναι σωστά!]. Όµως η επιτάχυνση του ου µέρους της (7 µπορεί να είναι θετική ή αρνητική, ανάλοα µε το πρόσηµο του ου µέρους]. Η (7 µπορεί να ραφεί, y Kη y ( ρ ρρευ gv + = 0 (8 όπου χρησιµοποιήσαµε τη σχέση: =ρgv, όπου ρ η πυκνότητα του σώµατος. Για ν απλουστεύουµε την (8, θέτοµε: ρευ = Kη / >0 και = ( ρ ρ gv / = ( g. Αν ισχύει ρ>ρ ρευ, τότε >0. Οπότε η ιαφορική εξίσωση (8 ράφεται, y y + = 0 (9 Η λύση της ιαφορικής εξίσωσης (9 υπολοίζεται παρακάτω. Βρίσκουµε ότι η ταχύτητα έχει τη µορφή: ρευ ρ ρ υ t = υ ( e τ, όπου ορ τ =, Kη υ ορ = ( ρ ρευ ρ g Kη Recittin, Physics I 008-9

12 Επίλυση της (9: Η (9 µπορεί να ολοκληρωθεί αµέσως. Πράµατι, χρησιµοποιώντας τη ταχύτητα υ=y/, η (9 ράφεται: υ = 0 ( υ = υ υ υ +, και ιαχωρίζοντας τις µεταβλητές έπεται: = υ ( υ = έχοµε: υ. Ολοκληρώνοντας ln( υ =t+ c, (θ όπου c η σταθερά ολοκλήρωσης, η οποία υπολοίζεται εφαρµόζοντας τις αρχικές συνθήκες: ια t=0 έχοµε υ=0, οπότε αντικαθιστώντας στην (θ έχοµε: ln = 0+ c, ή c= ln. Εποµένως η (θ υ υ t ράφεται: ln( υ =t+ ln, ή ln( = t. Η σχέση αντιστρέφεται, = e, και λύνοντας ως προς υ: t υ= ( e, (ι όπου ( ρ ρ ρευ gv ρρευ g = = (. Παρατηρούµε ακόµη στην (ι ότι ια t=0 πράµατι Kη ρ Kη προκύπτει υ=0, ενώ ια t παίρνοµε ορική ταχύτητα, ηλ. υ ορ υ=. Η ποσότης έχει ιαστάσεις ταχύτητος και καλείται ρ ρευ g = (. Ακόµη, η σταθερά έχει ιαστάσεις ρ Kη Nt Kg / sec sec [ ] = sec/ Kg = =, οπότε εισάοντας τη σταθερά τ = (η Kg sec Kη οποία καλείται σταθερά χρόνου ή χρόνος αποκατάστασης, τελικά η ταχύτητα (ι ράφεται: t υ= υ ( e τ, (ια ορ ρ ρευ g όπου τ = και υορ = (. Η σχέση (ια µπορεί να ολοκληρωθεί περαιτέρω ια να Kη ρ Kη υπολοιστεί η συνάρτηση: y=f(t, που όµως εν ζητείται στην εκφώνηση., ή Παράειµα 3 ο (πλάια βολή µε τριβές Να µελετηθεί η κίνηση σώµατος που βάλλεται µέσα στον αέρα µε αρχική ταχύτητα υ ο = υ ο i + υ οy j+ υ οz της αντίστασης του αέρα ( υ f,υy,υz Kηυ, λαµβανοµένης υπόψη και =, όπου Κ είναι σταθερά που εξαρτάται από το σχήµα του σώµατος (π.χ. ια σφαιρικό σχήµα Κ=6πR και υ η ταχύτητα του σώµατος. Λύση. Το επίπεο µέσα στο οποίο κινείται το σώµα λαµβάνεται σαν επίπεο -y (βλέπε σχήµα και πρόσεξε τη φορά των αξόνων. Στο σώµα ασκείται επί πλέον η Recittin, Physics I 008-9

13 ύναµη του βάρους του, B= g j. Οι εξισώσεις κίνησης (α και (β ράφονται ια τη περίσταση, όπου K y =, (0α f = g, (0β f = ηυ και fy Kηυy fy = είναι οι συνιστώσες της αντίστασης του αέρα κατά τους άξονες και y, αντίστοιχα. [Το µείον, όπως επισηµάναµε, υποηλώνει το εονός ότι οι υνάµεις τριβών ή αντιστάσεις έχουν αντίθετη φορά µε εκείνη της ταχύτητας, αλλά χρειάζεται προσοχή όταν ίνεται αντικατάστασή τους στις (α και (β να µην εισάουµε το µείον ύο φορές!! ]. Αναλυτικότερα οι εξισώσεις κίνησης (0 ράφονται, = Kηυ, y = Kηυy g, ή Recittin, Physics I

14 + = 0 (α y y + + g = 0 (β όπου = Kη / >0. Οι ιαφορικές εξισώσεις (, αν και είναι ίιες µε την (9, εν τούτοις ξανα-επιλύονται ια εξάσκηση. Βρίσκουµε λοιπόν παρακάτω τις εξής λύσεις: υο t = ( e, y= t Kη { gt+ υ ( e }, όπου. οy Επίλυση της (α: Η (α ολοκληρώνεται εύκολα. Πράµατι, χρησιµοποιώντας τη ταχύτητα υ υ υ = /, η (α ράφεται: + υ = 0, και ιαχωρίζοντας τις µεταβλητές έπεται, =. υ υ Η σχέση αυτή ολοκληρώνεται: = ή ln( υ = t + c, (ιβ υ όπου c η σταθερά ολοκλήρωσης, η οποία υπολοίζεται εφαρµόζοντας τις αρχικές συνθήκες: ια t=0 έχοµε υ =υ ο =υ ο csθ ο, οπότε αντικαθιστώντας στην (ιβ έχοµε: ln( υο = 0+ c, ή c= ln( υο, και υ αντικαθιστώντας στη (ιβ: ln( υ = t+ ln( υο, ή ln( = t. Η σχέση αντιστρέφεται και ίει: υο υ t t = e, άρα υ = υοe, (ι υο όπου Kη /. Παρατηρούµε ακόµη στην (ι ότι ια t=0 πράµατι βρίσκουµε υ =υ ο, ενώ ια t ισχύει υ 0 (βέβαια πριν συµβεί αυτό, το σώµα πολύ πιθανόν να έχει κτυπήσει το έαφος!. Η σχέση (ι µπορεί να ολοκληρωθεί περαιτέρω ια να υπολοιστεί η συνάρτηση: =f(t. Πράµατι, η (ι ράφεται: υ t ο e t =, ή = υοe, ή υ ο t = e + c (ι όπου c η σταθερά ολοκλήρωσης, η οποία υπολοίζεται εφαρµόζοντας τις αρχικές συνθήκες: ια t=0 υο υο έχοµε =0. αντικαθιστώντας στην (ι έχοµε: 0 = + c, άρα c=. Συνεπώς, η (ι ράφεται: υο t = ( e, (ιε η οποία ια t=0 πράµατι ίει: =0. Στη περίπτωση µηενικής αντίστασης, ηλ. ια Κ==0, η (ι ίει: υ = υ 0 = cnst., ενώ η (ιε ίει (χρησιµοποιώντας και τον κανόνα e l Hspitl: t t e te li = υ li = υ li = υ t, ηλ. καταλήουµε σε νωστές µας σχέσεις Recittin, Physics I

15 Επίλυση της (β: Η (β µπορεί να ολοκληρωθεί αµέσως. Πράµατι, χρησιµοποιώντας τη υ y ταχύτητα υ y = y /, η (β ράφεται: + υy + g= 0, και ιαχωρίζοντας τις µεταβλητές υ y υy υ y έπεται, =, ή =. Ολοκληρώνοντας = παίρνοµε: υy υ y υ y ln( g + + υ y =t c, (ιστ όπου c η σταθερά ολοκλήρωσης, η οποία υπολοίζεται εφαρµόζοντας τις αρχικές συνθήκες: ια t=0 έχοµε υ y =υ οy =υ ο sinθ ο, οπότε αντικαθιστώντας στην (ιστ έχοµε: ln υοy =0+ c, ή c = ln υοy. Εποµένως η (ιστ ράφεται: ln υ y =t+ ln υοy, ή υy υy t ln( =t. Η σχέση αντιστρέφεται και ίει: = e, η οποία λύνεται ως προς υ y : υοy υοy t ( υ e υ y = οy, (ιζ όπου Kη /. Η (ιζ ια t=0 πράµατι ίει: υ y =υ οy. Στη περίπτωση µηενικής αντίστασης, ηλ. ια Κ==0, η (ιζ ίει (χρησιµοποιώντας τον κανόνα e l Hspitl: t t t υοy e 0 t υοy e + υοye li υ y = li = li = υοy gt!! Τέλος, η σχέση (ιζ µπορεί να ολοκληρωθεί περαιτέρω ια να υπολοιστεί η συνάρτηση: y=f(t. y t t Πράµατι, η (ιζ ράφεται: = [ υοy e ], ή y= [ υοy e ], ή t y = gt+ υοy e + c όπου c 3 η σταθερά ολοκλήρωσης, η οποία υπολοίζεται εφαρµόζοντας τις αρχικές συνθήκες: ια t=0 έχοµε y=0. Πράµατι, αντικαθιστώντας στην (ιη έχοµε: 0 = 0+ υοy + c3, άρα υοy c3 =. Συνεπώς, η (ιη ράφεται: t y= { gt+ υοy ( e }, (ιθ η οποία όντως ίει y=0 ια t=0. Στη περίπτωση µηενικής αντίστασης, Κ==0, η (ιθ ίει (χρησιµοποιώντας και τον κανόνα e l Hspitl ις: t t t gt+ υοy ( e gt+ υοy( e + υοy te li y= li = li υ = li 0 οy te t + υ οy te t υ οy t e t = υ οy t gt 3 (ιη!!, ηλ. καταλήουµε σε νωστές σχέσεις. Recittin, Physics I

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 14 Ταλαντώσεις Ταλαντώσεις Ελατηρίου Απλή αρµονική κίνηση Ενέργεια απλού αρµονικού ταλαντωτή Σχέση απλού αρµονικού ταλαντωτή και κυκλικής κίνησης Το απλό εκκρεµές Περιεχόµενα 14 Το φυσικό εκκρεµές

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη

Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη ΤΑΛΑΝΤΩΣΕΙΣ (µερικές σηµειώσεις...) Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη διεύθυνση της κίνησης,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 05 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

υναµική στο επίπεδο.

υναµική στο επίπεδο. στο επίπεδο. 1.3.1. Η τάση του νήµατος, πού και γιατί; Έστω ότι σε ένα λείο οριζόντιο επίπεδο ηρεµούν δύο σώµατα Α και Β µε µάζες Μ=3kg και m=2kg αντίστοιχα, τα οποία συνδέονται µε ένα νήµα. Σε µια στιγµή

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ

ΣΗΜΕΙΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ ΓΕΝΙΚΗ ΦΥΣΙΚΗ Ι Ακαδηµαϊκό έτος 4-5 ΣΗΜΕΙΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ Νίκος Κυλάφης Πανεπιστήµιο Κρήτης //4 Σελίδα από 55 ΠΛΗΡΟΦΟΡΙΕΣ ΣΧΕΤΙΚΕΣ ΜΕ ΤΟ ΜΑΘΗΜΑ ΚΑΙ ΤΙΣ ΕΞΕΤΑΣΕΙΣ Το µάθηµα της Γενικής Φυσικής Ι θα γίνεται

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ;

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ; 45 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 107601470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 006 ΘΕΜΑ 1 1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός

Διαβάστε περισσότερα

ΘΕΜΑ 1 Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 9 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 6 : Τηλ.: 076070 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΥΚΕΙΟΥ 009 ΘΕΜΑ Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

Επαναληπτικό πρόβλημα στη συμβολή κυμάτων.

Επαναληπτικό πρόβλημα στη συμβολή κυμάτων. Επαναληπτικό πρόβλημα στη συμβολή κυμάτων. ύο σύγχρονες πηγές Π 1 και Π 2 που απέχουν απόσταση d=8m, παράγουν στην επιφάνεια ενός υγρού αρµονικά κύµατα που έχουν ταχύτητα διάδοσης υ=2m/s. Η εξίσωση της

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015 Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 9 5 015 ΘΕΜΑ Α: Α1. α Α. β Α. α Α4. δ Α5. α) Λ β) Σ γ) Σ δ) Λ ε) Σ ΘΕΜΑ Β: B1. Σωστό το iii. Αιτιολόγηση: Οι εξωτερικές δυνάμεις

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

γ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της

γ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της Βασικές ασκήσεις στις φθίνουσες ταλαντώσεις.. Μικρό σώμα εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται με το χρόνο σύμφωνα με τη σχέση =,8e,t (S.I.). Να υπολογίσετε: α. το πλάτος της ταλάντωσης τη

Διαβάστε περισσότερα

3. Η µερική παράγωγος

3. Η µερική παράγωγος 1 Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 1 Μερική παραγώγιση παράγωγος µιας συνάρτησης µερική παράγωγος ( ( µιας µεταβλητής ορίζεται ως d d ( ( (1 Για συναρτήσεις δύο

Διαβάστε περισσότερα

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ

ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ ΕΝΑΛΛΑΣΣΟΜΕΝΑ ΡΕΥΜΑΤΑ Ένα ρεύµα ονοµάζεται εναλλασσόµενο όταν το πλάτος του χαρακτηρίζεται από µια συνάρτηση του χρόνου, η οποία εµφανίζει κάποια περιοδικότητα. Το συνολικό ρεύµα που διέρχεται από µια

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις)

Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις) Ερωτήσεις θεωρίας µε απάντηση Φυσικής Γ Γυµνασίου (ταλαντώσεις) Πότε µια κίνηση λέγεται περιοδική; Να γράψετε τρία παραδείγµατα. Μια κίνηση λέγεται περιοδική όταν επαναλαµβάνεται σε ίσα χρονικά διαστήµατα.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ Σώμα είναι τοποθετημένο πάνω σε ορίζοντα δίσκο.ο δίσκος τιθεται σε οριζόντια αρμονικη ταλάντωση με συχνότητα f.αν ο συντελεστης μέγιστης στατικης τριβής μεταξύ

Διαβάστε περισσότερα

Παραδείγµατα δυνάµεων

Παραδείγµατα δυνάµεων ΥΝΑΜΕΙΣ Παραδείγµατα Ορισµός της δύναµης Χαρακτηριστικά της δύναµης Μάζα - Βάρος Μέτρηση δύναµης ράση - αντίδραση Μέτρηση δύναµης Σύνθεση - ανάλυση δυνάµεων Ισορροπία δυνάµεων 1 Ανύψωση βαρών Παραδείγµατα

Διαβάστε περισσότερα

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ

Κεφάλαιο 9 ο Κ 5, 4 4, 5 0, 0 0,0 5, 4 4, 5. Όπως βλέπουµε το παίγνιο δεν έχει καµιά ισορροπία κατά Nash σε αµιγείς στρατηγικές διότι: (ΙΙ) Α Κ Κεφάλαιο ο Μεικτές Στρατηγικές Τώρα θα δούµε ένα παράδειγµα στο οποίο κάθε παίχτης έχει τρεις στρατηγικές. Αυτό θα µπορούσε να είναι η µορφή που παίρνει κάποιος µετά που έχει απαλείψει όλες τις αυστηρά

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Φθίνουσες μηχανικές ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ταλαντώσεις. Η ελάττωση του πλάτους (απόσβεση)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΗ ΙΑΤΥΠΩΣΗ ΚΑΙ ΛΥΣΗ ΦΥΣΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στις φυσικές επιστήµες για να λύσουµε προβλήµατα ακολουθούµε συνήθως τα εξής βήµατα: 1. Μαθηµατική διατύπωση. Για να διατυπώσουµε µαθηµατικά ένα πρόβληµα

Διαβάστε περισσότερα

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )

Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( ) ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εκπαιδευτικό υλικό. Τρόπος βαθµολόγησης. http://www.pi-schools.gr/lessons/physics/ Βαθµολογία Φυσικά.

ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εκπαιδευτικό υλικό. Τρόπος βαθµολόγησης. http://www.pi-schools.gr/lessons/physics/ Βαθµολογία Φυσικά. ΟΡΓΑΝΩΣΗ ΜΑΘΗΜΑΤΟΣ Να έχετε: Τετράδιο εργαστηρίου (Physics book) File για φυλλάδια Απλό υπολογιστή (calculator) Οι σηµειώσεις του µαθήµατος βρίσκονται στην προσωπική µου ιστοσελίδα:http://www.pantelis.net

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9. Μη αδρανειακά συστήµατα αναφοράς

ΚΕΦΑΛΑΙΟ 9. Μη αδρανειακά συστήµατα αναφοράς ΚΕΦΑΛΑΙΟ 9 Μη αδρανειακά συστήµατα αναφοράς Στην Εισαγωγή στη Μηχανική, πριν το Κεφάλαιο 1, είδαµε ότι ο εύτερος Νόµος του Νεύτωνα ισχύει µόνο για αδρανειακούς παρατηρητές, δηλαδή για παρατηρητές που είτε

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

Κανονικ ες ταλαντ ωσεις

Κανονικ ες ταλαντ ωσεις Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια

Διαβάστε περισσότερα

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2.

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2. 1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr γ) πr 2 δ) καµία από τις παραπάνω τιµές Το µέτρο της µετατόπισης που έχει υποστεί

Διαβάστε περισσότερα

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ).

ΤΕΙ - ΧΑΛΚΙ ΑΣ. διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και. 2. τρανζίστορ πυριτίου (Si ). 7. Εισαγωγή στο διπολικό τρανζίστορ-ι.σ. ΧΑΛΚΙΑ ΗΣ διαφάνεια 1 7. TΟ ΙΠΟΛΙΚΟ ΤΡΑΝΖΙΣΤΟΡ Ανάλογα µε το υλικό διπολικά τρανζίστορ διακρίνονται σε: 1. τρανζίστορ γερµανίου (Ge) και 2. τρανζίστορ πυριτίου

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ.

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. Θα μελετήσουμε τώρα συστήματα που διεγείρονται σε ταλάντωση μέσω εξωτερικής ς που μπορεί να είναι (όπως θα δούμε παρακάτω) σταθερή, μεταβλητού

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Φυσική Α Λυκείου Στο παρών παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 2 ο, 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

Παλμογράφος. ω Ν. Άσκηση 15:

Παλμογράφος. ω Ν. Άσκηση 15: Άσκηση 15: Παλμογράφος Σκοπός: Σε αυτή την άσκηση θα μάθουμε τις βασικές λειτουργίες του παλμογράφου και το πώς χρησιμοποιείται αυτός για τη μέτρηση συνεχούς και εναλλασσόμενης τάσης, συχνότητας και διαφοράς

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ. Α.3 Πότε η ευθεία y = l λέγεται οριζόντια ασύµπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 3 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 7 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α.1 Αν z 1, z είναι µιγαδικοί αριθµοί, να αποδειχθεί ότι: z 1 z = z 1 z. Α. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες 4 Α.3 Πότε η ευθεία y

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Κεφάλαιο 7 Έργο και Ενέργεια. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 7 Έργο και Ενέργεια. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 7 Έργο και Ενέργεια Περιεχόµενα Κεφαλαίου 7 Το έργο σταθερής δύναµης Εσωτερικό Γινόµενο δύο διανυσµάτων Έργο µεταβλητής δύναµης Σχέση Ενέργειας και έργου 7-1 Το έργο σταθερής δύναµης Το έργο που

Διαβάστε περισσότερα

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 2 Μη αδρανειακά συστήµατα x Έστω ότι το S αποκτά επιτάχυνση α 0 S z 0 Α x z S y, y Ο παρατηρητής S µετρά µια επιτάχυνση: A = A +

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 13 1.2 ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων

ΜΑΘΗΜΑ 13 1.2 ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων ΜΑΘΗΜΑ 3. ΣΥΝΑΡΤΗΣΕΙΣ Σύνθεση συναρτήσεων Θεωρία Σχόλια Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Έστω οι συναρτήσεις : A R, :Β R Το τυχαίο A, µε την A. αντιστοιχίζεται στην τιµή Αν η τιµή αυτή ( ) B θα αντιστοιχίζεται

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 2011-2012 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

1 η Εργαστηριακή Άσκηση: Απλή Αρµονική Ταλάντωση

1 η Εργαστηριακή Άσκηση: Απλή Αρµονική Ταλάντωση Ονοµατεπώνυµο: µήµα: Επιµέλεια: Παναγιώτης Παζούλης Φυσική Γ Λυκείου θετικής εχνολογικής Κατεύθυνσης 1 η Εργαστηριακή Άσκηση: Απλή Αρµονική αλάντωση Α) Εισαγωγικές έννοιες. Περιοδική κίνηση ονοµάζεται

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΩΤΗΣΗ 1 Ένα σώμα εκτελεί κίνηση που οφείλεται στη σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας διεύθυνσης, που γίνονται γύρω από το ίδιο σημείο, με το ίδιο πλάτος A και συχνότητες

Διαβάστε περισσότερα

Μελέτη και σύγκριση ελεύθερης - ρεαλιστικής πτώσης σωµάτων

Μελέτη και σύγκριση ελεύθερης - ρεαλιστικής πτώσης σωµάτων Μελέτη και σύγκριση ελεύθερης - ρεαλιστικής πτώσης σωµάτων Όλγα Τάσση Εκπαιδευτήρια «Ο Απόστολος Παύλος» trendy.olga@gmail.com Επιβλέπων Καθηγητής: r ηµήτριος Τάσσης Φυσικός-Ραδιοηλεκτρολόγος, Εκπαιδευτήρια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Να γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιµέλεια: Γιοµπλιάκης Λάζαρος Ματελόπουλος Αντώνης Τσαµήτρος ηµήτριος

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιµέλεια: Γιοµπλιάκης Λάζαρος Ματελόπουλος Αντώνης Τσαµήτρος ηµήτριος ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιµέλεια: Γιοµπλιάκης Λάζαρος Ματελόπουλος Αντώνης Τσαµήτρος ηµήτριος ΘΕΜΑ Ο. Σφαίρα Α µε µάζα m g συγκρούεται µετωπικά και ελαστικά µε ταχύτητα υ 5m/ µε ακίνητη σφαίρα Β

Διαβάστε περισσότερα

Άσκηση 28. Μελέτη ακουστικών κυµάτων σε ηχητικό σωλήνα

Άσκηση 28. Μελέτη ακουστικών κυµάτων σε ηχητικό σωλήνα Άσκηση 28 Μελέτη ακουστικών κυµάτων σε ηχητικό σωλήνα 28.1 Σκοπός Σκοπός της άσκησης είναι η µελέτη των στάσιµων ακουστικών κυµάτων µέσα σε ηχητικό σωλήνα. Θα καταγραφεί το στάσιµο κύµα ακουστικής πίεσης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Στις ηµιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

Μονάδες 5 Απαντήσεις Α5. Σ, Σ, Λ, Λ, Σ

Μονάδες 5 Απαντήσεις Α5. Σ, Σ, Λ, Λ, Σ ΠΑΝΕΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΥΕΙΟΥ & ΕΠΑ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΕΥΗ 5 ΜΑÏΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ & ΤΕΧΝΟΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΜΕΛΕΙΑ: ρ. ΑΠΟΣΤΟΛΟΣ ΑΣΙΛΑΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013 1 ΠΕΡΙΓΡΑΜΜΑ ΥΛΗΣ 1. Απλός τόκος 2. Ανατοκισµός 3. Ράντες 4. άνεια 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ι ΕΑ ΤΟΥ ΕΠΙΤΟΚΙΟΥ

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέμα 1: ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ 11 -- ΠΕΙΡΑΙΑΣ -- 18532 -- ΤΗΛ. 210-4224752, 4223687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΤΑΛΑΝΤΩΣΕΙΣ Α. Στις παρακάτω ερωτήσεις να επιλέξετε την

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΓΩΝΙΣΜ ΘΕΜ 1 Ο Να επιλέξετε την σωστή απάντηση. ) Η απόσταση µεταξύ δύο διαδοχικών δεσµών το στάσιµο κύµα είναι: 1/ λ/4 / λ/6 3/ λ/ 4/ λ όπου λ είναι το µήκος κύµατος των τρεχόντων

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική ερίοδος 05 Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 700 Διάρκεια: ώρες Ύλη: Ταλαντώσεις Καθηγητής: Ονοματεώνυμο: ΘΕΜΑ Α Στις ημιτελείς

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 014 Ε_3.ΦλΓΑΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ & ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 7 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Προσδιορισμός της σταθεράς ενός ελατηρίου. Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

ΟΠΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 4.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων;

ΟΠΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 4.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων; Σύνθεση ταλαντώσεων ΚΕΦΑΛΑΙΟ 1 4.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων; 4.2 Να γίνει η σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας, ίδιας διεύθυνσης, διαφοράς φάσης μεταξύ τους φ,

Διαβάστε περισσότερα