Αναπαράσταση Γνώσης και Συλλογιστικές

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αναπαράσταση Γνώσης και Συλλογιστικές"

Transcript

1 Αναπαράσταση Γνώσης και Συλλογιστικές Αναπαράσταση γνώσης είναι ένα σύνολο συντακτικών και σηµασιολογικών παραδοχών, οι οποίες καθιστούν δυνατή την περιγραφή ενός κόσµου.! Μία µέθοδος αναπαράστασης γνώσης έχει: # Συντακτικό (syntax) # Σηµασιολογία (semantics).! Η φυσική γλώσσα είναι ακατάλληλη για αναπαράσταση γνώσης λόγω της πολυσηµαντικότητας (ambiguity) και της ερµηνείας µε βάσητασυµφραζόµενα (context).! ΓιατασυστήµαταΤΝπρέπειναχρησιµοποιηθεί ένας µονοσήµαντος και τυποποιηµένος συµβολισµός.! Κάθε µέθοδος αναπαράστασης της γνώσης έχει έναν διαφορετικό µηχανισµό εξαγωγής συµπερασµάτων. # Μηχανισµός που χρησιµοποιείται για εξαγωγή συµπερασµάτων από υπάρχουσα γνώση.

2 Μηχανισµός Εξαγωγής Συµπερασµάτων Inference Mechanism! Ο µηχανισµός εξαγωγής συµπερασµάτων υλοποιείται από: # Τη στρατηγική αναζήτησης της λύσης ενός προβλήµατος, πάνω στη γνώση του προβλήµατος. # Τη συλλογιστική (reasoning).! Η στρατηγική αναζήτησης υλοποιείται µε διάφορους τρόπους: # Οδηγούµενη από τους στόχους (goal driven ή top-down): Ξεκινάµε από πιθανά συµπεράσµατα και φτάνουµε στιςαιτίεςπουταστηρίζουν. # Οδηγούµενη από τα δεδοµένα (data driven ή bottom-up): Ξεκινάµε από τα δεδοµένα του προβλήµατος και φτάνουµε σεσυµπεράσµατα.! Η συλλογιστική είναι ο γενικός τρόπος παραγωγής γνώσης από ήδη υπάρχουσα γνώση, και υλοποιείται µε τρεις κυρίως µεθόδους: # Παραγωγή (deduction). # Επαγωγή (induction). # Απαγωγή (abduction).

3 εδοµένα, πληροφορία και γνώση εδοµένο (data) είναι µια µετρήσιµη ή υπολογίσιµη τιµή µίας ιδιότητας. Πληροφορία (information) αποτελείται από δεδοµένα τα οποία όµως έχουν φιλτραριστεί και µορφοποιηθεί κατάλληλα. Γνώση (knowledge) είναι πληροφορία η οποία έχει υποστεί µία σειρά ειδικών ελέγχων για την πιστοποίησή της.! Αντικείµενα (objects)! Γεγονότα (events)! Εκτέλεση (performance)! Μετα-γνώση (meta-knowledge) Είδη Γνώσης

4 Κριτήρια Αξιολόγησης Μεθόδων Αναπαράστασης Γνώσης! Επάρκεια αναπαράστασης (representational adequacy).! Επάρκεια συνεπαγωγής (inferential adequacy).! Αποδοτικότητα συνεπαγωγής (inferential efficiency).! Αποδοτικότητα απόκτησης (acquisitional efficiency). Μέθοδοι Αναπαράστασης Γνώσης! Λογική # Προτασιακή λογική (propositional logic) # Κατηγορηµατική λογική (predicate logic) # ιαζευκτική µορφή της λογικής (clausal form of logic)! οµηµένες αναπαραστάσεις γνώσης # Σηµασιολογικά ίκτυα (semantic networks) # Πλαίσια (frames) # Εννοιολογική εξάρτηση (conceptual dependency) # Σενάρια (scripts)! Κανόνες (if-then rules).

5 Λογική Η µαθηµατική λογική (mathematical logic) είναι η συστηµατική µελέτη των έγκυρων ισχυρισµών (valid arguments) µε χρήση εννοιών από τα µαθηµατικά.! Ένας ισχυρισµός (argument) αποτελείται από συγκεκριµένες δηλώσεις (ή προτάσεις), τις υποθέσεις (premises), από τις οποίες παράγονται άλλες δηλώσεις που ονοµάζονται συµπεράσµατα (conclusions) Όλοι οι άνθρωποι είναι θνητοί, Ο Σωκράτης είναι άνθρωπος, εποµένως, ο Σωκράτης είναι θνητός ( ήλωση) ( ήλωση) (Συµπέρασµα) Προτασιακή Λογική! Στην προτασιακή λογική (propositional logic) κάθε γεγονός αναπαριστάται µε µια λογική πρόταση, η οποία χαρακτηρίζεται είτε ως αληθής (true) ήωςψευδής (false).! Οι λογικές προτάσεις µπορούν να συνδυαστούν µε τηχρήσηλογικών συµβόλων ή συνδετικών (connectives).

6 Συνδετικά και Σηµασία Σύµβολο Ονοµασία / Επεξήγηση σύζευξη (λογικό "ΚΑΙ") διάζευξη (λογικό "Η") άρνηση συνεπαγωγή ("ΕΑΝ ΤΟΤΕ") διπλή συνεπαγωγή ή ισοδυναµία ("ΑΝ ΚΑΙ ΜΟΝΟ ΑΝ"). Παράδειγµα P:"Ο Νίκοςείναιπρογραµµατιστής" Q: "Ο Νίκος έχει Υπολογιστή" P Q: Εάν "Ο Νίκοςείναιπρογραµµατιστής", τότε "Ο Νίκος έχει Υπολογιστή" R:"Το τρίγωνο ΑΒΓ είναι ισόπλευρο" V:"Το τρίγωνο ΑΒΓ έχει όλες τις πλευρές του ίσες" R V: "Το τρίγωνο ΑΒΓ είναι ισόπλευρο" αν και µόνο αν "Το τρίγωνο ΑΒΓ έχει όλες τις πλευρές του ίσες"

7 Μηχανισµοί Εξαγωγής Συµπερασµάτων! Πίνακες αλήθειας (Truth Tables)! Απόδειξη (proof)! "Τρόπος του θέτειν" (modus ponens): P (P Q) Q (modus ponens) Παράδειγµα P: "ΟΝίκοςείναιπρογραµµατιστής" P Q: Εάν "Ο Νίκοςείναιπρογραµµατιστής", τότε "Ο Νίκος έχει Υπολογιστή" Q: "Ο Νίκος έχει Υπολογιστή"

8 Κατηγορηµατική Λογική! Ηκατηγορηµατική λογική (predicate logic) επεκτείνει την προτασιακή λογική εισάγοντας # όρους (terms), # κατηγορήµατα (predicates) και # ποσοδείκτες (quantifiers). Σύµβολο Ονοµασία / Επεξήγηση Σύζευξη (λογικό "ΚΑΙ") ιάζευξη (λογικό "Η") Άρνηση συνεπαγωγή ("ΕΑΝ ΤΟΤΕ") ισοδυναµία ("ΕΑΝ ΚΑΙ ΜΟΝΟ ΕΑΝ") καθολικός ποσοδείκτης ( x σηµαίνει για κάθε x) υπαρξιακός ποσοδείκτης ( x σηµαίνει υπάρχει x)

9 Κατηγορήµατα και Ορίσµατα! Ένα γεγονός αναπαριστάται µε ένανατοµικό τύπο της µορφής: P(A 1,A 2,...,A n ) όπου το P ονοµάζεται κατηγόρηµα (predicate) και τα A 1,A 2,...,A n ορίσµατα (arguments). Παράδειγµα Κάθε άνθρωπος έχει όνοµα Όλοι οι παίκτες του µπάσκετ είναι ψηλοί x y (ΑΝΘΡΩΠΟΣ(x) ΟΝΟΜΑ(x,y)). x (ΠΑΙΧΤΗΣ_ΜΠΑΣΚΕΤ(x) ΨΗΛΟΣ(x)).

10 Παράδειγµα Αναπαράστασης σε Λογική! Κάθεζώοτοοποίοέχειτρίχωµα ή παράγει γάλα είναι θηλαστικό.! Κάθε ζώο που έχει φτερά και γεννάει αυγά είναι πουλί.! Κάθε θηλαστικό που τρέφεται µε κρέας ή έχει κοφτερά δόντια είναι σαρκοβόρο.! Κάθε σαρκοβόρο µε χρώµα καφέ-πορτοκαλί που έχει ρίγες είναι τίγρης.! Κάθε σαρκοβόρο µε χρώµα καφέ-πορτοκαλί που έχει µαύρες βούλες είναι τσιτάχ.! Κάθε πουλί το οποίο δεν πετά και κολυµπά είναι πιγκουΐνος. x (ΕΧΕΙ(x,ΤΡΙΧΩΜΑ) ΠΑΡΑΓΕΙ(x,ΓΑΛΑ)) ΕΙΝΑΙ(x,ΘΗΛΑΣΤΙΚΟ). x (ΕΧΕΙ(x,ΦΤΕΡΑ) ΓΕΝΝΑΕΙ(x,ΑΥΓΑ)) ΕΙΝΑΙ(x,ΠΟΥΛΙ). x (ΕΙ ΟΣ(x,ΘΗΛΑΣΤΙΚΟ) ((ΤΡΕΦΕΤΑΙ(x,ΚΡΕΑΣ) ΕΧΕΙ(x, ΟΝΤΙΑ(ΚΟΦΤΕΡΆ))) ) ΕΙΝΑΙ(x, ΣΑΡΚΟΒΟΡΟ). x (ΕΙΝΑΙ(x,ΣΑΡΚΟΒΟΡΟ) ΧΡΩΜΑ(x,ΚΑΦΕ-ΠΟΡΤΟΚΑΛΙ) ΕΧΕΙ(x,ΡΊΓΕΣ(ΜΑΥΡΕΣ)) ΕΙΝΑΙ(x,ΤΙΓΡΗΣ). x (ΕΙΝΑΙ(x,ΣΑΡΚΟΒΟΡΟ) ΧΡΩΜΑ(x,ΚΑΦΕ-ΠΟΡΤΟΚΑΛΙ) ΕΧΕΙ(x,ΒΟΥΛΕΣ(ΜΑΥΡΕΣ)) ΕΙΝΑΙ(x,ΤΣΙΤΆΧ). x (ΕΙΝΑΙ(x,ΠΟΥΛΙ) ( ΠΕΤΑ(x) ) ΚΟΛΥΜΠΑ(x) ) ΕΙΝΑΙ(x,ΠΙΓΚΟΥΙΝΟΣ).

11 Πλεονεκτήµατα Μειονεκτήµατα Κατηγορηµατικής Λογικής! Πλεονεκτήµατα # αντιστοιχία µετηφυσικήγλώσσα, # η ικανοποιητική έκφραση ποσοτικοποίησης των εννοιών µε τους κατάλληλους ποσοδείκτες και # η ικανότητά της να συλλάβει τη γενικότητα.! Μειονεκτήµατα # αδυναµία έκφρασης της ασάφειας # η αθροιστικότητα των αποτελεσµάτων # δεν προσφέρει τη δυνατότητα λογισµού µε εύλογες υποθέσεις. Μηχανισµός εξαγωγής συµπερασµάτων! "Αρχή της ανάλυσης" (resolution principle). (P Q) (R Q) P R (αρχή της ανάλυσης) χρησιµοποιώντας τη µέθοδο της "εις άτοπο απαγωγής" (refutation).

12 ιαζευκτική Μορφή της Λογικής! Η γνώση αναπαρίσταται σαν σύζευξη διαζεύξεων (conjunction of disjunctions):. ( ΠΑΡΑΓΕΙ(x,ΓΑΛΑ) ΕΙΝΑΙ(x,ΘΗΛΑΣΤΙΚΟ)) ( ΕΧΕΙ(x,ΦΤΕΡΑ) ΕΙΝΑΙ(x,ΠΟΥΛΙ)) ΠΑΡΑΓΕΙ(x,ΓΑΛΑ) ΕΙΝΑΙ(x,ΘΗΛΑΣΤΙΚΟ) (πρώτη διάζευξη) ΕΧΕΙ(x,ΦΤΕΡΑ) ΕΙΝΑΙ(x,ΠΟΥΛΙ) (δεύτερη διάζευξη) Μηχανισµός εξαγωγής συµπερασµάτων! Οι προτάσεις (clauses) αυτής της λογικής:: R 1 R 2 R m Q 1 Q 2 Q n! µπορούν να γραφούν µε τηµορφή: R 1,R 2,,R m Q 1,Q 2,,Q n όπου R i, και Q i, είναι ατοµικοί τύποι της µορφής P(A 1,A 2... A n ) ήοιαρνήσειςτους.

13 Ειδικές περιπτώσεις προτάσεων # Αν m>0και n>0:ισχύει R 1 ή R 2 ή R m εάν Q 1 και Q 2 και Q n # Αν m=0, " εν ισχύει Q 1 και Q 2 και Q n ": Q 1,Q 2,, Q n # Αν n=0, τα R i ισχύουν πάντα. R 1,R 2,,R m # Αν m=0 και n=0, δηλώνει πρόταση πάντα αναληθή. Παράδειγµα! Στην παραπάνω µορφή οι προτάσεις: ΕΙΝΑΙ(x,ΘΗΛΑΣΤΙΚΟ) ΠΑΡΑΓΕΙ(x,ΓΑΛΑ) (πρώτη διάζευξη) ΕΙΝΑΙ(x,ΠΟΥΛΙ) ΕΧΕΙ(x,ΦΤΕΡΑ) (δεύτερη διάζευξη)! µπορούν να γραφούν ως: ΕΙΝΑΙ(x,ΘΗΛΑΣΤΙΚΟ) ΠΑΡΑΓΕΙ(x,ΓΑΛΑ) ΕΙΝΑΙ(x,ΠΟΥΛΙ) ΕΧΕΙ(x,ΦΤΕΡΑ) (πρώτη διάζευξη) (δεύτερη διάζευξη)! Σύµφωνα µε τα παραπάνω, η αρχή της ανάλυσης γίνεται: (R 1 Q 1 ) ( R 1 ) Q 1

14 ! Οι προτάσεις Horn είναι της µορφής: R Q 1,Q 2 Q n Προτάσεις Horn! Η γλώσσα προγραµµατισµού Prolog χρησιµοποιεί τις προτάσεις Horn σα µέθοδο αναπαράστασης.

15 Μη-µονότονη λογική (1/3)! Σε µια µονότονη λογική, υπάρχει ένα σύστηµα αξιωµάτων S (η αρχικήβάση γνώσης) και ένα σύνολο τύπων F που αποδεικνύονται (συνάγονται) από το S.! Η προσθήκη ενός ή περισσοτέρων αξιωµάτων στο S (απόκτηση νέας γνώσης), το σύνολο F αυξάνει µονότονα.! Πλεονεκτήµατα: # Κάθε φορά που προστίθεται ένα νέο γεγονός στο S, δε χρειάζονται νέοι έλεγχοι για τη συνέπεια της γνώσης του συστήµατος. # Για κάθε νέο γεγονός που αποδεικνύεται δεν είναι απαραίτητη η καταγραφή των γεγονότων πάνω στα οποία βασίζεται η αλήθεια του, αφού δεν υπάρχει κίνδυνος αποµάκρυνσης παλαιότερων γεγονότων.! Μειονεκτήµατα: # η προσθήκη νέων αξιωµάτων είναι δυνατό να µειώσει το σύνολο των δυνατών συµπερασµάτων, αφαιρώντας κάποια που αποδεικνύονται εσφαλµένα µετά την προσθήκη.

16 Μη-µονότονη λογική (2/3)! Οι µη-µονότονες συλλογιστικές είναι κατάλληλες για την αντιµετώπιση κάποιων καταστάσεων που εµφανίζονται συχνά στον πραγµατικό κόσµο: Καταστάσεις για τις οποίες δεν έχουµε πλήρη γνώση, ήηγνώσηδηµιουργείται κατά τη διάρκεια της εκτέλεσης ενεργειών, για τις οποίες δεν είµαστε βέβαιοι για την αναγκαιότητα ή ορθότητά τους. Καταστάσεις στις οποίες η γνώση µεταβάλλεται, λόγω µεταβολών που συµβαίνουνστονκόσµο. Καταστάσεις στις οποίες το σύστηµα χρησιµοποιεί υποθέσεις (assumptions) στα πλαίσια της στρατηγικής επίλυσης προβληµάτων.! Στη µη-µονότονη τροπική λογική (non-monotonic modal logic) εισάγεται ένας νέος τροπικός τελεστής ο οποίος δηλώνει ότι ένα γεγονός "είναι συνεπές µε τιςτρέχουσες πεποιθήσεις".

17 Μη-µονότονη λογική (3/3)! Η συλλογιστική εύλογων υποθέσεων (default reasoning) χρησιµοποιείται σε περιπτώσεις κατά τις οποίες ένα γεγονός συνάγεται από ένα δοσµένο γεγονός, γιατί έτσι συµβαίνει συνήθως και γιατί δεν υπάρχει ένδειξη για το αντίθετο.! Το πρόβληµα τηςµονοτονίας αντιµετωπίζεται µε την εισαγωγή κατάλληλων µηχανισµών εξαγωγής συµπερασµάτων οι οποίοι καταγράφουν ποια γεγονότα χρησιµοποιήθηκαν για την εξαγωγή ενός νέου συµπεράσµατος.! Τα συστήµατα που χρησιµοποιούν αυτούς τους µηχανισµούς ονοµάζονται συστήµατα συντήρησης αλήθειας (truth maintenance systems).

18 οµηµένες Αναπαραστάσεις Γνώσης! Η κλασική λογική δε µπορεί να αναπαραστήσει κλάσεις αντικειµένων.! Είναι επιθυµητή η µείωση του όγκου της γνώσης για ένα πρόβληµα.! Η πράξη απαιτεί µία περισσότερο διαισθητική προσέγγιση στην αναπαράσταση γνώσης.

19 Σηµασιολογικά ίκτυα Ένα σηµασιολογικό δίκτυο (semantic net) αποτελείται από κόµβους (nodes) και δεσµούς (links) ανάµεσά τους. Οι κόµβοι υποδηλώνουν κλάσεις αντικειµένων (classes), αντικείµενα (objects), έννοιες (concepts), τιµές ιδιοτήτων (values), κλπ. και οι δεσµοί τις σχέσεις (relations) µεταξύ αυτών των αντικειµένων ή ιδιότητες που συνδέουν αντικείµενα µε τιµές.

20 Η ιεραρχική δοµή των σηµασιολογικών δικτύων :! Υπάρχουν διάφορα είδη δεσµών ή σχέσεων, AKO, ISA, INSTANCE_OF.! ΗσχέσηAKO υπάρχει µεταξύ κλάσεων αντικειµένων. Σε κόµβο που συνδέεται µε σχέση AKO µε κάποιον άλλον µπορούν να προστεθούν νέοι δεσµοί που προσδίδουν νέες ιδιότητες.! ΗσχέσηISA είναι παρόµοια µε τησχέσηako, αλλά σε κόµβο που συνδέεται µε κάποιον άλλον µε σχέσηisa δε µπορούν να προστεθούν νέες ιδιότητες παρά µόνον να κληρονοµηθούν οι ήδη υπάρχουσες ιδιότητες από κόµβους ψηλότερα στην ιεραρχία ή οι ιδιότητες αυτές να αλλάξουν τιµές.! ΗσχέσηINSTANCE_OF είναι παρόµοια µε τησχέσηisa, αλλά υπάρχει µόνο µεταξύ κόµβων αντικειµένων και κόµβων γενικότερων κλάσεων.

21 Κληρονοµικότητα στα σηµασιολογικά δίκτυα! Χάρη στην ιεραρχία ένα αντικείµενο κληρονοµεί ιδιότητες από µία γενικότερη κλάση στην οποία ανήκει.

22 Προσκόλληση διαδικασιών! Αντί για την τιµή της ιδιότητας µπορεί να οριστεί µια διαδικασία η οποία θα καλείται µόνον εάν χρειάζεται (IF-NEEDED) για να δώσει κάποιο αποτέλεσµα.! Οι διαδικασίες αυτές ονοµάζονται και δαίµονες (daemons).

23 Ιδιότητες µε προκαθορισµένες τιµές και εξαιρέσεις τους! Σε ένα σηµασιολογικό δίκτυο η συνήθης τιµή µιας ιδιότητας που εµφανίζεται σε ένα κόµβο που βρίσκεται ψηλά στην ιεραρχία µπορεί να προκαθοριστεί και ονοµάζεται προκαθορισµένη τιµή (DEFAULT).! Οι προκαθορισµένες τιµές είναι ένας τρόπος για να υλοποιηθεί η συλλογιστική των εύλογων υποθέσεων που γίνονται για κλάσεις αντικειµένων στα σηµασιολογικά δίκτυα.

24 Πλεονεκτήµατα και µειονεκτήµατα Σηµασιολογικά δίκτυα! Συµπαγήςτρόποςαναπαράστασηςτηςγνώσης.! Χρειάζεται επιπλέον υπολογιστική προσπάθεια για συλλογή πληροφοριών για κάποιο συγκεκριµένο αντικείµενο.! Λογική ανεπάρκεια # Τα αντικείµενα στα σηµασιολογικά δίκτυα είναι ανοιχτά σε απόδοση οποιαδήποτε σηµασίας.! Ευριστική ανεπάρκεια ή µη-αποδοτικότητα επαγωγής # Οι πληροφορίες είναι διασκορπισµένες µέσα σε ένα δίκτυο

25 Πλαίσια Τα πλαίσια (frames) ή σχήµατα (schemata) είναι "δοµές δεδοµένων για την αναπαράσταση στερεότυπων καταστάσεων".! Οι κύριες διαφορές των πλαισίων µε τις εγγραφές (records) είναι: # Τα πλαίσια δεν είναι κατ ανάγκη όµοια µεταξύ τους # εν περιέχουν ίδιου τύπου πληροφορίες, ούτε µόνον απλά δεδοµένα # Τα πλαίσια οργανώνονται σε ιεραρχικές δοµές και όχι σειριακές! Τα πλαίσια έχουν : # Όνοµα # Μία σειρά από ιδιότητες (slots) που συνδέονται άµεσα µε τιςτιµές τους (fillers).

26 Παράδειγµα

27 Πλαίσια Μηχανισµός εξαγωγής συµπερασµάτων! ιαδικασία βρες(frame,αttribute,value) # Αν η ιδιότητα Αttribute υπάρχει στο πλαίσιο Frame, τότε επέστρεψε την τιµήτηςvalue # Αλλιώς, ακολούθησε την ιεραρχία δεσµών ISA ή AKO ή INSTANCE_OF και επανέλαβε τη διαδικασία µε νέοπλαίσιοnewframe το αµέσως παραπάνω πλαίσιο του Frame στην ιεραρχίας, δηλ. βρες(newframe,attribute,value). Μειονεκτήµατα! Πολλαπλή κληρονοµικότητα (multiple inheritance).

28 Εννοιολογική Εξάρτηση! Η υλοποίηση ενός σηµασιολογικού δικτύου µε κόµβους και σχέσεις µεταξύ τους είναι σχεδόν αυθαίρετη.! Εννοιολογική εξάρτηση (conceptual dependency) # Ένα σύνολο από σταθερές σχέσεις µεταξύ των αντικειµένων, υπό την προϋπόθεση βέβαια ότι κάθε µία από αυτές τις σχέσεις έχει καλά ορισµένη σηµασιολογία (πρωταρχικές ή αρχέγονες (primitive relations)

29 Αρχέγονες Ενέργειες Αρχέγονες Ενέργειες Επεξήγηση Παράδειγµα ATRANS Μεταφορά µιας αφηρηµένης σχέσης ίνω PTRANS Μεταφοράτηςφυσικήςθέσηςενόςαντικειµένου Πηγαίνω PROPEL Εφαρµογή φυσικής βίας κατά ενός αντικειµένου Σπρώχνω MOVE Κίνηση µέρους του αντικειµένου Κλοτσώ GRASP Λαβή ενός αντικειµένου από κάποιον Αρπάζω INGEST Εισαγωγή στο σώµα Τρώω EXPEL Εξαγωγή από το σώµα Ιδρώνω MTRANS Μεταφορά διανοητικής πληροφορίας Συζητώ MBUILD Παραγωγή νέας πληροφορίας από παλιές Αποφασίζω SPEAK Παραγωγή φωνής Μιλώ ATTEND Ερεθισµός αισθητήριου οργάνου Ακούω Εννοιολογικές µορφές ACT PP AA PA Επεξήγηση Ενέργεια, πράξη Αντικείµενα Ιδιότητα ενέργειας, πράξης Ιδιότητα αντικειµένων

30 Σύµβολα στην Εννοιολογική Εξάρτηση Σύµβολο Επεξήγηση Σύµβολο Επεξήγηση p Παρελθόν f Μέλλον t Μεταφορά ts Αρχή µεταφοράς tf Τέλος µεταφοράς k Συνεχιζόµενο? Ερωτηµατικός / Αρνητικός nil Παρόν delta Χωρίς χρόνο c Υπό προϋποθέσεις! Πλεονεκτήµατα και µειονεκτήµατα # Η εξαγωγή συµπερασµάτων είναι ευκολότερη αν οι έννοιες µίαςφράσηςαναπαριστώνταισε ένα χαµηλό (αρχέγονο) επίπεδο. # Η γνώσηδενµπορεί πάντα να αναλύεται σε πολλά µικρά κοµµάτια αρχέγονης γνώσης.

31 Σενάρια Σενάριο (script) είναι µία στερεότυπη ακολουθία γεγονότων σε µία συγκεκριµένη δραστηριότητα

32 Σενάρια Τα µέρη ενός Σεναρίου! Συνθήκες εισόδου (entry conditions).! Αποτελέσµατα (results).! Σκηνικά (props).! Ρόλοι (roles).! Παραποµπές (track).! Σκηνές (scenes). Μηχανισµός εξαγωγής συµπερασµάτων! Ουπολογιστήςµπορεί να συµπεράνει και να αντιδράσει κατάλληλα σε µετέπειτα ερωτήσεις, θεωρώντας εύλογες υποθέσεις.! Μπορεί να γίνουν λάθος εκτιµήσεις από τον υπολογιστή.

33 Αναπαράσταση µε Κανόνες Μορφές Κανόνων Εκφράζει Επεξήγηση IF συνθήκες THEN ενέργειες ιαδικαστική γνώση Αν οι συνθήκες αληθεύουν τότε εκτέλεσε τις ενέργειες IF συνθήκες THEN συµπέρασµα ηλωτική γνώση Αν οι συνθήκες αληθεύουν τότε αληθεύει και το συµπέρασµα! Συστήµατα εξαγωγής συµπερασµάτων (deduction systems): οι κανόνες εκφράζουν δηλωτική γνώση, και! Συστήµατα παραγωγής (production systems): οι κανόνες εκφράζουν διαδικαστική γνώση.! Πλεονεκτήµατα: # Κάθε κανόνας ορίζει ένα µικρό και (σχεδόν) ανεξάρτητο τµήµα της γνώσης για ένα πρόβληµα (modularity). # Νέοι κανόνες µπορούν να προστεθούν σε ένα σύνολο κανόνων (σχεδόν) ανεξάρτητα από άλλους υπάρχοντες κανόνες (incrementability). # Κανόνες που ήδη υπάρχουν σε ένα σύνολο κανόνων µπορούν να αλλάξουν (σχεδόν) ανεξάρτητα από άλλους κανόνες (modifiability).

34 Αναπαράσταση µε Κανόνες Παράδειγµα Σύµπτωµα Πιθανή Βλάβη Επιδιόρθωση Ο εκτυπωτής δεν τυπώνει καθόλου ή ο Το καλώδιο δεν κάνει καλή Κλείστε τον εκτυπωτή και τον εκτυπωτής τυπώνει λάθος χαρακτήρες επαφή υπολογιστή και προσπαθήστε ξανά Ο εκτυπωτής τυπώνει σωστά αλλά τα Έχει τελειώσει το έγχρωµο Αλλάξτε την κεφαλή µε το χρώµατα δε τυπώνονται σωστά µελάνι έγχρωµο µελάνι Ο εκτυπωτής τυπώνει σωστά αλλά τα εν είναι καθαρή η κεφαλή Ακολουθήστε τη διαδικασία χρώµατα δε τυπώνονται σωστά καθαρισµού της κεφαλής IF ο εκτυπωτής δεν τυπώνει καθόλου OR ο εκτυπωτής τυπώνει λάθος χαρακτήρες THEN το καλώδιο δεν κάνει καλή επαφή IF ο εκτυπωτής τυπώνει σωστά and τα χρώµατα δε τυπώνονται σωστά THEN έχει τελειώσει το έγχρωµο µελάνι IF ο εκτυπωτής τυπώνει σωστά and τα χρώµατα δε τυπώνονται σωστά THEN δεν είναι καθαρή η κεφαλή IF ο εκτυπωτής δεν τυπώνει καθόλου OR ο εκτυπωτής τυπώνει λάθος χαρακτήρες THEN κλείστε τον εκτυπωτή και τον υπολογιστή και προσπαθήστε ξανά IF ο εκτυπωτής τυπώνει σωστά and τα χρώµατα δε τυπώνονται σωστά THEN αλλάξτε την κεφαλή µε το έγχρωµο µελάνι IF ο εκτυπωτής τυπώνει σωστά and τα χρώµατα δε τυπώνονται σωστά THEN ακολουθήστε τη διαδικασία καθαρισµού κεφαλής

35 Συστήµατα Εξαγωγής Συµπερασµάτων! Τα συστήµατα εξαγωγής συµπερασµάτων (deduction systems) αποτελούνται από δύο µέρη: # Τη βάση κανόνων (rule base) # Τον έλεγχο (control).

36 Εξαγωγή Συµπερασµάτων Ακολουθία Εκτέλεσης (Chaining)! Οτρόποςµε το οποίον υλοποιείται η συλλογιστική, ώστε να εξαχθούν τα συµπεράσµατα. # Ανάστροφη ακολουθία εκτέλεσης (backward chaining) (δεξιάπροςτααριστερά). Η εξαγωγή συµπερασµάτων ξεκινά από το δεξιό µέρος του κανόνα και προσπαθεί να βρει αν οι προϋποθέσεις είναι αληθείς. Εξετάζονται όλοι οι εναλλακτικοί τρόποι απόδειξης του συµπεράσµατος (ακόµα και αυτοί που δεν είναι αληθείς) έως ότου αποδειχθεί η αλήθεια του συµπεράσµατος (όπως στην Prolog). Ενδείκνυται όταν υπάρχουν λίγα συµπεράσµατα και πολλά δεδοµένα, γιαταοποίατοσύστηµα µας καθοδηγεί ζητώντας τα µε µια λογική σειρά και όσα χρειάζονται. Εφαρµογές: Συστήµατα Ελέγχου Λειτουργίας (Monitoring). # Ορθή ακολουθία εκτέλεσης (forward chaining) (αριστερά προς τα δεξιά). Η εξαγωγή συµπερασµάτων εξετάζει πρώτα αν οι προϋποθέσεις στο αριστερό µέρος του κανόνα είναι αληθείς έτσι ώστε το συµπέρασµα που αναφέρεται στο δεξιό µέρος να είναι αληθές. Εξετάζονται µόνο οι αληθείς τρόποι απόδειξης, αλλά το σύστηµα µπορεί να συµπεράνει περισσότερα συµπεράσµατα από τα επιθυµητά (Συστήµατα Παραγωγής). Ενδείκνυται όταν υπάρχουν λίγα δεδοµένα (δίδονται στο σύστηµα όλαµαζί στην αρχή) και µπορούν να οδηγήσουν σε πολλά συµπεράσµατα. Εφαρµογές: Συστήµατα ιάγνωσης.

37 Αναπαράσταση µε Κανόνες Παράδειγµα 1:if has(animal,hair) or gives(animal,milk) then isa(animal,mammal). 2:if has(animal,feathers) or (flies(animal) and lays(animal,eggs)) then isa(animal,bird). 3:if isa(animal,mammal) and (eats(animal,meat) or (has(animal,pointed_teeth) and has(animal,claws) and has(animal,forward_pointing_eyes))) then isa(animal,carnivore). 5:if then isa(animal,carnivore) and has(animal,tawny_colour) and has(animal,black_stripes) isa(animal,tiger). 6: if isa(animaλ,bird) and not flies(animal) and swims(animal) then isa(animal,penguin). 7: if isa(animal,bird) and isa(animal,good_flyer) then isa(animal,albatros). 4:if isa(animal,carnivore) and has(animal,tawny_colour) and has(animal,dark_spots) then isa(animal,cheetah).

38 Γραφική Αναπαράσταση Κανόνων

39 Γραφική Αναπαράσταση Εξαγωγής Συµπεράσµατος

40 Συστήµατα Παραγωγής! Ένα σύστηµα παραγωγής (production system) αποτελείται από τρία µέρη: # Τη βάση κανόνων. # Το χώρο εργασίας (working memory), που περιέχει στοιχεία της µνήµης εργασίας (working memory elements). # Το µηχανισµό ελέγχου (control ή scheduler), οοποίοςεµπεριέχει µία στρατηγική επίλυσης συγκρούσεων (conflict resolution strategy).

41 Επίλυση Συγκρούσεων # Ένας κανόνας οπλίζει (triggers) όταν οι συνθήκες του κανόνα ικανοποιούνται. # Όταν ένας κανόνας πυροδοτείται (fires) τότε οι ενέργειές του εφαρµόζονται ή εκτελούνται. # Το σύνολο των κανόνων που οπλίζουν σχηµατίζουν το σύνολο σύγκρουσης (conflict set).! Μερικές από τις πιο γνωστές στρατηγικές επίλυσης συγκρούσεων είναι οι εξής: # Τυχαία (random). # ιάταξης (ordering). # Επιλογή του πρόσφατου (recency). # Επιλογή του πιο ειδικού (specificity). # Αποφυγή επανάληψης (refractoriness). Κύκλος λειτουργίας ενός Συστήµατος Παραγωγής Έως ότου δε µπορεί να εκτελεστεί κανένας κανόνας επανέλαβε: 1.Βρες όλους του κανόνες που οπλίζουν και σχηµάτισε το σύνολο συγκρούσεων. 2.Σύµφωνα µε το µηχανισµό επίλυσης συγκρούσεων, διάλεξε ένα κανόνα. 3.Πυροδότησε τον κανόνα που διάλεξες στο βήµα 2.

42 Συστήµατα Παραγωγής Παράδειγµα Κίνησης Ροµπότ robot_at(6,4) direction(e) choice(w) choice(s) choice(n) choice(e) obstacle_at(7,4) obstacle_at(6,8) obstacle_at(7,7)... object_at(4,7)...

43 Κανόνες Κίνησης Ροµπότ 1: detect_object: if robot_at(x,y) and object_at(x,y) then output( object is found ). 2: move_west: if robot_at(x,y) and direction(w) then delwm(robot_at(x,y)) and NX=X-1 and addwm(robot_at(nx,y)). 3: move_east: if robot_at(x,y) and direction(e) then delwm(robot_at(x,y)) and NX=X+1 and addwm(robot_at(nx,y)). 4: move_north: if robot_at(x,y) and direction(n) then delwm(robot_at(x,y)) and NY=Y+1 and addwm(robot_at(x,ny)). 5: move_south: if robot_at(x,y) and direction(s) then delwm(robot_at(x,y)) and NY=Y-1 and addwm(robot_at(x,ny)). 6: avoid_obstacle_south: if robot_at(x,y) and NY=Y-1 and obstacle_at(x,ny) and direction(s) and choice(nd) then delwm(direction(s)) and addwm(direction(nd)). 7: avoid_obstacle_west: if robot_at(x,y) and NX=X-1 and obstacle_at(nx,y) and direction(w) and choice(nd) then delwm(direction(w)) and addwm(direction(nd)). 8: avoid_obstacle_north: if robot_at(x,y) and NY=Y+1 and obstacle_at(x,ny) and direction(n) and choice(nd) then delwm(direction(n)) and addwm(direction(nd)). 9: avoid_obstacle_east: if robot_at(x,y) and NX=X+1 and obstacle_at(nx,y) and direction(e) and choice(nd) then delwm(direction(e)) and addwm(direction(nd)).

44 Στρατηγική Επίλυσης Κίνησης Ροµπότ! Οι στρατηγικές επίλυσης συγκρούσεων είναι µε τησειρά: # αποφυγή επανάληψης (ΑΕ), # επιλογή του πιο ειδικού (ΕΕ), και # τυχαία επιλογή (ΤΕ). Κύκλος Μνήµη Εργασίας 1 robot_at(6,4) direction(e) choice(w) choice(n) choice(s) choice(e) obstacle_at(7,4) obstacle_at(6,8)... object_at(4,7)... 2 robot_at(6,4) direction(n)... Σύνολο Συγκρούσεων {3, 6 (ND=w), 6 (ND=n), 6 (ND=s), 6 (ND=e)} Στρατηγική ΕΕ ΤΕ Κανόνας που πυροδοτεί 6:avoid_obstacle_east (ND=n) {4} - 4: move_north

45 Κύκλος Μνήµη Εργασίας 3 robot_at(6,5) direction(n)... 4 robot_at(6,6) direction(n)... 5 robot_at(6,7) direction(n)... obstacle_at(6,8)... 6 robot_at(6,7) direction(n)... obstacle_at(6,8)... 7 robot_at(6,7) direction(e)... obstacle_at(7,7)... Σύνολο Συγκρούσεων Στρατηγική Κανόνας που πυροδοτεί {4} - 4: move_north {4} - 4: move_north {4, 8 (ND=w), 8 (ND=n), 8 (ND=s), 8 (ND=e)} {4, 8 (ND=w), 8 (ND=n), 8 (ND=s), 8 (ND=e)} {3, 6 (ND=w), 6 (ND=n), 6 (ND=s), 6 (ND=e)} EE TE AE EE TE EE TE 8:avoid_obstacle_north (ND=n) 8:avoid_obstacle_north (ND=e) 8: avoid_obstacle_east (ND=w)

46 Κύκλος Μνήµη Εργασίας 8 robot_at(6,7) direction(w) robot_at(5,7) direction(w) robot_at(4,7) direction(w) object_at(4,7)... Σύνολο Συγκρούσεων Στρατηγική Κανόνας που πυροδοτεί {2} - 2: move_west {2} - 2: move_west {1,2} EE TE 1: detect_object

47 Αναπαράσταση του Χρόνου Χρονική Λογική! Έστω µία πρόταση p, τότε: # +p σηµαίνει ότι οπωσδήποτε (necessarily) η p είναι αληθής στο µέλλον, δηλαδή για πάντα (always), # p σηµαίνει ότι πιθανά (possibly) η p είναι αληθής στο µέλλον, δηλαδή µερικές φορές (sometimes).! Το συντακτικό της χρονικής λογικής: Αν p Prop, τότε p είναι έκφραση της χρονικής λογικής. Αν p 1 και p 2 είναι εκφράσεις, τότε p 1 και p 1 p 2 είναι επίσης εκφράσεις. Αν p είναι έκφραση, τότε +p και p είναι επίσης εκφράσεις.! Για τους τελεστές και + ισχύει: +p p, δηλαδή κάτι είναι πάντα αληθές στο µέλλον εάν και µόνο εάν δεν είναι πιθανό να µην ισχύει µερικές φορές, και p + p, δηλαδή κάτι είναι µερικές φορές αληθές στο µέλλον εάν και µόνο εάν δεν ισχύει πάντα.

48 Η εξέλιξη των καταστάσεων ενός κόσµου

49 Αναπαράσταση του Χρόνου Λογική Χρονικών ιαστηµάτων! Η λογική χρονικών διαστηµάτων (time interval logic) ασχολείται µε τιςσχέσειςπου µπορεί να έχουν γεγονότα µεταξύ τους µέσα στο χρόνο.! Ένα χρονικό διάστηµα για το οποίο ισχύει ένα γεγονός µπορεί να αναπαρασταθεί σαν ένα τµήµα µιας χρονοσειράς (timeline) που περιορίζεται από δύο χρονικά σηµεία, την αρχή t 1 και το τέλος t 2, ενώ προφανώς ισχύει t 1 <t 2.! Γιαταάκρατωνδιαστηµάτων ισχύει: # Επικαλύπτει (overlaps): i s <j s <i f <j f # Προηγείται (precedes): i s <i f <j s <j f # Συναντά (meets): i s <i f =j s <j f # Αρχίζει (starts): i s =j s <i f <j f # Τελειώνει (ends): j s <i s <i f =j f # Στη διάρκεια (during): j s <i s <i f <j f # Ισοδυναµεί (equals): i s =j s <i f =j f

50 Γραφική Αναπαράσταση Σχέσεων Χρονικών ιαστηµάτων

51 Το Πρόβληµα του Πλαισίου! Το πρόβληµα του πλαισίου (frame problem) αφορά τη χρονική διάρκεια µέσα στην οποία είναι αληθές ένα γεγονός και τους παράγοντες που το επηρεάζουν µε την πάροδο του χρόνου. # Είναι δύσκολο να οριστεί µεσαφήνειαπώςµία ενέργεια που µπορεί να γίνει στο µέλλον επηρεάζει τα γεγονότα.! Τρόποι αντιµετώπισης του προβλήµατος: # Είναι για κάθε ιδιότητα του κόσµου να εκφραστεί µεσαφήνειαότιµία ενέργεια δεν επηρεάζει τον κόσµο σε δύο συνεχόµενες καταστάσεις # Να οριστούν κάποιες ιδιότητες και καταστάσεις ως πρωταρχικές (primitive), υπό την έννοια ότι όλες οι άλλες ιδιότητες και καταστάσεις προκύπτουν από αυτές. # Να δηλωθεί ρητά ότι κάθε φορά που συµβαίνει µια αλλαγή κατάστασης, τότε πρέπει απαραίτητα να έχει συµβεί κάποια συγκεκριµένη ενέργεια.

52 Είδη Συλλογιστικής Η παραγωγική συλλογιστική (deductive reasoning) εξάγει συµπεράσµατα βασισµένη στους κλασσικούς µηχανισµούς εξαγωγής συµπερασµάτων της λογικής. εδοµένου του κανόνα: Όλα τα σκυλιά του Κώστα είναι καφέ και του γεγονότος: Αυτά τα σκυλιά είναι του Κώστα Συµπέρασµα που εξάγεται: Αυτά τα σκυλιά είναι καφέ Η επαγωγική συλλογιστική (inductive reasoning) αφορά την εξαγωγή γενικών συµπερασµάτων από ένα σύνολο παραδειγµάτων. εδοµένου του γεγονότος: Αυτά τα σκυλιά είναι του Κώστα και του αποτελέσµατος:αυτά τα σκυλιά είναι καφέ Κανόνας που εξάγεται: Όλα τα σκυλιά του Κώστα είναι καφέ Η απαγωγική συλλογιστική (abductive reasoning) αφορά την εξαγωγή συµπερασµάτων κατά την οποία, µε δεδοµένα µία βάση γνώσης και µερικές παρατηρήσεις (observations) επιχειρείται η εύρεση υποθέσεων οι οποίες µαζί µε τη βάση γνώσης εξηγούν τις παρατηρήσεις. εδοµένου του κανόνα: και του αποτελέσµατος: Υπόθεση που εξάγεται: Όλα τα σκυλιά του Κώστα είναι καφέ Τα σκυλιά είναι καφέ Αυτά τα σκυλιά είναι του Κώστα

οµηµένες Αναπαραστάσεις Γνώσης

οµηµένες Αναπαραστάσεις Γνώσης οµηµένες Αναπαραστάσεις Γνώσης! Η κλασική λογική δε µπορεί να αναπαραστήσει κλάσεις αντικειµένων.! Είναι επιθυµητή η µείωση του όγκου της γνώσης για ένα πρόβληµα.! Η πράξη απαιτεί µία περισσότερο διαισθητική

Διαβάστε περισσότερα

οµηµένες Αναπαραστάσεις Γνώσης

οµηµένες Αναπαραστάσεις Γνώσης οµηµένες Αναπαραστάσεις Γνώσης! Η κλασική λογική δε µπορεί να αναπαραστήσει κλάσεις αντικειµένων.! Είναι επιθυµητή η µείωση του όγκου της γνώσης για ένα πρόβληµα.! Η πράξη απαιτεί µία περισσότερο διαισθητική

Διαβάστε περισσότερα

Κεφάλαιο 11. Συστήµατα Κανόνων. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 11. Συστήµατα Κανόνων. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 11 Συστήµατα Κανόνων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Τεχνητή Νοηµοσύνη, B' Έκδοση 1 Αναπαράσταση µε Κανόνες Πολύ πρακτικός τρόπος

Διαβάστε περισσότερα

Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος.

Γνώση. Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Γνώση Η γνώση είναι διαφορετική από τα δεδομένα Γνώση (knowledge) είναι ο κοινός παράγοντας (π.χ. κανόνες) που περιγράφει συνοπτικά τις συσχετίσεις μεταξύ των δεδομένων ενός προβλήματος. Η γνώση για κάποιο

Διαβάστε περισσότερα

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναπαράσταση με Κανόνες Η γνώση αναπαρίσταται με τρόπο που πλησιάζει την ανθρώπινη

Διαβάστε περισσότερα

Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 8 Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αναπαράσταση Γνώσης Σύνολο συντακτικών

Διαβάστε περισσότερα

Συστήματα Βασισμένα σε Γνώση (Knowledge Based Systems)

Συστήματα Βασισμένα σε Γνώση (Knowledge Based Systems) Τεχνητή Νοημοσύνη 10 Συστήματα Βασισμένα σε Γνώση (Knowledge Based Systems) Φώτης Κόκκορας Τμ. Μηχανικών Πληροφορικής - ΤΕΙ Θεσσαλίας Δεδομένα, Πληροφορία, Γνώση και Σοφία Εμπειρικοί κανόνες Όχι προγραμματισμός

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση

Διαβάστε περισσότερα

Μηχανισμός Εξαγωγής Συμπερασμάτων

Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Μηχανισμός Εξαγωγής Συμπερασμάτων Ο βασικός μηχανισμός εξαγωγής συμπερασμάτων στην κατηγορηματική λογική είναι η απόδειξη. Υπάρχει ένα πλήθος κανόνων συμπερασμού. Αυτοί

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναπαράσταση Γνώσης Η περιγραφή ενός προβλήματος σε συνδυασμό με τους τελετές

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης ναπαράσταση γνώσης

Διαβάστε περισσότερα

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης

Λογική. Προτασιακή Λογική. Λογική Πρώτης Τάξης Λογική Προτασιακή Λογική Λογική Πρώτης Τάξης Λογική (Logic) Αναλογίες διαδικασίας επίλυσης προβλημάτων υπολογισμού και προβλημάτων νοημοσύνης: Πρόβλημα υπολογισμού 1. Επινόηση του αλγορίθμου 2. Επιλογή

Διαβάστε περισσότερα

9.1 Προτασιακή Λογική

9.1 Προτασιακή Λογική ΚΕΦΑΛΑΙΟ 9 9 Λογική Η λογική παρέχει έναν τρόπο για την αποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης και προσφέρει µια σηµαντική και εύχρηστη µεθοδολογία για την αναπαράσταση και

Διαβάστε περισσότερα

Διαχείριση Γνώσης. Επικ. Καθ. Κωνσταντίνος Μεταξιώτης kmetax@unipi.gr Δρ. Κωνσταντίνος Εργαζάκης Επιστημονικός Υπεύθυνος kergaz@epu.ntua.

Διαχείριση Γνώσης. Επικ. Καθ. Κωνσταντίνος Μεταξιώτης kmetax@unipi.gr Δρ. Κωνσταντίνος Εργαζάκης Επιστημονικός Υπεύθυνος kergaz@epu.ntua. Επικ. Καθ. Κωνσταντίνος Μεταξιώτης kmetax@unipi.gr Δρ. Κωνσταντίνος Εργαζάκης Επιστημονικός Υπεύθυνος kergaz@epu.ntua.gr Πανεπιστήμιο Πειραιώς - Τμήμα Πληροφορικής Περιεχόμενα Κωδικοποίηση Γνώσης Τι είναι

Διαβάστε περισσότερα

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 4: Αναπαράστασης Γνώσης και Συλλογιστικής Συστήματα Κανόνων

Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 4: Αναπαράστασης Γνώσης και Συλλογιστικής Συστήματα Κανόνων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Θεωρητικό Κομμάτι Μαθήματος Ενότητα 4: Αναπαράστασης Γνώσης και Συλλογιστικής Συστήματα Κανόνων Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Λογική Αποσαφήνιση και τυποποίηση της διαδικασίας της ανθρώπινης σκέψης Η μαθηματική

Διαβάστε περισσότερα

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά

ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση μεγιστοποιήσει την πιθανότητά ΠΑΙΓΝΙΑ Παιχνίδια Γενική Θεώρηση: Έστω ότι έχουμε τους παίκτες Χ και Υ. Ο κάθε παίκτης, σε κάθε κίνηση που κάνει, προσπαθεί να μεγιστοποιήσει την πιθανότητά του να κερδίσει. Ο Χ σε κάθε κίνηση που κάνει

Διαβάστε περισσότερα

Υπολογιστική Λογική και Λογικός Προγραμματισμός

Υπολογιστική Λογική και Λογικός Προγραμματισμός ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 2: Λογική: Εισαγωγή, Προτασιακή Λογική. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες

Διαβάστε περισσότερα

Κεφάλαιο 9. Λογική. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Κεφάλαιο 9. Λογική. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Κεφάλαιο 9 Λογική Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Λογική Aποσαφήνιση και την τυποποίηση της διαδικασίας της ανθρώπινης σκέψης. Η µαθηµατική

Διαβάστε περισσότερα

Πανεπιστήµιο Πατρών Τµήµα Μηχ/κών Η/Υ & Πληροφορικής ΜΠΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ. Ι.

Πανεπιστήµιο Πατρών Τµήµα Μηχ/κών Η/Υ & Πληροφορικής ΜΠΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ. Ι. Πανεπιστήµιο Πατρών Τµήµα Μηχ/κών Η/Υ & Πληροφορικής ΜΠΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ ΑΠΟΦΑΣΕΩΝ Ι. Χατζηλυγερούδης ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ Τετάρτη/Τρίτη 5.00-7.00 µ.µ. (ΠΡΟΚΑΤ Τµήµατος

Διαβάστε περισσότερα

ΣΗΜΑΣΙΟΛΟΓΙΚΑ ΔΙΚΤΥΑ (SEMANTIC NETWORKS)

ΣΗΜΑΣΙΟΛΟΓΙΚΑ ΔΙΚΤΥΑ (SEMANTIC NETWORKS) ΣΗΜΑΣΙΟΛΟΓΙΚΑ ΔΙΚΤΥΑ (SEMANTIC NETWORKS) ΣΗΜΑΣΙΟΛΟΓΙΚΑ ΔΙΚΤΥΑ (SEMANTIC NETWORKS) Αντικείμενα (objects) και σχέσεις μεταξύ τους Παράσταση δικτύου (γραφική) Ιεραρχική δομή Έμφαση στην οργάνωση (isa, partof,

Διαβάστε περισσότερα

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

οµηµένες Αναπαραστάσεις Γνώσης

οµηµένες Αναπαραστάσεις Γνώσης Κεφάλαιο 10 οµηµένες Αναπαραστάσεις Γνώσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου οµηµένες Αναπαραστάσεις Γνώσης Κλασική Λογική: αυστηρότητα

Διαβάστε περισσότερα

Rule Based systems Συστήματα Βασισμένα σε κανόνες

Rule Based systems Συστήματα Βασισμένα σε κανόνες Rule Based systems Συστήματα Βασισμένα σε κανόνες Τμήματα ενός έμπειρου συστήματος βασισμένου σε κανόνες Βάση Γνώσης (Κανόνες) Μηχανισμός Εξαγωγής Συμπερασμάτων Χώρος Εργασίας (Γεγονότα) Μηχανισμός Επεξήγησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 - Συστήματα Κανόνων

ΚΕΦΑΛΑΙΟ 3 - Συστήματα Κανόνων ΚΕΦΑΛΑΙΟ 3 - Συστήματα Κανόνων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται ο χώρος των συστημάτων κανόνων με επικέντρωση στα συστήματα παραγωγής. Η χρήση κανόνων για την αναπαράσταση της διαδικαστικής και επεισοδιακής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Ενότητα 1: Εισαγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος.

4. Ο,τιδήποτε δεν ορίζεται με βάση τα (1) (3) δεν είναι προτασιακός τύπος. Κεφάλαιο 10 Μαθηματική Λογική 10.1 Προτασιακή Λογική Η γλώσσα της μαθηματικής λογικής στηρίζεται βασικά στις εργασίες του Boole και του Frege. Ο Προτασιακός Λογισμός περιλαμβάνει στο αλφάβητό του, εκτός

Διαβάστε περισσότερα

Δομημένη Αναπαράσταση Γνώσης

Δομημένη Αναπαράσταση Γνώσης Δομημένη Αναπαράσταση Γνώσης Δομημένες Αναπαραστάσεις Γνώσης Κλασική Λογική: αυστηρότητα στην αναπαράσταση της γνώσης Στην πράξη: απαιτείται μια λιγότερο αυστηρή και περισσότερο διαισθητική προσέγγιση

Διαβάστε περισσότερα

ΠΛΑΙΣΙΑ. Τα πλαίσια έχουν:

ΠΛΑΙΣΙΑ. Τα πλαίσια έχουν: ΠΛΑΙΣΙΑ Ορίστηκαν από τον Minsky σαν "δοµές δεδοµένων για την αναπαράσταση στερεότυπων καταστάσεων". Ονοµάζονται και σχήµατα (schemata). Κατά µία έννοια αποτελούν εξέλιξη των σηµαντικών δικτύων (ή δικτύων

Διαβάστε περισσότερα

Λογικός Προγραμματισμός

Λογικός Προγραμματισμός Λογικός Προγραμματισμός Αναπαράσταση γνώσης: Λογικό Σύστημα. Μηχανισμός επεξεργασίας γνώσης: εξαγωγή συμπεράσματος. Υπολογισμός: Απόδειξη θεωρήματος (το συμπέρασμα ενδιαφέροντος) από αξιώματα (γνώση).

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές Μαθήματα 5& 6& 7& 8 Αναπαράσταση Γνώσης και Συλλογιστικές Αναπαράσταση Γνώσης και Συλλογιστικές Ορισμοί Chapter 7 Knowledge Codification Τι είναι Κωδικοποίηση Γνώσης Κωδικοποίηση της Γνώσης Knowledge Codification

Διαβάστε περισσότερα

! όπου το σύµβολο έχει την έννοια της παραγωγής, δηλαδή το αριστερό µέρος ισχύει ενώ το δεξιό µέρος συµπεραίνεται και προστίθεται στη βάση γνώσης.

! όπου το σύµβολο έχει την έννοια της παραγωγής, δηλαδή το αριστερό µέρος ισχύει ενώ το δεξιό µέρος συµπεραίνεται και προστίθεται στη βάση γνώσης. Αποδείξεις (1/2)! Χρησιµοποιούµε τις συνεπαγωγές της βάσης γνώσης για να βγάλουµε νέα συµπεράσµατα. Για παράδειγµα:! Από τις προτάσεις:! Ακαι Α Β! µπορούµε να βγάλουµε το συµπέρασµα (τεχνική modus ponens

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5)

Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Κατηγορηματικός Λογισμός (ΗR Κεφάλαιο 2.1-2.5) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στον Κατηγορηματικό Λογισμό Σύνταξη Κανόνες Συμπερασμού Σημασιολογία ΕΠΛ 412 Λογική στην

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax

Ε ανάληψη. Παιχνίδια τύχης. Παιχνίδια ατελούς ληροφόρησης. Λογικοί ράκτορες. ΠΛΗ 405 Τεχνητή Νοηµοσύνη 2006. αναζήτηση expectiminimax ΠΛΗ 405 Τεχνητή Νοηµοσύνη Προτασιακή Λογική Propositional Logic Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Παιχνίδια τύχης αναζήτηση expectiminimax Παιχνίδια ατελούς

Διαβάστε περισσότερα

Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική

Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Κεφάλαιο 2 Λογικός προγραμματισμός Υπολογισμός με λογική Σύνοψη Το κεφάλαιο αυτό χωρίζεται σε δύο ενότητες. Στην πρώτη ενότητα επιχειρείται μια ιστορική αναδρομή στη λογική και τον λογικό προγραμματισμό,

Διαβάστε περισσότερα

Μηχανική Μάθηση Μερωνυµιών για Αναγνώριση Γεγονότων

Μηχανική Μάθηση Μερωνυµιών για Αναγνώριση Γεγονότων Μηχανική Μάθηση Μερωνυµιών για Αναγνώριση Γεγονότων Αναστάσιος Σκαρλατίδης 1,2 anskarl@iit.demokritos.gr επιβλέπων: Καθ. Βούρος Γ. 1 1 Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις Δεδομζνων II

Εισαγωγή στις Βάσεις Δεδομζνων II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ Εισαγωγή στις Βάσεις Δεδομζνων II Ενότητα: Λογική και Θεωρία Συνόλων Διδάσκων: Πηγουνάκης Κωστής ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00) ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00) Πέτρος Ρούσσος ΔΙΑΛΕΞΗ 5 Έννοιες και Κλασική Θεωρία Εννοιών Έννοιες : Θεμελιώδη στοιχεία από τα οποία αποτελείται το γνωστικό σύστημα Κλασική θεωρία [ή θεωρία καθοριστικών

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 9η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 9η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται εν μέρει στο βιβλίο Artificial Intelligence A Modern Approach των

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα

ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα ΚΕΦΑΛΑΙΟ 3: Κατηγορηματική Λογική Πρώτης Τάξεως και Λογικά Προγράμματα Λέξεις Κλειδιά Μαθηματική Λογική, Προτασιακή Λογική, Κατηγορηματική Λογική, Προτάσεις Horn, Λογικά Προγράμματα Περίληψη Το κεφάλαιο

Διαβάστε περισσότερα

Περιεχόµενα. ΜΕΡΟΣ Α: Επίλυση Προβληµάτων... 17

Περιεχόµενα. ΜΕΡΟΣ Α: Επίλυση Προβληµάτων... 17 ΠΡΟΛΟΓΟΣ... I ΠΡΟΛΟΓΟΣ ΤΩΝ ΣΥΓΓΡΑΦΕΩΝ...III ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΩΝ... IX ΠΕΡΙΕΧΟΜΕΝΑ... XI 1 ΕΙΣΑΓΩΓΗ... 1 1.1 ΤΙ ΕΙΝΑΙ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ... 1 1.1.1 Ορισµός της Νοηµοσύνης... 2 1.1.2 Ορισµός

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ Α.Μ. 06Μ16

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ Α.Μ. 06Μ16 Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μεθοδολογίας, Ιστορίας και Θεωρίας της Επιστήμης Π.Μ.Σ «Βασική και Εφαρμοσμένη Γνωσιακή Επιστήμη» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αναπαράσταση γνώσης ειδικού σε θέματα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Φροντιστήριο 4: Μορφολογική Παραγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 4: Μορφολογική Παραγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης

Διαβάστε περισσότερα

Συστήματα Γνώσης. Πρακτικό Κομμάτι Μαθήματος Πρόγραμμα Κίνησης Robot. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Τμήμα Πληροφορικής

Συστήματα Γνώσης. Πρακτικό Κομμάτι Μαθήματος Πρόγραμμα Κίνησης Robot. Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πρακτικό Κομμάτι Μαθήματος Πρόγραμμα Κίνησης Robot Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 5: Αναπαράσταση Γνώσης με Λογική Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

Κεφάλαιο 4 Σημασιολογία μιας Απλής Προστακτικής Γλώσσας

Κεφάλαιο 4 Σημασιολογία μιας Απλής Προστακτικής Γλώσσας Κεφάλαιο 4 Σημασιολογία μιας Απλής Προστακτικής Γλώσσας Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή - 1 Μία κλασσική γλώσσα προγραμματισμού αποτελείται από: Εκφράσεις (των

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο.

Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΤΥΠΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ Οι τυπικές μέθοδοι παρέχουν ένα πλαίσιο μέσα στο οποίο μπορούμε να προδιαγράψουμε και να εγκυροποιήσουμε ένα σύστημα με συστηματικό τρόπο. Όταν γράφουμε

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι

ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι ΚΑΤΗΓΟΡΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι Για τον προτασιακό λογισμό παρουσιάσαμε την αποδεικτική θεωρία (natural deduction/λογικό συμπέρασμα) τη σύνταξη (ορίζεται με γραμματική χωρίς συμφραζόμενα και εκφράζεται με συντακτικά

Διαβάστε περισσότερα

Προτασιακός Λογισμός (HR Κεφάλαιο 1)

Προτασιακός Λογισμός (HR Κεφάλαιο 1) Προτασιακός Λογισμός (HR Κεφάλαιο 1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνταξη Λογικός Συμπερασμός Σημασιολογία Ορθότητα και Πληρότητα Κανονικές Μορφές Προτάσεις Horn ΕΠΛ 412 Λογική

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Π2 Το Σύστηµα Κανόνων CLIPS

Π2 Το Σύστηµα Κανόνων CLIPS ΠΑΡΑΡΤΗΜΑ 2 Π2 Το Σύστηµα Κανόνων CLIPS Το CLIPS (C Language Integrated Production System) είναι ένα περιβάλλον που προσφέρει δυνατότητες για προγραµµατισµό µε κανόνες, αντικείµενα και συναρτήσεις. Αναπτύχθηκε

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες

Διαβάστε περισσότερα

Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων

Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων Κεφάλαιο 5 Αξιωματική Σημασιολογία και Απόδειξη Ορθότητας Προγραμμάτων Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Τα προγράμματα μιας (κλασικής) γλώσσας προγραμματισμού

Διαβάστε περισσότερα

Επαγωγικός Λογικός Προγραμματισμός και Aσαφείς Λογικές Περιγραφής

Επαγωγικός Λογικός Προγραμματισμός και Aσαφείς Λογικές Περιγραφής .. και Aσαφείς Λογικές Περιγραφής Άγγελος Χαραλαμπίδης Στασινός Κωνσταντόπουλος ΕΚΕΦΕ «Δημόκριτος» {acharal,konstant}@iit.demokritos.gr .. Σκελετός Ομιλίας Εισαγωγή .. Ορισμός Προβλήματος Γενικότερο πλαίσιο

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά (Τσικνο)Πέµπτη, 12/02/2015 Το υλικό των Αντώνης διαφανειών Α. Αργυρός έχει βασιστεί σε διαφάνειες του e-mail: Kees argyros@csd.uoc.gr van Deemter, από το University of Aberdeen

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως

Διαβάστε περισσότερα

Πληροφορική 2. Τεχνητή νοημοσύνη

Πληροφορική 2. Τεχνητή νοημοσύνη Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο

Διαβάστε περισσότερα

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4)

Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Ανάλυση της Ορθότητας Προγραμμάτων (HR Κεφάλαιο 4) Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Η διαδικαστική γλώσσα προγραμματισμού WHILE Τριάδες Hoare Μερική και Ολική Ορθότητα Προγραμμάτων Κανόνες

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική. Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης

Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική. Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης Γιώργος Στάμου Αναπαράσταση Οντολογικής Γνώσης και Συλλογιστική Κριτική Ανάγνωση: Ανδρέας-Γεώργιος Σταφυλοπάτης Γλωσσική επιμέλεια και επιμέλεια διαδραστικού υλικού: Αλέξανδρος Χορταράς Copyright ΣΕΑΒ,

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου)

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου) ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου) 1. Εισαγωγή Χαρακτηριστικά της γλώσσας Τύποι δεδοµένων Γλώσσα προγραµµατισµού

Διαβάστε περισσότερα

ΣΚΕΨΗ 30/11/2001. Εισαγωγή στην Ψυχολογία Σκέψη Στέλλα Βοσνιάδου

ΣΚΕΨΗ 30/11/2001. Εισαγωγή στην Ψυχολογία Σκέψη Στέλλα Βοσνιάδου ΣΚΕΨΗ Έννοιες Κλασσική θεωρία: αναγκαία και επαρκεί καθοριστικά γνωρίσµατα Θεωρία των προτύπων: Rosch Medin & Murphy Barsalou Αριθµός µετασχηµατισµών από το πρότυπο Η αναγνώριση των γεωµετρικών σχηµάτων,

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 18/02/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/18/2016

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Πρόταση. Αληθείς Προτάσεις

Πρόταση. Αληθείς Προτάσεις Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο

Διαβάστε περισσότερα

Αντικείμενα Μαθήματος. Μάθημα 2 Τι είναι Γνώση. Understanding Knowledge. Γνώση (knowledge) Ορισμοί

Αντικείμενα Μαθήματος. Μάθημα 2 Τι είναι Γνώση. Understanding Knowledge. Γνώση (knowledge) Ορισμοί Μάθημα 2 Τι είναι Γνώση Understanding Knowledge Chapter 2 Αντικείμενα Μαθήματος Ορισμοί Γνωστική Επιστήμη και ιαχείριση της Γνώσης εδομένα, Πληροφορία και Γνώση Είδη Γνώσης Συλλογιστική Εμπειρική Γνώση

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

Description Logics. Γεώργιος Χρ. Μακρής MSc, MEd

Description Logics. Γεώργιος Χρ. Μακρής MSc, MEd Γεώργιος Χρ. Μακρής MSc, MEd Γλώσσες Περιγραφικής Λογικής Είναι γλώσσες αναπαράστασης της γνώσης των οποίων τα κύρια χαρακτηριστικά είναι: ο αυστηρός μαθηματικός φορμαλισμός η απλότητα και η κομψότητα.

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 7η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 7η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/02/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 2/23/2017

Διαβάστε περισσότερα

Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού

Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Κεφάλαιο 3 Η Σημασιολογία των Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Εισαγωγή Γνώση γλώσσας από τη σκοπιά Του συντακτικού (syntax) Περιγραφή με γραμματικές

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές Αναπαράσταση Γνώσης και Συλλογιστικές Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος Μειονεκτήµατα προτασιακής λογικής

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Μαθηματική Λογική και Λογικός Προγραμματισμός

Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 11: Λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 11: Λογική πρώτης τάξης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 11: Λογική πρώτης τάξης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 21/02/2017 Το υλικό των διαφανειών έχει βασιστεί σε Αντώνης διαφάνειες Α. Αργυρός του Kees van e-mail: argyros@csd.uoc.gr Deemter, από το University of Aberdeen 2/21/2017

Διαβάστε περισσότερα

Χαρακτηριστικά, οµή και Λειτουργία Συστηµάτων Γνώσης

Χαρακτηριστικά, οµή και Λειτουργία Συστηµάτων Γνώσης Κεφάλαιο 21 Χαρακτηριστικά, οµή και Λειτουργία Συστηµάτων Γνώσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Συστήµατα Γνώσης Επιδεικνύουν νοήµονα

Διαβάστε περισσότερα

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ 1) Ποιοι είναι οι τελεστές σύγκρισης και

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ... 4 ΛΙΣΤΑ ΠΙΝΑΚΩΝ... 6 ΛΙΣΤΑ ΠΛΑΙΣΙΩΝ... 7 ΛΙΣΤΑ ΕΙΚΟΝΩΝ... 8 ΕΙΣΑΓΩΓΗ...9

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ... 4 ΛΙΣΤΑ ΠΙΝΑΚΩΝ... 6 ΛΙΣΤΑ ΠΛΑΙΣΙΩΝ... 7 ΛΙΣΤΑ ΕΙΚΟΝΩΝ... 8 ΕΙΣΑΓΩΓΗ...9 ΤΜΗΜΑ ΜΗΧ/ΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟY ΠΑΤΡΩΝ ιπλωµατική Εργασία για το Μεταπτυχιακό ίπλωµα Ειδίκευσης στην «Επιστήµη και Τεχνολογία Υπολογιστών» ΜΕΤΑΤΡΟΠΗ

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Ερωτήσεις Σωστό - Λάθος 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου αριθµού εντολών. 2. Η είσοδος σε έναν αλγόριθµο µπορεί να είναι έξοδος σε έναν άλλο αλγόριθµο. 3. Ένας αλγόριθµος

Διαβάστε περισσότερα