ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ"

Transcript

1 ΚΕΦΑΛΑΙΟ 4ο ΧΡΟΝΙΚΟΙ ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ 4.1 ΕΙΣΑΓΩΓΗ 4. ΔΙΑΔΙΚΑΣΙΕΣ ΛΕΥΚΟΥ ΘΟΡΥΒΟΥ 4.3 ΥΠΟΔΕΙΓΜΑΤΑ ΤΥΧΑΙΟΥ ΠΕΡΙΠΑΤΟΥ 4.4 Η ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ 4.5 ΜΕΡΙΚΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗ 4.6 ΚΑΝΟΝΙΚΗ ΚΑΙ ΕΠΟΧΙΚΗ ΔΙΑΦΟΡΙΣΗ 4.7 ΧΡΟΝΙΚΟΙ ΤΕΛΕΣΤΕΣ ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 1

2 4.1 ΕΙΣΑΓΩΓΗ Τα αιτιοκρατικά υποδείγματα που συζητήθηκαν στο 3 ο Κεφάλαιο δε λάμβαναν υπόψη τους τη στοχαστική φύση των χρονικών σειρών. Τα υποδείγματα που θα μελετήσουμε στη συνέχεια στηρίζονται στην ιδέα ότι η χρονική σειρά που πρόκειται να μελετηθεί έχει δημιουργηθεί από μια στοχαστική διαδικασία, τα χαρακτηριστικά της οποίας περιγράφονται από τα υποδείγματα αυτά. Η περιγραφή αυτή δε γίνεται δημιουργώντας μια σχέση αιτίου αποτελέσματος, όπως για παράδειγμα στα οικονομετρικά υποδείγματα χρονικών σειρών που μελετήσαμε στο Κεφάλαιο, αλλά προσπαθώντας να δημιουργήσουμε ένα υπόδειγμα το οποίο να μπορεί να αναπαράγει, τουλάχιστον ως ένα βαθμό, τα βασικά χαρακτηριστικά της από κοινού συνάρτησης κατανομής πιθανότητας των τυχαίων μεταβλητών που δημιουργεί τις παρατηρούμενες τιμές της χρονικής σειράς. Ο πλήρης προσδιορισμός της συνάρτησης αυτής είναι συνήθως αδύνατος, όμως αν ένα απλοποιημένο υπόδειγμα μπορεί να περιγράψει τη στοχαστική φύση της σειράς με τέτοιο τρόπο ώστε π.χ. να μπορούν να προκύψουν ικανοποιητικές προβλέψεις, τότε το υπόδειγμα αυτό είναι χρήσιμο. Το κεφάλαιο αυτό είναι προπαρασκευαστικό του επομένου, που αναφέρεται στα στοχαστικά υποδείγματα ARIMA και SARIMA, και περιλαμβάνει χρήσιμες έννοιες, καθώς και μερικά από τα κυριότερα στατιστικά και μαθηματικά εργαλεία που είναι απαραίτητα για τη μελέτη των υποδειγμάτων αυτών. 4. ΔΙΑΔΙΚΑΣΙΕΣ ΛΕΥΚΟΥ ΘΟΡΥΒΟΥ 1) Λευκός θόρυβος: Είναι μία χρονική σειρά ε με: Ε(ε )=0, Ε(ε )= σ και ασυσχέτιστους μεταξύ τους όρους (δηλ. Ε(ε ε -κ ) = 0 για κ>0) ΚΕΦ Α. ΜΗΛΙΩΝΗΣ

3 ) Ανεξάρτητος λευκός θόρυβος Ισχύουν ότι και για το λευκό θόρυβο, αλλά με τους όρους της σειράς όχι απλά ασυσχέτιστους αλλά ανεξάρτητους μεταξύ τους δηλ.: E{( g( ) f ( )} 0, k 0, f : R R, g : R R. k 3) Κανονικός ή Gaussian λευκός θόρυβος Ισχύουν όλα τα προηγούμενα και επιπλέον η ε ακολουθεί κανονική κατανομή. 4.3 ΔΙΑΔΙΚΑΣΙΕΣ ΤΥΧΑΙΟΥ ΠΕΡΙΠΑΤΟΥ Το Υπόδειγμα του (απλού) τυχαίου περιπάτου χωρίς αιτιοκρατική τάση Έστω ότι από τη ρίψη ενός νομίσματος κερδίζουμε 1$ αν έλθει «κορώνα» και χάνουμε 1$ αν έλθει «γράμματα». Η σειρά ε με ε = +1 για «κορώνα» και ε = -1 για «γράμματα» δημιουργείται σύμφωνα με τα προηγούμενα από μια διαδικασία λευκού θορύβου. Για δίκαιο νόμισμα και δίκαιη διαδικασία ρίψης θα έχουμε: P(κορώνα) = P(γράμματα) =1/ Ε(ε )=1/(+1)+1/(-1) =0 Ε(ε )=1 Ε(ε ε -κ ) = 0 για κ>0) Έστω τώρα ότι η Υ είναι η σειρά που αντιπροσωπεύει το ποσό των χρημάτων που έχουμε κερδίσει ή χάσει μετά από διαδοχικές ρίψεις. Τότε για: =1: Υ 1 = ε 1 =: Y = ε 1 +ε ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 3

4 ... = Υ = ε 1 +ε ε Η σειρά Υ στην οποία ο όρος με τάξη ισούται με το άθροισμα των όρων μέχρι και τάξη μιας διαδικασίας λευκού θορύβου, αποτελεί ένα παράδειγμα απλού τυχαίου περιπάτου. Στη γενική περίπτωση το υπόδειγμα του απλού τυχαίου περιπάτου γράφεται και ως: Υ = Υ -1 + ε, με Ε(ε )=σ H αναμενόμενη τιμή και η διακύμανση της Υ θα είναι: Ε(Υ )= Ε(ε 1 )+Ε(ε )+...+Ε(ε )= =0 Ε(Υ )=Ε(ε 1 )+Ε(ε )+..+Ε(ε )+ ( i k) i k lim E Y Οπότε i 1 k 1 Άρα η Υ δεν είναι στάσιμη. Αν τώρα υποθέσουμε ότι κατά τη χρονική στιγμή 0 η τιμή μιας χρονικής σειράς που περιγράφεται από μια διαδικασία τυχαίου περιπάτου είναι y 0, τότε ο γενικός όρος της χρονοσειράς γράφεται: Y y 0 i i1 Παρατηρούμε ότι κάθε νέα διαταραχή ε i που εισέρχεται στο σύστημα παραμένει σε αυτό και επηρεάζει όλες τις μελλοντικές τιμές της Υ. Σχηματικά: i1 Y i ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 4

5 4.3. Το υπόδειγμα του (απλού) τυχαίου περιπάτου με αιτιοκρατική τάση (random walk wih drif model) To υπόδειγμα αυτό εκφράζεται με τη σχέση: Υ = Y -1 +ε +ξ. Για ξ>0 (<0) η σειρά θα τείνει να κινηθεί ανοδικά (καθοδικά). Το γεγονός ότι η ύπαρξη του σταθερού όρου στο υπόδειγμα δημιουργεί μία τάση μπορεί να φανεί με τον ακόλουθο τρόπο: Αντικαθιστώντας διαδοχικά τα Υ -1, Υ - κλπ στην αρχική σχέση θα έχουμε: Υ = ξ+y -1 +ε = Υ - +ε -1 + ε +ξ= = Y -k +ε + ε ε -k+1 +kξ και αν για =0 Υ = y 0, τελικά: 1 Υ = y 0 +ξ+ j 0 j Από την τελευταία σχέση φαίνεται ότι η σταθερά ξ είναι η κλίση στην αιτιοκρατική τάση που εκφράζεται με τον όρο ξ. Η ύπαρξη ενός τέτοιου όρου σαφώς βελτιώνει την προβλεπτική ικανότητα του υποδείγματος, όπως θα δούμε σε επόμενο κεφάλαιο. 4.4 Η ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ Η συνάρτηση αυτοσυσχέτισης ρ k παίζει έναν ιδιαίτερα σημαντικό ρόλο στην εφαρμοσμένη ανάλυση χρονικών σειρών, καθώς μαζί με το μέσο και τη διακύμανση, είναι αυτή που μας δίνει πληροφορίες σχετικά με τη φύση της στοχαστικής διαδικασίας που περιγράφει την εξέλιξη της χρονικής σειράς. Η ρ k ορίζεται ως εξής: COV ( Y, Y [ VAR( Y ) VAR( Y k ) )] k 1/ [( )( { E[( Y ) E( Y k k ) )]} k 1/ ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 5

6 Για μία στάσιμη διαδικασία μ =μ -k και VAR(Y ) = Var(Y -k ) Eπομένως, για την περίπτωση που έχουμε στασιμότητα [( )( ) E[( Y ) ] Ο ορισμός αυτός της ρ k είναι καθαρά θεωρητικός καθώς η ρ k περιγράφει μία στοχαστική διαδικασία για την οποία δεν έχουμε παρά μόνο ένα πεπερασμένο αριθμό όρων από μία και μόνο δειγματοληπτική διαδρομή. Υποθέτοντας στασιμότητα και εργοδικότητα η ρ k μπορεί να εκτιμηθεί από τις (Ν το πλήθος) διαθέσιμες παρατηρήσεις με την ακόλουθη σχέση που μας παρέχει τη δειγματική συνάρτηση αυτοσυσχετίσεως (sample auocorrelaion funcion, (SACF)): ˆ SACF ( k) k N k 1 ( Y Y )( Y N 1 k ( Y Y ) Y ) Όπως η ρ k έτσι και η SACF(k) είναι συμμετρική δηλ. SACF(k)= =SACF(-k). Για το λόγο αυτό όταν η SACF αναπαρίσταται γραφικά θεωρούμε μόνο τις θετικές τιμές του k. H συνάρτηση αυτοσυσχετίσεως ρ k του λευκού θορύβου (ε ) θα είναι ίση με 0 για κάθε k διάφορο του μηδενός και ίση με 1 για k=0, καθώς για το λευκό θόρυβο ως γνωστό ισχύουν: Ε(ε ) =0 Ε(ε )=σ Ε(ε ε -κ ) = 0 για κ>0) Για την αντίστοιχη δειγματική συνάρτηση αυτοσυσχέτισης SACF(k) αποδεικνύεται (Barle, 1946) ότι οι δειγματικοί συντελεστές αυτοσυσχέτισης είναι κανονικά κατανεμημένοι (για σειρά με σχετικά μεγάλο αριθμό όρων) με μέση τιμή 0 και διακύμανση κατά προσέγγιση ίση με 1/Ν, όπου Ν το πλήθος των όρων της σειράς. ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 6

7 Για να ελέγξουμε την υπόθεση ότι όλοι οι συντελεστές αυτοσυσχετίσεως μέχρι τάξη m είναι μηδέν, χρησιμοποιούμε το στατιστικό των Ljung and Box που ορίζεται με τη σχέση: LBQ N( N ) m k1 [( N k) 1 SACF ( k) ] Όπως αποδεικνύεται, το στατιστικό αυτό ακολουθεί κατανομή Χ με m-s βαθμούς ελευθερίας, όπου s το πλήθος των συντελεστών που εκτιμάμε (υποδείγματα χρονικών σειρών όπου γίνεται εκτίμηση συντελεστών θα δούμε στο επόμενο κεφάλαιο). Αν η τιμή του LBQ για μια χρονοσειρά βρεθεί μεγαλύτερη από την κρίσιμη τιμή Χ για το προκαθορισμένο επίπεδο σημαντικότητας, τότε η υπόθεση Η 0 (δηλ. ότι η σειρά είναι λευκός θόρυβος) απορρίπτεται για το συγκεκριμένο επίπεδο σημαντικότητας. Στην πράξη, με βάση τα παραπάνω, για να ελέγξουμε την Η 0, ελέγχουμε αφενός αν μεμονωμένοι συντελεστές αυτοσυσχετίσεως είναι εντός των 95% ορίων εμπιστοσύνης και εφετέρου αν από κοινού είναι μη σημαντικοί με το στατιστικό των Ljung and Box. Εφαρμογή Να βρεθεί η συνάρτηση αυτοσυσχέτισης για τον τυχαίο περίπατο. Απάντηση Διαδοχικά θα έχουμε: Y y 0 i, k Y y k 0 i i1 i1 VAR(Υ )= VAR(Y 0 +ε 1 +ε ε )= σ +σ +.. σ = σ VAR(Υ -k )= VAR(Y 0 +ε 1 +ε ε -k )= σ +σ +.. σ =(-k) σ COV(Υ,Υ -k )=E[(Υ - y 0 )( Υ -k y 0 )] (αφού Ε(Υ )= y 0 )= ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 7

8 =Ε[(ε 1 +ε ε )( ε 1 +ε ε -k )]= (-k) σ οπότε: COV ( Y, Y [ VAR( Y ) VAR( Y k ) )] k 1/ ( k) ( ( k) ) 1/ k Επομένως η ρ k του τυχαίου περιπάτου για >>k θα έχει προσεγγιστικά την τιμή 1 για κάθε k, ενώ η αντίστοιχη SΑCF θα φθίνει πολύ αργά. 1/ 4.5 ΜΕΡΙΚΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗ Έστω το παρακάτω υπόδειγμα παλινδρόμησης τριών μεταβλητών: Υ= β 1 +β Χ +β 3 Χ 3 +U Ως γνωστόν οι συντελεστές β, β 3 καλούνται μερικοί συντελεστές παλινδρόμησης και έχουν την εξής σημασία: Ο β 3 μετρά τη μεταβολή στην τιμή της Υ που προκαλείται από την μοναδιαία μεταβολή στη Χ 3, κρατώντας τη Χ σταθερή. Όσον αφορά τώρα τους συντελεστές συσχετίσεως, ο συντελεστής συσχετίσεως μεταξύ Υ και Χ, αν δε ληφθεί μέριμνα για την Χ 3, δεν αντανακλά την πραγματική συσχέτιση μεταξύ Υ και Χ. Αυτός ο συντελεστής συσχετίσεως συμβολίζεται με r YX ή r 1 όπου ο δείκτης 1 αναφέρεται στη μεταβλητή Υ και ο δείκτης στη μεταβλητή Χ και καλείται απλός, ή μηδενικής τάξης συντελεστής συσχετίσεως. Είναι φανερό ότι θα πρέπει να ορισθεί και ένας άλλος συντελεστής συσχετίσεως που να αντανακλά την πραγματική συσχέτιση μεταξύ Υ και Χ. Αυτό επιτυγχάνεται με το λεγόμενο μερικό συντελεστή συσχετίσεως που ορίζεται κατ αναλογία με το μερικό συντελεστή παλινδρομήσεως και συμβολίζεται ως εξής: r 1.3 = μερικός συντελεστής συσχετίσεως μεταξύ Υ και Χ κρατώντας τη μεταβλητή Χ 3 σταθερή. Ο συντελεστής αυτός, που ονομάζεται και συντελεστής συσχετίσεως πρώτης τάξης, δίνεται από τη σχέση: ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 8

9 r 1.3 r 1 (1 r r r 3 )(1 r 3 ) Με ανάλογο τρόπο ορίζονται και οι r 13. και r 3.1. Σε μία χρονική σειρά, σε αντιστοιχία με τα παραπάνω, ορίζεται σαν μερική αυτοσυσχέτιση k-τάξης φ kk η συσχέτιση μεταξύ των Υ, Υ +k, όταν οι ενδιάμεσοι όροι Y +1, Y +,..,Y +k-1 παραμένουν σταθεροί. Δηλαδή: φ kk = Correlaion(Y, Y +k /Y +1, Y +,..,Y +k-1 σταθεροί). Έτσι (*): φ 11 =ρ 1 φ =(ρ -ρ 1 )/(1-ρ 1 ) Για k> οι φ kk υπολογίζονται μέσω αναγωγικού τύπου. Η συνάρτηση μερικής αυτοσυσχετίσεως (parial auocorrelaion funcion) παρέχει το συντελεστή μερικής αυτοσυσχετίσεως για χρονικές υστερήσεις k=1,,3 Όπως και η συνάρτηση αυτοσυσχετίσεως αποτελεί πολύ χρήσιμη πηγή πληροφόρησης σχετικά με τα χαρακτηριστικά της αλληλεξάρτησης που δημιουργεί μια στοχαστική διαδικασία και είναι πολύ χρήσιμο εργαλείο για την ταυτοποίηση του αντίστοιχου στοχαστικού υποδείγματος. (*) Για αυτοπαλίνδρομη διαδικασία ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 9

10 4.6 Κανονική και εποχική διαφόριση Θεωρούμε πάλι το υπόδειγμα του απλού τυχαίου περιπάτου Υ = Υ -1 + ε Όπως έχουμε δει, το υπόδειγμα αυτό δεν είναι στάσιμο. Στη συνέχεια θεωρούμε το υπόδειγμα που προκύπτει αν από κάθε όρο της Υ αφαιρέσουμε τον προηγούμενο του, δηλ.: Ζ = Υ - Υ -1 = Υ -1 + ε -Υ -1 = ε Ζ -1 = Υ -1 -Υ - = Υ - + ε -1 -Υ - = ε Ζ = Υ - Υ 1 = Υ 1 + ε Υ 1 = ε Η νέα σειρά ε, ε 3, ε που προκύπτει ως οι πρώτες διαφορές της Υ έχει έναν όρο λιγότερο, που χάθηκε λόγω της διαφόρισης, αλλά είναι στάσιμη καθώς είναι ο γνωστός μας λευκός θόρυβος. Ο τυχαίος περίπατος είναι ένα παράδειγμα μίας χρονικής σειράς που μετατρέπεται σε στάσιμη διαφορίζοντας την (Difference Saionary Series). Υπενθυμίζεται ότι μία χρονική σειρά που εμπεριέχει γραμμική μετατρέπεται σε στάσιμη απαλείφοντας την γραμμική τάση (Trend Saionary Series). Γενικότερα μια σειρά που δεν είναι στάσιμη, αλλά μπορεί να μετατραπεί σε στάσιμη διαφορίζοντας την d φορές καλείται ομογενώς μη στάσιμη τάξεως d, ή ολοκληρωμένη τάξεως d. Άρα ο τυχαίος περίπατος είναι μια ολοκληρωμένη (ομογενώς μη στάσιμη) σειρά τάξεως 1. Για μια ομογενώς μη στάσιμη σειρά οι αυτοσυσχετίσεις στην SACF(k) θα μειώνονται πολύ αργά καθώς το k αυξάνεται και αυτό αποτελεί ένα πρώτο πρακτικό κριτήριο για την ύπαρξη ομογενούς μη στασιμότητας, αφού αν η σειρά είναι στάσιμη, όπως θα δούμε στο επόμενο κεφάλαιο, οι ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 10

11 αυτοσυσχετίσεις βαίνουν μειούμενες με πολύ ταχύτερο ρυθμό 1. Μερικές ακόμη από τις βασικές διαφορές μεταξύ στάσιμων και μη στάσιμων χρονικών σειρών συνοψίζονται παρακάτω (λεπτομερέστερες επεξηγήσεις θα δοθούν και σε επόμενα κεφάλαια): Για στάσιμες χρονικές σειρές με μηδενική μέση τιμή: Η διακύμανση είναι πεπερασμένη. Μία στοχαστική διαταραχή (innovaion) έχει παροδική επίδραση. Ο αναμενόμενος χρόνος που απαιτείται μεταξύ «περασμάτων» των τιμών της σειράς από την τιμή μηδέν (γενικότερα από τη μέση τιμή, αν η τελευταία είναι διάφορη του μηδενός) είναι πεπερασμένος. Για μη στάσιμες χρονικές σειρές: Η διακύμανση τείνει στο άπειρο για. Μία στοχαστική διαταραχή (innovaion) έχει μόνιμη επίδραση. Ο αναμενόμενος χρόνος που απαιτείται μεταξύ «περασμάτων» των τιμών της σειράς από την τιμή μηδέν είναι άπειρος, καθώς οι κυμάνσεις της σειράς δεν πραγματοποιούνται γύρω από ένα συγκεκριμένο επίπεδο. Στη συνέχεια θα εξετάσουμε τη σχέση μεταξύ συνάρτησης αυτοσυσχέτισης και εποχικότητας. Συχνά η ύπαρξη εποχικότητας διακρίνεται από την οπτική επισκόπηση της σειράς. Όμως σε σειρές που ιδίως η άρρυθμη συνιστώσα εμφανίζει έντονες διακυμάνσεις αυτό δεν είναι πάντα δυνατό. Σημαντική βοήθεια στην ανίχνευση της εποχικότητας προσφέρει η συνάρτηση αυτοσυσχέτισης. Έτσι για μηνιαία 1 Το κριτήριο αυτό θα πρέπει να χρησιμοποιείται μόνο επικουρικά προς τους κλασσικούς ελέγχους μη στασιμότητας όπως για παράδειγμα οι έλεγχοι Dickey Fuller (DF, ADF ess) κλπ. ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 11

12 στοιχεία είναι πιθανό οι όροι της σειράς που απέχουν 1 περιόδους να συσχετίζονται. Δηλαδή θα πρέπει να υπάρχει συσχέτιση μεταξύ Υ και Y -1, μεταξύ Υ -1 και Y -4 και μεταξύ Υ και Y -4. Αν οι αυτοσυσχετίσεις αυτές μεταξύ των όρων Υ, Y -1, Y -4, Y -36, κλπ είναι έντονες και υποχωρούν πολύ αργά, σκεπτόμενοι όπως στην περίπτωση της κανονικής διαφόρισης μία πρώτη ενέργεια απαλοιφής της εποχικότητας είναι να διαφορίσουμε εποχικά τη σειρά, δηλαδή να θεωρήσουμε μια νέα σειρά που θα αποτελείται όχι από τη διαφορά κάθε όρου της αρχικής σειράς από τον προηγούμενό του, αλλά από όρο που βρίσκεται 1 θέσεις πιο πίσω στην αρχική σειρά. Έτσι θα προκύψει η σειρά Ζ = Υ - Υ -1 για την οποία θα έχει απαλειφθεί ένα μεγάλο μέρος από την εποχικότητα. Αυτό μπορεί να ελεγχθεί από τη μορφή της ACF στην οποία πλέον δεν θα πρέπει να εμφανίζονται αυτοσυσχετίσεις για k= 1, 4, 36 κλπ. που να βαίνουν μειούμενες με αργό ρυθμό. 4.7 ΧΡΟΝΙΚΟΙ ΤΕΛΕΣΤΕΣ Ένας τελεστής χρονικών σειρών μετασχηματίζει μια χρονική σειρά, ή μια ομάδα χρονικών σειρών σε μια άλλη χρονική σειρά. Ένας τέτοιος τελεστής, ιδιαίτερα χρήσιμος στην ανάλυση χρονικών σειρών, είναι ο λεγόμενος τελετής χρονικής υστερήσεως (backward shif (or lag) operaor) που συμβολίζεται με το γράμμα Β ή L. Ο τελεστής αυτός όταν δρα σε μια χρονική σειρά τη μετασχηματίζει έτσι ώστε η προκύπτουσα νέα σειρά να είναι η παλαιά σειρά μετατοπισμένη κατά τόσες χρονικές περιόδους όση είναι η τάξη του τελεστή, δηλαδή: BY = Y -1 ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 1

13 B Y = Y -. B k Y = Y -k Ιδιότητες του τελεστή Β 1) Βc= c όπου c σταθερά. ) B k B m Y = B k (B m Y )= B k Y -m = Y -k-m 3) (B k +B m )Y = B k Y +B m Y = Y -k +Y -m 4) B k (αy )= αb k Y = αy -κ 5) Aρνητικές δυνάμεις του Β δηλ Β -k με k>0 αντιστοιχούν στον τελεστή χρονικής προπόρευσης (lead ή forward operaor) F και ισχύει: Β -k Y = F +k Y = Y +k δηλ.: Β -k = F +k. 6) Για φ <1 ισχύει: (1+φΒ+ φ Β + φ 3 Β φ k Β k ) Y =(1-φΒ) -1 Y για k Απόδειξη: Πολλαπλασιάζουμε και τα δύο μέλη της προς απόδειξη σχέσης με (1- φβ), οπότε αρκεί να δείξουμε ότι: =(1-φΒ)(1+φΒ+φ Β +φ 3 Β φ k Β k )Y =Υ, ή ότι: k1 k1 k1 ( 1 B ) Y Y Y Y k1 Y, που ισχύει για k Όπως θα φανεί στο επόμενο κεφάλαιο ο τελεστής Β παρέχει τη δυνατότητα γραφής εξισώσεων διαφoρών, καθώς και στοχαστικών υποδειγμάτων σε συνοπτική μορφή. Επιπλέον μέσω του Β μπορούμε να ορίσουμε τους τελεστές διαφόρισης, εποχικής διαφόρισης και απείρων αθροίσεων. Πράγματι: Y -Y -1 = (1-Β) Y με ( 1 B ) τελεστής (κανονικής) διαφόρισης. ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 13

14 Y -Y -1 = (1-Β 1 1 ) Y με ( 1 B ) τελεστής εποχικής 1 διαφόρισης. Αν τώρα: Ζ = (1-Β)Υ, τότε από την Ζ μπορούμε να επανέλθουμε στην Y αθροίζοντας τους όρους της Ζ : Y i z i 0 i z i i1 z i Το πρώτο άθροισμα ισούται με την τιμή της αρχικής σειράς για τη χρονική στιγμή μηδέν. Οι τιμές y 1, y,, y προκύπτουν προσθέτοντας στην τιμή y o διαδοχικές τιμές της Ζ. Δηλαδή: y 1 = y 0 +z 1 y = y 0 +z 1 +z.. y = y 0 +z 1 +z + +z Aξίζει να σημειωθεί ότι ο τελεστής άπειρων αθροίσεων που ορίζεται ως: S =1+Β+Β +...είναι ο αντίστροφος του τελεστή διαφορίσεως (1-Β) καθώς: Y = SZ. Αλλά: (1-Β)Y =Z => Y =1/(1-Β) Z =(1-Β) -1 Z Δηλαδή S (1-Β) -1 με S =1+Β+Β +... ΚΕΦ Α. ΜΗΛΙΩΝΗΣ 14

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο

Διαβάστε περισσότερα

Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS

ΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS ΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS 5. Η γενική μορφή στάσιμης γραμμικής στοχαστικής διαδικασίας διακριτού χρόνου 5. Υποδείγματα ARIMA

Διαβάστε περισσότερα

Μάθημα 2: Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας

Μάθημα 2: Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας close index close index Μάθημα : Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας Σταθεροποίηση διασποράς Απαλοιφή τάσης και περιοδικότητας / εποχικότητας Έλεγχοι μοναδιαίας ρίζας

Διαβάστε περισσότερα

Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008

Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ. Σημειώσεις Πανεπιστημιακών Παραδόσεων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ. Σημειώσεις Πανεπιστημιακών Παραδόσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ Σημειώσεις Πανεπιστημιακών Παραδόσεων ΑΛΕΞΑΝΔΡΟΣ ΜΗΛΙΏΝΗΣ ΟΚΤΩΒΡΙΟΣ 07 ΚΕΦΑΛΑΙΟ ΧΡΟΝΟΣΕΙΡΕΣ- ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ. ΟΡΙΣΜΟΣ

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή

Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική

Διαβάστε περισσότερα

Οικονομικές εφαρμογές υπολογιστικών πακέτων. Στοχαστικά υποδείγματα

Οικονομικές εφαρμογές υπολογιστικών πακέτων. Στοχαστικά υποδείγματα Οικονομικές εφαρμοές υπολοιστικών πακέτων Στοχαστικά υποδείματα Στοχαστική διαδικασία Στοχαστικά υποδείματα: κάθε χρονολοική σειρά δημιουρείται μέσα από ένα μηχανισμό παραωής δεδομένων που αποτελεί μια

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,

Διαβάστε περισσότερα

Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου

Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο

Διαβάστε περισσότερα

1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);

1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Ερωτήσεις: 1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA); Στα αυτοπαλίνδρομα υποδείγματα η τρέχουσα τιμή της y είναι συνάρτηση p υστερήσεων της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικών Χρηματοοικονομικών Μαθηματικών ΧΡΟΝΟΣΕΙΡΕΣ Σημειώσεις Πανεπιστημιακών Παραδόσεων ΑΛΕΞΑΝΔΡΟΣ ΜΗΛΙΏΝΗΣ ΟΚΤΩΒΡΙΟΣ 205 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο στο Μέλλον Η ορθολογική

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση?

Χρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση? AE index General Index of Comsumer Prices Χρονοσειρές Μάθημα General Index of Comsumer Prices, period Jan - Aug 5 5 Μη-στασιμότητα 5 Τάση? Εποχικότητα / περιοδικότητα? 5 4 5 6 4 Auroral Elecroje Index

Διαβάστε περισσότερα

Χρονικές σειρές 3 Ο μάθημα: Βασικές στοχαστικές διαδικασίες Μη στάσιμες χρονοσειρές Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Χρονικές σειρές 3 Ο μάθημα: Βασικές στοχαστικές διαδικασίες Μη στάσιμες χρονοσειρές Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Χρονικές σειρές 3 Ο μάθημα: Βασικές στοχαστικές διαδικασίες Μη στάσιμες χρονοσειρές Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ & ΕΡΓΑΣΤΗΡΙΟ

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ & ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΑΤΡΑΣ ΤΜΗΜΑ: ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ &ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ TECHNOLOGICAL EDUCATION INST ITUTE OF PATRAS DEPARTMENT: BUSINESS PLANNING & INFORMATION SYSTEMS ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ 6. Εισαγωγή 6. Μονομεταβλητές προβλέψεις Βέλτιστη πρόβλεψη και Θεώρημα βέλτιστης πρόβλεψης Διαστήματα εμπιστοσύνης 6.3 Εφαρμογές A. MILIONIS KEF. 6 08 BEA

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

Επαυξημένος έλεγχος Dickey - Fuller (ADF) ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια

Διαβάστε περισσότερα

Ογενικός(πλήρης) έλεγχος των Dickey Fuller

Ογενικός(πλήρης) έλεγχος των Dickey Fuller ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης

Διαβάστε περισσότερα

Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές

Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Αιτιότητα κατά Granger Ασκήσεις Ανάλυση μονομεταβλητής

Διαβάστε περισσότερα

Έλεγχος των Phillips Perron

Έλεγχος των Phillips Perron ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.

Διαβάστε περισσότερα

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών Χρονοσειρές, Μέρος Β Πρόβλεψη Χρονικών Σειρών Ο βασικός σκοπός της μελέτης των μοντέλων για χρονικές σειρές (όπως AR, MA, ARMA, ARIMA, SARIMA) είναι η πρόβλεψη (predicio, forecasig) Η πρόβλεψη των μελλοντικών

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις

Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ

ΚΕΦΑΛΑΙΟ 2 ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ ΚΕΦΑΛΑΙΟ ΑΝΑΣΚΟΠΗΣΗ ΑΠΑΡΑΙΤΗΤΩΝ ΓΝΩΣΕΩΝ: ΕΚΤΙΜΗΤΕΣ Ως γνωστό δείγμα είναι ένα σύνολο παρατηρήσεων από ένα πληθυσμό. Αν ο πληθυσμός αυτός θεωρηθεί μονοδιάστατος τότε μπορεί να εκφρασθεί με τη συνάρτηση

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION)

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION) ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION) Μέθοδοςεκθετικήςεξομάλυνσης Μια άλλη τεχνική για δεδομένα με

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0

Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0 Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib

Διαβάστε περισσότερα

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Ανάλυση και εφαρμογές της μεθοδολογίας BOX JENKINS Πτυχιακή Εργασία των Φωστηρόπουλος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: ageliki.papaa@gmail.com, agpapaa@auth.gr Webpage: http://users.auth.gr/agpapaa

Διαβάστε περισσότερα

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών Φοιτητής: Μαρκόπουλος

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 11: Αυτοσυσχέτιση Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Περιεχόμενο ενότητας

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ ΚΕΦΑΛΑΙΟ ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ Στο κεφάλαιο αυτό θα μελετήσουμε κάποια βασικά χαρακτηριστικά των χρονοσειρών μέσα από πραγματικά παραδείγματα. Συγκεκριμένα θα μελετήσουμε στοιχεία μη-στασιμότητας,

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΡΩΤΟ-ΔΕΥΤΕΡΟ-ΣΤΑΣΙΜΟΤΗΤΑ- ΕΠΟΧΙΚΟΤΗΤΑ-ΚΥΚΛΙΚΗ ΤΑΣΗ ΧΡΗΣΙΜΟΙΟΡΙΣΜΟΙ Χρονολογική Σειρά (χρονοσειρά)

Διαβάστε περισσότερα

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 )

Κατανομή συνάρτησης τυχαίας μεταβλητής Y=g(X) Πιθανότητες & Στατιστική 2017 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ13 ( 1 ) Κατανομή συνάρτησης τυχαίας μεταβλητής =() Πιθανότητες & Στατιστική 07 Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Παν. Ιωαννίνων Δ3 ( ) Κατανομή συνάρτησης τυχαίας μεταβλητής Έστω τ.μ. Χ με γνωστή κατανομή. Δηλαδή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΑΣ ΣΕ ΣΥΝΙΣΤΩΣΕΣ- ΕΦΑΡΜΟΓΕΣ

ΚΕΦΑΛΑΙΟ 3 ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΑΣ ΣΕ ΣΥΝΙΣΤΩΣΕΣ- ΕΦΑΡΜΟΓΕΣ ΚΕΦΑΛΑΙΟ 3 ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΑΣ ΣΕ ΣΥΝΙΣΤΩΣΕΣ- ΕΦΑΡΜΟΓΕΣ 3. Ανάλυση μιας χρονοσειράς σε συνιστώσες 3. Πρακτική χρησιμότητα της ανάλυσης μίας χρονοσειράς σε συνιστώσες 3.3 Απλά υποδείγματα προέκτασης με

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ. Συσχέτιση (Correlation) - Copulas ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΙΝΔΥΝΟΥ Συσχέτιση (Correlation) - Copulas Σημασία της μέτρησης της συσχέτισης Έστω μία εταιρεία που είναι εκτεθειμένη σε δύο μεταβλητές της αγοράς. Πιθανή αύξηση των 2 μεταβλητών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ Ερώτηση : Εξηγείστε τη διαφορά µεταξύ του συντελεστή προσδιορισµού και του προσαρµοσµένου συντελεστή προσδιορισµού. Πώς µπορεί να χρησιµοποιηθεί

Διαβάστε περισσότερα

4. ΕΠΙΛΟΓΗ ΤΗΣ ΜΕΘΟΔΟΥ ΠΡΟΒΛΕΨΗΣ

4. ΕΠΙΛΟΓΗ ΤΗΣ ΜΕΘΟΔΟΥ ΠΡΟΒΛΕΨΗΣ 4. ΕΠΙΛΟΓΗ ΤΗΣ ΜΕΘΟΔΟΥ ΠΡΟΒΛΕΨΗΣ Πριν από την επιλογή της κατάλληλης μεθόδου πρόβλεψης είναι σκόπιμο να λάβουμε υπ όψη τα παρακάτω ερωτήματα: (α) (β) (γ) (δ) (ε) (ζ) (η) Γιατί χρειαζόμαστε την πρόβλεψη;

Διαβάστε περισσότερα

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου

Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου Στοχαστικές Ανελίξεις (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Στοχαστικές Διαδικασίες 2 Στοχαστική Διαδικασία Στοχαστικές Ανελίξεις Α. Αλεξίου 3 Στοχαστική Διαδικασία ως συλλογή από συναρτήσεις χρόνου

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ

Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΑΓΙΟΥ ΝΙΚΟΛΑΟΥ Τμήμα Διοίκησης Επιχειρήσεων Εισαγωγή στη Στατιστική Μάθημα του Β Εξαμήνου ΜΕΡΟΣ IV:ΠΑΛΙΝΔΡΟΜΗΣΗ-ΤΑΣΗ- ΕΠΟΧΙΚΟΤΗΤΑ-ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ Παλινδρόμηση

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Χρονοσειρές - Μάθημα 5

Χρονοσειρές - Μάθημα 5 Χρονοσειρές - Μάθημα 5 Εκτίμηση μοντέλου MA(q) στοχαστική διαδικασία AR(p) p p ~ WN(, ) στοχαστική διαδικασία MA(q) q q στοχαστική διαδικασία ARMA(p,q) p p q q Εκτίμηση διαδικασίας (μοντέλο) AR, MA ή ARMA?

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 9.1 Εισαγωγή Στην ανάλυση παλινδρόμησης που περιλαμβάνει στοιχεία χρονοσειρών, αν το υπόδειγμα

Διαβάστε περισσότερα

Γ. Πειραματισμός Βιομετρία

Γ. Πειραματισμός Βιομετρία Γενικά Συσχέτιση και Συμμεταβολή Όταν σε ένα πείραμα παραλλάσουν ταυτόχρονα δύο μεταβλητές, τότε ενδιαφέρει να διερευνηθεί εάν και πως οι αλλαγές στη μία μεταβλητή σχετίζονται με τις αλλαγές στην άλλη.

Διαβάστε περισσότερα

Διάστημα εμπιστοσύνης της μέσης τιμής

Διάστημα εμπιστοσύνης της μέσης τιμής Διάστημα εμπιστοσύνης της μέσης τιμής Συντελεστής εμπιστοσύνης Όταν : x z c s < μ < x +z s c Ν>30 Στον πίνακα δίνονται κρίσιμες τιμές z c και η αντιστοίχισή τους σε διάφορους συντελεστές εμπιστοσύνης:

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p))

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p)) O όρος αυτοπαλίνδρομο

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 10ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 10ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 10ο Έλεγχοι συνολοκλήρωσης Αφού διαπιστωθεί πως οι εξεταζόμενες μεταβλητές είναι ολοκληρωμένες της ίδιας τάξης, τότε εκτελείται ο έλεγχος

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 9: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Α μέρος: Πολυσυγγραμμικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα