V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile"

Transcript

1 Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ 2,..., ϕ m ) : X R m de clasă C (i.e. ϕ i :X R este de clasă C pentru orice i m). Dacă x este punct de minim local al lui f pe X ϕ atunci există u R şi u R m cu (u, u ) astfel încât. u f(x ) - m u (x ) = 2. u şi u 3. ui ϕ i (x ) = pentru orice i, i m. Demonstraţie. Fie I(x ) = {i: i m, ϕ i (x ) = }, mulţimea restricţiilor active în x. Arătăm că nu existã v R n astfel ca -< f(x ), v> > < ϕ i (x ), v> >, i I(x ) Presupunem prin absurd că ar exista v R n, cu proprietăţile anterioare. Atunci v. Fie mulţimea S = {x +tv: t (-ε,ε)}, cu ε> suficient de mic astfel încât S X iar pentru orice t (-ε,ε) să avem ϕ i (x +tv) > pentru orice i I(x ), < ϕ i (x +tv), v> > pentru orice i I(x ) şi < f(x + tv), v> <, (un astfel de ε există; într-adevăr, ţinând cont că x X deschisă, ϕ i (x ) > pentru i I(x ) şi ϕ i continuă, < ϕ i (x ), v> >, i I(x ) şi ϕ i continuă, < f(x ), v> < şi f continuă, rezultă că există δ> astfel încât pentru orice x B(x,δ) X să avem ϕ i (x) > pentru i I(x ), < ϕ i (x), v> >, i I(x ) şi, < f(x), v> < ; luăm ε = δ). Considerăm funcţiile v g : (-ε,ε) R, g(t) = -f(x +tv), t (-ε,ε) (7.) Deoarece h i : (-ε,ε) R, h i (t) = ϕ i (x +tv), t (-ε,ε) pentru i I(x ).

2 Mădălina Roxana Buneci Metode de Optimizare Curs - 27 n f g (t) = - (x + tv)v j = -< f(x + tv), v> > x h i (t) = j= j n ϕi (x + tv)v j = < ϕ i (x +tv), v> >, i I(x ) j= x j rezultă că g şi h i, i I(x ) sunt funcţii strict crescătoare pe mulţimea (-ε,ε). Fie t>, t (-ε,ε). Avem h i (t) > h i () pentru i I(x ) (deoarece h i este strict crescătoare), de unde ϕ i (x +tv) > ϕ i (x ) =, i I(x ). Pe de altă parte, deoarece t (, ε), avem ϕ i (x +tv)> pentru orice i I(x ). Ca urmare x +tv X ϕ. Din faptul că g este strict crescătoare rezultă că g(t) > g(), de unde - f(x +tv) > - f(x ) f(x +tv) < f(x ) şi cum x +tv X ϕ se obţine o contradicţie cu faptul că x este punct de minim al lui f pe X ϕ. În consecinţă, sistemul (7.) este incompatibil. Aplicând lema lui Gordon rezultă că există u, u j, j I(x ) nu toate nule astfel încât - u f(x ) + u j ϕj(x ) =. j I(x ) Dacă luăm u i = pentru orice i I(x ) ( i m), obţinem u f(x ) - m u (x ) =. Avem u, u şi în plus, ui ϕ i (x ) = pentru orice i, i m (deoarece dacă i I(x ), ϕ i (x ) =, iar dacă i I(x ), u i = ). Propoziţie 8. Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C, ϕ : X R m de clasă C şi ψ : X R p de clasă C. Dacă x este punct de minim local al lui f pe 2

3 Metode de Optimizare Curs X ϕ,ψ = {x X: ϕ(x), ψ(x) = }, atunci există u R şi u R m, v R p nu toţi nuli astfel încât. u f(x ) - m u (x ) - p v i ψi(x ) = 2. u şi u 3. ui ϕ i (x ) = pentru orice i, i m. V.8. Minim în sensul pantei maxime. Minim în sensul lui Lagrange Definiţie 9. Fie X o submulţime deschisă a lui R n, ϕ : X R m şi X ϕ = {x X: ϕ(x) }. Un vector v R n \{} se numeşte direcţie admisibilă (relativ la X ϕ ) într-un punt x X ϕ dacă există ε> astfel încât x + tv X ϕ pentru orice t [, ε). Se observă uşor că dacă x int(x ϕ ), atunci orice vector v R n \{} direcţie admisibilã în x. Într-adevăr dacă x int(x ϕ ), atunci există δ> astfel încât B(x,δ) X ϕ. Dacă luă ε = δ, atunci pentru orice t [,ε) avem v x +tv B(x,δ) X ϕ. este Propoziţie 2. Fie X o submulţime deschisă a lui R n, ϕ : X R m diferenţiabilă şi X ϕ = {x X: ϕ(x) }. Dacă v R n \{} este direcţie admisibilă în punctul x X ϕ, atunci este îndeplinită condiţia < ϕ i (x ), v>, pentru orice i I(x ), unde I(x ) = {i: i m, ϕ i (x ) = } este mulţime restricţiilor active în x. Demonstraţie. Presupunem că v R n \{} este direcţie admisibilă în punctul x X ϕ. Atunci existã există ε > astfel încât x + tv X ϕ pentru orice t [, ε). Ca urmare pentru orice i {, 2,.., m}, ϕ i (x +tv). Deoarece pentru orice i I(x ) avem ϕ i (x ) =, rezultă că 3

4 Mădălina Roxana Buneci Metode de Optimizare Curs - 27 ϕ i (x +tv) - ϕ i (x ) pentru orice i I(x ) şi orice t [, ε). (2.) Din (2.) rezultă că pentru orice i I(x ) avem ϕi v ( x ) t t> ( x tv) i ( x ) ϕ i + ϕ = lim t ϕ şi deoarece i ( x ) v = < ϕ i (x ), v>, se obţine < ϕ i (x ), v>, pentru orice i I(x ). Observaţie. Fie X o submulţime convexă deschisă a lui R n, ϕ : X R m de clasă C şi x X ϕ = {x X: ϕ(x) }. Notăm Dacă v R n \{}verifică M = {i: ϕ i este convexă}, M 2 = {, 2,..., m} \ M. < ϕ i (x ), v>, i M < ϕ i (x ), v> >, i M 2 atunci v este direcţie admisibilă în x. Într-adevăr, ţinând cont că x X deschisă, ϕ i (x ) > pentru i I(x ) şi ϕ i continuă, < ϕ i (x ), v> >, i M 2 şi ϕ i continuă, rezultă că există δ> astfel încât pentru orice x B(x,δ) X să avem ϕ i (x) > pentru i I(x ) şi < ϕ i (x), v> >, i M 2. Dacă luăm ε = δ, atunci pentru v orice t [, ε) avem x + tv B(x,δ) X şi ϕ i (x + tv) > pentru i I(x ). Fie i I(x ) M 2. Aplicând formula lui Taylor, rezultă că există θ (, ) astfel încât ϕ i (x + tv) - ϕ i (x ) = < ϕ i (x + θtv), tv> = t< ϕ i (x + θtv), tv> > ϕ i (x + tv) > (deoarece, ϕ i (x ) = ). Pentru i I(x ) M, avem ϕ i (x + tv) - ϕ i (x ) < ϕ i (x ), tv> = t< ϕ i (x ), v> ϕ i (x + tv). 4

5 Metode de Optimizare Curs Deci pentru orice i {,2,..., m} şi orice t [, ε), avem x + tv X ϕ. Aşadar v este direcţie admisibilă în x. Definiţie 2. Fie X o submulţime deschisă a lui R n, f: X R diferenţiabilă, ϕ : X R m şi X ϕ = {x X: ϕ(x) }. Un punct x X ϕ se numeşte punct de minim în sensul pantei maxime pentru f pe X ϕ dacă pentru orice direcţie admisibilă v în x avem < f(x ), v>. Definiţie 22. Fie X o submulţime deschisă a lui R n, f: X R diferenţiabilă, ϕ : X R m diferenţiabilă şi X ϕ = {x X: ϕ(x) }. Fie L:X R funcţia Lagrange definită prin L(x, u) = f(x) - <u,ϕ(x)>. Un punct x X ϕ se numeşte punct de minim în sensul lui Lagrange pentru f pe X ϕ dacă există un vector u R, numit vectorul multiplicatorilor lui Lagrange, astfel încât <u, ϕ(x )> = x L(x, u ) =, unde x L(x, u ) reprezintă gradientul funcţiei x L(x, u ) calculat in x. Propoziţie 23. Fie X o submulţime deschisă a lui R n diferenţiabilă, ϕ : X R m (x,u ) X prin f: X R diferenţiabilă şi X ϕ = {x X: ϕ(x) }. Dacă m R+ este punct şa pentru funcţia Lagrange, L:X R L(x, u) = f(x) - <u,ϕ(x)>, R, definită atunci x este punct de minim în sensul lui Lagrange pentru f pe X ϕ iar u este vectorul multiplicatorilor Lagrange. Demonstraţie. Conform propoziţiei 3 dacă (x,u ) X R este punct şa pentru L, atunci are loc condiţia ecarturilor complementare: <u, ϕ(x )>. 5

6 Mădălina Roxana Buneci Metode de Optimizare Curs - 27 Pe de altă parte deoarece (x,u ) X R este punct şa pentru L, atunci x este punct de minim pentru funcţia x L(x,u ) pe mulţimea X. Şi cum X este o mulţime deschisă şi L o funcţie diferenţiabilă, rezultă că x este punct staţionar pentru x L(x,u ), adică x L(x, u ) =. Aşadar x este punct de minim în sensul lui Lagrange pentru f pe X ϕ iar u este vectorul multiplicatorilor Lagrange. V.9. Condiţii de optimalitate cazul funcţiilor convexe diferenţiabile Propoziţie 24. Fie X o submulţime convexă deschisă a lui R n, f:x R diferenţiabilă şi convexă, ϕ = (ϕ,ϕ 2,...,ϕ m ) : X R m cu proprietatea că ϕ i :X R este concavă pentru orice i m. Fie X ϕ = {x X: ϕ(x) }. Atunci următoarele afirmaţii sunt echivalente:. x X ϕ este punct de minim în sensul pantei maxime pentru f pe X ϕ, 2. x X ϕ este punct de minim pentru f pe X ϕ. Demonstraţie. => 2. Presupunem prin absurd că x nu este punct de minim pentru f pe X ϕ. Atunci există x X ϕ astfel încât f(x ) < f(x ). Pentru orice t [,), avem x + t(x x ) = tx + (-t)x X ϕ (X ϕ fiind convexă). În consecinţă, x x este direcţie admisibilă în x. Deoarece x este punct de minim în sensul pantei maxime pentru f pe X ϕ şi x x 2 este direcţie admisibilă în x, rezultă că < f(x ), x -x >. (24.) Ţinând cont că f este convexă şi diferenţiabilă obţinem f(x ) f(x ) < f(x ), x -x > (24.) f(x ) f(x ) ceea ce contrazice încât f(x ) < f(x ). În consecinţă, x este punct de minim pentru f pe X ϕ. 2 =>. Presupunem că x este punct de minim pentru f pe X ϕ şi fie v o direcţie admisibilă în x. Deoarece există ε> astfel încât x + tv X ϕ pentru orice t [, ε) şi deoarece x este punct de minim pentru f pe X ϕ avem 6

7 de unde f v Metode de Optimizare Curs ( x ) t t> f(x +tv) - f(x ) ( + ) ( ) f x tv f x = lim t f şi deoarece ( x ) v = < f(x ), v>, se obţine < f(x ), v>. Deci x este punct de minim în sensul pantei maxime pentru f pe X ϕ Propoziţie 25. Fie X o submulţime convexă deschisă a lui R n, f:x R diferenţiabilă şi convexă, ϕ = (ϕ,ϕ 2,...,ϕ m ): X R m diferenţiabilă cu proprietatea că ϕ i :X R este concavă pentru orice i m. Presupunem că X ϕ = {x X: ϕ(x) } satisface condiţia de regularitate Slater. Atunci următoarele afirmaţii sunt echivalente:. x X ϕ este punct de minim în sensul lui Lagrange pentru f pe X ϕ 2. x X ϕ este punct de minim în sensul pantei maxime pentru f pe X ϕ Demonstraţie. => 2. Presupunem că x este punct de minim în sensul lui Lagrange pentru f pe X ϕ. Atunci există un vector u R astfel încât <u, ϕ(x )> = x L(x, u ) =, unde x L(x, u ) reprezintă gradientul funcţiei x L(x, u ) calculat in x. Deci = <u, ϕ(x )> = m i ϕi u (x ), şi cum pentru fiecare i, i ϕi u (x ) ( u şi ϕ(x ) ), rezultă că i i u ϕ (x ) = pentru orice i. Dacă i I(x ) (mulţimea restricţiilor active în x ), atunci ϕ i (x ) >, şi în consecinţă u i =. Aşadar avem 7

8 Mădălina Roxana Buneci Metode de Optimizare Curs - 27 = x L(x, u ) = f(x ) - f(x ) = m u (x ) = f(x ) - u (x ) (25.) i I(x ) i I(x ) u (x ) Fie v R n o direcţie admisibilă în x. Atunci avem < f(x ), v> = < u (x ), v> = (25.) i I(x ) u i < ϕ i(x ), v >, i I(x ) conform propoziţiei 2. Ca urmare x X ϕ este punct de minim în sensul pantei maxime pentru f pe X ϕ. 2 =>. Presupunem că x X ϕ este punct de minim în sensul pantei maxime pentru f pe X ϕ. Atunci conform propoziţiei 24, x este punct de minim pentru f pe X ϕ. Conform propoziţiei 3, există u R astfel încât (x,u ) este punct şa pentru funcţia Lagrange, L:X R R, definită prin L(x, u) = f(x) - <u,ϕ(x)> = f(x) - m u iϕi (x). Conform propoziţiei 23, x este punct de minim în sensul lui Lagrange pentru f pe X ϕ iar u este vectorul multiplicatorilor Lagrange. Teoremă 26. (condiţii necesare şi suficiente de optimalitate în cazul ipotezei de regularitate Slater: cazul funcţiilor convexe diferenţiabile) Fie X o submulţime convexă deschisă a lui R n, f: X R diferenţiabilă şi convexă, ϕ = (ϕ,ϕ 2,...,ϕ m ): X R m diferenţiabilă cu proprietatea că ϕ i :X R este concavă pentru orice i m. Presupunem că X ϕ ={x X:ϕ(x) } satisface condiţia de regularitate Slater. Următoarele afirmaţii sunt echivalente:. x este punct de minim local pentru f pe X ϕ 2. x este punct de minim global pentru f pe X ϕ 3. Există u R astfel încât (x,u ) este punct şa pentru funcţia Lagrange, L:X R R, definită prin 8

9 Metode de Optimizare Curs L(x, u) = f(x) - <u,ϕ(x)> = f(x) - m u ϕ (x) i i 4. x este punct de minim în sensul lui Lagrange pentru f pe X ϕ 5. x este punct de minim în sensul pantei maxime pentru f pe X ϕ Demonstraţie. <=> 2 conform propoziţiei 4 3 => 2 conform propoziţiei 3 2 => 3 conform propoziţiei 3 4 <=> 5 conform propoziţiei 25 3 => 4 conform propoziţiei 23 5 <=> conform propoziţiei 24 Observaţie. Fie X o submulţime convexă deschisă a lui R n, f: X R convexă diferenţiabilă, ϕ:x R m cu proprietatea că ϕ i :X R este concavă diferenţiabilă pentru orice i m. Presupunem că X ϕ = {x X: ϕ(x) } satisface condiţia de regularitate Slater şi presupunem dată problema de optimizare x X ( ) inf f x Un punct (x,u ) X R m, u = ( u, u,.. 2 ϕ. u m ) t care îndeplineşte condiţiile (i) ϕ i (x ) pentru orice i =, 2,..., m (ii) f(x ) - m u (x ) = (iii) (iv) m i ϕi u (x ) = ui pentru orice i =, 2,..., m se numeşte punct KKT (Karush-Kuhn-Tucker). Se observă că (x,u ) X R m este punct KKT dacă şi numi dacă x este punct de minim în sensul lui Lagrange iar u este vectorul multiplicatorilor lui Lagrange. În ipotezele teoremei 26 (x,u ) este punct KKT dacă şi numai dacă (x,u ) este punt şa pentru funcţia Lagrange, L:X R R, definită prin 9

10 Mădălina Roxana Buneci Metode de Optimizare Curs - 27 L(x, u) = f(x) - <u,ϕ(x)> = f(x) - m u ϕ (x) i i Evident dacă (x,u ) este punct KKT, atunci x este soluţie optimă a problemei x X ( ) inf f x ϕ.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Criterii de comutativitate a grupurilor

Criterii de comutativitate a grupurilor Criterii de comutativitate a grupurilor Marius Tărnăuceanu 10.03.2017 Abstract În această lucrare vom prezenta mai multe condiţii suficiente de comutativitate a grupurilor. MSC (2010): 20A05, 20K99. Key

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Funcţii Ciudate. Beniamin Bogoşel

Funcţii Ciudate. Beniamin Bogoşel Funcţii Ciudate Beniamin Bogoşel Scopul acestui articol este construcţia unor funcţii neobişnuite din punct de vedere intuitiv, care au anumite proprietăţi interesante. Construcţia acestor funcţii se face

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013

O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 O generalizare a unei probleme de algebră dată la Olimpiada de Matematică, faza judeţeană, 2013 Marius Tărnăuceanu 1 Aprilie 2013 Abstract În această lucrare vom prezenta un rezultat ce extinde Problema

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

3 FUNCTII CONTINUE Noţiuni teoretice şi rezultate fundamentale Spaţiul euclidian R p. Pentru p N *, p 2 fixat, se defineşte R

3 FUNCTII CONTINUE Noţiuni teoretice şi rezultate fundamentale Spaţiul euclidian R p. Pentru p N *, p 2 fixat, se defineşte R 3 FUNCTII CONTINUE 3.. Noţiuni teoretice şi rezultate fundamentale. 3... Saţiul euclidian R Pentru N *, fixat, se defineşte R = R R R = {(x, x,, x : x, x,, x R} de ori De exemlu, R = {(x, y: x, yr} R 3

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Seminariile Capitolul IX. Integrale curbilinii

Seminariile Capitolul IX. Integrale curbilinii Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 7 8 Capitolul IX. Integrale curbilinii. Să se calculee Im ) d, unde este segmentul

Διαβάστε περισσότερα

NOŢIUNI INTRODUCTIVE

NOŢIUNI INTRODUCTIVE 1 NOŢIUNI INTRODUCTIVE 1.1. Spaţiul vectorial R n Mulţimea R n reprezintă mulţimea tuturor n-uplelor (x 1,..., x n ) cu x 1,..., x n numere reale, adică R n = {(x 1,..., x n ) : x 1,..., x n R}. Un n-uplu

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Siruri de numere reale

Siruri de numere reale Siruri de numere reale efinitie. Un sir de elemente dintr-o multime M este o functie x : N M (sau x : N k M unde N k = {k, k +,...}). Un sir x : N M il vom nota cu (x n ) n N sau (x n ) n unde x n = x(n)

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Capitolul 2. Integrala stochastică

Capitolul 2. Integrala stochastică Capitolul 2 Integrala stochastică 5 CAPITOLUL 2. INTEGRALA STOCHASTICĂ 51 2.1 Introducere În acest capitol vom prezenta construcţia integralei stochastice Itô H sdm s, unde M s este o martingală locală

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

CURS 5 Spaţii liniare. Spaţiul liniar R n

CURS 5 Spaţii liniare. Spaţiul liniar R n CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Metode de demonstraţie pentru teorema de completitutine - studiu comparativ -

Metode de demonstraţie pentru teorema de completitutine - studiu comparativ - Metode de demonstraţie pentru teorema de completitutine - studiu comparativ - Denisa Diaconescu 1 1 Introducere Teorema de completitudine a lui Gödel pentru logica de ordinul I este unul dintre cele mai

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

1 Serii numerice Definiţii. Exemple... 45

1 Serii numerice Definiţii. Exemple... 45 Analizǎ matematicǎ Chiş Codruţa 2 Cuprins 1 Serii numerice 5 1.1 Definiţii. Exemple....................... 5 1.2 Criterii de convergenţǎ pentru serii cu termeni pozitivi... 8 1.3 Criterii de convergenţǎ

Διαβάστε περισσότερα

Algebră liniară CAPITOLUL 1

Algebră liniară CAPITOLUL 1 Algebră liniară CAPITOLUL SPAŢII VECTORIALE FINIT DIMENSIONALE. Definiţia spaţiilor vectoriale Pentru a introduce noţiunea de spaţiu vectorial avem nevoie de noţiunea de corp comutativ de caracteristică

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Probleme pentru clasa a XI-a

Probleme pentru clasa a XI-a Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Interpolare. O metodă de aproximare. Universitatea,,Babeş-Bolyai. Martie 2011

Interpolare. O metodă de aproximare. Universitatea,,Babeş-Bolyai. Martie 2011 Interpolare O metodă de aproximare Radu T. Trîmbiţaş Universitatea,,Babeş-Bolyai Martie 2011 Radu T. Trîmbiţaş (Universitatea,,Babeş-Bolyai ) Interpolare Martie 2011 1 / 69 Un spaţiu util Pentru n N, definim

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan

CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU Curbe în plan CAPITOLUL 8 CURBE ÎN PLAN ŞI ÎN SPAŢIU 81 Curbe în plan I Definiţia analitică a curbelor plane În capitolul 7 am studiat deja câteva eemple de curbe plane, amintim aici conicele nedegenerate: elipsa, hiperbola

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor

Capitolul II. Grupuri. II.1. Grupuri; subgrupuri; divizori normali; grupuri factor Capitolul II Grupuri II.1. Grupuri; subgrupuri; divizori normali; grupuri factor Definiţia 1. Fie G o mulţime nevidă şi " " operaţie algebrică pe G. Cuplul (G, ) se numeşte grup, dacă sunt satisfăcute

Διαβάστε περισσότερα

Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, noiembrie Subiecte clasa a VII-a

Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, noiembrie Subiecte clasa a VII-a Concursul Interjudeţean de Matematică Academician Radu Miron Vaslui, -3 noiembrie 0 Subiecte clasa a VII-a. Fie în exteriorul triunghiului ascuţitunghic ABC, triunghiurile dreptunghice ABP şi ACT cu ipotenuzele

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Ion CRĂCIUN. Departamentul de Matematică şi Informatică Universitatea Tehnică Gheorghe Asachi din Iaşi

Ion CRĂCIUN. Departamentul de Matematică şi Informatică Universitatea Tehnică Gheorghe Asachi din Iaşi Ion CRĂCIUN Departamentul de Matematică şi Informatică Universitatea Tehnică Gheorghe Asachi din Iaşi ME. TRANSFORMAREA LAPLACE ME 2. APLICAŢII ALE TRANSFORMĂRII LAPLACE IAŞI 22 Cuprins ME. Transformarea

Διαβάστε περισσότερα

Geometrie afină. Conf. Univ. Dr. Cornel Pintea

Geometrie afină. Conf. Univ. Dr. Cornel Pintea Geometrie afină Conf Univ Dr Cornel Pintea E-mail: cpintea mathubbclujro Cuprins 1 Săptămâna 13 1 2 Endomorfismele unui spaţiu afin 1 21 Translaţia 1 22 Subspaţii invariante 2 23 Omotetii 2 24 Proiecţii

Διαβάστε περισσότερα

există n0 N astfel ca pentru orice 1.Teoremă. Orice şir (xn)n din Q convergent la un, x Q are loc xn+p-xn ε (propritatea lui Cauchy).

există n0 N astfel ca pentru orice 1.Teoremă. Orice şir (xn)n din Q convergent la un, x Q are loc xn+p-xn ε (propritatea lui Cauchy). TEOREME CAUCHY În 1810, Cauchy merge la Cherbourg pentru a lucra la fortificaţiile pentru invazia lui Napoleon în Anglia. In această perioadă produce câteva rezultate, inclsiv soluţia unei probleme puse

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM

Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM Ion CRĂCIUN CAPITOLE DE MATEMATICI SPECIALE EDITURA PIM IAŞI 2007 2 Cuprins 1 Ecuaţii diferenţiale liniare de ordin superior 7 1.1 Ecuaţii diferenţiale liniare de ordinul n cu coeficienţi variabili 7 1.2

Διαβάστε περισσότερα

Corpuri cu divizori primi. Costel Gabriel Bontea

Corpuri cu divizori primi. Costel Gabriel Bontea Corpuri cu divizori primi Costel Gabriel Bontea September 11, 2012 Cuprins Notaţii 3 Introducere 3 1 Valuări şi divizori primi 6 1.1 Valuări şi topologia definită de o valuare............ 6 1.2 Caracterizarea

Διαβάστε περισσότερα

Transformări integrale şi funcţii complexe cu aplicaţii în tehnică

Transformări integrale şi funcţii complexe cu aplicaţii în tehnică Daniel BREAZ Nicolae SUCIU Păstorel GAŞPAR Nicoleta BREAZ Monica PÎRVAN Valeriu PREPELIŢĂ Gheorghe BARBU Transformări integrale şi funcţii complexe cu aplicaţii în tehnică Volumul 1 Funcţii complexe cu

Διαβάστε περισσότερα

POLINOAME ŞI ECUAŢII ALGEBRICE. Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică

POLINOAME ŞI ECUAŢII ALGEBRICE. Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică POLINOAME ŞI ECUAŢII ALGEBRICE Andrei Mărcuş Universitatea Babeş-Bolyai Facultatea de Matematică şi Informatică 6 martie 2015 Cuprins 1 Ecuaţii algebrice 1 1.1 Ecuaţii binome. Grupul rădăcinilor de ordin

Διαβάστε περισσότερα

Teorema de punct fix a lui Banach

Teorema de punct fix a lui Banach CURSUL 8 Teorema de punct fix a lui Banach Teorema de punct fix a lui Banach, cunoscută şi sub denumirea de principiul contracţiilor, este un instrument important în teoria spaţiilor metrice; ea garantează

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36

4 Funcţii continue Derivate parţiale, diferenţială Extremele funcţiilor, formule Taylor Serii numerice Integrale improprii 36 Prefaţă Cartea de faţă a fost elaborată în cadrul proiectului Formarea cadrelor didactice universitare şi a studenţilor în domeniul utilizării unor instrumente moderne de predare-învăţare-evaluare pentru

Διαβάστε περισσότερα

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri

Principiul incluziunii si excluziunii. Generarea şi ordonarea permutărilor. Principiul porumbeilor. Pri Generarea şi ordonarea permutărilor. Principiul porumbeilor. Principiul incluziunii si excluziunii Recapitulare din cursul trecut Presupunem că A este o mulţime cu n elemente. Recapitulare din cursul trecut

Διαβάστε περισσότερα

II. Analiză matematică 0. 7 Şiruri şi serii numerice 1. 8 Calcul diferenţial pentru funcţii de o variabilă reală 43

II. Analiză matematică 0. 7 Şiruri şi serii numerice 1. 8 Calcul diferenţial pentru funcţii de o variabilă reală 43 Cuprins II. Analiză matematică 7 Şiruri şi serii numerice 8 Calcul diferenţial pentru funcţii de o variabilă reală 43 9 Calcul integral pentru funcţii de o variabilă reală 6 Funcţii de mai multe variabile

Διαβάστε περισσότερα

Rădăcini primitive modulo n

Rădăcini primitive modulo n Universitatea Bucureşti Facultatea de Matematică şi Informatică Rădăcini primitive modulo n Îndrumător ştiinţific: Prof. Dr. Victor Alexandru 2010 Rezumat Tema lucrarii este studiul radacinilor primitive.

Διαβάστε περισσότερα

Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional.

Sala: Octombrie 2014 SEMINAR 1: ALGEBRĂ. este un Q-spaţiu vectorial, faţă de operaţiile uzuale de adunare şi înmulţire cu un număr raţional. Sala: Octombrie 24 SEMINAR : ALGEBRĂ Conf univ dr: Dragoş-Pătru Covei Programul de studii: CE, IE, SPE Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat distribuit

Διαβάστε περισσότερα

2.3. Inegalităţi şi limite Convergenţă, monotonie, mărginire Limite remarcabile Limita unei funcţii...

2.3. Inegalităţi şi limite Convergenţă, monotonie, mărginire Limite remarcabile Limita unei funcţii... Cuprins GEOMETRIE 1 Vectori 1 11 Segmente orientate Vectori în plan 1 12 Operaţii cu vectori 3 13 Vectori coliniari 8 14 Vectori de poziţie 10 15 Drepte paralele, concurente Colinearitate 12 16 Produsul

Διαβάστε περισσότερα

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015

Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Societatea de Ştiinţe Matematice din România Ministerul Educaţiei Naţionale Al cincilea baraj de selecţie pentru OBMJ Bucureşti, 28 mai 2015 Problema 1. Arătaţi că numărul 1 se poate reprezenta ca suma

Διαβάστε περισσότερα

1Reziduuri şi aplicaţii

1Reziduuri şi aplicaţii Reziduuri şi aplicaţii În acest curs vom prezenta noţiunea de reziduu, modul de calcul al reziduurilor, teorema reziduurilor şi câteva aplicaţii ale teoremei reziduurilor, în special la calculul unor tipuri

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6)

SEMINAR TRANSFORMAREA LAPLACE. 1. Probleme. ω2 s s 2, Re s > 0; (4) sin ωt σ(t) ω. (s λ) 2, Re s > Re λ. (6) SEMINAR TRANSFORMAREA LAPLACE. Probleme. Foloind proprieaea de liniariae, ă e demonreze urmăoarele: in σ(, Re > ; ( + penru orice C. co σ( h σ( ch σ(, Re > ; ( +, Re > ; (3, Re > ; (4. Să e arae că penru

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

APLICAŢII ALE CALCULULUI DIFERENŢIAL. Material pentru uzul studenţilor de la FACULTATEA DE

APLICAŢII ALE CALCULULUI DIFERENŢIAL. Material pentru uzul studenţilor de la FACULTATEA DE 1 APLICAŢII ALE CALCULULUI DIFERENŢIAL Material pentru uzul studenţilor de la FACULTATEA DE MECANICĂ 2 Contents 1 Aplicaţii ale calculului diferenţial 5 1.1 Extreme ale funcţiilor reale de mai multe variabile

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

Curs 4. RPA (2017) Curs 4 1 / 45

Curs 4. RPA (2017) Curs 4 1 / 45 Reţele Petri şi Aplicaţii Curs 4 RPA (2017) Curs 4 1 / 45 Cuprins 1 Analiza structurală a reţelelor Petri Sifoane Capcane Proprietăţi 2 Modelarea fluxurilor de lucru: reţele workflow Reţele workflow 3

Διαβάστε περισσότερα

Seminariile 1 2 Capitolul I. Integrale improprii

Seminariile 1 2 Capitolul I. Integrale improprii Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur

Διαβάστε περισσότερα

Fişier template preliminar

Fişier template preliminar logo.png Contract POSDRU/86/1.2/S/62485 Fişier template preliminar Universitatea Tehnica din Iaşi (front-hyperlinks-colors * 29 iulie 212) UTC.png UTI.png Universitatea Tehnică Gheorghe Asachi din Iaşi

Διαβάστε περισσότερα

1. Mulţimi. Definiţia mulţimii.

1. Mulţimi. Definiţia mulţimii. Definiţia mulţimii. 1. Mulţimi Definiţia 1.1. (Cantor) Prin mulţime înţelegem o colecţie de obiecte bine determinate şi distincte. Obiectele din care este constituită mulţimea se numesc elementele mulţimii.

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare

Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Capitolul 1 Ecuaţii diferenţiale de ordinul întâi rezolvabile prin metode elementare Definiţia 1.0.1 O ecuaţie diferenţialǎ de ordinul întâi este o relaţie de dependenţǎ funcţionalǎ de forma g(t, x, ẋ)

Διαβάστε περισσότερα

(Îndrumar pentru examenul licenţă valabil începând cu sesiunea de finalizare a studiilor iulie 2013)

(Îndrumar pentru examenul licenţă valabil începând cu sesiunea de finalizare a studiilor iulie 2013) ALGEBRĂ (Îndrumar pentru examenul licenţă valabil începând cu sesiunea de finalizare a studiilor iulie 2013) CUPRINS Pentru specializările Matematică şi Matematică informatică: 1 Introducere 1 2 Grupuri,

Διαβάστε περισσότερα

1 Şiruri şi serii numerice Proprietăţi ale şirurilorconvergente... 10

1 Şiruri şi serii numerice Proprietăţi ale şirurilorconvergente... 10 Cuprins 1 Şiruri şi serii numerice 9 1.1 Şiruri numerice în R şi C.... 9 1.2 Proprietăţi ale şirurilorconvergente.... 10 1.3 Şiruri numerice în R 2 şi R 3.... 15 1.4 Serii numerice în R şi C.... 17 1.5

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

TIBERIU DUMITRESCU ALGEBRA 1. Bucureşti, 2006

TIBERIU DUMITRESCU ALGEBRA 1. Bucureşti, 2006 1 TIBERIU DUMITRESCU ALGEBRA 1 Bucureşti, 2006 2 Profesorului meu NICOLAE RADU 3 PREFAŢĂ Lucrarea se adresează studenţilor din anul I de la facultăţile de matematică şi informatică din universităţi. În

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate.

Timp alocat: 180 minute. In itemii 1-4 completati casetele libere, astfel incat propozitiile obtinute sa fie adevarate. Copyright c 009 ONG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 15 iunie

Διαβάστε περισσότερα