ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1, Δ3 1, ,200

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ1 Ζ2 Ζ3 Δ1 1,800 2,100 1,600 Δ2 1,100 700 900 Δ3 1,400 800 2,200"

Transcript

1 ΑΣΚΗΣΗ Η εταιρεία logistics Orient Express έχει αναλάβει τη διακίνηση των φορητών προσωπικών υπολογιστών γνωστής πολυεθνικής εταιρείας σε πελάτες που βρίσκονται στο Hong Kong, τη Σιγκαπούρη και την Ταϊβάν. Όλες οι μεταφορές της Orient Express γίνονται μέσω τριών αποθηκών που διαθέτει στην Ευρωπαϊκή Ένωση, ανά μία στις περιοχές του Πειραιά, του Ρότερνταμ και του Αμβούργου. Για τον επόμενο μήνα, η Orient Express προγραμματίζει τη μεταφορά 45 κοντέινερ με υπολογιστές από τον Πειραιά, 6 κοντέινερ από το Ρότερνταμ και 35 κοντέινερ από το Αμβούργο. Στον πίνακα που ακολουθεί δίνεται το κόστος μεταφοράς ενός κοντέινερ από κάθε λιμάνι της Ευρωπαϊκής Ένωσης προς κάθε λιμάνι της Ασίας. Λιμάνι Λιμάνι Ασίας Ευρωπαϊκής Ένωσης Hong Kong Σιγκαπούρη Ταϊβάν Πειραιάς 3 34 Ρότερνταμ Αμβούργο Η Orient Express έχει αναλάβει και την αποζημίωση των πελατών στην περίπτωση που δεν παραδοθούν οι αιτούμενες ποσότητες: για κάθε κοντέινερ που δεν παραδίδει στο Hong Kong καταβάλλει 8, 9 για κάθε κοντέινερ που δεν παραδίδει στη Σιγκαπούρη και για κάθε κοντέινερ που δεν παραδίδει στην Ταϊβάν. Θεωρώντας ότι ζήτηση για τον επόμενο μήνα έχει διαμορφωθεί στα 6 κοντέινερ υπολογιστών για το Hong Kong, 5 για τη Σιγκαπούρη και 5 για την Ταϊβάν βρείτε το οικονομικότερο σχέδιο μεταφοράς των κοντέινερ με τους φορητούς ηλεκτρονικούς υπολογιστές. ΑΣΚΗΣΗ Μια εταιρεία μεταφοράς πετρελαιοειδών ξεκίνησε πρόσφατα τις μεταφορικές της δυνατότητες με την αγορά (διάθεση) 3 φορτηγών/βυτιοφόρων σε κάθε μία από τις τρεις πόλεις Δ, Δ, Δ3 που βρίσκονται οι αποθήκες της (τα διυλιστήρια). Η εταιρεία θα χρησιμοποιήσει τα φορτηγά αυτά για τις μεταφορές πετρελαιοειδών που πρόκειται να πραγματοποιήσει προς τις πόλεις Ζ, Ζ και Ζ3 με κέρδος σε χρηματικές μονάδες ως ακολούθως: ΠΡΟΟΡΙΣΜΟΣ ΑΠΟΘΗΚΕΣ Ζ Ζ Ζ3 Δ,8,,6 Δ, 7 9 Δ3,4 8, (είναι διαφορετικό λόγω της απόστασης, του κόστους μεταφοράς, των διοδίων κλπ.). Λαμβάνοντας υπόψη ότι οι δυνατότητες "φιλοξενίας" σε αριθμό φορτίων/φορτηγών που υπάρχουν στις πόλεις Ζ, Ζ, Ζ3 είναι αντίστοιχα 4, 6 και 5, προσδιορίστε το πλήθος των φορτηγών που πρέπει να δρομολογηθούν στην κάθε διαδρομή ώστε να μεγιστοποιείται το συνολικό κέρδος της εταιρείας. ΑΣΚΗΣΗ 3 Μια βιομηχανία χημικών προϊόντων παράγει, στα δύο εργοστάσιά της, ένα εξειδικευμένο διάλυμα το οποίο χρησιμοποιείται για την εμφάνιση φωτογραφιών. Λόγω όμως εσφαλμένου προγραμματισμού, η επιχείρηση αναμένεται να αντιμετωπίσει ένα αρκετά σοβαρό πρόβλημα έλλειψης προϊόντος κατά το τρέχον τρίμηνο, επειδή έχει ήδη δεχτεί, από τέσσερις βασικούς της πελάτες, παραγγελίες που ξεπερνούν τη συνολική παραγωγική της δυναμικότητα. Έτσι, θέλει κατ' αρχή να αντιμετωπίσει το πρόβλημα «πόση ποσότητα θα αποστείλει σε κάθε πελάτη» και ταυτόχρονα να αποφασίσει «ποιον ή ποιους θα αφήσει ανικανοποίητους και σε πιο βαθμό». Στον πίνακα που ακολουθεί, βλέπετε το μοναδιαίο κόστος παραγωγής, συσκευασίας και μεταφοράς (συνολικά), ανά τόνο προϊόντος που παράγεται κι αποστέλλεται από κάθε εργοστάσιο σε κάθε πελάτη (σε χρηματικές μονάδες). Βλέπετε επίσης τις μέγιστες παραγόμενες ποσότητες που μπορεί να διαθέσει μέσα στο τρίμηνο κάθε εργοστάσιο, καθώς και τις απαιτήσεις των πελατών, σύμφωνα με τις παραγγελίες.

2 Πελάτης Πελάτης Πελάτης 3 Πελάτης 4 Προσφορά Εργοστάσιο Εργοστάσιο Ζήτηση 5 3 Για κάθε τόνο που δεν αποστέλλεται λόγω αδυναμίας ικανοποίησης της ζήτησης, η επιχείρηση καταβάλλει ένα πρόστιμο σύμφωνα με κάποια ρήτρα που έχει διακανονιστεί με τον πελάτη. Τα πρόστιμα αυτά για κάθε πελάτη (σε χρηματικές μονάδες ανά τόνο ζήτησης που δεν ικανοποιείται) τα βλέπετε στον ακόλουθο πίνακα. Πελάτης Πελάτης Πελάτης 3 Πελάτης 4 Πρόστιμο ανικανοποίητης ζήτησης ανά τόνο 3 3. Να διαμορφωθεί ο κατάλληλος πίνακας μεταφοράς του προβλήματος και να βρεθεί μια αρχική βασική εφικτή λύση.. Συνεχίζοντας από το προηγούμενο ερώτημα, βρείτε το άριστο σχέδιο ικανοποίησης των παραγγελιών με τη χρήση της μεθόδου μεταφοράς. Όταν ολοκληρώσετε την επίλυση, να διατυπώσετε με ακρίβεια το τελικό άριστο σχέδιο που βρήκατε καθώς επίσης και το συνολικό του κόστος. 3. Αν υπάρχει εναλλακτική άριστη λύση εντοπίστε την. ΑΣΚΗΣΗ 4 Το tablea του προβλήματος μεταφοράς που ακολουθεί περιλαμβάνει μια αρχική βασική εφικτή λύση που εντοπίστηκε με κάποια από τις γνωστές μεθόδους: v * Η λύση αυτή δεν είναι η βέλτιστη ( δ i >) και ζητείται η εφαρμογή της μεθόδου MODI για τον εντοπισμό της ΑΣΚΗΣΗ 5 Θεωρείστε το πιο κάτω πρόβλημα μεταφοράς (ο πίνακας που ακολουθεί δίνει το κόστος μεταφοράς μιας μονάδος κάποιου προϊόντος από το σταθμό προέλευσης i στο σταθμό προορισμού ): Προορισμός Προέλευση D D D 3 D 4 Προσφορά S S S Ζήτηση 5 5

3 . Με τη μέθοδο Vogel εντοπίστε μια αρχική βασική εφικτή λύση του.. Στη συνέχεια χρησιμοποιήστε την αρχική λύση που βρήκατε για να φτάσετε στη βέλτιστη λύση του προβλήματος. 3. Βρείτε το διάστημα αριστότητας του συντελεστή c. 4. Υποθέστε ότι η τιμή του c 33 μεταβάλλεται από σε 4. Δώστε τη νέα(;) βέλτιστη λύση του προβλήματος. 5. Υποθέστε ότι η η προσφορά του ου σταθμού προέλευσης αυξάνει κατά 5 μονάδες ενώ του 3ου ελαττώνεται ισόποσα. Χωρίς να λύσετε το πρόβλημα από την αρχή, δώστε τη νέα(;) βέλτιστη λύση του. ΑΣΚΗΣΗ 6 Γνωστή εταιρεία υφασμάτων χρησιμοποιεί για την κατασκευή τους πέντε διαφορετικές βιοτεχνίες οι οποίες βρίσκονται σε ισάριθμες περιοχές της χώρας. Η πρώτη ύλη (βαμβάκι) διοχετεύεται σ αυτές από τρεις ανεξάρτητους προμηθευτές οι οποίοι έχουν δυνατότητα 36, 7 και 45 τόνων αντίστοιχα. Προκειμένου να καλυφθεί η τρέχουσα ζήτηση της αγοράς, οι βιοτεχνίες,, 3, 4 και 5 χρειάζονται αντίστοιχα 8, 9, 3, και 4 τόνους βαμβακιού. Ο πίνακας που ακολουθεί δίνει το κόστος μεταφοράς (σε χρηματικές μονάδες) ενός τόνου βαμβακιού από τον i-προμηθευτή στη -βιοτεχνία: Προορισμός Προέλευση D D D 3 D 4 D 5 Προσφορά S S S Ζήτηση Προσδιορίστε το βέλτιστο σχέδιο μεταφοράς.. Βρείτε το διάστημα αριστότητας του συντελεστή c. 3. Υποθέστε ότι η τιμή του c μεταβάλλεται από σε. Δώστε τη νέα(;) βέλτιστη λύση του προβλήματος. 3

4 ΑΣΚΗΣΗ Ορίζοντας ως x i το πλήθος των κοντέινερ που θα δρομολογηθούν από τα λιμάνια τη Ευρωπαϊκής Ένωσης προς τα λιμάνια της Ασίας έχουμε προς επίλυση ένα πρόβλημα μεταφοράς. Επιπλέον, επειδή s i = 4 < 6 = d, θα πρέπει να προστεθεί ένας υποθετικός σταθμός προέλευσης με προσφορά ίση με 6 4 = κοντέινερ. Χρησιμοποιώντας τη μέθοδο Vogel για την εύρεση μιας αρχικής βασικής εφικτής λύσης του προβλήματος, παίρνουμε ως τέτοια την: Προσφορά Ζήτηση i Η λύση αυτή έχει 6 θετικές συνιστώσες και συνεπώς είναι μη εκφυλισμένη. Βρίσκοντας τα δυναμικά i και v και σχηματίζοντας τις διαφορές δ i = i + v c i που αντιστοιχούν στις μη βασικές μεταβλητές βλέπουμε ότι υπάρχουν θετικές τιμές μεταξύ τους και συνεπώς η λύση που περιλαμβάνεται στο tablea δεν είναι η βέλτιστη. Το συνολικό κόστος μεταφοράς ανέρχεται σε 79,5. v

5 Στη συνέχεια, με εισερχόμενο κελί το (, ), κατασκευάζουμε το μονοπάτι ανακατανομής των εκχωρήσεων Η νέα λύση, στην οποία το κελί (, ) είναι βασικό και το (, ) μη βασικό μια και θ = min{, 45} =, δίνεται στο tablea που ακολουθεί. Ο έλεγχος αριστότητας αποδεικνύει ότι αυτή η λύση είναι η ζητούμενη βέλτιστη λύση του προβλήματος (δ i (i, )). v Το βέλτιστο κόστος μεταφοράς ανέρχεται σε 73,5. 5

6 ΑΣΚΗΣΗ Ορίζοντας ως x i το πλήθος των φορτηγών που θα δρομολογηθούν από την αποθήκη Δ i προς την πόλη Ζ έχουμε προς επίλυση ένα πρόβλημα μεταφοράς στο οποίο η αντικειμενική συνάρτηση είναι συνάρτηση μεγιστοποίησης κι όχι ελαχιστοποίησης. Για το λόγο αυτό θεωρούμε στα tablea ότι είναι c = c. Επιπλέον, επειδή si = < = i 9 d θα πρέπει να προστεθεί ένας υποθετικός σταθμός προέλευσης με προσφορά ίση με 9 = 6 φορτηγά. Χρησιμοποιώντας τη μέθοδο Vogel για την εύρεση μιας αρχικής βασικής εφικτής λύσης του προβλήματος, παίρνουμε ως τέτοια την: Ζήτηση 7 9 4,3 4,3 6 i Προσφορά -,8 -, -, , ,4-8 -, Η λύση αυτή έχει 6 θετικές συνιστώσες και συνεπώς είναι μη εκφυλισμένη. Βρίσκοντας τα δυναμικά i, v και σχηματίζοντας τις διαφορές δ i = i + v - c i που αντιστοιχούν στις μη βασικές μεταβλητές διαπιστώνουμε ότι η λύση αυτή είναι η βέλτιστη (δ i i, ) και συνεπάγεται συνολικό κέρδος της τάξης των -(-6,) = 6, χρηματικών μονάδων. i v -, -, -, -3 -,8 -, -5 -,6 3 -, , 3-8 -,4 -,4-8 -, - 3,

7 ΑΣΚΗΣΗ 3. Ζήτηση Προσφορά , 5, 5, 5, *, 3, , 3, 3, 3, 3 3 4,,,,, 5, 5, 5,, 3, 3, 3, 3,,, Ορίζουμε να είναι x i, οι τόνοι του διαλύματος που θα αποσταλούν από το i-εργοστάσιο στον -πελάτη (i =, και =,, 3, 4). Επιπλέον, επειδή si = 8 < = d θα πρέπει να προστεθεί ένας i υποθετικός σταθμός προέλευσης (Εργοστάσιο 3) με προσφορά ίση με, 8, = 4, τόνους. Το κόστος μεταφοράς c 3 ( =,, 3, 4) προσδιορίζεται από τον πίνακα με τα πρόστιμα. Η εφαρμογή της μεθόδου Vogel για τον εντοπισμό μιας αρχικής βασικής εφικτής λύσης του προβλήματος οδηγεί διαδοχικά: στην εκχώρηση, μονάδων στο κελί (3, 4) με παράλληλη διαγραφή της 4ης στήλης, στην εκχώρηση, μονάδων στο κελί (3, ) με διαγραφή μόνον της 3ης γραμμής, στην εκχώρηση 3, μονάδων στο κελί (, ) με διαγραφή της ης γραμμής και τέλος, στη εκχώρηση, και 3, μονάδων στα κελιά (, ), (, 3) αντίστοιχα. Το κελί (, ) αν και με μηδενική εκχώρηση, είναι ένα βασικό κελί. Το κόστος μεταφοράς ανέρχεται στις 6, χρηματικές μονάδες.. Βρίσκοντας τα δυναμικά i και v και σχηματίζοντας τις διαφορές δ i = i + v c i που αντιστοιχούν στις μη βασικές μεταβλητές βλέπουμε ότι υπάρχουν θετικές τιμές μεταξύ τους και συνεπώς η λύση που περιλαμβάνεται στο tablea δεν είναι η βέλτιστη. v *, 3, , ,,, 5, 3,, 5, 3, 4, 7

8 Στη συνέχεια με εισερχόμενο κελί το (3, ), κατασκευάζουμε το μονοπάτι ανακατανομής των εκχωρήσεων : , * 3,, , 3, 3-3 4,,,, 5, 3,, Επειδή υπάρχουν ισοβαθμήσεις στο κριτήριο για την επιλογή του εξερχόμενου κελιού, διαλέγουμε αυθαίρετα το (3, ). Το κόστος ευκαιρίας είναι ίσο με και συνεπώς στη νέα λύση θα έχουμε μια βελτίωση κατά, χρηματικές μονάδες (οπότε το συνολικό κόστος θα γίνει 6, χρηματικές μονάδες). Η νέα λύση, στην οποία το κελί (3, ) είναι βασικό και το (3, ) μη βασικό, δίνεται στο tablea που ακολουθεί. Λόγω των ισοβαθμήσεων που παρατηρήθηκαν είναι εκφυλισμένη και για τη συνέχεια της διαδικασίας MODI, το κελί (, ) θεωρείται βασικό. Ο έλεγχος αριστότητας αποδεικνύει ότι αυτή η λύση είναι η ζητούμενη βέλτιστη λύση του προβλήματος: δ i (i, ) v , * , , - 3-3,,, 5, 3,, 5, 3, 4, 3. Επειδή στο βέλτιστο tablea του προβλήματος μεταφοράς είναι δ 3 =, το πρόβλημα έχει εναλλακτική βέλτιστη λύση. Για να τον εντοπισμό της αρκεί να γίνει βασικό το κελί (, 3) ,, * 3, , 3, 3-3,, 4,, 5, 3,, 8

9 Το μονοπάτι ανακατανομής των εκχωρήσεων υποδεικνύει ισοβαθμήσεις στο κριτήριο για την επιλογή του εξερχόμενου κελιού. Επιλέγοντας -αυθαίρετα- το (, 3), καταλήγουμε στην κατωτέρω (εναλλακτική) βέλτιστη λύση: -4-3 v , 3, * 3, - 3-3,,, 5, 3,, 5, 3, 4, 9

10 ΑΣΚΗΣΗ 4 Επειδή υπάρχουν ισοβαθμήσεις στο κριτήριο για την επιλογή του εισερχόμενου κελιού διαλέγουμε αυθαίρετα το (, 4). Στη συνέχεια κατασκευάζουμε το μονοπάτι ανακατανομής των εκχωρήσεων: Το κελί με αρνητικό πρόσημο και την ελάχιστη ποσότητα είναι το (, 7) με εκχώρηση ίση με. Επειδή το κόστος ευκαιρίας είναι ίσο με, στη νέα λύση θα έχουμε συνολικό κόστος μικρότερο κατά (ισούται με 4,95). Η νέα λύση, στην οποία η μεταβλητή x 4 είναι βασική και η x 7 μη βασική, δίνεται στο tablea που ακολουθεί. Τα κόστη ευκαιρίας δ i δεν είναι όλα μη θετικά (δ 46 = ) και κατά συνέπεια υπάρχει καλύτερη λύση. Με εισερχόμενο κελί το (4, 6) κατασκευάζουμε το (νέο) μονοπάτι ανακατανομής των εκχωρήσεων v Το κελί με αρνητικό πρόσημο και την ελάχιστη ποσότητα είναι το (4, ) με εκχώρηση ίση με. Το κόστος ευκαιρίας είναι ίσο με, οπότε στη νέα λύση θα έχουμε συνολικό κόστος μικρότερο κατά (ισούται με 4,85).

11 v Επειδή δ i (i, ) η ανωτέρω λύση είναι η ζητούμενη βέλτιστη.

12 ΑΣΚΗΣΗ 5. Επειδή si = 9 > 75 = d προσθέτουμε έναν υποθετικό σταθμό προορισμού D 5 με ζήτηση ίση με i 9-75 = μονάδες του προϊόντος και με μηδενικό κόστος μεταφοράς από τους υπάρχοντες σταθμούς προέλευσης. Σύμφωνα με την υπόδειξη περί της μεθόδου που θα πρέπει να χρησιμοποιήσουμε για την εύρεση της αρχικής βασικής εφικτής λύσης του προβλήματος, η μέθοδος Vogel δίνει: Προσφορά (d ) Ζήτηση (s i ) Το κόστος μεταφοράς για την ανωτέρω λύση είναι R = Η λύση που έχουμε έχει 7 θετικές συνιστώσες και συνεπώς είναι μη εκφυλισμένη. Βρίσκοντας τα δυναμικά i, v και σχηματίζοντας τις διαφορές δ i = i + v c i που αντιστοιχούν στις μη βασικές μεταβλητές v βλέπουμε ότι υπάρχουν θετικές τιμές (δ 5 ) κι άρα η λύση που περιλαμβάνεται στο tablea δεν είναι η βέλτιστη. Μια καλύτερη λύση προκύπτει αν κάνουμε βασική τη μεταβλητή x 5 και μη βασική την x 33 αφού θ = min{5, } = 5. Η νέα λύση δίνεται στο πιο κάτω tablea και είναι η βέλτιστη : δ i (i, ). Το αντίστοιχο κόστος μεταφοράς είναι R = 5.

13 v Η μεταβλητή x είναι μια μη βασική μεταβλητή στην άριστη λύση του δοθέντος προβλήματος μεταφοράς και συνεπώς το εύρος αριστότητας του συντελεστή c είναι το [ +v, ) = [3, ). 4. Η μεταβλητή x 33 είναι μια βασική μεταβλητή κι άρα η μεταβολή του συντελεστή c 33 σε c ˆ 33 = c 33 + Δ επηρεάζει τόσο τα δυναμικά i, v όσο και τις διαφορές δ i. Για να μην μεταβάλλεται η άριστη λύση θα πρέπει για τις νέες διαφορές να ισχύει ˆ δ ˆ ˆ ˆ i = i + v ci. Στη συγκεκριμένη περίπτωση, οι τιμές για τα νέα δυναμικά είναι: =, =, 3 = Δ-, v = 3, v =, v 3 = 4, v 4 = 5-Δ, v 5 = κι επομένως η παρούσα λύση παραμένει η βέλτιστη αν είναι δ 4 = -Δ- δ 4 = -Δ- δ 3 = Δ-3 δ 3 = Δ-8 δ 35 = Δ- (είναι δ, δ, δ 3 ) που ισχύει για Δ. Συνεπώς το εύρος αριστότητας του c 33 είναι το [, 4]. Η τρέχουσα λύση εξακολουθεί να είναι η βέλτιστη για c 33 = 4 που ζητείται εδώ. 5. Πρόκειται για την περίπτωση όπου οι ποσότητες s, s 3 μεταβάλλονται και γίνονται αντίστοιχα s +Δ, s 3 -Δ. Η βασική εφικτή λύση του νέου προβλήματος προσδιορίζεται από την υπάρχουσα, ως συνάρτηση της ποσότητας Δ, αφού πρώτα βρεθεί το μονοπάτι ανακατανομής των εκχωρήσεων: v Δ -Δ Δ - 5-Δ Δ 3-Δ Για 5 Δ 5, η λύση που περιλαμβάνεται στο ανωτέρω tablea είναι βασική και εφικτή κι άρα είναι η βέλτιστη. Εδώ Δ = 5 και συνεπώς νέα βέλτιστη λύση είναι η x 3 =, x = 5, x =, x = 5 x 5 =, x 34 = 5. Το νέο κόστος μεταφοράς ισούται με 5 + Δ = χρηματικές μονάδες (: ο ρυθμός μεταβολής της βέλτιστης αντικειμενικής τιμής ανά μονάδα μεταβολής του Δ στο διάστημα [-5, 5] είναι 3 = ). 3

14 ΑΣΚΗΣΗ 6. Επειδή si = 8 > 85 = d προσθέτουμε έναν υποθετικό σταθμό προορισμού D 6 με ζήτηση ίση i με 8-85 = 3 τόνους βαμβακιού και με μηδενικό κόστος μεταφοράς από τους υπάρχοντες σταθμούς προέλευσης. Χρησιμοποιώντας τη μέθοδο Vogel για την εύρεση μιας αρχικής βασικής εφικτής λύσης του προβλήματος, παίρνουμε την: Προσφορά (d ) Ζήτηση (s i ) Η λύση που έχουμε έχει 8 θετικές συνιστώσες και συνεπώς είναι μη εκφυλισμένη. Βρίσκοντας τα δυναμικά i, v και σχηματίζοντας τις διαφορές δ i = i + v c i που αντιστοιχούν στις μη βασικές μεταβλητές 3 v βλέπουμε ότι υπάρχουν θετικές τιμές (δ 36 ) κι άρα η λύση που περιλαμβάνεται στο tablea δεν είναι η βέλτιστη. Μια καλύτερη λύση προκύπτει αν κάνουμε βασική τη μεταβλητή x 36 και μη βασική την x 33 αφού θ = min{, 3} =. Η νέα λύση, που δίνεται στο πιο κάτω tablea, 4

15 v δεν είναι η βέλτιστη του προβλήματος αφού και πάλι υπάρχουν διαφορές δ i (δ 5 ). Επειδή θ = min{3, 4} = 3, μια καλύτερη λύση προκύπτει αν κάνουμε βασική τη μεταβλητή x 5 και μη βασική την x 6. v Η νέα λύση είναι η βέλτιστη : δ i (i, ). Το αντίστοιχο κόστος μεταφοράς είναι R 3 = 3.. Η μεταβλητή x είναι μια μη βασική μεταβλητή στην άριστη λύση του δοθέντος προβλήματος μεταφοράς και συνεπώς το εύρος αριστότητας του συντελεστή c είναι το [ +v 5, ) = [, ). 3. Και η μεταβλητή x είναι μια μη βασική μεταβλητή στην άριστη λύση του δοθέντος προβλήματος μεταφοράς. Το εύρος αριστότητας του συντελεστή c είναι το [ +v, ) = [3, ) κι άρα για c = που ζητείται εδώ, η τρέχουσα βέλτιστη λύση δεν παραμένει τέτοια. Για να βρούμε τη νέα, θα πρέπει να συνεχίσουμε τη διαδικασία (επαναληπτικά βήματα) με εισερχόμενο κελί το (, ).

16 v Επειδή θ = min{4, 8} = 4 μη βασική γίνεται η μεταβλητή x 3 : v Στο ανωτέρω tablea είναι δ i (i, ) και συνεπώς, η λύση που περιλαμβάνεται σ αυτό, είναι η ζητούμενη βέλτιστη για c =. 6

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Η Περιφέρεια Κεντρικής Μακεδονίας σχεδιάζει την ανάπτυξη ενός συστήματος αυτοκινητοδρόμων

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

Η άριστη λύση με τη μέθοδο simplex:

Η άριστη λύση με τη μέθοδο simplex: http://usrs.uo.gr/~acg 1 UΜετάβαση από τον ΓΠ στη Θεωρία ικτύων UΤο πρόβλημα Μεταφοράς (Transportation probl) UΗ «Μακεδονική Εταιρεία Αναψυκτικών Α.Ε.» Παράγει ένα αναψυκτικό ευρείας κατανάλωσης Το προϊόν

Διαβάστε περισσότερα

Μοντέλα Διανομής και Δικτύων

Μοντέλα Διανομής και Δικτύων Μοντέλα Διανομής και Δικτύων 10-03-2017 2 Πρόβλημα μεταφοράς (1) Τα προβλήματα μεταφοράς ανακύπτουν συχνά σε περιπτώσεις σχεδιασμού διανομής αγαθών και υπηρεσιών από τα σημεία προσφοράς προς τα σημεία

Διαβάστε περισσότερα

Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1)

Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1) Case 07: Στρατηγική Χρηματοοικονομικής Δομής ΣΕΝΑΡΙΟ (1) Οι στρατηγικές χρηματοοικονομικής δομής αναφέρονται στην επιλογή των μέσων χρηματοδότησης επενδυτικών προγραμμάτων, λειτουργιών της παραγωγής και

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΠΑΝΤΑΙΔΑΚΗΣ ΜΙΧΑΗΛ Α.Μ 8342 ΕΞΑΜΗΝΟ :ΠΤΘ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΈΡΕΥΝΑ ΣΤΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΚΑΤΑΜΕΡΙΣΜΟΥ ΠΤΥΧΙΑΚΗ

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Προβλήµατα Μεταφορών (Transportation)

Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Προβλήµατα Μεταφορών (Transportation) Μέθοδος Simplex για Προβλήµατα Μεταφοράς Προβλήµατα Εκχώρησης (assignment) Παράδειγµα: Κατανοµή Νερού Η υδατοπροµήθεια µιας περιφέρεια

Διαβάστε περισσότερα

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές

είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς όρους όλες οι μεταβλητές είναι μη αρνητικές Ένα τυχαίο π.γ.π. maximize/minimize z=c x Αx = b x 0 Τυπική μορφή του π.γ.π. maximize z=c x Αx = b x 0 b 0 είναι πρόβλημα μεγιστοποίησης όλοι οι περιορισμοί είναι εξισώσεις με μη αρνητικούς του σταθερούς

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 013 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ 1 ο : Για το μοντέλο του π.γ.π. που ακολουθεί maximize

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2011 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Σε ένα διαγωνισμό για την κατασκευή μίας καινούργιας γραμμής του

Διαβάστε περισσότερα

Πρόβληµα Μεταφοράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Επιχειρησιακή Έρευνα

Πρόβληµα Μεταφοράς ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Επιχειρησιακή Έρευνα Πρόβληµα Μεταφοράς Η παρουσίαση προετοιµάστηκε από τον Ν.Α. Παναγιώτου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Περιεχόµενα Παρουσίασης 1. Μοντέλο Προβλήµατος Μεταφοράς 2. Εύρεση Μιας Αρχικής Βασικής

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

RIGHTHAND SIDE RANGES

RIGHTHAND SIDE RANGES Μια εταιρεία εξόρυξης μεταλλευμάτων, έλαβε μια παραγγελία για 100 τόνους σιδηρομεταλλεύματος. Η παραγγελία πρέπει να περιλαμβάνει τουλάχιστον.5 τόνους νικέλιο, το πολύ τόνους άνθρακα κι ακριβώς 4 τόνους

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Παράδειγμα προβλήματος ελαχιστοποίησης Μια κατασκευαστική εταιρία κατασκευάζει εξοχικές κατοικίες κοντά σε γνωστά θέρετρα της Εύβοιας Η

Διαβάστε περισσότερα

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1

m 1 min f = x ij 0 (8.4) b j (8.5) a i = 1 KΕΦΑΛΑΙΟ 8 Προβλήµατα Μεταφοράς και Ανάθεσης 8. ΕΙΣΑΓΩΓΗ Μια ειδική κατηγορία προβληµάτων γραµµικού προγραµµατισµού είναι τα προβλήµατα µεταφοράς (Π.Μ.), στα οποία επιζητείται η ελαχιστοποίηση του κόστους

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Πρόβλημα Αντιστοιχήσεως

Γραμμικός Προγραμματισμός Πρόβλημα Αντιστοιχήσεως ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Γραμμικός Προγραμματισμός Πρόβλημα Αντιστοιχήσεως

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ) Εικονικές Παράμετροι Μέχρι στιγμής είδαμε την εφαρμογή της μεθόδου Simplex σε προβλήματα όπου το δεξιό μέλος ήταν θετικό. Δηλαδή όλοι οι περιορισμοί ήταν της μορφής: όπου Η παραδοχή ότι b 0 μας δίδει τη

Διαβάστε περισσότερα

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ

Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Case 10: Ανάλυση Νεκρού Σημείου (Break Even Analysis) με περιορισμούς ΣΕΝΑΡΙΟ Η «OutBoard Motors Co» παράγει τέσσερα διαφορετικά είδη εξωλέμβιων (προϊόντα 1 4) Ο γενικός διευθυντής κ. Σχοινάς, ενδιαφέρεται

Διαβάστε περισσότερα

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες

Η άριστη ποσότητα παραγγελίας υπολογίζεται άμεσα από τη κλασική σχέση (5.5): = 1000 μονάδες ΠΡΟΒΛΗΜΑ 1 Η ετήσια ζήτηση ενός σημαντικού εξαρτήματος που χρησιμοποιείται στη μνήμη υπολογιστών desktops εκτιμήθηκε σε 10.000 τεμάχια. Η αξία κάθε μονάδας είναι 8, το κόστος παραγγελίας κάθε παρτίδας

Διαβάστε περισσότερα

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ

2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ 2. ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΑΡΑΓΩΓΗΣ Ο Συγκεντρωτικός Προγραμματισμός Παραγωγής (Aggregae Produion Planning) επικεντρώνεται: α) στον προσδιορισμό των ποσοτήτων ανά κατηγορία προϊόντων και ανά χρονική

Διαβάστε περισσότερα

Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

Chemical A.E. χηµική βιοµηχανία Ρύπανση του παρακείµενου ποταµού µε απόβλητα

Chemical A.E. χηµική βιοµηχανία Ρύπανση του παρακείµενου ποταµού µε απόβλητα Case 15: Προστασία του Περιβάλλοντος ΣΕΝΑΡΙΟ Chemical A.E. χηµική βιοµηχανία Ρύπανση του παρακείµενου ποταµού µε απόβλητα 1 Σενάριο και υπόλοιπα δεδοµένα Συγκροτήθηκε οµάδα εργασίας για την επεξεργασία

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 7: Επίλυση με τη μέθοδο Simplex (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #1: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5

ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5 ΑΣΚΗΣΗ Μία εταιρεία διανομών διατηρεί την αποθήκη της στον κόμβο και μεταφέρει προϊόντα σε πελάτες που βρίσκονται στις πόλεις,,,7. Το οδικό δίκτυο που χρησιμοποιεί για τις μεταφορές αυτές φαίνεται στο

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Δεσμευτικοί περιορισμοί Πρόβλημα Βιομηχανική επιχείρηση γαλακτοκομικών προϊόντων Συνολικό μοντέλο Maximize z = 150x 1 + 200x 2 (αντικειμενική

Διαβάστε περισσότερα

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI)

Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Η Μέθοδος Αναθεωρηµένης Εκχώρησης (MODI) Ηµέθοδος MODIεπιτρέπει τον υπολογισµό των οριακών µεταβολών στο συνολικό κόστος µεταφοράς για κάθε µη επιλεγείσα διαδροµή µε αλγεβρικό τρόπο, χωρίς τη διαδικασία

Διαβάστε περισσότερα

Επιχειρησιακή έρευνα (ασκήσεις)

Επιχειρησιακή έρευνα (ασκήσεις) Επιχειρησιακή έρευνα (ασκήσεις) ΤΕΙ Ηπείρου (Τμήμα Λογιστικής και Χρηματοοικονομικής) Γκόγκος Χρήστος (06-01-2015) 1. Γραφική επίλυση προβλημάτων Γραμμικού Προγραμματισμού A) Με τη βοήθεια της γραφικής

Διαβάστε περισσότερα

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20

Αναζητάμε το εβδομαδιαίο πρόγραμμα παραγωγής που θα μεγιστοποιήσει 1/20 Μια από τις εταιρείες γάλακτος στην προσπάθειά της να διεισδύσει στην αγορά του παγωτού πολυτελείας επενδύει σε μια μικρή πιλοτική γραμμή παραγωγής δύο προϊόντων της κατηγορίας αυτής. Πρόκειται για οικογενειακές

Διαβάστε περισσότερα

Πρόβλημα Μεταφοράς. Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης

Πρόβλημα Μεταφοράς. Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Επιχειρησιακή Έρευνα Ι Διδάσκων: Δρ. Σταύρος Τ. Πόνης Πρόβλημα Μεταφοράς Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ

Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ Case 11: Πρόγραμμα Παρακίνησης Πωλητών ΣΕΝΑΡΙΟ Η κ. Δημητρίου είναι γενική διευθύντρια σε μία επιχείρηση με κύρια δραστηριότητα την παραγωγή μαγνητικών μέσων και αναλώσιμων ειδών περιφερειακών συσκευών

Διαβάστε περισσότερα

Άσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης

Άσκηση 5. Εργοστάσια. Συστήματα Αποφάσεων Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης Άσκηση Μια μεγάλη εταιρεία σκοπεύει να μπει δυναμικά στην αγορά αναψυκτικών της χώρας διαθέτοντας συνολικά 7 μονάδες κεφαλαίου. Το πρόβλημα που αντιμετωπίζει είναι αν πρέπει να κατασκευάσει ένα κεντρικό

Διαβάστε περισσότερα

ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ

ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ ΑΛΟΥΜΙΝΙΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ ΠΑΡΑΓΩΓΗΣ ΑΛΟΥΜΙΝΙΟΥ Μια εταιρεία αλουμινίου έχει αποθέματα βωξίτη στην περιοχή G, στην S και στην A. Επίσης, υπάρχουν εργοστάσια μετάλλου, όπου ο βωξίτης

Διαβάστε περισσότερα

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες)

maximize z = 50x x 2 κάτω από τους περιορισμούς (εβδομαδιαίο κέρδος, χρηματικές μονάδες) Ένας κοσμηματοπώλης, κατασκευάζει μπρασελέ και κολιέ αναμειγνύοντας ασήμι με κάποιο άλλο μέταλλο. Το μοντέλο π.γ.π. που ανέπτυξε για την εύρεση της εβδομαδιαίας παραγωγής (x 1 μπρασελέ και x 2 κολιέ) η

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ (ΜΟΝΑΔΕΣ 5) Ένας κατασκευαστής αυτοκινήτων θέλει να προγραμματίσει για μια χρονική περίοδο την παραγωγή δύο μοντέλων αυτοκινήτου: του μοντέλου Α και του μοντέλου Β. Κάθε μοντέλο αυτοκινήτου απαιτεί

Διαβάστε περισσότερα

Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών

Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΔΠΜΣ Οικονομική & Διοίκηση Τηλεπικοινωνιακών Δικτύων Κ.Ε. Κιουλάφας Επιχειρησιακός Ερευνητής Καθηγητής Πανεπιστημίου Αθηνών Αθήνα, 2007 Η ΠΕΡΙΠΤΩΣΗ ΕΛΕΓΧΟΥ ΑΠΟΘΕΜΑΤΩΝ

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 12 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΘΕΜΑ 1 ο Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α Μία εταιρεία παροχής ολοκληρωμένων ευρυζωνικών υπηρεσιών μελετά την

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο

Εισαγωγή στο Γραμμικό Προγραμματισμό. Χειμερινό Εξάμηνο Εισαγωγή στο Γραμμικό Προγραμματισμό Χειμερινό Εξάμηνο 2016-2017 Εισαγωγή Ασχολείται με το πρόβλημα της άριστης κατανομής των περιορισμένων πόρων μεταξύ ανταγωνιζόμενων δραστηριοτήτων μιας επιχείρησης

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΠΤΕΜΒΡΙΟΣ 2008 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΜΑ 1 ο Σε μία γειτονιά, η ζήτηση ψωμιού η οποία ανέρχεται σε 1400 φραντζόλες ημερησίως,

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Το µαθηµατικό µοντέλο του Υδρονοµέα

Το µαθηµατικό µοντέλο του Υδρονοµέα Ερευνητικό έργο: Εκσυγχρονισµός της εποπτείας και διαχείρισης του συστήµατος των υδατικών πόρων ύδρευσης της Αθήνας Το µαθηµατικό µοντέλο του Υδρονοµέα Ανδρέας Ευστρατιάδης και Γιώργος Καραβοκυρός Τοµέας

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

Ασκήσεις Αποθεµάτων. Υποθέστε ότι την στιγμή αυτή υπάρχει στην αποθήκη απόθεμα για 5 μήνες.

Ασκήσεις Αποθεµάτων. Υποθέστε ότι την στιγμή αυτή υπάρχει στην αποθήκη απόθεμα για 5 μήνες. Ασκήσεις Αποθεµάτων 1. Το πρόγραμμα παραγωγής μιας βιομηχανίας προβλέπει την κατανάλωση 810.000 μονάδων πρώτης ύλης το χρόνο, με ρυθμό πρακτικά σταθερό, σε όλη τη διάρκεια του έτους. Η βιομηχανία εισάγει

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Γραμμικός προγραμματισμός: μέθοδος simplex Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 4 η /2017 Η γεωμετρία των προβλημάτων γραμμικού

Διαβάστε περισσότερα

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014)

Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Λύσεις θεμάτων Επιχειρησιακής Έρευνας (17/09/2014) Θέμα 1 Μια επιχείρηση χρησιμοποιεί 3 πρώτες ύλες Α, Β, Γ για να παράγει 2 προϊόντα Π1 και Π2. Για την παραγωγή μιας μονάδας προϊόντος Α απαιτούνται 1

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ. Από το βιβλίο: Κώστογλου, Β. (2015). Επιχειρησιακή Έρευνα. Θεσσαλονίκη: Εκδόσεις Τζιόλα ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΚΑΙ ΕΛΕΓΧΟΣ ΑΠΟΘΕΜΑΤΩΝ 1 Εισαγωγικά Απόθεμα εννοείται κάθε είδους αγαθό, το οποίο μπορεί να αποθηκευτεί με στόχο την τρέχουσα ή μελλοντική χρησιμοποίησή του. Αποθέματα συναντώνται σε κάθε

Διαβάστε περισσότερα

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10

ΑΠΑΙΤΟΥΜΕΝΟΣ ΧΡΟΝΟΣ (hr) στο. Στάδιο Α Στάδιο Β (ανά) τρακτέρ 10 20 (ανά) γερανό 15 10 2. Βασικές Έννοιες Γραμμικού Προγραμματισμού 89 ΠΑΡΑΔΕΙΓΜΑ 2.10 Η TRACPRO, γνωστή αυτοκινητοβιομηχανία, προσπαθεί να εντοπίσει το εβδομαδιαίο σχέδιο παραγωγής τρακτέρ και γερανών με τα μεγαλύτερα κέρδη:

Διαβάστε περισσότερα

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας»

Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Λυμένες ασκήσεις στα πλαίσια του μαθήματος «Διοίκηση Εφοδιαστικής Αλυσίδας» Άσκηση 1. Έστω ότι μια επιχείρηση αντιμετωπίζει ετήσια ζήτηση = 00 μονάδων για ένα συγκεκριμένο προϊόν, σταθερό κόστος παραγγελίας

Διαβάστε περισσότερα

Ενδιαφερόμαστε να μεγιστοποιήσουμε το συνολικό κέρδος της εταιρείας που ανέρχεται σε: z = 3x 1 + 5x 2 (εκατοντάδες χιλιάδες χ.μ.)

Ενδιαφερόμαστε να μεγιστοποιήσουμε το συνολικό κέρδος της εταιρείας που ανέρχεται σε: z = 3x 1 + 5x 2 (εκατοντάδες χιλιάδες χ.μ.) Μια εταιρεία χημικών προϊόντων παρασκευάζει μεταξύ των άλλων και δύο διαλύματα, ΔΛ, ΔΛ2. Η γραμμή παραγωγής διαχωρίζεται χοντρικά σε δύο στάδια, αυτό της μίξης κι εκείνο του καθαρισμού. Μια σχετική μελέτη

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 4: Εισαγωγή στο Γραμμικό Προγραμματισμό (4 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ

Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΙΟΥΝΙΟΣ 2012 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Σ ΘΕΜΑ ΠΡΩΤΟ: Θεωρήστε το π.γ.π.: maximize z(θ) = (10 4θ)x 1 +

Διαβάστε περισσότερα

Η αγορά μπορεί να απορροφήσει οποιονδήποτε αριθμό σε θρανία και καρέκλες, αλλά το πολύ πέντε τραπέζια. Έχουμε το εξής π.γ.π.

Η αγορά μπορεί να απορροφήσει οποιονδήποτε αριθμό σε θρανία και καρέκλες, αλλά το πολύ πέντε τραπέζια. Έχουμε το εξής π.γ.π. Ένα ξυλουργείο παράγει θρανία, τραπέζια και καρέκλες : Προϊόν Πρώτη Ύλη Θρανίο Τραπέζι Καρέκλα Διαθεσιμότητα Ξυλεία (m) 8 6 1 48 Κατασκευή (ώρες) 2 1.5 0.5 8 Φινίρισμα (ώρες) 4 2 1.5 20 Τιμή Πώλησης 60,000

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Παράδειγμα ΕΠΙΠΛΟΞΥΛ Η βιοτεχνία ΕΠΙΠΛΟΞΥΛ παράγει δύο βασικά προϊόντα: τραπέζια και καρέκλες υψηλής ποιότητας. Η διαδικασία παραγωγής και για τα δύο προϊόντα περιλαμβάνει την

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ Ασκήσεις Αθήνα, Ιανουάριος 2010 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (11/05/2011, 9:00) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών Θεματική Ενότητα Διοίκηση Επιχειρήσεων & Οργανισμών ΔΕΟ 3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος 00-0 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ (/05/0, 9:00) Να απαντηθούν 4 από τα 5

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακή Έρευνα Ενότητα #: Εφαρμογές του Γραμμικού Προγραμματισμού Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μαθηματική τεχνική για αντιμετώπιση προβλημάτων λήψης πολυσταδιακών αποφάσεων Συστηματική διαδικασία εύρεσης εκείνου του συνδυασμού αποφάσεων που βελτιστοποιεί τη συνολική απόδοση

Διαβάστε περισσότερα

ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ

ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ ΤΟ ΠΡΟΒΛΗΜΑ ΜΕΤΑΦΟΡΑΣ Η αρχική τους εφαρµογή, όπως δηλώνει και η ονοµασία τους, αφορούσε τον καθορισµό του βέλτιστου τρόπου µεταφοράς αγαθών από διαφορετικά σηµεία παραγωγής ή κεντρικής αποθήκευσης (π.χ.,

Διαβάστε περισσότερα

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η

Ανάλυση Ευαισθησίας. αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η Ανάλυση Ευαισθησίας αναζητάμε τις επιπτώσεις που επιφέρει στη βέλτιστη λύση η μεταβολή των αντικειμενικών συντελεστών c μεταβολή των όρων b i στο δεξιό μέλος του συστήματ των περιορισμ μεταβολή των συντελεστών

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 1: Εισαγωγή στο Γραμμικό Προγραμματισμό (1 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV)

Α) Κριτήριο Προσδοκώμενης Χρηματικής Αξίας Expected Monetary Value (EMV) 5. ΘΕΩΡΙΑ ΑΠΟΦΑΣΕΩΝ (Decision Analysis) Επιχειρήσεις, Οργανισμοί αλλά και μεμονωμένα άτομα αντιμετωπίζουν σχεδόν καθημερινά το δύσκολο πρόβλημα της λήψης αποφάσεων. Τα προβλήματα αυτά έχουν σαν αντικειμενικό

Διαβάστε περισσότερα

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone

ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone ΠροσδιορισµόςΒέλτιστης Λύσης στα Προβλήµατα Μεταφοράς Η µέθοδος Stepping Stone Hµέθοδος Stepping Stoneείναι µία επαναληπτική διαδικασία για τον προσδιορισµό της βέλτιστης λύσης σε ένα πρόβληµα µεταφοράς.

Διαβάστε περισσότερα

Case 02: Προγραµµατισµός Προϊόντων «MODA A.E.» ΣΕΝΑΡΙΟ (Product Mix)

Case 02: Προγραµµατισµός Προϊόντων «MODA A.E.» ΣΕΝΑΡΙΟ (Product Mix) Case 02: Προγραµµατισµός Προϊόντων «MODA A.E.» ΣΕΝΑΡΙΟ (Product Mix) Εισάγει στην αγορά για την επόµενη χειµερινή περίοδο έξι νέα είδη γυναικείων ενδυµάτων µε µεγάλες προοπτικές πωλήσεων Η ζήτηση για τα

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ

Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Case 05: Επιλογή Επενδύσεων (πολυσταδιακό πρόβλημα) ΣΕΝΑΡΙΟ Ο χρονικός ορίζοντας απαρτίζεται από διαδοχικές χρονικές περιόδους. Διαμόρφωση ενός χαρτοφυλακίου στο οποίο, καθώς ο χρόνος εξελίσσεται, το διαθέσιμο

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 3: Εισαγωγή στο Γραμμικό Προγραμματισμό (3 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής

Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ. Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ. Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ & ΣΥΣΤΗΜΑΤΩΝ ΥΠΗΡΕΣΙΩΝ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ Αθήνα, Ιανουάριος 2015 Εργαστήριο Συστημάτων Αποφάσεων & Διοίκησης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ IΟΥΝΙΟΥ 2015 ΘΕΜΑ 1 ( Μονάδες 2) Μια επιχείρηση κατασκευής tablet έχει εργοστάσια σε τρεις διαφορετικές χώρες Α,Β,Γ που παράγουν αντίστοιχα 200, 260 και

Διαβάστε περισσότερα

Μοντέλα Διαχείρισης Αποθεμάτων

Μοντέλα Διαχείρισης Αποθεμάτων Μοντέλα Διαχείρισης Αποθεμάτων 2 Εισαγωγή (1) Ο όρος απόθεμα αναφέρεται σε προϊόντα και υλικά που αποθηκεύονται από την επιχείρηση για μελλοντική χρήση Τα αποθέματα μπορεί να περιλαμβάνουν Πρώτες ύλες

Διαβάστε περισσότερα

z = c 1 x 1 + c 2 x c n x n

z = c 1 x 1 + c 2 x c n x n Τεχνολογικό Εκπαιδευτικό Ιδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Γραμμικός Προγραμματισμός & Βελτιστοποίηση Δρ. Δημήτρης Βαρσάμης Καθηγητής Εφαρμογών Δρ. Δημήτρης Βαρσάμης Μάρτιος

Διαβάστε περισσότερα

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΦΕΒΡΟΥΑΡΙΟΣ 213 ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ, ΠΙΘΑΝΟΤΗΤΩΝ & ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α ΘΕΜΑ 1 ο Μια κατασκευαστική εταιρεία ετοιμάζει την ενεργειακή μελέτη ενός

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο

ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΞΕΤΑΣΗ ΣΤΗΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ Έβδομο Εξάμηνο Διδάσκων: Ι. Κολέτσος Κανονική Εξέταση 2007 ΘΕΜΑ 1 Διαιτολόγος προετοιμάζει ένα μενού

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων

ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ. 4.1 Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων ΚΕΦΑΛΑΙΟ 4 ΕΠΙΛΥΣΗ ΕΚΦΥΛΙΣΜΕΝΩΝ ΚΑΙ ΓΕΝΙΚΩΝ ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Επίλυση Εκφυλισμένων Γραμμικών Προβλημάτων Η περιγραφή του ΔΑΣΕΣ στο προηγούμενο κεφάλαιο έγινε με σκοπό να διευκολυνθούν οι αποδείξεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 2014

ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 2014 ΠΑΝΕΠΙΣΤΗΜΙΟΥΠΟΛΗ - ΡΙΟ 00 ΠΑΤΡΑ UNIVERSITY CAMPUS-RIO 00 PATRAS, GR ΜΑΘΗΜΑ: ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ-ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΗΣ ΙΟΥΛΙΟΥ 0 ΘΕΜΑ ( Μονάδες ) Στο παρακάτω πρόβληµα γ.π c max = + s. t + - + + + 0 +,,

Διαβάστε περισσότερα

Α.1 Το Ακαθάριστο Εγχώριο Προϊόν (Α.Ε.Π.) σε σταθερές τιμές μετράει την αξία της συνολικής παραγωγής σε τιμές του έτους βάσης.

Α.1 Το Ακαθάριστο Εγχώριο Προϊόν (Α.Ε.Π.) σε σταθερές τιμές μετράει την αξία της συνολικής παραγωγής σε τιμές του έτους βάσης. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 29 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι

Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι Η µέθοδος Vogel Μιατρίτη µέθοδος προσδιορισµού αρχικής λύσης σε προβλήµατα µεταφοράς είναι η µέθοδος Vogel Η προσεγγιστική µέθοδος Vogelείναι µια πιο πολύπλοκη µέθοδος σε σχέση µε τις προηγούµενες, αλλά

Διαβάστε περισσότερα

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός

Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός Κεφάλαιο 3ο: Γραμμικός Προγραμματισμός 3.1 Εισαγωγή Πολλοί πιστεύουν ότι η ανάπτυξη του γραμμικού προγραμματισμού είναι μια από τις πιο σπουδαίες επιστημονικές ανακαλύψεις στα μέσα του εικοστού αιώνα.

Διαβάστε περισσότερα

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1)

Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Case 06: Το πρόβληµα τωνlorie και Savage Εισαγωγή (1) Το εσωτερικό ποσοστό απόδοσης (internal rate of return) ως κριτήριο αξιολόγησης επενδύσεων Προβλήµατα προκύπτουν όταν υπάρχουν επενδυτικές ευκαιρίες

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Επιστήµη τωναποφάσεων, ιοικητική Επιστήµη 5 ο Εξάµηνο 5 ο ΜΑΘΗΜΑ ηµήτρης Λέκκας Επίκουρος Καθηγητής dlekkas@env.aegean.gr Τµήµα Στατιστικής & Αναλογιστικών-Χρηµατοοικονοµικών Μαθηµατικών

Διαβάστε περισσότερα

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ . ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού

Διαβάστε περισσότερα