Lectia IV Produsul vectorial a doi vectori liberi

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Lectia IV Produsul vectorial a doi vectori liberi"

Transcript

1 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Lectia IV Produsul vectorial a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia IV

2 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Table of Contents 1 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati 3 Rezolvari de ecuatii vectoriale 4 Schimbari de baze ortonormate in spatiu 5 Aplicatii Oana Constantinescu Lectia IV

3 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Orientarea spatiului Fie un triplet ordonat de vectori necoplanari (u, v, w). Consideram urmatoarea conventie: daca un observator care priveste din pozitia w vede unghiul α [0, π] de la u spre v in sensul opus acelor de ceas, tripletul ordonat (u, v, w) se numeste pozitiv, iar in caz contrar, negativ. Oana Constantinescu Lectia IV

4 Orientarea spatiului Ca si in cazul planului, multimea bazelor ortonormate din V se poate imparti in doua clase. Fie (i, j, k) o baza ortonormata xata si (i, j, k ) o baza ortonormata arbitrara. Rotim i spre i si comparam perechile (j, k) si (j, k ), unde (j, k ) reprezinta pozitia pe care a atins-o perechea (j, k ) dupa rotire. Aceste perechi de vectori se aa in acelasi plan, ortogonal pe i. Daca ele apartin aceleiasi clase din planul respectiv, tripletele initiale de vectori (i, j, k ) si (i, j, k) vor puse in aceeasi clasa. (In caz contrar in clase diferite.) Existenta acestor doua clase se numeste orientabilitatea spatiului, iar a alege una dintre ele drept clasa bazelor pozitive inseamna aorienta spatiul. Observatie: Daca doi vectori ai unui triplet ordonat de vectori sunt schimbati intre ei, semnul tripletului se schimba. Daca un triplet se obtine din altul printr-o permutare circulara, ele au aceeasi orientare.

5 Orientarea spatiului Ca si in cazul planului, multimea bazelor ortonormate din V se poate imparti in doua clase. Fie (i, j, k) o baza ortonormata xata si (i, j, k ) o baza ortonormata arbitrara. Rotim i spre i si comparam perechile (j, k) si (j, k ), unde (j, k ) reprezinta pozitia pe care a atins-o perechea (j, k ) dupa rotire. Aceste perechi de vectori se aa in acelasi plan, ortogonal pe i. Daca ele apartin aceleiasi clase din planul respectiv, tripletele initiale de vectori (i, j, k ) si (i, j, k) vor puse in aceeasi clasa. (In caz contrar in clase diferite.) Existenta acestor doua clase se numeste orientabilitatea spatiului, iar a alege una dintre ele drept clasa bazelor pozitive inseamna aorienta spatiul. Observatie: Daca doi vectori ai unui triplet ordonat de vectori sunt schimbati intre ei, semnul tripletului se schimba. Daca un triplet se obtine din altul printr-o permutare circulara, ele au aceeasi orientare.

6 Orientarea spatiului Ca si in cazul planului, multimea bazelor ortonormate din V se poate imparti in doua clase. Fie (i, j, k) o baza ortonormata xata si (i, j, k ) o baza ortonormata arbitrara. Rotim i spre i si comparam perechile (j, k) si (j, k ), unde (j, k ) reprezinta pozitia pe care a atins-o perechea (j, k ) dupa rotire. Aceste perechi de vectori se aa in acelasi plan, ortogonal pe i. Daca ele apartin aceleiasi clase din planul respectiv, tripletele initiale de vectori (i, j, k ) si (i, j, k) vor puse in aceeasi clasa. (In caz contrar in clase diferite.) Existenta acestor doua clase se numeste orientabilitatea spatiului, iar a alege una dintre ele drept clasa bazelor pozitive inseamna aorienta spatiul. Observatie: Daca doi vectori ai unui triplet ordonat de vectori sunt schimbati intre ei, semnul tripletului se schimba. Daca un triplet se obtine din altul printr-o permutare circulara, ele au aceeasi orientare.

7 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Produsul vectorial Denition Produsul vectorial al vectorilor u, v este un vector notat u v care satisface conditiile: 1) este perpendicular pe cei doi vectori (deci pe planul generat de u si v ); ) sensul este astfel incat tripletul (u, v, u v) este pozitiv; 3) marimea vectorului u v este egala cu aria paralelogramului construit pe cei doi vectori: u v = u v sin(û, v). Oana Constantinescu Lectia IV

8 Produsul vectorial Theorem Fie n vectorul unitar (versor) perpendicular pe planul generat de u si v, astfel incat (u, v, n) este o baza pozitiva si θ unghiul orientat intre u si v. Atunci u v = u v (sin θ)n.

9 Unghi orientat In propozitia anterioara a aparut notiunea de unghi orientat a doi vectori. El se deneste astfel: Denition Fie u, v V. Consideram o baza pozitiva {i, j} in spatiul liniar generat de cei doi vectori. Presupunem ca u = x 1 i + x j si v = y 1 i + y j. Unghiul orientat al vectorilor u, v este dat de formulele: cos ϕ = < u, v > u v, x 1 x y 1 y sin ϕ = u v, ϕ [ π, π]. Se poate demonstra ca denitia anterioara nu depinde de baza pozitiva in raport cu care sunt descompusi vectorii.

10 Unghi orientat In propozitia anterioara a aparut notiunea de unghi orientat a doi vectori. El se deneste astfel: Denition Fie u, v V. Consideram o baza pozitiva {i, j} in spatiul liniar generat de cei doi vectori. Presupunem ca u = x 1 i + x j si v = y 1 i + y j. Unghiul orientat al vectorilor u, v este dat de formulele: cos ϕ = < u, v > u v, x 1 x y 1 y sin ϕ = u v, ϕ [ π, π]. Se poate demonstra ca denitia anterioara nu depinde de baza pozitiva in raport cu care sunt descompusi vectorii.

11 Proprietatile produsului vectorial Theorem Urmatoarele proprietati au loc pentru orice vectori si orice scalari reali: 1) u v = 0 u, v sunt vectori coliniari; ) v u = u v; (antisimetria sau anticomutativitatea) 3) : V V V este aplicatie biliniara: (αu + βv) w = α(u w) + β(v w), w (αu + βv) = α(w u) + β(w v).

12 Expresia in coordonate a produsului vectorial Theorem Fie B = {i, j, k}o baza ortonormata, pozitiva. Daca u = x 1 i + x j + x 3 k si v = y 1 i + y j + y 3 k, atunci i j k u v = x 1 x x 3 y 1 y y. 3 Observatie: Produsul scalar a doi vectori nu depinde de baza pozitiva in raport cu care sunt date coordonatele lor.

13 Expresia in coordonate a produsului vectorial Theorem Fie B = {i, j, k}o baza ortonormata, pozitiva. Daca u = x 1 i + x j + x 3 k si v = y 1 i + y j + y 3 k, atunci i j k u v = x 1 x x 3 y 1 y y. 3 Observatie: Produsul scalar a doi vectori nu depinde de baza pozitiva in raport cu care sunt date coordonatele lor.

14 Proprietatile produsului vectorial Theorem (Formula dublului produs vectorial) u (v w) =< u, w > v < u, v > w. Corollary Produsul vectorial nu este asociativ. Intr-adevar u (v w) este un vector coplanar cu vectorii v, w, pe cand (u v) w = w (u v) este coplanar cu u, v. Theorem Are loc identitatea lui Jacobi: u (v w) + v (w u) + w (u v) = 0, u, v, w V.

15 Proprietatile produsului vectorial Theorem (Formula dublului produs vectorial) u (v w) =< u, w > v < u, v > w. Corollary Produsul vectorial nu este asociativ. Intr-adevar u (v w) este un vector coplanar cu vectorii v, w, pe cand (u v) w = w (u v) este coplanar cu u, v. Theorem Are loc identitatea lui Jacobi: u (v w) + v (w u) + w (u v) = 0, u, v, w V.

16 Aplicatie Aplicatie Determinati vectorul liber ū care satisface conditiile: i) este ortogonal pe vectorii ā = ī + 3 j k si b = ī j + 3 k; ii) formeaza un unghi obtuz cu ī; iii) ū = 138. Indicatii: Din conditiile ū coliniar cu ā b, deci u = α(ā b), α R, < ū, ī >< 0, ū = 138, se obtine ū = ā b = 8ī + 7 j + 5 k.

17 Aplicatie Aplicatie Determinati vectorul liber ū care satisface conditiile: i) este ortogonal pe vectorii ā = ī + 3 j k si b = ī j + 3 k; ii) formeaza un unghi obtuz cu ī; iii) ū = 138. Indicatii: Din conditiile ū coliniar cu ā b, deci u = α(ā b), α R, < ū, ī >< 0, ū = 138, se obtine ū = ā b = 8ī + 7 j + 5 k.

18 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Ecuatia vectoriala < a, x >= m Theorem Ecuatia vectoriala < a, x >= m, a V, a 0, m R are o innitate de solutii. Demonstratie: deoarece [a] [a] = V, vectorul necunoscut x se poate descompune in mod unic sub forma x = w + pr a x, w [a] x = w + αa, α R. Am notat cu [a] subspatiul liniar generat de a si cu [a] suplementul sau ortogonal in V. Din w a < x, a >= 0 + α a α = m. Deci solutia generala a a ecuatiei este x = w + m a, w a. a w este nedeterminat in [a] ecuatia are o innitate de solutii. Oana Constantinescu Lectia IV

19 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Ecuatia vectoriala < a, x >= m Theorem Ecuatia vectoriala < a, x >= m, a V, a 0, m R are o innitate de solutii. Demonstratie: deoarece [a] [a] = V, vectorul necunoscut x se poate descompune in mod unic sub forma x = w + pr a x, w [a] x = w + αa, α R. Am notat cu [a] subspatiul liniar generat de a si cu [a] suplementul sau ortogonal in V. Din w a < x, a >= 0 + α a α = m. Deci solutia generala a a ecuatiei este x = w + m a, w a. a w este nedeterminat in [a] ecuatia are o innitate de solutii. Oana Constantinescu Lectia IV

20 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Ecuatia vectoriala a x = b Theorem Dati vectorii ortogonali a b, a 0, ecuatia vectoriala a x = b are o innitate de solutii. Demonstratie: Presupunem ca b 0. Se stie ca {a, b, a b} este o baza pozitiva. Descompunem vectorul necunoscut in aceasta baza x = αa + βb + γa b, α, β, γ R. Deci a (αa + βb + γa b) = b βa b + γ(< a, b > a a }{{} b) = b =0 βa b (γ a +1) = 0. Deci β = 0 si γ = 1 a. Oana Constantinescu Lectia IV

21 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Ecuatia vectoriala a x = b Theorem Dati vectorii ortogonali a b, a 0, ecuatia vectoriala a x = b are o innitate de solutii. Demonstratie: Presupunem ca b 0. Se stie ca {a, b, a b} este o baza pozitiva. Descompunem vectorul necunoscut in aceasta baza x = αa + βb + γa b, α, β, γ R. Deci a (αa + βb + γa b) = b βa b + γ(< a, b > a a }{{} b) = b =0 βa b (γ a +1) = 0. Deci β = 0 si γ = 1 a. Oana Constantinescu Lectia IV

22 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Ecuatia vectoriala a x = b Solutia generala a ecuatiei este: x = αa 1 a b, α R. a Daca b = 0, atunci a x = 0 x = λa, λ R. Oana Constantinescu Lectia IV

23 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Schimbari de baze ortonormate in spatiu Date doua baze ortonormate in plan, {i, j} si {i, j }, am vazut ca putem usor determina matricea de trecere de la o baza la alta, elementele acesteia ind functiile trigonometrice sin si cos ale unghiului orientat dintre i si i. Daca B = {i, j, k} si B = {i, j, k } sunt doua baze ortonormate in spatiu, prima pozitiva si a doua arbitrara, putem determina matricea de trecere de la B la B in functie de trei unghiuri θ, ϕ, ψ, numite unghiurile lui Euler. Deoarece forma exacta a acestei matrici este destul de complicata, nu o vom da aici dar cei interesati pot consulta [I. Pop, Ghe. Neagu, Algebra liniara si geometrie analitica in plan si in spatiu, Ed. Plumb, Bacau, 1996]. In schimb, dupa denirea intr-un curs ulterior a rotatiei in spatiu, vom demonstra ca aceasta matrice se obtine din compunerea matricilor a trei rotatii in spatiu. Oana Constantinescu Lectia IV

24 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Schimbari de baze ortonormate in spatiu Date doua baze ortonormate in plan, {i, j} si {i, j }, am vazut ca putem usor determina matricea de trecere de la o baza la alta, elementele acesteia ind functiile trigonometrice sin si cos ale unghiului orientat dintre i si i. Daca B = {i, j, k} si B = {i, j, k } sunt doua baze ortonormate in spatiu, prima pozitiva si a doua arbitrara, putem determina matricea de trecere de la B la B in functie de trei unghiuri θ, ϕ, ψ, numite unghiurile lui Euler. Deoarece forma exacta a acestei matrici este destul de complicata, nu o vom da aici dar cei interesati pot consulta [I. Pop, Ghe. Neagu, Algebra liniara si geometrie analitica in plan si in spatiu, Ed. Plumb, Bacau, 1996]. In schimb, dupa denirea intr-un curs ulterior a rotatiei in spatiu, vom demonstra ca aceasta matrice se obtine din compunerea matricilor a trei rotatii in spatiu. Oana Constantinescu Lectia IV

25 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Schimbari de baze ortonormate in spatiu Date doua baze ortonormate in plan, {i, j} si {i, j }, am vazut ca putem usor determina matricea de trecere de la o baza la alta, elementele acesteia ind functiile trigonometrice sin si cos ale unghiului orientat dintre i si i. Daca B = {i, j, k} si B = {i, j, k } sunt doua baze ortonormate in spatiu, prima pozitiva si a doua arbitrara, putem determina matricea de trecere de la B la B in functie de trei unghiuri θ, ϕ, ψ, numite unghiurile lui Euler. Deoarece forma exacta a acestei matrici este destul de complicata, nu o vom da aici dar cei interesati pot consulta [I. Pop, Ghe. Neagu, Algebra liniara si geometrie analitica in plan si in spatiu, Ed. Plumb, Bacau, 1996]. In schimb, dupa denirea intr-un curs ulterior a rotatiei in spatiu, vom demonstra ca aceasta matrice se obtine din compunerea matricilor a trei rotatii in spatiu. Oana Constantinescu Lectia IV

26 Unghiurile lui Euler B = {i, j, k} si B = {i, j, k } doua baze in V. Daca k este coliniar cu k atunci planele vectoriale generate de i, j, respectiv i, j coincid, deci problema se reduce la schimbarea de baze ortonormate in plan. Vom trata in continuare cazul in care k si k sunt necoliniare.

27 Unghiurile lui Euler Aplicam planele generate de (i, j) si (i, j ) intr-un acelasi punct. Dreapta lor de intersectie se numeste linia nodurilor si notam cu n versorul ei. Denition Unghiurile lui Euler sunt: θ = (k, k ) [0, π], ϕ = o (i, n) [ π, π], ψ = o (n, i ) [ π, π]. Observam ca doua dintre ele sunt unghiuri orientate, iar unul neorientat.

28 Unghiurile lui Euler Vom determina aceste unghiuri astfel: n [i, j] n k, n [i, j ] n k, deci n = k k k k = k k sin θ. n [i, j], ϕ = o (i, n) n = i cos ϕ + j sin ϕ. n [i, j ], ψ = o (i, n) n = i cos ψ + j sin ψ. Pentru a determina θ folosim Pentru ϕ stim ca cos θ =< k, k >. cos ϕ =< i, n >, sin ϕ = i n. Aceleasi formule le folosim pentru ψ, dar trebuie sa avem grija sa exprimam n in functie de {i, j }.

29 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Aplicatii Example Vericati identitatea Lagrange: ū v + < ū, v > = ū v. Indicatii: Se utilizeaza relatiile ū v = ū v sin( ū, v), < ū, v >= ū v cos( ū, v). Oana Constantinescu Lectia IV

30 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Aplicatii Example Vericati identitatea Lagrange: ū v + < ū, v > = ū v. Indicatii: Se utilizeaza relatiile ū v = ū v sin( ū, v), < ū, v >= ū v cos( ū, v). Oana Constantinescu Lectia IV

31 Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Aplicatii Example Vericati identitatea Lagrange: ū v + < ū, v > = ū v. Indicatii: Se utilizeaza relatiile ū v = ū v sin( ū, v), < ū, v >= ū v cos( ū, v). Oana Constantinescu Lectia IV

32 Aplicatii Example Sa se calculeze aria paralelogramului construit pe vectorii: a) ā = ū + 3 v si b = ū 4 v, unde ū, v sunt vectori unitari perpendiculari intre ei; b) ā = ī + j 3 k si b = 4ī + j + k, unde {ī, j, k} este o baza ortonormata pozitiva in V. Indicatii: a) ā b = 11ū v ā b = 11 ū v sin( ū, v) = 11. b) Se calculeaza a b, apoi norma sa si se obtine rezultatul 91.

33 Aplicatii Example Sa se calculeze aria paralelogramului construit pe vectorii: a) ā = ū + 3 v si b = ū 4 v, unde ū, v sunt vectori unitari perpendiculari intre ei; b) ā = ī + j 3 k si b = 4ī + j + k, unde {ī, j, k} este o baza ortonormata pozitiva in V. Indicatii: a) ā b = 11ū v ā b = 11 ū v sin( ū, v) = 11. b) Se calculeaza a b, apoi norma sa si se obtine rezultatul 91.

34 Aplicatii Example Demonstrati pe cale vectoriala teorema sinusului intr-un triunghi. Indicatii: Fie triunghiul ABC si notam BA = c, BC = a, AC = b. σ(abc) = BA BC = BA ( BA + AC) = BA Rezulta ca ac sin B = cb sin A a Analog se demonstreaza ca a = = sin A c. sin A sin C b. sin B AC.

35 Aplicatii Example Demonstrati pe cale vectoriala teorema sinusului intr-un triunghi. Indicatii: Fie triunghiul ABC si notam BA = c, BC = a, AC = b. σ(abc) = BA BC = BA ( BA + AC) = BA Rezulta ca ac sin B = cb sin A a Analog se demonstreaza ca a = = sin A c. sin A sin C b. sin B AC.

36 Aplicatii Example Fie A(1,, 3) un punct in spatiu ale carui coordonate sunt exprimate in raport cu un reper ortonormat pozitiv R = {O; ī, j, k} si o dreapta (d) care trece prin B(1,, 1) si este paralela cu ā = ī + j. Determinati distanta de la punctul A la dreapta (d). Indicatii: Fie C pe dreapta d astfel incat ā = BC si D astfel incat ABCD este paralelogram. Scriind in doua moduri aria acestuia, se 10 obtine d(a, d) =. 5

37 Aplicatii Example Fie A(1,, 3) un punct in spatiu ale carui coordonate sunt exprimate in raport cu un reper ortonormat pozitiv R = {O; ī, j, k} si o dreapta (d) care trece prin B(1,, 1) si este paralela cu ā = ī + j. Determinati distanta de la punctul A la dreapta (d). Indicatii: Fie C pe dreapta d astfel incat ā = BC si D astfel incat ABCD este paralelogram. Scriind in doua moduri aria acestuia, se 10 obtine d(a, d) =. 5

38 Aplicatii Example Fie baza artonormata pozitiva B = {i, j, k} si vectorii i = 1( i + j + k), j = 1(i j + k), k = 1 (i + j k) Vericati ca B = {i, j, k } este o baza ortonormata si determinati unghiurile lui Euler de trecere de la B la B. Indicatii: Prin calcul direct se verica i = j = k = 1 si < i, j >< i, k >=< j, k >= 0. θ = arccos( 1 k k ), n = 3 k k = ( i + j). ϕ = o (i, n) cos ϕ =, sin ϕ = ψ = o (n, i ). ϕ = 3π 4.

39 Aplicatii Example Fie baza artonormata pozitiva B = {i, j, k} si vectorii i = 1( i + j + k), j = 1(i j + k), k = 1 (i + j k) Vericati ca B = {i, j, k } este o baza ortonormata si determinati unghiurile lui Euler de trecere de la B la B. Indicatii: Prin calcul direct se verica i = j = k = 1 si < i, j >< i, k >=< j, k >= 0. θ = arccos( 1 k k ), n = 3 k k = ( i + j). ϕ = o (i, n) cos ϕ =, sin ϕ = ψ = o (n, i ). ϕ = 3π 4.

40 Aplicatii Pentru a calcula < n, i > si n i trebuie sa descompunem pe n in baza (i, j ). Matricea de trecere de la B la B este S = = S x y z, unde n = x i + y j + z k. Deci x y z = S t = Deci n = (i j ). Calculele conduc la cos ψ =, sin ψ = ψ = π 4.

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber

CAPITOLUL 2 VECTORI LIBERI. 2.1 Segment orientat. Vector liber Algebră liniară CAPITOLUL VECTORI LIBERI. Segment orientat. Vector liber Acest capitol este dedicat în totalitate studierii spaţiului vectorilor liberi, spaţiu cu foarte multe aplicaţii în geometrie, fizică

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc = GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Vectori liberi-seminar 1

Vectori liberi-seminar 1 Vectori liberi-seminar ) Determinati α R astfel incat vectorii ā = m+ n si b = m+α n sa fie coliniari, unde m, n sunt necoliniari. ) Demonstrati ca urmatorii trei vectori liberi sunt coplanari: ā = ī j

Διαβάστε περισσότερα

Capitolul 9. Geometrie analitică. 9.1 Repere

Capitolul 9. Geometrie analitică. 9.1 Repere Capitolul 9 Geometrie analitică 9.1 Repere Vom considera spaţiile liniare (X, +,, R)în careelementelespaţiului X sunt vectorii de pe odreaptă, V 1, dintr-un plan, V sau din spaţiu, V 3 (adică X V 1 sau

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }.

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }. ELEMENTE DE SIMETRIE ALE UNEI HIPERCUADRICE IN SPATII AFINE EUCLIDIENE OANA CONSTANTINESCU 1. Centru de simetrie pentru o hipercuadrica afina Pentru inceput cadrul de lucru este un spatiu an real de dimensiune

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

CURS 5 Spaţii liniare. Spaţiul liniar R n

CURS 5 Spaţii liniare. Spaţiul liniar R n CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian.

Spaţii vectoriale. Definiţia 1.1. Fie (K, +, ) un corp şi (V, +) un grup abelian. Spaţii vectoriale 1. Spaţii vectoriale. Definiţii şi proprietăţi de bază În continuare prin corp vom înţelege corp comutativ. Dacă nu se precizează altceva, se vor folosi notaţiile standard pentru elementele

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ

Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ. Simina Mariş Simona Epure Ioan Rodilǎ Universitatea de Vest din Timişoara Facultatea de Matematicǎ şi Informaticǎ Departamentul de Informaticǎ Liliana Brǎescu Eva Kaslik Simina Mariş Simona Epure Ioan Rodilǎ CURS DE GEOMETRIE Timişoara 2007

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

1.4 Schimbarea bazei unui spaţiu vectorial

1.4 Schimbarea bazei unui spaţiu vectorial Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea

ALGEBRĂ LINEARĂ, GEOMETRIE. Valeriu Zevedei, Ionela Oancea ALGEBRĂ LINEARĂ, GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Valeriu Zevedei, Ionela Oancea April 9, 005 CUPRINS 1 CALCUL VECTORIAL 7 1.1 Vectori legaţi,vectori liberi... 7 1. Operaţiilinearecuvectori... 9 1..1

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI

Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI Cap. I NOŢIUNI FUNDAMENTALE DESPRE VECTORI In mecanică există mărimi scalare sau scalari şi mărimi vectoriale sau vectori. Mărimile scalare (scalarii) sunt complet determinate prin valoarea lor numerică

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR Interpolare cu ajutorul funcţiilor polinomiale

ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR Interpolare cu ajutorul funcţiilor polinomiale 3 ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR 31 Interpolare cu ajutorul funcţiilor polinomiale Prin interpolare se înţelege următoarea problemă: se dau n + 1 puncte P 0, P 1,, P n în plan sau în spaţiu

Διαβάστε περισσότερα

1. Teorema lui Menelaus in plan Demonstratia teoremei in plan (clasa a VII-a). DC EC F B DB EA = 1.

1. Teorema lui Menelaus in plan Demonstratia teoremei in plan (clasa a VII-a). DC EC F B DB EA = 1. TEOREMA LUI MENELAUS IN PLAN SI SPATIU OANA CONSTANTINESCU In acest material generalizam teorema lui Menelaus din planul euclidian la spatiul euclidian trei dimensional, prezentand doua metode de demonstratie,

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)

Διαβάστε περισσότερα

X 2, Φ 2 doua K-spatii ane. O conditie necesara si sucienta ca aplicatia f : X 1 X 2 sa e morsm an este:

X 2, Φ 2 doua K-spatii ane. O conditie necesara si sucienta ca aplicatia f : X 1 X 2 sa e morsm an este: CURS 4: IZOMETRIILE UNUI SPATIU AFIN EUCLIDIAN 1. Recapitulare morfisme afine In acest curs dorim sa studiem izometriile unui spatiu an euclidian. Vom vedea ca acestea sunt morsme ane cu anumite proprietati

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI

Nicolae Cotfas ELEMENTE DE EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Nicolae Cotfas ELEMENTE DE ALGEBRĂ LINIARĂ EDITURA UNIVERSITĂŢII DIN BUCUREŞTI Introducere Pe parcursul acestei cărţi ne propunem să prezentăm într-un mod cât mai accesibil noţiuni si rezultate de bază

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

NOŢIUNI INTRODUCTIVE

NOŢIUNI INTRODUCTIVE 1 NOŢIUNI INTRODUCTIVE 1.1. Spaţiul vectorial R n Mulţimea R n reprezintă mulţimea tuturor n-uplelor (x 1,..., x n ) cu x 1,..., x n numere reale, adică R n = {(x 1,..., x n ) : x 1,..., x n R}. Un n-uplu

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu

GEOMETRIE ANALITICĂ. Mihai-Sorin Stupariu GEOMETRIE ANALITICĂ Mihai-Sorin Stupariu Sem. al II-lea, 007-008 Cuprins 1 Elemente de algebră liniară 3 1.1 Spaţii vectoriale. Definiţie. Exemple................ 3 1. Combinaţii liniare. Baze şi repere..................

Διαβάστε περισσότερα

Cuprins. I Geometrie Analitică 9

Cuprins. I Geometrie Analitică 9 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului POSDRU/56/1.2/S/32768, Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predareînvăţare-evaluare

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

GEOMETRIE ANALITICĂ. Gheorghe MUNTEANU, Adelina MANEA

GEOMETRIE ANALITICĂ. Gheorghe MUNTEANU, Adelina MANEA GEOMETRIE ANALITICĂ Gheorghe MUNTEANU, Adelina MANEA 2 Cuprins Prefaţă 7 I Consideraţii teoretice 9 1 Spaţii vectoriale 11 1.1 Definiţie, exemple......................... 12 1.2 Subspaţii..............................

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1

CUPRINS 5. Reducerea sistemelor de forţe (continuare)... 1 Cuprins..1 CURS 5 REDUCEREA SISTEMELOR DE FORŢE (CONTINUARE) CUPRINS 5. Reducerea sistemelor de forţe (continuare)...... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 5.1. Teorema lui Varignon pentru sisteme

Διαβάστε περισσότερα

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene

CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU Sisteme de coordonate în plan şi în spaţiu. I. Coordonate carteziene Geometrie liniară în spaţiu CAPITOLUL 6 GEOMETRIE LINIARĂ ÎN SPAŢIU 6.. Sisteme de coordonate în plan şi în spaţiu I. Coordonate carteziene În cele ce urmează, notăm cu E 3 spaţiul punctual tridimensional

Διαβάστε περισσότερα

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU 81 Curbe în plan I Definiţia analitică a curbelor plane În capitolul 7 am studiat deja câteva eemple de curbe plane, amintim aici conicele nedegenerate: elipsa, hiperbola

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC

cateta alaturata, cos B= ipotenuza BC cateta alaturata AB cateta opusa AC .Masurarea unghiurilor intr-un triunghi dreptunghic sin B= cateta opusa ipotenuza = AC BC cateta alaturata, cos B= AB ipotenuza BC cateta opusa AC cateta alaturata AB tg B=, ctg B= cateta alaturata AB

Διαβάστε περισσότερα

Algebră liniară CAPITOLUL 3

Algebră liniară CAPITOLUL 3 Algebră liniară CAPITOLUL 3 TRANSFORĂRI LINIARE 3.. Definiţia transformării liniare Definiţia 3... Fie V şi W două spaţii vectoriale peste un corp comutativ K. O funcţie u: V W se numeşte transformare

Διαβάστε περισσότερα

Geometria diferenţială a curbelor în spaţiu

Geometria diferenţială a curbelor în spaţiu Geometria diferenţială a curbelor în spaţiu A. U. Thor 0.1 Generalităţi Definitia 1.1 Se numeşte curbă înspaţiu dată parametric mulţimea punctelor M (x, y, z) din spaţiuacăror coordonate sunt date de x

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

b = CA, c = AB, atunci concluzia rezultă din regula triunghiului de adunare a vectorilor:

b = CA, c = AB, atunci concluzia rezultă din regula triunghiului de adunare a vectorilor: Trei vectori a, b, c formează untriunghi a + b + c = 0 (relaţia lui Chasles). Dacă a, b, c sunt laturi ale unui triunghi ABC, a = BC, b = CA, c = AB, atunci concluzia rezultă din regula triunghiului de

Διαβάστε περισσότερα

( ) ( ) ( ) Funcţii diferenţiabile. cos x cos x 2. Fie D R o mulţime deschisă f : D R şi x0 D. Funcţia f este

( ) ( ) ( ) Funcţii diferenţiabile. cos x cos x 2. Fie D R o mulţime deschisă f : D R şi x0 D. Funcţia f este o ( ) o ( ) sin π ( sec ) = = ; R 2 + kπ k Z cos cos 2 cos ( cosec ) = = ; R 2 { kπ k Z} sin sin ( arcsec ) = ; (, ) (, ) 2 ( arcosec ) = ; (, ) (, ) 2 Funcţii dierenţiabile. Fie D R o mulţime deschisă

Διαβάστε περισσότερα