ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 2 η Βαθµοί Ελευθερίας Στερεού Σώµατος & Κινηµατικοί Περιορισµοί

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 2 η Βαθµοί Ελευθερίας Στερεού Σώµατος & Κινηµατικοί Περιορισµοί"

Transcript

1 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Ενότητα 2 η Βαθµοί Ελευθερίας Στερεού Σώµατος & Κινηµατικοί Περιορισµοί

2 Αναπαράσταση µηχανισµού Η µονογραµµική απεικόνιση χρησιµοποιείται για την απλοποιηµένη αναπαράσταση σύνθετων πραγµατικών µηχανισµών Πραγµατική κατασκευή Μονογραµµική απεικόνιση

3 Αναπαράσταση µηχανισµού Σε απλούς µηχανισµούς, µε τη βοήθεια της µονογραµµικής απεικόνισης, γίνεται κατανοητός ο τρόπος λειτουργίας (κινητικότητα) του µηχανισµού. Σε σύνθετους µηχανισµούς, αυτό δεν είναι προφανές και απαιτείται η διατύπωση ενός συστηµατικού τρόπου για τον υπολογισµό της κινητικότητας (Mobility) ενός Μονογραµµική µηχανισµού (εύρεση πλήθους απεικόνιση Βαθµών Ελευθερίας µηχανισµού).

4 Περί κινητικότητας Έστω το αδρανειακό σύστηµα αναφορά x I O I y I και έστω το υλικό σηµείο Α. Η κίνηση του Α ως προς το x I O I y I ορίζεται πλήρως µέσω της οριζόντιας µετατόπισης u x,a και της κατακόρυφης µετατόπισης u y,a (2 ανεξάρτητες κινηµατικές µεταβλητές = 2 ΒΕ). Οµοίως για το υλικό Σηµείο Β. Άρα το ζεύγος των υλικών σηµείων Α,Β διαθέτει 2+2=4 Β.Ε. Έστω ότι µεταξύ των σηµείων Α,Β τοποθετείται µία πλήρως άκαµπτη ράβδος. Αυτό σηµαίνει ότι η απόσταση µεταξύ των Α,Β θα παραµένει πάντοτε σταθερή. Η απόσταση αυτή περιγράφεται από 1 εξίσωση, η οποία συσχετίζει τους Β.Ε. των Α,Β. Άρα, για το σύστηµα Α,Β,άκαµπτη ράβδος ισχύει: 4 1 = 3ΒΕ. Οµοίως, ένα απολύτως στερεό σώµα (n υλικά σηµεία), διαθέτει: - 3 Β.Ε. στο επίπεδο, (µετατοπίσεις u x,u y και στροφή θ z ) - 6 Β.Ε. στο χώρο (µετατοπίσεις u x,u y,u z και στροφές θ x,θ y,θ z ) Τοποθετούµε σωµατοπαγές σύστηµα αναφοράς στο κέντρο µάζας G του απολύτως στερεού σώµατος.

5 Περί κινητικότητας (συνέχεια) Έστω το αδρανειακό σύστηµα αναφορά x I O I y I και έστω τα υλικά σηµεία Α και Β. Η κίνηση του Α ως προς το x I O I y I ορίζεται πλήρως µέσω της οριζόντιας µετατόπισης u x,a και της κατακόρυφης µετατόπισης u y,a (2 ανεξάρτητες κινηµατικές µεταβλητές = 2 ΒΕ). Η κίνηση του Β ως προς το x I O I y I ορίζεται πλήρως µέσω της οριζόντιας µετατόπισης u x,β και της κατακόρυφης µετατόπισης u y,β (2 ανεξάρτητες κινηµατικές µεταβλητές = 2 ΒΕ). Άρα το ζεύγος των υλικών σηµείων Α,Β διαθέτει 2+2=4 Β.Ε. Έστω ότι µεταξύ των σηµείων Α,Β παρεµβάλλεται γραµµικό ελατήριο σταθεράς k. Το ελατήριο αυτό συνδέει, µεν, τα σηµεία Α και Β µεταξύ τους, ωστόσο επιτρέπει τη σχετική τους µετακίνηση, λόγω ελαστικότητας. Η συσχέτιση των σηµείων Α και Β λόγω ελαστικότητας, δεν περιορίζει την κινητικότητα των σηµείων αυτών. Άρα, το σύστηµα Α,Β,ελατήριο διαθέτει 4ΒΕ.

6 Περί κινητικότητας (συνέχεια) Έστω ότι η απεικονιζόµενη άκαµπτη δοκός αρθρώνεται στο σηµείο Α. Η δοκός περιστρέφεται περί του σηµείου Α (1 ΒΕ), αλλά δεν µετατοπίζεται (δέσµευση της δυνατότητας οριζόντιας και κατακόρυφης µετατόπισης, δηλαδή δεσµεύονται 2 ΒΕ). Συνεπώς, η απεικονιζόµενη κατασκευή διαθέτει 1 ΒΕ. Έστω ότι, στο άκρο Β, προστίθεται ένα γραµµικό ελατήριο κατά την κατακόρυφη διεύθυνση. Η άκαµπτη δοκός και πάλι έχει τη δυνατότητα της περιστροφής περί του σηµείου Α. Λόγω ελαστικότητας, το ελατήριο προβάλει κάποια αντίσταση (όχι άπειρη) στην κατακόρυφη κίνηση του άκρου Β. Το ανωτέρω σύστηµα δοκός-ελατήριο διαθέτει 1 Β.Ε. Έστω ότι, στο άκρο Β, αντί του ελατηρίου τοποθετείται µία πλήρως άκαµπτη ράβδος. Η άκαµπτη ράβδος προβάλει άπειρη αντίσταση στην κατακόρυφη κίνηση του άκρου Β, το οποίο και υποχρεώνεται σε ακινησία. Το ανωτέρω σύστηµα δοκός-άκαµπτη ράβδος διαθέτει 0 Β.Ε.

7 Ορισµός: Οι ανεξάρτητες κινήσεις ενός απολύτως στερεού σώµατος καλούνται Βαθµοί Ελευθερίας (ΒΕ) του σώµατος. 2 (επίπεδο) 3 (χώρος)

8 Κινηµατικοί περιορισµοί: περιορισµοί µεταξύ στερών σωµάτων που προκαλούν µείωση των (ΒΕ) του συστήµατος των σώµατος Κινηµατικοί περιορισµοί Στο επίπεδο (2 ) Στο χώρο (3 )

9 Κινηµατικοί περιορισµοί Έστω (Μ1) και (Μ2) δύο µέλη ενός µηχανισµού και (Σ12) η µεταξύ τους κινηµατική σύνδεση Η (Σ12) καλείται κινηµατική σύνδεση ανωτέρας τάξεως όταν καµπύλη ή επιφάνεια του (Μ1) συνεργάζεται, αντίστοιχα, µε καµπύλη ή επιφάνεια του (Μ2) Η (Σ12) καλείται κινηµατική σύνδεση κατωτέρας τάξεως όταν σηµείο, γραµµή ή επίπεδο του (Μ1) συνεργάζεται, αντίστοιχα, µε σηµείο, γραµµή ή επίπεδο του (Μ2)

10 Z Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό Έτος Κινηµατικοί περιορισµοί στο χώρο Εµποδίζονται οι µετατοπίσεις κατά x, y, z (δεσµεύονται 3 Β.Ε.) θ z θ y Y θ x X Επιτρέπεται η στροφή περί τους x-, y- και z- άξονες (3 µηδεσµευµένοι Β.Ε. ) Η σφαιρική άρθρωση διαθέτει (3) Β.Ε.: θ x θ y θ z Σφαιρική άρθρωση (Spherical pair: S-pair)

11 Z u z Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό Έτος Κινηµατικοί περιορισµοί στο χώρο Εµποδίζονται οι στροφές Y περί τους άξονες x, z και θ η µετατόπιση κατά y y (δεσµεύονται 3 Β.Ε.) u x X Επιτρέπεται η µετατόπιση κατά x, z και η στροφή περί τον y-άξονα (3 µηδεσµευµένοι Β.Ε. ) Η επίπεδη άρθρωση διαθέτει (3) Β.Ε.: u x u z θ y Επίπεδη άρθρωση (Planar pair: P-pair)

12 Z Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό Έτος Κινηµατικοί περιορισµοί στο χώρο Εµποδίζονται οι στροφές Y περί τους άξονες x, z και οι µετατοπίσεις κατά x, z (δεσµεύονται 4 Β.Ε.) u y θ y X Επιτρέπεται η µετατόπιση κατά y και η στροφή περί τον y-άξονα (2 µηδεσµευµένοι Β.Ε. ) Η κυλινδρική άρθρωση διαθέτει (2) Β.Ε.: u y θ y Κυλινδρική άρθρωση (Cylindrical pair: C-pair)

13 Z Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό Έτος Κινηµατικοί περιορισµοί στο χώρο Εµποδίζονται οι στροφές Y περί τους άξονες x, z και οι µετατοπίσεις κατά x, y, z (δεσµεύονται 5 Β.Ε.) θ y X Επιτρέπεται η στροφή περί τον y-άξονα (1 µηδεσµευµένος Β.Ε. ) Η περιστροφική Με χρήση ασφαλιστικών άρθρωση διαθέτει (1) δακτυλίων εµποδίζεται η κατακόρυφη µετατόπιση Β.Ε.: θ y Περιστροφική άρθρωση (Revolute pair: R-pair)

14 Η παρουσία της ελικοειδούς διαµόρφωσης µετατρέπει την περιστροφή θ y σε µεταφορά u y Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό Έτος Κινηµατικοί περιορισµοί στο χώρο Y θ y Εµποδίζονται οι στροφές περί τους άξονες x, z και οι µετατοπίσεις κατά x, y, z (δεσµεύονται 5 Β.Ε.) Επιτρέπεται η στροφή περί τον y-άξονα (1 µηδεσµευµένος Β.Ε. ) Z X Η κοχλιωτή άρθρωση διαθέτει (1) Β.Ε.: θ y Κοχλιωτή ή ελικοειδής άρθρωση (Screw pair: H-pair)

15 Y Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό Έτος Κινηµατικοί περιορισµοί στο επίπεδο Εµποδίζονται οι µετατοπίσεις κατά x και y (δεσµεύονται 2 Β.Ε.) θ z Επιτρέπεται η στροφή περί τον z-άξονα (µη-δεσµευµένος Β.Ε.) Η περιστροφική X άρθρωση στο επίπεδο διαθέτει (1) Β.Ε.: θ z Περιστροφική άρθρωση στο επίπεδο (planar revolute pair: R-pair)

16 Κινηµατικοί περιορισµοί στο επίπεδο Εµποδίζονται η µετατόπιση κατά y και η στροφή περί του z-άξονα (δεσµεύονται 2 Β.Ε.) Επιτρέπεται η µετατόπιση κατά x (1 µηδεσµευµένος Β.Ε.) Y X u x Η πρισµατική άρθρωση στο επίπεδο διαθέτει (1) Β.Ε.: u x Πρισµατική ή γραµµική άρθρωση στο επίπεδο (planar prismatic pair: P-pair)

17 Κινηµατικοί περιορισµοί στο επίπεδο Εµποδίζεται η µετατόπιση κατά τη διεύθυνση n-n (κάθετη διεύθυνση) (δεσµεύεται 1 Β.Ε.) Επιτρέπεται η µετατόπιση κατά τη διεύθυνση t-t (εφαπτοµενική διεύθυνση) και η στροφή περί τον z-άξονα (2 µη-δεσµευµένοι Β.Ε.) t-t n-n θ z Η άρθρωση ανωτέρας τάξεως στο επίπεδο διαθέτει (2) Β.Ε.: u t-t θ z Άρθρωση ανωτέρας τάξεως (higher pair) στο επίπεδο

18 Εύρεση (ΒΕ) επίπεδου µηχανισµού Το πλήθος των Βαθµών Ελευθερίας (ΒΕ) ενός επίπεδου µηχανισµού υπολογίζεται µε τη βοήθεια της εξίσωσης Kutzbach: F = 3(n-1) 2f 1 f 2 F = πλήθος (ΒΕ) του µηχανισµού n = πλήθος µελών (περιλαµβάνεται και η βάση) f 1 = πλήθος συνδέσεων που διαθέτουν (1-ΒΕ) f 2 = πλήθος συνδέσεων που διαθέτουν (2-ΒΕ) Συλλογιστική: Από το συνολικό πλήθος ΒΕ του µηχανισµού, διαγράφονται οι δεσµευµένοι ΒΕ

19 Εύρεση (ΒΕ) επίπεδου µηχανισµού Εάν F<0 τότε ο εξεταζόµενος µηχανισµός είναι απολύτως στερεό σώµα και υπερ-ορισµένος (υπερστατικός) Εάν F=0 τότε ο εξεταζόµενος µηχανισµός είναι απολύτως στερεό σώµα Εάν F>0 τότε το πλήθος των Βαθµών Ελευθερίας (ΒΕ) του εξεταζοµένου µηχανισµού ισούται µε F Αντίστοιχη συλλογιστική ισχύει και για τους µηχανισµούς στο χώρο

20 (ΒΕ) επίπεδου µηχανισµού: παράδειγµα 1 ο! Προσοχή! D & E: λειτουργούν ως µία άρθρωση διότι έχουν κοινό άξονα άρθρωσης n = 4 (µέλη 1,2,3 & βάση 4) f 1 = 4 (στις θέσεις A, B, C, D) f 2 = 0 F = 3 (4-1) = 1

21 (ΒΕ) επίπεδου µηχανισµού: παράδειγµα 2 ο C C A B D B A D n = 4 (3 + 1 βάση) f 1 = 4 (στις θέσεις A,C,D [περιστροφικές αρθρώσεις] και B [πρισµατική άρθρωση]) f 2 = 0 F = 3 (4-1) = 1

22 5 A 6 Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό Έτος (ΒΕ) επίπεδου µηχανισµού: παράδειγµα 3 ο 4 E C D 3 6 Β Προσοχή: Στη θέση C συντρέχουν τρία µέλη (2,3,4), άρα στη θέση C υπολογίζονται 2 αρθρώσεις Προσοχή: Στη θέση E, τα µέλη 4,5 συνδέονται µε µία περιστροφική άρθρωση και τα µέλη 5,6 µε µία πρισµατική άρθρωση, άρα στη θέση Ε υπολογίζονται 2 αρθρώσεις n = 6 (5 + 1 βάση) f 1 = 7 (A,B,C,C,D,E,E) f 2 = 0 F = 3 (6-1) = 1

23 (ΒΕ) επίπεδου µηχανισµού: παράδειγµα 4 ο! Προσοχή! - Η σύνδεση στη θέση Β αφορά στη συνεργασία δύο καµπυλών, άρα πρόκειται για σύνδεση ανωτέρας τάξεως. -Οµοίως για τη θέση D. -Στη θέση 4, υπάρχει πρισµατική άρθρωση n = 4 (3 + 1 βάση) f 1 = 3 (A,C,4) f 2 = 2 (B,D) F = 3 (4-1) = 1

24 (ΒΕ) επίπεδου µηχανισµού: παράδειγµα 5 ο n = 8 (7 + 1 βάση) f 1 = 9 (A,B,C,D,E,F,G,H,I) f 2 = 0 F = 3

25 (ΒΕ) επίπεδου µηχανισµού: παράδειγµα 6 ο n = 8 (6 + 1 τριγωνική πλάκα + 1 βάση) f 1 = 9 (C 1,Β 1,Α 1,Α 2,Β 2, C 2, Α 3,Β 3,C 3 ) f 2 = 0 F = 3 Μηχανισµός µε 3 (ΒΕ) & κινητή τριγωνική πλάκα

26 Κάθε σκέλος αποτελείται από δύο µέλη, συνδεόµενα µεταξύ τους µε µία πρισµατική άρθρωση A (ΒΕ) επίπεδου µηχανισµού: παράδειγµα 7 ο E Σκέλος #1 Σκέλος #2 Σκέλος #3 B D Πλατφόρµα Stewart µε 3 (ΒΕ) C n = 8 (1+3Σκέλη 2µέλη/σκέλος + 1 βάση) f 1 = 9 C,D,E,A,A,B, πρισµατική σε Σκέλη#1,#2,#3 f 2 = 0 F = 3

27 (ΒΕ) επίπεδου µηχανισµού: παράδειγµα 8 ο A n = 8 Σκέλος #3 Σκέλος#2 F E (3 Σκέλη 2µέλη/σκέλος + 1 τριγωνική πλάκα + 1 βάση) D f 1 = 9 B Η τριγωνική πλάκα είναι ισόπλευρη C Σκέλος #1 Πλατφόρµα Stewart µε 3 (ΒΕ) (A,B,C,D,E,F, πρισµατική σε Σκέλη #1,#2,#3) f 2 = 0 F = 3

28 Παράδειγµα 3 µηχανισµού: Πλατφόρµα Stewart 6-3 Κάθε σκέλος αποτελείται από δύο µέλη, συνδεόµενα µεταξύ τους µε µία πρισµατική άρθρωση Σκέλη 6 σκέλη 2µέλη/σκέλος + 1 κάτω πλάκα + 1 άνω πλάκα = 14 µέλη µε 6 ΒΕ/µέλος, άρα: Σύνολο Β.Ε. = (14-1) 6 = 78 Σύνδεση κάτω σκέλη κάτω πλάκα: 6 στροφικές αρθρώσεις, δεσµεύονται όλες οι µετατοπίσεις και η στροφή περί του άξονα του σκέλους, άρα δεσµεύονται 6 4 = 24ΒΕ Σύνδεση κάτω σκέλη άνω σκέλη: 6 πρισµατικές αρθρώσεις, επιτρέπεται η µετατόπιση κατά διεύθυνση σκέλους και στροφή περί άξονα σκέλους, άρα δεσµεύονται 6 4 = 24ΒΕ Σύνδεση άνω σκέλη άνω πλάκα: 6 στροφικές αρθρώσεις, δεσµεύονται όλες οι µετατοπίσεις και η στροφή περί του άξονα του σκέλους, άρα δεσµεύονται 6 4 = 24ΒΕ Σύνολο δεσµευµένων Β.Ε. = 2 24 = 72

29 Παράδειγµα µηχανισµού: Εκσκαφέας Νύξη #1: Προσοχή στη θέση Q Θεωρώντας ότι η καµπίνα του χειριστή δεν περιστρέφεται, µπορείτε να υπολογίσετε τους Β.Ε. του εκσκαφέα; Νύξη #2: Προσοχή στις πρισµατικές αρθρώσεις

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής

Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής ΡΟΜΠΟΤΙΚΗ: ΟΡΙΣΜΟΣ: Σύμφωνα με το Ινστιτούτο Ρομποτικής της Αμερικής, ρομπότ είναι ένας αναπρογραμματιζόμενος και πολυλειτουργικός χωρικός μηχανισμός σχεδιασμένος να μετακινεί υλικά, αντικείμενα, εργαλεία

Διαβάστε περισσότερα

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ Σοφία Α. Ξεργιά PT, MSc, PhD Ανάλυση της Ανθρώπινης Κίνησης Εμβιομηχανική Κινησιολογία Κινηματική Κινητική Λειτουργική Ανατομική Γραμμική Γωνιακή Γραμμική Γωνιακή Θέση Ταχύτητα

Διαβάστε περισσότερα

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών Αντιμετώπιση προβλημάτων που αλλάζουν την τους κατάσταση, εξαιτίας εξωτερικών ροπών Σ' ένα πρόβλημα, παρατηρώ αλλαγή στη κατάσταση ενός στερεού (ή συστήματος στερεών), καθώς αυτό δέχεται εξωτερικές ροπές.

Διαβάστε περισσότερα

Μέθοδοι Εμβιομηχανικών Μετρήσεων

Μέθοδοι Εμβιομηχανικών Μετρήσεων MANAGING AUTHORITY OF THE OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING EUROPEAN COMMUNITY Co financing European Social Fund (E.S.F.) European Regional Development Fund (E.R.D.F.) MINISTRY

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 1 η Εισαγωγή στους Μηχανισµούς

ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 1 η Εισαγωγή στους Μηχανισµούς ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Ενότητα 1 η Εισαγωγή στους Μηχανισµούς Βασικά στοιχεία για το µάθηµα - Η εκπαιδευτική και εξεταστέα ύλη του µαθήµατος θα παρουσιάζεται στις διαλέξεις και θα

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα Εισαγωγικές Έννοιες Ισοστατικότητα Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2 Ισοστατικός (ή στατικά ορισμένος) λέγεται ο φορέας που ο προσδιορισμός της εντατικής του κατάστασης είναι δυνατός βάσει μόνο των

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : 2010-2011 Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 13.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : 2010-2011 Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 13. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 3. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 00-0 opyrigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 00. Με επιφύλαξη

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη:

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: 3.1 Στο σχήμα φαίνεται μία πόρτα και οι δυνάμεις που δέχεται. Ροπή ως προς τον άξονα z z έχει η δύναμη: α. F 1 β. F 2 γ. F 3 δ. F 4 3. 2 Ένα σώμα δέχεται πολλές ομοεπίπεδες δυνάμεις. Τότε: α. οι ροπές

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1 Στροφορµή ΦΥΣ 131 - Διαλ.25 1 ΦΥΣ 131 - Διαλ.25 2 Στροφορµή q Ένα από τα βασικά µεγέθη που σχετίζονται µε την περιστροφική κίνηση είναι η στροφορµή q Θυµηθείτε ότι για µάζα m που κινείται µε ταχύτητα v

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑ 1: Ο κύλινδρος που φαίνεται στο σχήμα είναι από χάλυβα που έχει ένα ειδικό βάρος 80.000 N/m 3. Υπολογίστε την θλιπτική τάση που ενεργεί στα σημεία Α και

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ. Ροπή Αδράνειας

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ. Ροπή Αδράνειας ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ 1 ΠΟΜ 114 (Ε) MHXANIKH Ροπή Αδράνειας Πηγή Πληροφοριών: Leybold Physics Leaflets ΟΝΟΜΑ

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο Όνοµα:... Ηµεροµηνία:... Βαθµός : ΘΕΜΑ Ο Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση. Όταν ένα σώµα πραγµατοποιεί µόνο στροφική κίνηση : α) όλα τα σηµεία του έχουν την ίδια γραµµική ταχύτητα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

Θεωρητική μηχανική ΙΙ

Θεωρητική μηχανική ΙΙ ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της

Διαβάστε περισσότερα

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10 ΚΕΦΑΛΑΙΟ 10 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 1 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Μέτρο εξωτερικού γινομένου 2 C A B C ABsin διανυσμάτων A και B Ιδιότητες εξωτερικού γινομένου A B B A εν είναι αντιμεταθετικό.

Διαβάστε περισσότερα

Κέντρο Μάζας - Παράδειγμα

Κέντρο Μάζας - Παράδειγμα Κέντρο Μάζας - Παράδειγμα ΦΥΣ 131 - Διαλ.1 1 Ο Ρωμαίο (m R =77kg) διασκεδάζει την Ιουλιέτα (m I =55kg) παίζοντας την κιθάρα του καθισμένος στην πρύμνη της βάρκας τους (μήκους.7 m) που είναι ακίνητη στα

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση

Δυναμική Μηχανών I. Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση Δυναμική Μηχανών I 3 2 Μοντελοποίηση Mηχανικών Συστημάτων Ι: Μηχανικά Συστήματα σε Μεταφορική Κίνηση 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. Δίσκος Σύνθετη Τρίτη 01 Μαϊου 2012 ΑΣΚΗΣΗ 5 Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. ΠΕΙΡΑΜΑ Α Θα εκτοξευθεί με ταχύτητα από τη βάση του κεκλιμένου

Διαβάστε περισσότερα

Μονάδες 5. Α2. Τα ηλεκτρομαγνητικά κύματα

Μονάδες 5. Α2. Τα ηλεκτρομαγνητικά κύματα ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 26 ΜΑÏΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Σύνθετα θέματα στερεού

Σύνθετα θέματα στερεού Σύνθετα θέματα στερεού 3.1. οκός τροχός σφαιρίδιο Κατασκευάζουµε ένα τροχό ενώνοντας τις βάσεις δύο οµογενών κυλίνδρων, έτσι ώστε να αποκτήσουν κοινό άξονα όπως δείχνει το σχήµα. Ο µεγάλος κύλινδρος έχει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ασκήσεις με δοκό που ισορροπεί, και το ένα άκρο της συνδέεται με άρθρωση Έστω ότι έχουμε ομογενή δοκό η οποία συνδέεται στο ένα άκρο της με άρθρωση.

Διαβάστε περισσότερα

Φρεζάρισμα. Με το φρεζάρισμα μπορούμε να κατεργαστούμε επίπεδες ή καμπύλες επιφάνειες, εσοχές, αυλάκια ακόμα και οδοντωτούς τροχούς.

Φρεζάρισμα. Με το φρεζάρισμα μπορούμε να κατεργαστούμε επίπεδες ή καμπύλες επιφάνειες, εσοχές, αυλάκια ακόμα και οδοντωτούς τροχούς. ΦΡΕΖΕΣ ΦΡΕΖΕΣ Είναι εργαλειομηχανές αφαίρεσης υλικού από διάφορες εργασίες με μηχανική κοπή. Η κατεργασία διαμόρφωσης των μεταλλικών υλικών στη φρέζα, ονομάζεται φρεζάρισμα. Φρεζάρισμα Με το φρεζάρισμα

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο

Διαβάστε περισσότερα

Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooke:

Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooke: Άσκηση Μ Σπειροειδές ελατήριο Νόμος του Hooe και εξίσωση δυνάμεων Μεταξύ της τάσης και της ελαστικής παραμόρφωσης ενός σώματος υπάρχει μια απλή σχέση, ο νόμος του Hooe: Οι ελαστικές τάσεις και οι παραμορφώσεις

Διαβάστε περισσότερα

ΣΤΑΤΙΚΗ 1 ΔΥΝΑΜΕΙΣ. Παράδειγμα 1.1

ΣΤΑΤΙΚΗ 1 ΔΥΝΑΜΕΙΣ. Παράδειγμα 1.1 ΣΤΤΙΚΗ 1 ΥΝΜΕΙΣ Στατική είναι ο κλάδος της μηχανικής που μελετά την ισορροπία των σωμάτων. Κατά την μελέτη δεχόμαστε ότι τα σώματα δεν παραμορφώνονται από τις δυνάμεις που ασκούνται σ αυτά. Οι παραμορφώσεις

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Προσδιορισμός της σταθεράς ενός ελατηρίου. Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου

Διαβάστε περισσότερα

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0 6 Ασύμπτωτες Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορίζουμε μια ευθεία ( ε ) ως ασύμπτωτη της γραφικής παράστασης της αν η απόσταση ενός μεταβλητού σημείου Ρ της γραφικής παράστασης από την ευθεία ( ε ) γίνεται

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

ΔΙΑΙΡΕΤΗΣ. Το ΤΕ είναι συνήθως κυλινδρικό, μπορεί όμως να είναι και κωνικό ή πρισματικό.

ΔΙΑΙΡΕΤΗΣ. Το ΤΕ είναι συνήθως κυλινδρικό, μπορεί όμως να είναι και κωνικό ή πρισματικό. ΔΙΑΙΡΕΤΗΣ ΓΕΝΙΚΑ O διαιρέτης είναι μηχανουργική συσκευή, με την οποία μπορούμε να εκτελέσουμε στην επιφάνεια τεμαχίου (TE) κατεργασίες υπό ίσες ακριβώς γωνίες ή σε ίσες αποστάσεις. Το ΤΕ είναι συνήθως

Διαβάστε περισσότερα

Β22. Μέτρηση Ροπής Αδράνειας

Β22. Μέτρηση Ροπής Αδράνειας Β22. Μέτρηση Ροπής Αδράνειας Α. Σκοπός της άσκησης Στο εργαστήριο αυτό θα μελετήσουμε την περιστροφική κίνηση που εκτελεί ένα υλικό σημείο ή ένα στερεό σώμα, σταθερού μεγέθους και σχήματος, υπό την παρουσία

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος 1 Ένα στερεό εκτελεί μεταφορική κίνηση όταν: α) η τροχιά κάθε σημείου είναι ευθεία γραμμή β) όλα τα σημεία του έχουν ταχύτητα που μεταβάλλεται με το χρόνο γ) μόνο το κέντρο μάζας του διαγράφει ευθύγραμμη

Διαβάστε περισσότερα

Διαγώνισμα εφ όλης της ύλης. Στα θέματα 1 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες.

Διαγώνισμα εφ όλης της ύλης. Στα θέματα 1 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες. Διαγώνισμα εφ όλης της ύλης Θέμα ο Στα θέματα 4 να σημειώσετε στο τετράδιό σας ποιες από τις προτάσεις είναι σωστές και ποιες λανθασμένες. ) Στο σχήμα φαίνεται το στιγμιότυπο ενός τρέχοντος αρμονικού κύματος

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ Σώμα είναι τοποθετημένο πάνω σε ορίζοντα δίσκο.ο δίσκος τιθεται σε οριζόντια αρμονικη ταλάντωση με συχνότητα f.αν ο συντελεστης μέγιστης στατικης τριβής μεταξύ

Διαβάστε περισσότερα

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις

Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις 1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή

Διαβάστε περισσότερα

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας.

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Επαναληπτικό 4 ΘΕΜ aa ΤΕΣΤ 16 1. Στη διάταξη του σχήματος, ασκούμε κατακόρυφη δύναμη σταθερού μέτρου F στο άκρο του νήματος, ώστε ο τροχός () να ανέρχεται κυλιόμενος χωρίς ολίσθηση στο κεκλιμένο επίπεδο.

Διαβάστε περισσότερα

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 20 05 2011

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 20 05 2011 Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 0 05 011 ΘΕΜΑ Α Α1. Σωστό το γ. Α. Σωστό το β. Α3. Σωστό το γ. Α4. Σωστό το γ. Α.5. α. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Λάθος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΟΜΑΛΗ ΚΙΝΗΣΗ 1) Δυο τροχοί με ακτίνες ο πρώτος 100cm και ο δεύτερος 60cm περιστρέφονται ομαλά συνδεδεμένοι μεταξύ τους με ιμάντα. Αν η συχνότητα του πρώτου τροχού είναι 10Hz να βρεθεί

Διαβάστε περισσότερα

Σχήμα 1 Απόκλιση στον πυκνωτή (σωλήνας Braun)

Σχήμα 1 Απόκλιση στον πυκνωτή (σωλήνας Braun) Άσκηση Η3 Επαλληλία κινήσεων (Μετρήσεις με παλμογράφο) Εκτροπή δέσμης ηλεκτρονίων Όταν μια δέσμη ηλεκτρονίων εισέρχεται με σταθερή ταχύτητα U0=U,0 (παράλληλα στον άξονα z) μέσα σε έναν πυκνωτή, του οποίου

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ 1 ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΕΜΒΟΛΟΦΟΡΟΥ ΚΙΝΗΤΗΡΑ

ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ 1 ΚΙΝΗΜΑΤΙΚΗ ΤΟΥ ΕΜΒΟΛΟΦΟΡΟΥ ΚΙΝΗΤΗΡΑ ΥΠΟΛΟΓΙΣΜΟΙ ΣΤΙΓΜΙΑΙΩΝ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ ΣΕ ΕΜΒΟΛΟΦΟΡΟ ΚΙΝΗΤΗΡΑ Aπό τo βιβλίο Heinz Grohe: Otto und Dieselmotoren. 9 Auflage, Vogel Buchverlag 1990. Kεφάλαιο 2: Mechanische Grundlagen Επιμέλεια μετάφρασης:

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

λ, όπου λ το µήκος κύµατος των κυµάτων που δηµιουργούν το στάσιµο.

λ, όπου λ το µήκος κύµατος των κυµάτων που δηµιουργούν το στάσιµο. ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ 9/04/05 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

Γεωργικά Μηχανήματα (Θεωρία)

Γεωργικά Μηχανήματα (Θεωρία) Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Γεωργικά Μηχανήματα (Θεωρία) Ενότητα 7 : Γεωργικός ελκυστήρας Συστήματα μηχανικής μετάδοσης της κίνησης Δρ. Δημήτριος Κατέρης ΣΥΣΤΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 11 ΙΟΥΛΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο

Διαβάστε περισσότερα

Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ

Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ Στερεό σώμα - 07-4 Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ 4.1. Εισαγωγικές έννοιες. ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΣΗΜΕΙΑΚΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ Θεωρούμε ένα σημειακό αντικείμενο το οποίο κινείται σε κυκλική τροχιά κέντρου Ο και ακτίνας

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ 1 Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 015 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

Θέµατα προς ανάλυση: Κινηµατική ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ

Θέµατα προς ανάλυση: Κινηµατική ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Αρχές Βιοκινητικής» Μάθηµα του βασικού κύκλου σπουδών (Γ εξάµηνο)

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 5. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 5 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα: Μοντελοποίηση Μηχανικών- Ηλεκτρικών-Υδραυλικών-Θερμικών Συστημάτων Επανάληψη: Εξισώσεις Lagrange σε συστήματα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε: ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Διατήρηση της στροφορμής) Η Γη στρέφεται σε ελλειπτική τροχιά γύρω από τον Ήλιο. Το κοντινότερο σημείο στον Ήλιο ονομάζεται Περιήλιο (π) και το πιο απομακρυσμένο Αφήλιο (α).

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων ΣΤΕΡΕΟ. Θέµατα Εξετάσεων 2 1) Αν το αλγεβρικό άθροισµα των ροπών που δρουν πάνω σ' ένα στερεό σώµα, το οποίο περιστρέφεται γύρω από σταθερό άξονα, είναι µηδέν, τότε α.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

Δίνεται η επαγόμενη τάση στον δρομέα συναρτήσει του ρεύματος διέγερσης στις 1000στρ./λεπτό:

Δίνεται η επαγόμενη τάση στον δρομέα συναρτήσει του ρεύματος διέγερσης στις 1000στρ./λεπτό: ΑΣΚΗΣΗ 1 Η Ένας κινητήρας συνεχούς ρεύματος ξένης διέγερσης, έχει ονομαστική ισχύ 500kW, τάση 1000V και ρεύμα 560Α αντίστοιχα, στις 1000στρ/λ. Η αντίσταση οπλισμού του κινητήρα είναι RA=0,09Ω. Το τύλιγμα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη

ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη ΠΕΙΡΑΜΑ IV Απλή κυκλική κίνηση. Κεντροµόλος Δύναµη Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κυκλική κίνηση µίας σηµειακής µάζας και ιδιαίτερα την εξάρτηση της κεντροµόλου δύναµης από τη µάζα,

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

4. ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΕ ΜΟΝΟ ΙΑΣΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ. φ για την εφαρµογή της µεθόδου Galerkin δεν

4. ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΕ ΜΟΝΟ ΙΑΣΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ. φ για την εφαρµογή της µεθόδου Galerkin δεν . ΠΕΠΕΡΑΣΜΕΝΑ ΣΤΟΙΧΕΙΑ ΣΕ ΜΟΝΟ ΙΑΣΤΑΤΑ ΠΡΟΒΛΗΜΑΤΑ Η επιλογή των συναρτήσεων βάσης ( ) φ για την εφαρµογή της µεθόδου Galrkn δεν είναι τόσο απλή, και στην γενική περίπτωση είναι µία δύσκολη διαδικασία.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίου, 2013 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε σε

Διαβάστε περισσότερα

ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ

ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ ΣΤΡΕΦΜΕΝΙ ΙΣΚΙ & ΠΕΡΙ ΣΤΡΦΡΜΗΣ Ένας οµογενής και συµπαγής δίσκος µάζας m και ακτίνας =,2m στρέφεται γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κέντρο του µε γωνιακή ταχύτητα µέτρου ω =1 ra/sec.

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα