Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί"

Transcript

1 Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Χαρμανδάρης Βαγγέλης, Τμήμα Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης, Εαρινό Εξάμηνο 2013/14 Κεφάλαιο 4: Παράλληλοι Αλγόριθμοι Ταξινόμηση Παράλληλων Αλγόριθμων. Παράδειγμα: Υπολογισμός του Αριθμού π. Το Κόσκινο του Ερατοσθένη. Σχεδιασμός Παράλληλων Αλγορίθμων. Τύποι Επικοινωνίας Μεταξύ των Επεξεργαστών.

2 Παράλληλοι Αλγόριθμοι Οι παράλληλοι αλγόριθμοι μπορούν να ταξινομηθούν ανάλογα με το πως και που γίνεται ο παραλληλισμός. Κατηγορίες παράλληλων αλγορίθμων: Παραλληλισμός σε επίπεδο bits (Bit-level parallel approach). Παραλληλισμός σε επίπεδο εντολών (Control-parallel approach). Παραλληλισμός σε επίπεδο δεδομένων (Data-parallel approach). Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 2

3 Παραλληλισμός σε Επίπεδο Bits Bit-level parallelism: Παραλληλισμός αυξάνοντας το μέγεθος της πληροφορίας (word size), σε bits, που μπορεί να επεξεργαστεί ένας επεξεργαστής ανά κύκλο λειτουργίας. Αυξάνοντας το word size ελαττώνεται ο αριθμός των πράξεων που πρέπει να εκτελέσει ένας επεξεργαστής για μεταβλητές με μήκος μεγαλύτερο του word size. Παράδειγμα: πρόσθεση 2 16-bit ακεραίων σε 8-bit επεξεργαστή απαιτεί 2 πράξεις ενώ σε 16-bit επεξεργαστή 1. Ιστορικά: Για αρκετά χρόνια ήταν ο συνήθης τρόπος αύξησης της υπολογιστικής ισχύος: από 4-bit σε 8-bit, 16-bit και 32-bit επεξεργαστές. Οι τελευταίοι ήταν οι πιο συνηθισμένοι για περίπου 2 δεκαετίες. Πιο πρόσφατα (~2003) με την x86-64 αρχιτεκτονική 64-bit επεξεργαστές επικρατούν. Μέλλον: 128-bit επεξεργαστές; Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 3

4 Παραλληλισμός σε Επίπεδο Εντολών Control-level parallelism ή Παραλληλισμός Ελέγχου: Εφαρμογή διαφορετικών πράξεων σε διαφορετικά δεδομένα ταυτόχρονα. Γνωστός και ως σωλήνωση (pipelining). Κατάλληλος για MIMD συστήματα. Θεωρούμε ένα πρόβλημα ως σύνολο από διαφορετικές διεργασίες όπου η καθεμία μπορεί να ανατεθεί σε διαφορετικό επεξεργαστή. Παραδείγματα: Προσομοίωση ενός οικοσυστήματος: διαφορετικά είδη ζώων, φυτών, καιρός, κλπ. Κάθε υποσύστημα ανατίθεται σε διαφορετικό επεξεργαστή. Μοντελοποίηση αυτοκινήτου: τα διαφορετικά μέρη (μηχανή, σύστημα ψύξης, σύστημα θέρμανσης, κλπ.) κατανέμονται σε διαφορετικούς επεξεργαστές. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 4

5 Παραλληλισμός σε Επίπεδο Δεδομένων Data-level parallelism: Εφαρμογή ίδιων πράξεων σε διαφορετικά δεδομένα ταυτόχρονα. Η ίδια διαδικασία εκτελείται σε πολλά δεδομένα ταυτόχρονα. Αναφέρεται και ως Κατάτμηση Χωρίου (Domain Decomposition). Κατάλληλος για SIMD και MIMD συστήματα. Διαφορετικές περιοχές του χώρου ανατίθενται σε διαφορετικούς επεξεργαστές. Παραδείγματα: Κατανομή ενός πίνακα σε διαφορετικούς επεξεργαστές. Μοριακή Προσομοίωση: διαφορετικά μέρη του χωρίου κατανέμονται σε διαφορετικούς επεξεργαστές. Αναζήτηση στοιχείων σε μια βάση δεδομένων. πολλά άλλα. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 5

6 Παραλληλισμός σε Επίπεδο Δεδομένων Domain Decomposition : Ο πιο διαδεδομένος τρόπος παραλληλισμού πολύπλοκων επιστημονικών προβλημάτων. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 6

7 Παράδειγμα: Υπολογισμός του Αριθμού π Υπολογισμός του αριθμού π με την ακόλουθη μέθοδο: Περικλείουμε κύκλο με ένα τετράγωνο. Δημιουργούμε m τυχαία σημεία μέσα στο τετράγωνο. Βρίσκουμε τα σημεία που εμπεριέχονται και μέσα στον κύκλο, n. Αν r = n/m, τότε ο αριθμός π προσεγγίζεται ως π 4r. Όσο περισσότερα τα σημεία m τόσο μεγαλύτερη ακρίβεια του υπολογισμού. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 7

8 Σειριακός αλγόριθμος: Υπολογισμός του Αριθμού π npoints = circle_count = 0 do j = 1, npoints generate 2 random numbers between 0 and 1 xcoordinate = random1 ycoordinate = random2 if (xcoordinate, ycoordinate) inside circle then circle_count = circle_count + 1 end do PI = 4.0*circle_count/npoints Ο χρόνος υπολογισμού είναι κυρίως ο χρόνος εκτέλεσης της επαναληπτικής διαδικασίας (loop). Αυτό οδηγεί σε (σχεδόν) τέλειο παραλληλισμό (embarrassingly parallelism): Εντατικοί υπολογισμοί. Ελάχιστη επικοινωνία, ελάχιστο Ι/Ο. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 8

9 Υπολογισμός του π: Παραλληλισμός Δεδομένων Ο παραλληλισμός αυτού του αλγόριθμου μπορεί να γίνει σε επίπεδο δεδομένων: αναθέτουμε σε κάθε επεξεργαστή μέρος της επαναληπτικής διαδικασίας. Κάθε επεξεργαστής εκτελεί το δικό του μέρος (task) του loop. Δεν χρειάζεται επικοινωνία μεταξύ των επεξεργαστών κατά τη διάρκεια εκτέλεσης της επαναληπτικής διαδικασίας. Χρησιμοποιούμε το μοντέλο «αφέντη/εργάτη» (master/slave). Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 9

10 Υπολογισμός του π: Παραλληλισμός Δεδομένων Παράλληλος αλγόριθμος (με κόκκινο οι αλλαγές): npoints = circle_count = 0 p = number of tasks num = npoints/p do j = 1, num generate 2 random numbers between 0 and 1 xcoordinate = random1 ycoordinate = random2 if (xcoordinate, ycoordinate) inside circle then circle_count = circle_count + 1 end do find out if I am MASTER or WORKER if I am MASTER receive from WORKERS their circle_counts compute PI (use MASTER and WORKER calculations) else if I am WORKER send to MASTER circle_count end if Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 10

11 Παράδειγμα: Το Κόσκινο του Ερατοσθένη Αλγόριθμος εύρεσης πρώτων αριθμών (Sieve of Eratosthenes) Έστω ότι ζητάμε όλους τους πρώτους αριθμούς έως n. Ο αλγόριθμος προχωράει ως εξής: Ξεκινάμε με τον αριθμό 2. Αποκλείουμε-διαγράφουμε όλα τα πολλαπλάσιά του ως n. Ο επόμενος πρώτος μη-διαγραμμένος αριθμός είναι πρώτος. Συνεχίζουμε με τον επόμενο πρώτο μη-διαγραμμένο αριθμό (το 3) και αποκλείουμε όλα τα πολ/σια του. Επαναλαμβάνουμε την διαδικασία ως να φτάσουμε τον αριθμό n. Με τη διαδικασία αυτή βρίσκουμε όλα και λιγότερους αριθμούς προς διαγραφή. Όσοι απομένουν είναι οι πρώτοι αριθμοί. Δεν χρειάζεται να ελέγξουμε ως τον αριθμό n αλλά τον n 1/2. Γιατί; Σειριακή εκτέλεση Βασικά επαναλαμβανόμενα βήματα: (α) Βρίσκουμε τον επόμενο πρώτο. (β) Διαγράφουμε από την λίστα όλα τα πολλαπλάσιά του. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 11

12 Το Κόσκινο του Ερατοσθένη : Παραλληλισμός Ελέγχου Sieve of Eratosthenes A control parallel approach Κάθε επεξεργαστής δουλεύει (εκτελεί τα βήματα (α), (β)) σε διαφορετικό πρώτο αριθμό. Προβλήματα: 1. Σε ασύγχρονη επικοινωνία δύο επεξεργαστές μπορεί να δουλεύουν στον ίδιο πρώτο. 2. Μπορεί να εκτελούνται πράξεις που δεν χρειάζονται, π.χ. ο P1 βρίσκει αλλά δεν προλαβαίνει να διαγράψει τα πολ/σια του 2 ενώ ο P2 αφού τελειώνει με τον 3 βρίσκει ως επόμενο μη-διαγραμμένο αριθμό το 4! Χρόνος Υπολογισμού: Έστω ότι ο χρόνος υπολογισμού είναι μόνο ο χρόνος υπολογισμού πολ/σιων και διαγραφής-μαρκαρίσματος κάθε κελιού. Έστω n ακέραιοι αριθμοί με κ πρώτους (π 1, π 2, π κ ). Ο αριθμός των πράξεων (υπολογισμού πολ/σίων) είναι: n 1 1 n 1 2 n 1 k N... N1 N2... N 1 2 k k Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 12

13 Το Κόσκινο του Ερατοσθένη : Παραλληλισμός Ελέγχου Χρόνος Υπολογισμού Έστω t 0 ο χρόνος μαρκαρίσματος κάθε κελιού. Τότε ο σειριακός χρόνος εκτέλεσης είναι: TS N t 0 Μέγιστη παράλληλη επιτάχυνση: Όταν στέλνουμε όλους τους πρώτους σε διαφορετικούς επεξεργαστές. Τότε ο χρόνος υπολογισμού αντιστοιχεί στους (περισσότερους) υπολογισμούς του αριθμού 2. max n 3 TP lim TP t P 2 0 Παράδειγμα: Έστω n=1000. Τότε Ν π =1411 και 1411 Smax Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 13

14 Το Κόσκινο του Ερατοσθένη : Παραλληλισμός Δεδομένων Sieve of Eratosthenes A data parallel approach Όλοι οι επεξεργαστές δουλεύουν (εκτελούν τα βήματα (α), (β)) στον ίδιο πρώτο αριθμό. Έστω n ακέραιοι και σύστημα με P επεξεργαστές. Αναθέτουμε σε κάθε επεξεργαστή n/p ακέραιους. Θεωρούμε επίσης ότι Ρ<<n 1/2. Για σύστημα με κοινή μνήμη δεν υπάρχει κόστος επικοινωνίας. Για σύστημα με κατανεμημένη μνήμη υπάρχει κόστος επικοινωνίας. Αλγόριθμος: Όλοι οι πρώτοι αριθμοί είναι στον Ρ1. Ο Ρ1 βρίσκει τον επόμενο πρώτο, π κ, και στέλνει την τιμή του στους άλλους επεξεργαστές. Κατόπιν όλοι οι επεξεργαστές βρίσκουν πολλαπλάσια του π κ στο δικό τους υποσύνολο των n αριθμών. Η διαδικασία συνεχίζεται ως ότου ο Ρ1 βρει πρώτο αριθμό > n 1/2. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 14

15 Το Κόσκινο του Ερατοσθένη : Παραλληλισμός Δεδομένων Χρόνος Εκτέλεσης: Ο χρόνος εκτέλεσης του αλγόριθμου είναι ο χρόνος υπολογισμού (διαγραφής-μαρκαρίσματος κάθε κελιού) και ο χρόνος επικοινωνίας. Χρόνος Υπολογισμού: Ο χρόνος υπολογισμού, θεωρώντας t 0 το χρόνο μαρκαρίσματος ενός κελιού, είναι: T comp n / P n / P n / P k t 0 Επικοινωνία: ο Ρ1 στέλνει κάθε πρώτο αριθμό σε (Ρ-1) άλλους επεξεργαστές. Αν λ είναι ο χρόνος που χρειάζεται να στείλουμε έναν αριθμό, τότε ο συνολικός χρόνος επικοινωνίας για κ πρώτους αριθμούς είναι: T k( P 1) comm Προσοχή: ο χρόνος υπολογισμού μειώνεται όσο αυξάνει ο αριθμός των επεξεργαστών ενώ ο χρόνος επικοινωνίας αυξάνει. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 15

16 Σχεδιασμός Παράλληλων Αλγορίθμων Στόχος: ο σχεδιασμός και ο προγραμματισμός του βέλτιστου δυνατού παράλληλου αλγόριθμου. Πρώτο βήμα είναι πάντα η κατανόηση του προβλήματος και του σειριακού κώδικα, αν υπάρχει. Επιθυμητά χαρακτηριστικά: Η ελάχιστη δυνατή επικοινωνία, Επεκτασιμότητα, Τοπικότητα, Επιμεριστικότητα. Γενικές προσεγγίσεις: -- Επιμερισμός εντολών-διεργασιών Παραλληλισμός Ελέγχου -- Επιμερισμός χωρίου Παραλληλισμός Δεδομένων Πρέπει να λάβουμε υπ όψιν: -- Αριθμό διεργασιών αριθμό επεξεργαστών. -- Διεργασίες συγκρίσιμου μεγέθους. -- Πως αλλάζει το μέγεθος και ο αριθμός των διεργασιών με το μέγεθος του προβλήματος. Βασική Ερώτηση: Είναι ο παράλληλος αλγόριθμος μοναδικός; Αν όχι ποιες είναι οι εναλλακτικές λύσεις. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 16

17 Σχεδιασμός Παράλληλων Αλγορίθμων Επικοινωνία μεταξύ των επεξεργαστών: Εκτίμηση του κόστους επικοινωνίας: της αλληλεξάρτησης μεταξύ των διεργασιών. Σχεδιασμός της επικοινωνίας μεταξύ των διεργασιών: Πότε, Πως, Που και Τι θα σταλείληφθεί. Διαγράμματα επικοινωνίας-μεταφοράς δεδομένων. Όγκος των μεταφερόμενων πληροφοριών μεταξύ των επεξεργαστών. Καθορισμός του τρόπου επικοινωνίας: blocking vs. non-blocking. Τύποι επικοινωνίας: -- Τοπικά/Καθολικά. -- Δομημένα/Μη Δομημένα. -- Στατικά/Δυναμικά. -- Συγχρονισμένα/Ασύγχρονα. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 17

18 Τύποι-Σχήματα Επικοινωνίας Τοπική: η επικοινωνία επικεντρώνεται μεταξύ μικρού αριθμού διεργασιών. Καθολική: κάθε διεργασία επικοινωνεί με μεγάλο αριθμό διεργασιών. Δομημένη: η επικοινωνία ακολουθεί κάποια συγκεκριμένη δομή-τοπολογία, π.χ. δομή δέντρου, αστεριού, κλπ. Μη Δομημένη: η επικοινωνία δεν ακολουθεί κάποια συγκεκριμένη δομή-τοπολογία. Στατική: η επικοινωνία είναι σταθερή κατά τη διάρκεια εκτέλεσης του προγράμματος. Δυναμική: η επικοινωνία αλλάζει κατά τη διάρκεια εκτέλεσης του προγράμματος. Συγχρονισμένη: η αποστολή και λήψη των πληροφοριών-δεδομένων γίνεται ταυτόχρονα. Ασύγχρονη: η αποστολή και λήψη των πληροφοριών-δεδομένων είναι ανεξάρτητες μεταξύ τους. Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 18

19 Σχεδίαση Επικοινωνίας Βασικές ερωτήσεις που τίθενται στη σχεδίαση της επικοινωνίας: Εκτελούν όλες οι διεργασίες ίδιας τάξης αριθμό εντολών επικοινωνίας; Υπάρχει διεργασία που επικοινωνεί με πολλές από (ή όλες) τις άλλες διεργασίες; Υπάρχει κίνδυνος συμφόρησης επικοινωνίας (bottleneck); Ποιος είναι ο βαθμός τοπικότητας του σχήματος επικοινωνίας; Είναι δυνατόν οι υπολογισμοί να γίνονται ταυτόχρονα με την επικοινωνία; Μπορούν πολλές διεργασίες να εκτελούνται ταυτόχρονα; Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 19

20 Βιβλιογραφία Parallel Programming, B. Wilkinson, M. Allen, Prentice Hall, 2nd Ed Designing and Building Parallel Programs, Ian Foster, Addison-Wesley Parallel Computing: Theory and Practice, M. J. Quinn, McGraw-Hill, Parallel Scientific Computing in C++ and MPI, G. Karniadakis and R.M. Kirby II, Cambridge, Παράλληλοι Υπολογισμοί, Κεφάλαιο 4 20

Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 2: Ολοκλήρωση Monte Carlo, γεννήτριες τυχαίων αριθμών

Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 2: Ολοκλήρωση Monte Carlo, γεννήτριες τυχαίων αριθμών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εισαγωγή σε μεθόδους Monte Carlo Ενότητα 2: Ολοκλήρωση Monte Carlo, γεννήτριες τυχαίων αριθμών Βαγγέλης Χαρμανδάρης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών

Διαβάστε περισσότερα

Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί

Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Χαρμανδάρης Βαγγέλης, Τμήμα Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης, Εαρινό Εξάμηνο 2013/14 Κεφάλαιο 3: Θεωρία Παράλληλου Προγραμματισμού

Διαβάστε περισσότερα

EM 361: Παράλληλοι Υπολογισμοί

EM 361: Παράλληλοι Υπολογισμοί ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ EM 361: Παράλληλοι Υπολογισμοί Ενότητα #2: Αρχιτεκτονική Διδάσκων: Χαρμανδάρης Ευάγγελος ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΜ 361: ΠΑΡΑΛΛΗΛΛΟΙ ΥΠΟΛΟΓΙΣΜΟΙ (PARALLEL COMPUTING) ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ: 2η Όνομα Καθηγητή: Χαρμανδάρης Ευάγγελος Τμήμα Εφαρμοσμένων Μαθηματικών ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Διαβάστε περισσότερα

Παράλληλη Επεξεργασία Κεφάλαιο 1 Γιατί Παράλληλος Προγραμματισμός;

Παράλληλη Επεξεργασία Κεφάλαιο 1 Γιατί Παράλληλος Προγραμματισμός; Παράλληλη Επεξεργασία Κεφάλαιο 1 Γιατί Παράλληλος Προγραμματισμός; Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg Αρετή

Διαβάστε περισσότερα

Σωληνωτή επεξεργασία

Σωληνωτή επεξεργασία Σωληνωτή επεξεργασία Κ.Γ. Μαργαρίτης προσαρμογή από το μάθημα του Barry Wilkinson ITCS 4145/5145 2006Cluster Computing Univ. of North Carolina at Charlotte 5.1 Σωληνωτή επεξεργασία Το πρόβλημα διαιρείται

Διαβάστε περισσότερα

13.2 Παράλληλος Προγραµµατισµός Γλωσσάρι, Σελ. 1

13.2 Παράλληλος Προγραµµατισµός Γλωσσάρι, Σελ. 1 13.2 Παράλληλος Προγραµµατισµός Γλωσσάρι, Σελ. 1 ΓΛΩΣΣΑΡΙ Αµοιβαίος αποκλεισµός (mutual exclusion) Στο µοντέλο κοινού χώρου διευθύνσεων, ο αµοιβαίος αποκλεισµός είναι ο περιορισµός του αριθµού των διεργασιών

Διαβάστε περισσότερα

2. Στοιχεία Αρχιτεκτονικής Παράλληλων Υπολογιστών... 45

2. Στοιχεία Αρχιτεκτονικής Παράλληλων Υπολογιστών... 45 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 9 1. Εισαγωγή... 13 1.1 Οι Μεγάλες Σύγχρονες Επιστημονικές Προκλήσεις... 13 1.2 Εξέλιξη της Παράλληλης Επεξεργασίας Δεδομένων... 14 1.3 Οι Έννοιες της Σωλήνωσης, του Παραλληλισμού

Διαβάστε περισσότερα

Μετρικές & Επιδόσεις. Κεφάλαιο V

Μετρικές & Επιδόσεις. Κεφάλαιο V Μετρικές & Επιδόσεις Κεφάλαιο V Χρόνος εκτέλεσης & επιτάχυνση Σειριακός χρόνος εκτέλεσης: Τ (για τον καλύτερο σειριακό αλγόριθμο) Παράλληλος χρόνος εκτέλεσης: (με επεξεργαστές) Επιτάχυνση (speedup): S

Διαβάστε περισσότερα

Διάλεξη 16: Πρόβλημα Συμφωνίας. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 16: Πρόβλημα Συμφωνίας. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 16: Πρόβλημα Συμφωνίας ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Ορισμός του προβλήματος Συμφωνίας Αλγόριθμος Συμφωνίας με Σφάλματα Κατάρρευσης ΕΠΛ432: Κατανεµηµένοι Αλγόριθµοι 1 Πρόβλημα

Διαβάστε περισσότερα

Σκοπός του μαθήματος. Αρχές Φυσικής Μοντελοποίησης

Σκοπός του μαθήματος. Αρχές Φυσικής Μοντελοποίησης Αρχές Φυσικής Μοντελοποίησης (Μαθηματική έκφραση της λεκτικής περιγραφής των φαινομένων) Σκοπός του μαθήματος Αρχές Φυσικής Μοντελοποίησης Αρχές Φυσικής Προσομοίωσης 1/2.1 Σκοπός της Φυσικής Προσομοίωσης

Διαβάστε περισσότερα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αλγόριθμοι και Προγράμματα

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών

Αρχιτεκτονική Υπολογιστών Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 13: (Μέρος Γ ) Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών

Διαβάστε περισσότερα

Οργάνωση επεξεργαστή (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Οργάνωση επεξεργαστή (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Οργάνωση επεξεργαστή (2 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Ταχύτητα εκτέλεσης Χρόνος εκτέλεσης = (αριθμός εντολών που εκτελούνται) Τί έχει σημασία: Χ (χρόνος εκτέλεσης εντολής) Αριθμός

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 13: Διδακτική της Δομής Επανάληψης Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Ψευδοκώδικας. November 7, 2011

Ψευδοκώδικας. November 7, 2011 Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε

Διαβάστε περισσότερα

11/23/2014. Στόχοι. Λογισμικό Υπολογιστή

11/23/2014. Στόχοι. Λογισμικό Υπολογιστή ονάδα Δικτύων και Επικοινωνιών ΗΥ Τομέας Πληροφορικής, αθηματικών και Στατιστικής ΓΕΩΠΟΙΚΟ ΠΑΕΠΙΣΤΗΙΟ ΑΘΗΩ Εισαγωγή στην Επιστήμη των ΗΥ άθημα-4 url: http://openeclass.aua.gr (AOA0) Λογισμικό Υπολογιστή

Διαβάστε περισσότερα

Παραλληλισμός δεδομένων ή Φυσικός παραλληλισμός

Παραλληλισμός δεδομένων ή Φυσικός παραλληλισμός Παραλληλισμός δεδομένων ή Φυσικός παραλληλισμός Κ.Γ. Μαργαρίτης προσαρμογή από το μάθημα του Barry Wilkinson ITCS 4145/5145 2006 Cluster Computing Univ. of North Carolina at Charlotte 3.2 Ένας υπολογισμός

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΜ 361: ΠΑΡΑΛΛΗΛΛΟΙ ΥΠΟΛΟΓΙΣΜΟΙ (PARALLEL COMPUTING) ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ: 1η Όνομα Καθηγητή: Χαρμανδάρης Ευάγγελος Τμήμα Εφαρμοσμένων Μαθηματικών ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων

ΠΕΡΙΕΧΟΜΕΝΑ. Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων ΠΕΡΙΕΧΟΜΕΝΑ Μονοδιάστατοι πίνακες Πότε πρέπει να χρησιμοποιούνται πίνακες Πολυδιάστατοι πίνακες Τυπικές επεξεργασίες πινάκων Εισαγωγή Η χρήση των μεταβλητών με δείκτες στην άλγεβρα είναι ένας ιδιαίτερα

Διαβάστε περισσότερα

Παράλληλη Επεξεργασία Κεφάλαιο 8 ο Προγράμματα Περάσματος Μηνυμάτων

Παράλληλη Επεξεργασία Κεφάλαιο 8 ο Προγράμματα Περάσματος Μηνυμάτων Παράλληλη Επεξεργασία Κεφάλαιο 8 ο Προγράμματα Περάσματος Μηνυμάτων Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg Αρετή

Διαβάστε περισσότερα

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Ακολουθιακός Κώδικας

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Ακολουθιακός Κώδικας «Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Ακολουθιακός Κώδικας Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ E-mail: pkitsos@teimes.gr

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα

Κεφάλαιο 8: Προγραμματίζοντας αλγορίθμους έξυπνα και δημιουργικά

Κεφάλαιο 8: Προγραμματίζοντας αλγορίθμους έξυπνα και δημιουργικά Κεφάλαιο 8: Προγραμματίζοντας αλγορίθμους έξυπνα και δημιουργικά Η συνεχής βελτίωση του υλικού (hardware) τις τελευταίες δεκαετίες έχει σαν αποτέλεσμα την ύπαρξη πολύ ισχυρών επεξεργαστών. Αν και σε λίγα

Διαβάστε περισσότερα

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική

Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 4: Δομές Ελέγχου Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης

Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ

Διαβάστε περισσότερα

Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων

Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων Παράλληλη Επεξεργασία Κεφάλαιο 2 Παραλληλισμός Δεδομένων Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg Αρετή Καπτάν Υποψήφια

Διαβάστε περισσότερα

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1

Κατακερματισμός. 4/3/2009 Μ.Χατζόπουλος 1 Κατακερματισμός 4/3/2009 Μ.Χατζόπουλος 1 H ιδέα που βρίσκεται πίσω από την τεχνική του κατακερματισμού είναι να δίνεται μια συνάρτησης h, που λέγεται συνάρτηση κατακερματισμού ή παραγωγής τυχαίων τιμών

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

Εμπειρική αποτίμηση παράλληλων προγραμμάτων

Εμπειρική αποτίμηση παράλληλων προγραμμάτων . 2a.1 Εμπειρική αποτίμηση παράλληλων προγραμμάτων Κ.Γ. Μαργαρίτης προσαρμογή από το μάθημα του Barry Wilkinson ITCS 4145/5145 2006 Cluster Computing Univ. of North Carolina at Charlotte 2a.2 Οπτικοποίηση

Διαβάστε περισσότερα

FORTRAN και Αντικειμενοστραφής Προγραμματισμός

FORTRAN και Αντικειμενοστραφής Προγραμματισμός FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Διδακτική της έννοιας της μεταβλητής Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ένα αφαιρετικό πραγματικού χρόνου μοντέλο λειτουργικού συστήματος για MPSoC

Ένα αφαιρετικό πραγματικού χρόνου μοντέλο λειτουργικού συστήματος για MPSoC Ένα αφαιρετικό πραγματικού χρόνου μοντέλο λειτουργικού συστήματος για MPSoC Αρχιτεκτονική Πλατφόρμας Μπορεί να μοντελοποιηθεί σαν ένα σύνολο από διασυνδεδεμένα κομμάτια: 1. Στοιχεία επεξεργασίας (processing

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Ενότητα 2β: Εισαγωγή στη C (Μέρος Δεύτερο)

Προγραμματισμός Η/Υ. Ενότητα 2β: Εισαγωγή στη C (Μέρος Δεύτερο) Προγραμματισμός Η/Υ Ενότητα 2β: Νίκος Καρακαπιλίδης, Καθηγητής Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Κατανόηση της έννοιας του Τελεστή

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 4ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 ΟΙ ΤΕΛΕΣΤΕΣ ΣΥΓΚΡΙΣΗΣ Με τους τελεστές σύγκρισης, συγκρίνουμε τις

Διαβάστε περισσότερα

Στόχοι και αντικείμενο ενότητας. Εκφράσεις. Η έννοια του τελεστή. #2.. Εισαγωγή στη C (Μέρος Δεύτερο) Η έννοια του Τελεστή

Στόχοι και αντικείμενο ενότητας. Εκφράσεις. Η έννοια του τελεστή. #2.. Εισαγωγή στη C (Μέρος Δεύτερο) Η έννοια του Τελεστή Στόχοι και αντικείμενο ενότητας Η έννοια του Τελεστή #2.. Εισαγωγή στη C (Μέρος Δεύτερο) Εκφράσεις Προτεραιότητα Προσεταιριστικότητα Χρήση παρενθέσεων Μετατροπές Τύπων Υπονοούμενες και ρητές μετατροπές

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 3 Ο. Σταθερές-Παράμετροι-Μεταβλητές Αριθμητικοί & Λογικοί Τελεστές Δομή ελέγχου-επιλογής Σύνθετοι έλεγχοι

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 3 Ο. Σταθερές-Παράμετροι-Μεταβλητές Αριθμητικοί & Λογικοί Τελεστές Δομή ελέγχου-επιλογής Σύνθετοι έλεγχοι ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 3 Ο Σταθερές-Παράμετροι-Μεταβλητές Αριθμητικοί & Λογικοί Τελεστές Δομή ελέγχου-επιλογής Σύνθετοι έλεγχοι ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Μεταβλητές-Σταθερές-Παράμετροι Τα στοιχεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL

ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL 8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ 20-03-2012 Α. ίνεται το παρακάτω τμήμα αλγόριθμου: Ψευδής Αν Ε mod 4 = 0 τότε Αληθής Αν Ε mod 100 = 0 τότε Ψευδής Αν Ε

Διαβάστε περισσότερα

> μεγαλύτερο <= μικρότερο ή ίσο < μικρότερο == ισότητα >= μεγαλύτερο ή ίσο!= διαφορετικό

> μεγαλύτερο <= μικρότερο ή ίσο < μικρότερο == ισότητα >= μεγαλύτερο ή ίσο!= διαφορετικό 5 ο Εργαστήριο Λογικοί Τελεστές, Δομές Ελέγχου Λογικοί Τελεστές > μεγαλύτερο = μεγαλύτερο ή ίσο!= διαφορετικό Οι λογικοί τελεστές χρησιμοποιούνται για να ελέγξουμε

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Αλγόριθμοι ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Ανάπτυξη Λογισμικού Η διαδικασία ανάπτυξης λογισμικού μπορεί να παρομοιαστεί

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Πληροφορική ΙΙ Ενότητα 1

Πληροφορική ΙΙ Ενότητα 1 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός

Διαβάστε περισσότερα

Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί

Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Επιστημονικοί Υπολογισμοί - Μέρος ΙΙΙ: Παράλληλοι Υπολογισμοί Χαρμανδάρης Βαγγέλης, Τμήμα Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης, Εαρινό Εξάμηνο 2013/14 Κεφάλαιο 5: (A) Λογισμικό, Βασικές Εφαρμογές

Διαβάστε περισσότερα

ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ

ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ. ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗΣ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Πληροφορική I "Προγραμματισμός" B. Φερεντίνος

Διαβάστε περισσότερα

EM 361: Παράλληλοι Υπολογισμοί

EM 361: Παράλληλοι Υπολογισμοί ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ EM 361: Παράλληλοι Υπολογισμοί Ενότητα #5Α: Λογισμικό, Βασικές Εφαρμογές OpenMP Διδάσκων: Χαρμανδάρης Ευάγγελος ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ

Διαβάστε περισσότερα

ΛΟΓΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ. Γ Λυκείου Κατεύθυνσης Mike Trimos

ΛΟΓΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ. Γ Λυκείου Κατεύθυνσης Mike Trimos ΛΟΓΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ Γ Λυκείου Κατεύθυνσης Mike Trimos Βήματα Ανάπτυξης ενός Συστήματος 1.Ορισμός και κατανόηση του προβλήματος 2.Ανάλυση του προβλήματος 3.Σχεδιασμός Αλγοριθμικής Λύσης 4.Κωδικοποίηση 5.Διόρθωση

Διαβάστε περισσότερα

Διάλεξη 5η: Εντολές Επανάληψης

Διάλεξη 5η: Εντολές Επανάληψης Διάλεξη 5η: Εντολές Επανάληψης Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Εντολές Επανάληψης CS100, 2015-2016

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΟΜΗΜΕΝΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΕΠΑΛ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΟΜΗΜΕΝΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΕΠΑΛ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΟΜΗΜΕΝΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΕΠΑΛ ΘΕΜΑ Α Α.1 Να χαρακτηρίσετε σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις (Μονάδες 10) 1. Ένας αλγόριθμος μπορεί να έχει άπειρα βήματα

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 3 1. Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή 2. Δυναμικές είναι οι δομές που αποθηκεύονται σε συνεχόμενες θέσεις μνήμης 3. Ένας πίνακας

Διαβάστε περισσότερα

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)

Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΜ 361: ΠΑΡΑΛΛΗΛΛΟΙ ΥΠΟΛΟΓΙΣΜΟΙ (PARALLEL COMPUTING) ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ: 3η Όνομα Καθηγητή: Χαρμανδάρης Ευάγγελος Τμήμα Εφαρμοσμένων Μαθηματικών ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Διαβάστε περισσότερα

Minimum Spanning Tree: Prim's Algorithm

Minimum Spanning Tree: Prim's Algorithm Minimum Spanning Tree: Prim's Algorithm 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph. 2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet

Διαβάστε περισσότερα

Αλγόριθμοι & Προγραμματισμός

Αλγόριθμοι & Προγραμματισμός Διάλεξη 3 Αλγόριθμοι & Προγραμματισμός Εισαγωγή στις Εφαρμογές ΤΠΕ Χαράλαμπος Καραγιαννίδης karagian@uth.gr Διάλεξη 3: Αλγόριθμοι & Προγραμματισμός 1/52 11/10/2016 Σύνοψη Μαθήματος 1. Εισαγωγή στις ΤΠΕ,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Συναρτήσεις (κεφάλαιο Functions)

Διαβάστε περισσότερα

Συγγραφή κώδικα, δοκιμασία, επαλήθευση. Γιάννης Σμαραγδάκης

Συγγραφή κώδικα, δοκιμασία, επαλήθευση. Γιάννης Σμαραγδάκης Συγγραφή κώδικα, δοκιμασία, επαλήθευση Γιάννης Σμαραγδάκης Προδιαγραφή απαιτήσεων Σχεδιασμός συνεπείς σχέσεις Υψηλό επίπεδο συνεπείς σχέσεις Χαμηλό επίπεδο συνεπείς σχέσεις Πλάνο δοκιμών Κώδικας Συγγραφή

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας

Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Συστήματα Παράλληλης & Κατανεμημένης Επεξεργασίας Ενότητα 2: Αρχιτεκτονικές Von Neuman, Harvard. Κατηγοριοποίηση κατά Flynn. Υπολογισμός απόδοσης Συστημάτων

Διαβάστε περισσότερα

Παρουσίαση 3ης Άσκησης

Παρουσίαση 3ης Άσκησης Παρουσίαση 3ης Άσκησης Παράλληλος προγραμματισμός για αρχιτεκτονικές κατανεμημένης μνήμης με MPI Συστήματα Παράλληλης Επεξεργασίας 9ο Εξάμηνο, ΣΗΜΜΥ Εργ. Υπολογιστικών Συστημάτων Σχολή ΗΜΜΥ, Ε.Μ.Π. Νοέμβριος

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών

Αρχιτεκτονική Υπολογιστών Αρχιτεκτονική Υπολογιστών Παραλληλισμός Βασικές Πηγές: Αρχιτεκτονική Υπολογιστών: μια Δομημένη Προσέγγιση, Α. Tanenbaum, Vrije Universiteit, Amsterdam. Computer Architecture and Engineering, K. Asanovic,

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων

Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχανικών Υπολογιστών Εργαστήριο Υπολογιστικών Συστημάτων Παράλληλος προγραμματισμός: Σχεδίαση και υλοποίηση παράλληλων προγραμμάτων 9 ο Εξάμηνο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

Κεντρική Μονάδα Επεξεργασίας. Επανάληψη: Απόδοση ΚΜΕ. ΚΜΕ ενός κύκλου (single-cycle) Παραλληλισμός σε επίπεδο εντολών. Υπολογιστικό σύστημα

Κεντρική Μονάδα Επεξεργασίας. Επανάληψη: Απόδοση ΚΜΕ. ΚΜΕ ενός κύκλου (single-cycle) Παραλληλισμός σε επίπεδο εντολών. Υπολογιστικό σύστημα Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2016-17 Παραλληλισμός σε επίπεδο εντολών (Pipelining και άλλες τεχνικές αύξησης απόδοσης) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Έλεγχος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Σχεσιακοί Τελεστές και Ισότητας Ένα πρόγραμμα εκτός από αριθμητικές πράξεις

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα

Διαβάστε περισσότερα

Προγραµµατισµός Η/Υ. Μέρος2

Προγραµµατισµός Η/Υ. Μέρος2 Προγραµµατισµός Η/Υ Μέρος2 Περιεχόμενα Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής Αλγόριθμος Ψευδοκώδικας Παραδείγματα Αλγορίθμων Γλώσσες προγραμματισμού 2 Επανάληψη Βασικών Σύμβολων Διαγραμμάτων Ροής

Διαβάστε περισσότερα

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης Περιεχόμενα Δομές δεδομένων 37. Δομές δεδομένων (θεωρητικά στοιχεία)...11 38. Εισαγωγή στους μονοδιάστατους πίνακες...16 39. Βασικές επεξεργασίες στους μονοδιάστατους πίνακες...25 40. Ασκήσεις στους μονοδιάστατους

Διαβάστε περισσότερα

Επαναληπτικές Διαδικασίες

Επαναληπτικές Διαδικασίες Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/ Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 4: Λογισμικό Υπολογιστή (2/3), 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί στόχοι Η Ενότητα 4 διαπραγματεύεται

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. H διαδικασία ανεύρεσης λογικών λαθών περιλαμβάνει : β- Σωστό. Διαπίστωση του είδους του λάθους γ- Σωστό δ- Λάθος

ΑΠΑΝΤΗΣΕΙΣ. H διαδικασία ανεύρεσης λογικών λαθών περιλαμβάνει : β- Σωστό. Διαπίστωση του είδους του λάθους γ- Σωστό δ- Λάθος ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 08/04/2015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8) ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. Α2. α-

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ii ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Εντολές εκχώρησης (αντικατάστασης)....1 1.1 Εισαγωγή...4 1.1.1 Χρήση ΛΣ και IDE της Turbo Pascal....4 1.1.2 Αίνιγμα...6 1.2 Με REAL...7 1.2.1 Ερώτηση...9 1.2.2 Επίλυση δευτεροβάθμιας

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) 3 ο Εξάμηνο Σπουδών Εαρινό Εξάμηνο 2010/11 Διδάσκων: Χαρμανδάρης Ευάγγελος, Τμήμα Εφαρμοσμένων Μαθηματικών, Πανεπιστήμιο Κρήτης email: vagelis@tem.uoc.gr, Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD ΕΙΣΑΓΩΓΗ Οι πίνακες είναι συλλογές δεδομένων που μοιράζονται τα ίδια χαρακτηριστικά.

Διαβάστε περισσότερα

Προγραμματισμός ΗΥ και Υπολογιστική Φυσική. Χρήστος Γκουμόπουλος

Προγραμματισμός ΗΥ και Υπολογιστική Φυσική. Χρήστος Γκουμόπουλος Προγραμματισμός ΗΥ και Υπολογιστική Φυσική Χρήστος Γκουμόπουλος Προγραμματισμός ΗΥ και Υπολογιστική Φυσική Χρήστος Γκουμόπουλος Προγραμματισμός ΗΥ και Υπολογιστική Φυσική Χρήστος Γκουμόπουλος Προγραμματισμός

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

Συνάφεια Κρυφής Μνήµης σε Επεκτάσιµα Μηχανήµατα

Συνάφεια Κρυφής Μνήµης σε Επεκτάσιµα Μηχανήµατα Συνάφεια Κρυφής Μνήµης σε Επεκτάσιµα Μηχανήµατα Συστήµατα µε Κοινή ή Κατανεµηµένη Μνήµη Σύστηµα µοιραζόµενης µνήµης 1 n $ $ Bus Mem I/O devices 1 n Σύστηµα κατανεµηµένης µνήµης Mem $ Mem $ Interconnection

Διαβάστε περισσότερα

Παράλληλη Επεξεργασία Κεφάλαιο 4 Επικοινωνία Διεργασιών

Παράλληλη Επεξεργασία Κεφάλαιο 4 Επικοινωνία Διεργασιών Παράλληλη Επεξεργασία Κεφάλαιο 4 Επικοινωνία Διεργασιών Κωνσταντίνος Μαργαρίτης Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας kmarg@uom.gr http://eos.uom.gr/~kmarg Αρετή Καπτάν Υποψήφια

Διαβάστε περισσότερα

Παραλληλισμός σε επίπεδο εντολών

Παραλληλισμός σε επίπεδο εντολών Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2015-16 Παραλληλισμός σε επίπεδο εντολών (Pipelining και άλλες τεχνικές αύξησης απόδοσης) http://di.ionio.gr/~mistral/tp/comparch/ Μ.Στεφανιδάκης

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα

Κατανεμημένα Συστήματα Κατανεμημένα Συστήματα Σημειώσεις εργαστηρίου Lab#5 - SISD, SIMD, Νόμος του Amdahl, Γράφος εξάρτησης Νεβράντζας Βάιος-Γερμανός Λάρισα, Φεβρουάριος 2013 Lab#5, σελίδα 1 Περίληψη Στο 2ο μέρος του εργαστηριακού

Διαβάστε περισσότερα

Θοδωρής Ανδρόνικος Τμήμα Πληροφορικής, Ιόνιο Πανεπιστήμιο

Θοδωρής Ανδρόνικος Τμήμα Πληροφορικής, Ιόνιο Πανεπιστήμιο Θοδωρής Ανδρόνικος Τμήμα Πληροφορικής, Ιόνιο Πανεπιστήμιο Για το μάθημα «Διαχείριση Λειτουργικών Συστημάτων» του ακαδημαϊκού έτους 2015 2016, το προτεινόμενο σύγγραμμα είναι το: Operating Systems: Internals

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

ΗΥ486 - Αρχές Κατανεμημένου Υπολογισμού Εαρινό Εξάμηνο Δεύτερη Προγραμματιστική Εργασία

ΗΥ486 - Αρχές Κατανεμημένου Υπολογισμού Εαρινό Εξάμηνο Δεύτερη Προγραμματιστική Εργασία ΗΥ486 - Αρχές Κατανεμημένου Υπολογισμού Εαρινό Εξάμηνο 2015-2016 Δεύτερη Προγραμματιστική Εργασία Γενική περιγραφή Στη δεύτερη προγραμματιστική εργασία καλείστε να υλοποιήσετε ένα διομότιμο σύστημα (Peer-to-

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. Καβακλή. Χειμερινό Εξάμηνο 2001

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. Καβακλή. Χειμερινό Εξάμηνο 2001 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Ανάλυση προβλήματος Η σωστή αντιμετώπιση

Διαβάστε περισσότερα