Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ"

Transcript

1 1 η ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ ΠΑΤΡΑ 17 ΙΑΝΟΥΑΡΙΟΥ 2012 Εισαγωγή

2 Ο Πυθαγόρας υποστήριζε ότι αποτελεί μια από τις κρυμμένες αρμονίες της φύσης, ο Ικτίνος τη χρησιμοποίησε στην κατασκευή του Παρθενώνα και ο Λεονάρντο Ντα Βίντσι στα υπέροχα και διαχρονικά ανεπανάληπτα γλυπτά του. Κανένας όμως δεν θα μπορούσε να φανταστεί ότι χαρακτηρίζει τη μορφή φυσικών σχηματισμών σε όλες τις κλίμακες των μεγεθών, από τις μικρότερες όπως είναι τα όστρακα, έως τις μεγαλύτερες όπως είναι οι κυκλώνες και οι γαλαξίες. Πρόκειται, λοιπόν για τη χρυσή τομή! Ο αριθμός αυτός που ισούται με 1, ονομάστηκε έτσι από τους αρχαίους και διαιρούσε μια γραμμή με τον τελειότερο τρόπο. Γι αυτόν το λόγο ο Πλάτωνας θεωρούσε ότι αυτός ο αριθμός βρίσκεται στον υπερουράνιο τόπο. Η φαινομενικά αυτή εύκολη κατασκευή απέκτησε τεράστια σημασία με το πέρασμα των αιώνων. Αυτό είναι και το θέμα της παρούσας ερευνητικής εργασίας: Να βρούμε, να μελετήσουμε και να μάθουμε τη σπουδαιότητα του χρυσού κανόνα στις τέχνες, την αρχιτεκτονική, τη φωτογραφία, τη μουσική και τη ζωγραφική. Καταλήξαμε στο συμπέρασμα ότι η χρυσή τομή έχει άμεση σχέση με την τέχνη γιατί χρησιμοποιώντας οι ζωγράφοι, οι μουσικοί, οι φωτογράφοι αλλά και οι αρχιτέκτονες το χρυσό κανόνα το αποτέλεσμα είναι η πιο ωραία αισθητικά εμφάνιση. Για παράδειγμα, ο Παρθενώνας του Ικτίνου διέπεται από τον χρυσό κανόνα στις διαστάσεις του, όπως τα γλυπτά του Φειδία και του Πραξιτέλη, οι ζωγραφικοί πίνακες του Ιταλού Λεονάρντο Ντα Βίντσι και μια σειρά από άλλα καλλιτεχνήματα που προκαλούν το θαυμασμό στους θεατές με τη μαθηματική αρμονία του χρυσού λόγου που χρησιμοποίησαν οι δημιουργοί τους. Ο πασίγνωστος αρχιτέκτονας των αρχαίων χρόνων, κατασκεύαζε τα γλυπτά του έτσι ώστε οι αναλογίες των διαστάσεων να δίνουν τον αριθμό 1+ τετραγωνική ρίζα του 5 προς 2, αφού είχε διαπιστωθεί ότι ο χρυσός λόγος υπάρχει ακόμη και στις αναλογίες των διαστάσεων του ανθρώπινου σώματος ενός φυσιολογικού ενήλικου ατόμου. Ο αριθμός Φ παρατηρείται και στις αναλογίες αρχιτεκτονικών κτισμάτων όπως ο Παρθενώνας, το αρχαίο θέατρο της Επιδαύρου αλλά και κτίσματα σύγχρονων αρχιτεκτόνων, όπως το κτίριο του ΟΗΕ στη Νέα Υόρκη. ΜΟΥΣΙΚΗ ΚΑΙ ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ Η ΜΟΥΣΙΚΗ ΣΤΟΥΣ ΠΥΘΑΓΟΡΕΙΟΥΣ Πριν από 26 αιώνες στην αρχαία Ελλάδα γεννήθηκε από τον Πυθαγόρα η ιδέα της σύνθεσης των μαθηματικών και της μουσικής. Ο φιλόσοφος γνώριζε πολύ καλά τη σχέση της μουσικής με τα μαθηματικά. Σύμφωνα με ειδικούς ερευνητές ο ίδιος και οι μαθητές του εντρύφησαν στη σχέση της μουσικής και των αριθμών μελετώντας το αρχαίο όργανο, το

3 μονόχορδο. Το μονόχορδο ήταν ένα όργανο με μια χορδή και ένα κινητό καβαλάρη που διαιρούσε τη χορδή, επιτρέποντας μόνο ένα τμήμα της να ταλαντώνεται. Το συγκεκριμένο όργανο θεωρείται ότι ανήκει στην οικογένεια του λαούτου. Επιπρόσθετα, το μονόχορδο χρησιμοποιήθηκε για τον καθορισμό των μαθηματικών σχέσεων των μουσικών ήχων. Ονομαζόταν και «Πυθαγόρειος κανών» διότι η εφεύρεσή του αποδιδόταν στον Πυθαγόρα. Εντυπωσιακό ήταν το γεγονός ότι μόνο ακριβείς μαθηματικές σχέσεις έδιναν αρμονικούς ήχους στο μονόχορδο. Για παράδειγμα, έπρεπε να χωρίσουν ακριβώς στη μέση τη χορδή και όχι περίπου στη μέση, ώστε να προκαλούν ευχάριστο ψυχικό συναίσθημα που απορρέει από έναν αρμονικό ήχο. Η αποδέσμευση της μελέτης των μουσικών φαινομένων από την Πυθαγόρεια παράδοση γίνεται αργά, σταδιακά και πραγματοποιείται σε ένα συνεχώς μεταβαλλόμενο, ιστορικό, κοινωνικό και πολιτισμικό πλαίσιο. Το μονόχορδο του Πυθαγόρα ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΟΥΣΙΚΗ ΣΤΗ ΔΥΤΙΚΗ ΕΥΡΩΠΗ Ο αριθμός και ο ρυθμός έχουν κοινή καταγωγή την οποία έλκουν από την κατάκτηση του χρόνου και την 1 προς 1 αντιστοιχία των χρονικών στιγμών με γεγονότα. Σήμερα οι δύο αυτές έννοιες συνυπάρχουν στον τρόπο με τον οποίο γράφεται η Δυτική μουσική. Η ανάπτυξη της ναυσιπλοΐας του 16ου αιώνα, μετά την ανακάλυψη του Νέου Κόσμου, δημιουργεί νέες απαιτήσεις για μεγαλύτερη ακρίβεια στις μετρήσεις και ιδιαίτερα στην κατασκευή αξιόπιστων ορολογιών. Η στροφή αυτή είναι καταλυτική για την έρευνα των μουσικών φαινόμενων, η οποία προσανατολίζεται πλέον προς τη μελέτη του τρόπου παραγωγής των ήχων.

4 Τον 17ο αιώνα επίσης, η μελέτη των παλμικών κινήσεων οδηγεί στη συγκρότηση της μαθηματικής έννοιας των περιοδικών φαινόμενων και η Τριγωνομετρία στρέφεται από την παραδοσιακά υπολογιστική της στάση σε μια περισσότερη αναλυτική θεώρηση. Τέλος, με τη βοήθεια της ανάλυσης κατά Fourier είναι πλέον δυνατόν να λυθεί η διαφορική εξίσωση της παλλόμενης νότας. Έτσι ένα μουσικό όργανο παίζει μία νότα, παράγει ήχους διάφορων συχνοτήτων. Ο Μότσαρτ διαίρεσε μεγάλο αριθμό από τις σονάτες του σε δύο μέρη, η χρονική αναλογία των οποίων αντιστοιχεί στη χρυσή τομή, του αριθμού Φ. Σύμφωνα με τον Putz: Στον καιρό του Μότσαρτ, η μουσική φόρμα της σονάτας εξελίχθηκε σε δύο μέρη: στην έκθεση που το μουσικό θέμα εισάγεται και στην ανάπτυξη και επανέκθεση που το θέμα αναπτύσσεται και επανεπισκέπτεται. Είναι αυτός ο χωρισμός σε δύο ευδιάκριτα τμήματα που δίνει την αιτία να αναρωτηθεί κανείς πως ο Μότσαρτ διένειμε αυτές τις εργασίες. Δηλαδή ο Μότσαρτ, διαίρεσε τις σονάτες του σύμφωνα με τη χρυσή αναλογία. Άλλοι μουσικοί που εφάρμοσαν τον κανόνα της χρυσής τομής στα έργα τους ήταν οι: Μπέλα Μπάρτοκ( ) και Κλώντ Ντεμπισύ( ). Ένας μεγάλος Έλληνας μουσικός, ο Γιάννης Ξενάκης ( ) ήταν ένας από τους σημαντικότερους Έλληνες συνθέτες και αρχιτέκτονες του 20 ου αιώνα. Οι πρωτοποριακές συνθετικές μέθοδοι που ανέπτυξε συσχέτισαν τη μουσική και την αρχιτεκτονική με τα μαθηματικά και τη φυσική μέσω της χρησιμοποίησης μοντέλων από τη θεωρία των συνόλων, των πιθανοτήτων, τη θερμοδυναμική, τη χρυσή τομή και την ακολουθία Φιμπονάτσι. Αξιοσημείωτο είναι ότι από νωρίς ενδιαφερόταν για τη σχέση των μαθηματικών και της μουσικής προσπαθώντας να βρει πώς θα μπορούσε να εφαρμοστούν μαθηματικά μοντέλα στη τέχνη της Φούγκας του Μπαχ, έτσι ώστε οι μουσικές δομές να αποδοθούν με παραστάσεις με γραφήματα ως οπτικές αντιστοιχίες της μουσικής. Ο Ξενάκης χρησιμοποίησε ως βάση για τις περισσότερες συνθέσεις του τα μαθηματικά μοντέλα με αποτέλεσμα να χαρακτηριστεί νεοπυθαγόρειος.

5 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ Ο ιερός αριθμός Φ βρίσκει εφαρμογή και στην αρχιτεκτονική από τα αρχαία χρόνια ως τις ημέρες μας. Φωτεινά παραδείγματα είναι ο Παρθενώνας, το αρχαίο θέατρο της Επιδαύρου και το κτίριο του Ο.Η.Ε στη Νέα Υόρκη. ΠΑΡΘΕΝΩΝΑΣ Η γνώση του αριθμού Φ και του χρυσού ορθογωνίου ανάγεται στους αρχαίους Έλληνες οι οποίοι εμπνεύστηκαν απ αυτόν στο πιο γνωστό έργο τέχνης. Η χρυσή τομή παίζει σημαντικό ρόλο στην αισθητική των επιφανειών, δηλαδή το <<αρμονικότερο>> αυτό του οποίου οι πλευρές έχουν ίσο λόγο με την χρυσή τομή. Η τάση αυτή ήταν ήδη γνωστή στους αρχιτέκτονες της αρχαίας Ελλάδας όπως δείχνει το γεγονός ότι η βάση και το ύψος της πρόσοψης του Παρθενώνα αν συνυπολογίσει κανείς και το τμήμα του αετώματος που λείπει, έχουν λόγο ίσο με τη χρυσή τομή. Ο Παρθενώνας είναι γεμάτος χρυσά ορθογώνια και προσαρμόζεται σχεδόν ακριβώς στο χρυσό ορθογώνιο. Οι αναλογίες του είναι προσεκτικά μελετημένες και η μεταξύ τους σχέση δίνει ένα αισθητικό αποτέλεσμα άνευ προηγουμένου. Μοναδικές είναι και οι περίφημες καμπυλότητες του: δεν υπάρχει σχεδόν καμιά ευθεία γραμμή στο σύνολο του κτηρίου, με τις οριζόντιες επιφάνειες να κυρτώνουν και τις κάθετες να είναι γυρτές προς το εσωτερικό του κτηρίου. Η τεχνική αυτή γνωστή κυρίως από το έργο του ρωμαίου μελετητή Βιτρούβιου είναι εξαιρετικά δύσκολη και σπάνια. Είναι ναός περίπτερος με δυο σειρές κολώνες μήκους 70 μέτρων και πλάτους 31, δωρικού ρυθμού με αρκετά Ιωνικά στοιχεία. Αυτή η σύνθεση των δυο αρχιτεκτονικών στοιχείων έκανε το πελώριο οικοδόμημα πιο ανάλαφρο. Τέλειες Αναλογίες: Άρχισε να χτίζεται το 447π.χ και τελείωσε το 438π.χ, δηλαδή εννέα χρονιά αργότερα. Για να ολοκληρωθούν όμως τα ανάγλυφα χρειάστηκαν άλλα πέντε χρόνια. Ενώ οι συνηθισμένοι δωρικοί ναοί έχουν έξι κίονες στο πλάτος και 13 κίονες στο μήκος, ο Παρθενώνας είναι μεγαλύτερος. Έχει οχτώ και δεκαεπτά κίονες. Αν συγκρίνετε το μέγεθός του (69,54μ. μήκος, 30,78μ. πλάτος, 20μ. ύψος) με διάφορα σύγχρονα κτήρια θα δείτε την τεράστια διαφορά που προκαλεί η οπτική εντύπωση. Το οπτικό αποτέλεσμα είναι εκτός από αρμονικό πολλές φορές και απροσδόκητο, μιας και ο Παρθενώνας καταφέρνει να δείχνει εντυπωσιακά μεγαλύτερος από το πραγματικό του μέγεθος χωρίς όμως να βαραίνει τον χώρο!

6 Ο Παρθενώνας ΤΟ ΘΕΑΤΡΟ ΤΗΣ ΕΠΙΔΑΥΡΟΥ Κάποια θέατρα ήταν ασυνήθιστα μελετημένα ως προς την κατασκευή. Χαρακτηριστικό παράδειγμα αποτελεί το μεγάλο θέατρο της Επιδαύρου που κατασκευάστηκε στο τέλος του 4 ου αιώνα π.χ ενώ το πάνω διάζωμα προστέθηκε στα τέλη του 3 ου π.χ αιώνα. Η ορχήστρα του είναι ένας τέλειος κύκλος ενώ το κοίλον του αποτελεί τμήμα σφαίρας. Το κάτω διάζωμα αποτελείται από 34 σειρές καθισμάτων και το πάνω από 21 δίνοντας 55 σειρές συνολικά. Το άθροισμα των πρώτων 10 αριθμών ( ) δίνει 55 το άθροισμα των πρώτων 6 δίνει 21( ) και το άθροισμα των 4 τελευταίων( ) δίνει 34. Ο χρυσός αριθμός Φ παρουσιάζεται και πάλι μιας και η αναλογία των δύο διαζωμάτων 21 προς 34 ισούται με 0,618(αριθμός Φ) αλλά και η αναλογία του κάτω διαζώματος προς το σύνολο των σειρών 34 προς 55 ισούται με 0,618 (αριθμός Φ) αποτελεί απόδειξη ενδελεχούς αρχιτεκτονικής και μαθηματικής μελέτης Απ ότι φαίνεται υπήρχε γνώση, μελέτη και διαχρονική συνέχεια σε τέτοιες κατασκευές. Ο Έλληνας αρχιτέκτονας Άρης Κωνσταντινίδης κατασκεύασε το περίπτερο στη Διεθνή Εκθεση Θεσσαλονίκης (1960) και ένα συγκρότημα κτηρίων που εξυπηρετεί το θέατρο της Επιδαύρου.

7 Το θέατρο της Επιδαύρου ΤΟ ΚΤΗΡΙΟ ΤΟΥ ΟΗΕ Το κτίριο του Ο.Η.Ε στη Νέα Υόρκη στο σχεδιασμό του οποίου συμμετείχε και ο Λε Κορμπυζιέ συνάδελφος του Γιάννη Ξενάκη, συναντάμε συχνά χρυσά ορθογώνια (χρησιμοποιούνται συχνά στα έργα τέχνης και η βάση τους είναι η χρυσή τομή του ύψους τους). ΑΡΧΑΙΟΕΛΛΗΝΙΚΕΣ ΤΟΠΟΘΕΣΙΕΣ ΚΑΙ Η ΣΧΕΣΗ ΤΟΥΣ ΜΕ ΤΟΝ ΧΡΥΣΟ ΛΟΓΟ Φ Οι Αρχαίοι Έλληνες για τις αποστάσεις χρησιμοποιούσαν σαν μονάδα μέτρησης το "στάδιο". Υπάρχει μία απίστευτη Γεωγραφική συμμετρία του Ελλαδικού χώρου και των αποστάσεων ή των γεωμετρικών σχημάτων που σχηματίζουν σημαντικά μνημεία της Ελλαδικής αρχαιότητας.ένα παράδειγμα είναι ο σχηματισμός ισοσκελούς τριγώνου μεταξύ της Ακρόπολης της Αθήνας, με τον ναό του Ποσειδώνα στο Σούνιο και τον ναό της Αφαίας Αθηνάς στην Αίγινα με απόσταση 242 στάδια. Σε κάθε γνωστό μνημείο της Αρχαίας Ελλάδας (π.χ. μαντείο των Δελφών, το ιερό νησί της Δήλου, το ιερό της Δωδώνης κ.λπ.) όταν "χαράξουμε" κύκλο με κέντρο το μνημείο και ακτίνα ένα άλλο μνημείο, τότε η νοητή περιφέρεια του κύκλου θα περάσει και από άλλο ένα μνημείο ή πόλη! (π.χ. κέντρο "την Δωδώνη" και ακτίνα κύκλου "την Αθήνα"... τότε η περιφέρεια του Κύκλου θα περάσει από την Σπάρτη!, κέντρο "οι Δελφοί" - ακτίνα η Αθήνα - θα περάσει η περιφέρεια και από την Ολυμπία..., Δήλος - Αργος - Μυκήνες... και πάρα πολλά άλλα παραδείγματα...). Η Χαλκίδα απέχει απ' την Θήβα και το Αμφιάρειο, 162 (Φ*100) στάδια (το ίδιο). Η απόσταση Θήβας - Αμφιαρείου είναι 262 στάδια (162 x 1.62 = 2.62 αλλά

8 και 100 x 2φ= 262) το τρίγωνο υπακούει στην αρμονία του χρυσού αριθμού φ=1.62. Η Χαλκίδα ισαπέχει επίσης απ' την Αθήνα και τα Μέγαρα 314 στάδια. Δηλαδή παρουσιάζονται ο χρυσός αριθμός φ και το π εκατονταπλασιασμένα. Η Σμύρνη ισαπέχει απ' την Αθήνα και την Θεσσαλονίκη (1620 στάδια). (Φ x 1000). Εκτός από την "ιερή" γεωγραφία του αρχαίου Ελλαδικού χώρου, είναι γνωστό ότι ο Παρθενώνας έχει κατασκευαστεί με αναλογίες και συνδυασμούς του ΧΡΥΣΟΥ αριθμού Φ = 1, και του π =3, Είναι τυχαίο ότι θεωρείται από το πιο λαμπρά μνημεία στην ιστορία της ανθρωπότητας ; Είναι τυχαία και συμπτωματική η χρήση στην κατασκευή του ναού του ΧΡΥΣΟΥ ΑΡΙΘΜΟΥ Φ ; Το πρώτο πράγμα που σκέφτεται κανείς είναι ότι πρόκειται για κάτι το ασύλληπτο. Ποιός ανθρώπινος νους θα μπορούσε να κάνει ανάλογους υπολογισμούς; Ποιό μυαλό θα μπορούσε να τοποθετήσει με τέτοια ακρίβεια ένα χάρτη ναών και πόλεων επάνω στη χερσόνησο της Αρχαίας Ελλάδας και, το σημαντικότερο, πώς κατάφεραν να ιδρύσουν και να χτίσουν αυτούς τους ναούς και αυτές τις πόλεις-κράτη υπακούοντας με ευλάβεια τις προσταγές αυτού του ασύλληπτου χάρτη; Τι εξυπηρετούσε η μυστική αυτή γεωγραφία; Και κατά προέκταση, γιατί αυτά τα καταπληκτικά επιτεύγματα του αρχαίου ελληνικού πνεύματος δεν τα διδαχτήκαμε ποτέ στα σχολεία μας; Πριν από κάποια χρόνια, ο Γάλλος ερευνητής Ζαν Ρισσέν προσπάθησε να αποδείξει ότι η Ελλάδα είναι ο χάρτης του νοητού σύμπαντος χάρη στους ναούς, τα ιερά και τις πόλεις της.αρκετά χρόνια αργότερα, ο Θεοφάνης Μάνιας, επανεξέτασε πιο διεξοδικά το θέμα, καταλήγοντας μέσα από τα βιβλία του «Τα Άγνωστα Μεγαλουργήματα των Αρχαίων Ελλήνων» και «Το Ελληνικό Πνεύμα στις Πυραμίδες της Αιγύπτου» σε εκπληκτικά και ασύλληπτα συμπεράσματα. Παραθέτουμε κάποια από τα σημαντικότερα εξ αυτών: Η Δήλος απέχει: 1020 στάδια από το Ασκληπιείο της Κω, όσο ακριβώς και από το Ασκληπιείο Επιδαύρου.1296 στάδια από τη Σμύρνη, όσο ακριβώς και από τη Θήβα στάδια από τους Δελφούς, όσο ακριβώς και από την Αλεξάνδρεια Τρωάδος στάδια από τη Σπάρτη, όσο ακριβώς και από την Πέργαμο. 800 στάδια από την Αθήνα, όσο ακριβώς και από την Καρδαμύλη Χίου στάδια από το Ρέθυμνο, όσο ακριβώς και από την Κνωσσό στάδια από την Κόρινθο, όσο ακριβώς και από τη Μυτιλήνη στάδια από τη Σαμοθράκη, όσο ακριβώς και από το Θέρμον στάδια από τις Μυκήνες, όσο ακριβώς και από το Άργος. Η Ελευσίνα απέχει: 100 στάδια από την Αθήνα, όσο ακριβώς και από τα Μέγαρα. 330 στάδια από την Κόρινθο, όσο ακριβώς και από το Σούνιο 1815

9 στάδια από την Πέργαμο, όσο ακριβώς και από την Μίλητο αλλά και την Κνωσσό. Το ισοσκελές τρίγωνο Δωδώνης - Ολυμπίας - Τροφωνίου μαντείου ανήκει σε κανονικό δεκάγωνο του οποίου τα γεωμετρικά στοιχεία προεκτεινόμενα συναντούν το Ίλιον, Σμύρνη, Κνωσό, Λάρισα τρωάδος, Σπάρτη, Πάρο, Φαιστό κ.λ.π. Το ισοσκελές τρίγωνο Δωδώνης - Ανακτόρων Νέστορος - Ελευσίνας με γωνία κορυφής 40 ανήκει σε κανονικό 9γωνο. Το τρίγωνο Δωδώνης - Αθήνας - Σπάρτης ανήκει σε κανονικό 13γωνο. Το τρίγωνο Δωδώνης - Κνωσού - Μιλήτου ανήκει σε κανονικό 12γωνο με γωνία κορυφής 30. Το τρίγωνο Δωδώνης - Δελφών - Ιωλκού είναι ισοσκελές και ανήκει σε κανονικό δωδεκάγωνο. Το ισοσκελές τρίγωνο Δωδώνης - Ολυμπίας - Τροφωνίου μαντείου ανήκει σε κανονικό δεκάγωνο. Πολλές χαρακτηριστικές ευθείες του τριγωνισμού προεκτεινόμενες συναντούν διάσημα ιερά, ναούς ή κέντρα λατρείας της Ελλάδας. Η ευθεία Χαλκίδας - Θηβών συναντά την Ολυμπία. Η ευθεία Χαλκίδας - Σουνίου συναντά την Κνωσό Κρήτης. Η ευθεία Χαλκίδας - Κρομμυώνος συναντά την Σπάρτη. Τι μπορούμε λοιπόν να συμπεράνουμε; Μα, τίποτα παραπάνω, τίποτα παρακάτω, από το ότι οι θέσεις των πόλεων, των ναών και των λατρευτικών χώρων είναι για κάποιον άγνωστο λόγο υπολογισμένες στην ακρίβεια με μαθηματικά συστήματα! Είναι πραγματικά κάτι το ασύλληπτο και για τους σύγχρονους επιστήμονες. Η σοφία των αρχαίων Ελλήνων δείχνει για ακόμα μια φορά να ξεπερνά και την πιο φιλόδοξη και αχαλίνωτη φαντασία. ΖΩΓΡΑΦΙΚΗ LEONARDO DA VINCI Στο φωτισμένο μυαλό του εμπνευσμένου αυτού, κάθε επιστήμη ολοκληρώνει τις άλλες. Η γεωμετρία π.χ τον συναρπάζει για πολλά χρόνια. Το οφείλει και στη φιλία με τον μοναχό Λουκά Πατσιόλι αυθεντία σε αυτή την επιστήμη, ο οποίος στο σύγγραμμά του <<Περί θείας αναλογίας>> (οπού επαναλάμβανε τις ιδέες του Πέτρου ντελα Φραντσέσκα) είχε ορίσει τους νόμους και για τη σύνθεση ενός έργου τέχνης.

10 Με βάση τις αρχές αυτές ο Λεονάρντο κωδικοποίησε τις αναλογίες του ανθρωπίνου σώματος και χρησιμοποίησε τη γεωμετρία ως σκελετό για τα ζωγραφικά του έργα. Μελετά τις συνθέσεις του σύμφωνα με ένα αρμονικό σχήμα που μπορεί να προσδιοριστεί πολύ εύκολα: η διαγώνιος, το τρίγωνο, ο κόλουρος κώνος, το τόξο, το τραπέζιο, η ελικοειδής γραμμή, και το πεντάγωνο περικλείονται και δικαιολογούνται από όλα τα έργα του. Στο μυαλό του επικρατεί η τάξη και η ακρίβεια και τίποτα δεν αφήνετε στην τύχη. Εξάλλου ο Λεονάρντο είχε την τάση να κωδικοποιεί τα πάντα. Παράδειγμα οι ατελείωτες σημειώσεις του για τις πραγματείες σε διάφορα θέματα (Μona Lisa, vitrouvious, Άγιος Ιερώνυμος, μελέτη αναλογιών προσώπου γερού). Ο Άνθρωπος του Βιτρούβιου είναι ένα διάσημο σχέδιο με συνοδευτικές σημειώσεις του Λεονάρντο ντα Βίντσι, που φτιάχτηκε περίπου το 1490 σε ένα από τα ημερολόγιά του. Απεικονίζει μία γυμνή αντρική φιγούρα σε δύο αλληλοκαλυπτόμενες θέσεις με τα μέλη του ανεπτυγμένα και συγχρόνως εγγεγραμμένη σε ένα κύκλο και ένα τετράγωνο. Το σχέδιο και το κείμενο συχνά ονομάζονται Κανόνας των Αναλογιών. Η επαναφορά των ανακαλύψεων των μαθηματικών αναλογιών του ανθρώπινου σώματος τον 15ο αιώνα από τον ντα Βίντσι και άλλους θεωρείται ένα από τα μεγάλα επιτεύγματα που οδήγησαν στην Ιταλική Αναγέννηση. Ας σημειωθεί ότι το σχέδιο του ντα Βίντσι συνδυάζει μια προσεκτική ανάγνωση του αρχαίου κειμένου με τις δικές του παρατηρήσεις σε αληθινά ανθρώπινα σώματα. Κατά το σχεδιασμό του κύκλου και του τετραγώνου πολύ σωστά παρατήρησε ότι το τετράγωνο δεν μπορεί να έχει το ίδιο κέντρο με τον κύκλο, στον ομφαλό, αλλά κάπου χαμηλότερα στην ανατομία. Αυτή η ρύθμιση είναι μια καινοτομία στο σχέδιο του ντα Βίντσι και το ξεχωρίζει από προγενέστερες απεικονίσεις. Το ίδιο το σχέδιο συχνά χρησιμοποιείται ως ένα υπονοούμενο σύμβολο της ουσιώδους συμμετρίας του ανθρώπινου σώματος, και κατά προέκταση του σύμπαντος ως σύνολο. Ο άνθρωπος του Βιτρούβιου

11 SALVADOR DALI Ο Salvador Dali ( ) ήταν διάσημος Ισπανός σουρεαλιστής ζωγράφος. Οι πίνακές του απεικόνιζαν έντονα γεωμετρικά- τοπολογικά στοιχεία. Επιπλέον σε πολλά έργα του απεικόνισε τον τρισδιάστατο χώρο στο συμβατικό χώρο των δύο διαστάσεων των πινάκων. Στο διάσημο έργο του Νταλί «Σε αναζήτηση της τέταρτης διάστασης» μπορούν να παρατηρηθούν στοιχεία τοπολογίας και τετραδιάστατης γεωμετρίας, έτσι που ο πίνακας φαίνεται να κινείται γύρω από μια υπερσφαίρα. VINCENT VAN GOGH Στο έργο του ολλανδού ζωγράφου αποδίδονται χαοτικές δίνες που ακολουθούν με ακρίβεια τις μαθηματικές περιγραφές των αναταράξεων σε ρευστά υλικά (π.χ. στροβιλισμοί του νερού σε ένα ταραγμένο ποτάμι ή ανεμοστρόβιλοι) Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΣΤΗ ΦΩΤΟΓΡΑΦΙΑ Ένας άλλος τομέας όπου ο αριθμός φ βρίσκει εφαρμογή είναι η τέχνη της φωτογραφίας.ο κανόνας λέει ότι :αβ/αγ=αγ/γβ=1,618. Δηλαδή εάν έχεις ένα τετράγωνο 1x1 το καλύτερο παραλληλόγραμμο που μπορείς να βγάλεις από αυτό με σκοπό να έχεις το συναίσθημα της χρυσής τομής θα είναι το 1x(1x1,618)=1x1,618.Απο κει και πέρα πολλαπλασιάζοντας η διαιρώντας με τον ίδιο αριθμό, θα έχεις το καλύτερο αισθητικό αποτέλεσμα (feeling than ever) στην εικόνα. Αλλιώς παίζεις με τα 2/3 η το 1/3 της εικόνας. Φυσικά κάποια τετράγωνα, από όλες τις συνθέσεις πάντα μπορούν να είναι άδεια και α αυτό που μας δίνει τον απαραίτητο αέρα στη σύνθεση π.χ στην κάτω εικόνα η πολυθρόνα είναι το πρώτο βασικό σχήμα. Το φωτιστικό έπρεπε να μην υπερβαίνει σε ύψος το τετράγωνο επί 1,618 αλλά και σε πλάτος φαίνεται ότι γεμίζει τα 2/3 της εικόνας και αφήνει το 1/3 κενό. Οι ίδιες συνθήκες αφορούν και στη λήψη φωτογραφίας. Από κάτω έχουμε μια φωτογραφία που βλέπεις ότι είναι χωρισμένη σε ένα κάναβο 1/3 και 2/3. Η κουρτινα γεμίζει το 1/3 της εικόνας σε πλάτος. Στο ύψος έχουμε διαιρέσει δια 3 και έχουμε ένα αντικείμενο σε κάθε κουτάκι. Όλα τα κουτάκια φυσικά ακολουθώντας τον κανόνα μπορούν να υποδιαιρεθούν αναλόγως και έτσι βρίσκουμε τη σωστή θέση του σκαμπό για μια άρτια οπτικά εικόνα. ΕΠΙΛΟΓΟΣ Συνοψίζοντας, η χρυσή τομή είναι μια συμπαντική σχέση που υφίσταται ανάμεσα σε δυο παράγοντες μια φυσικής εξίσωσης και εκφράζει την ιδανική αναλογία. Μέσα από τα λόγια μεγάλων μαθηματικών φαίνεται ότι η χρυσή

12 τομή είναι άρρηκτα συνδεδεμένη με τις εκφάνσεις της τέχνης που αναφέρθηκαν.ο Ηardy είπε χαρακτηριστικά : ο μαθηματικός όπως και ένας ζωγράφος ή ένας ποιητής είναι ένας σχεδιαστής. Ο ζωγράφος φτιάχνει σχέδια με σχήματα και χρώματα και ο ποιητής με ιδέες. Τα μαθηματικά σχεδιάσματα όπως εκείνα του ποιητή και του ζωγράφου πρέπει να είναι όμορφα. Δεν υπάρχει μόνιμη θέση στον κόσμο για άσχημα μαθηματικά! Επιπρόσθετα ο Paul Erdos είπε: Γιατί είναι όμορφοι οι αριθμοί; Είναι σαν να ρωτάς γιατί είναι όμορφη η ένατη συμφωνία του Μπετόβεν. Αν δεν μπορείς να δεις από μόνος σου δεν μπορεί να σου το πει κανείς. Γνωρίζω ότι τα μαθηματικά είναι όμορφα. Αν δεν είναι αυτά όμορφα τότε τίποτα δεν είναι!τέλος, η χρυσή τομή είναι το απαύγασμα της ιερής γεωμετρίας αντίστοιχη με τη χρυσή οδό του Βούδα. Αν η αγάπη είναι το θεμέλιο του δημιουργημένου κόσμου τότε η χρυσή τομή είναι το μαθηματικό της αντίστοιχο. ΒΙΒΛΙΟΓΡΑΦΙΑ Ελληνική Μαθηματική Εταιρία (Ευκλείδης) Βιβλιοθήκη 5 ου ΓΕΛ Πατρών Βιβλιοθήκη ανοιχτού Πανεπιστημίου Εφημερίδες Εγκυκλοπαίδειες(Δομή, Πάπυρος Λαρούς) Διαδίκτυο :( mathmosxos.blogspot.com)

ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΊΝΤΣΙ 1452-1519 ΒΑΣΙΛΕΙΟΥ ΕΥΤΥΧΙΑ ΓΚΕΚΑΣ ΤΡΥΦΩΝ ΑΡΣΕΝΙΔΗΣ ΕΥΘΥΜΙΟΣ

ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΊΝΤΣΙ 1452-1519 ΒΑΣΙΛΕΙΟΥ ΕΥΤΥΧΙΑ ΓΚΕΚΑΣ ΤΡΥΦΩΝ ΑΡΣΕΝΙΔΗΣ ΕΥΘΥΜΙΟΣ ΛΕΟΝΑΡΝΤΟ ΝΤΑ ΒΊΝΤΣΙ 1452-1519 ΒΑΣΙΛΕΙΟΥ ΕΥΤΥΧΙΑ ΓΚΕΚΑΣ ΤΡΥΦΩΝ ΑΡΣΕΝΙΔΗΣ ΕΥΘΥΜΙΟΣ 1 Ο Λεονάρντο ντα Βίντσι ήταν Ιταλός αρχιτέκτονας, ζωγράφος, γλύπτης, μουσικός, εφευρέτης, μηχανικός, ανατόμος, γεωμέτρης

Διαβάστε περισσότερα

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ Επιμέλεια: Μιχαηλίσιν Άννα- Μαρία, Τζιώτης Δημήτρης, Τσάτσα Κωνσταντίνα Η συμμετρία στο φυσικό κόσμο Η συμμετρία που κατεξοχήν

Διαβάστε περισσότερα

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι

Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι Ο Βιτρούβιος Άντρας του Λεονάρντο Ντα Βίντσι Ο Άνθρωπος του Βιτρούβιου είναι ένα διάσημο σχέδιο με συνοδευτικές σημειώσεις του Λεονάρντο Ντα Βίντσι, που φτιάχτηκε περίπου το 1490 σε ένα από τα ημερολόγιά

Διαβάστε περισσότερα

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΤΙ ΡΩΤΑΜΕ ΜΙΑ ΕΙΚΟΝΑ ; ΤΙ ΜΑΣ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΠΩΣ ΜΑΣ ΤΟ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης

Διαβάστε περισσότερα

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013 Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013 Η Χρυσή τοµή στην καθηµερινότητά µας Η χρυσή τοµή δεν είναι µόνο ένας µαθηµατικός όρος, αλλά και µια

Διαβάστε περισσότερα

ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ

ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ Η ΟΜΑΔΑ μας ανέλαβε το θέμα της σχέσης των Μαθηματικών με τη ΖΩΓΡΑΦΙΚΗ!!! ΠΑΡΟΥΣΙΑΣΗ-ΕΠΙΜΕΛΕΙΑ: ΓΟΥΛΑ ΕΙΡΗΝΗ, ΡΑΛΛΙΟΥ ΕΥΑΝΘΙΑ, ΤΣΙΜΗΤΡΑ ΑΓΓΕΛΙΚΗ. ΙΣΤΟΡΙΚΗ

Διαβάστε περισσότερα

Χρυσή τομή. 3.1 Εισαγωγή

Χρυσή τομή. 3.1 Εισαγωγή Χρυσή τομή 3.1 Εισαγωγή Ίσως όλοι έχουμε την εντύπωση πως αυτό που λέγεται λόγος χρυσής τομής, είναι μία έμπνευση των αρχαίων Ελλήνων την οποία εκμεταλλεύτηκαν για να κατασκευάσουν κτίσματα ή να δημιουργήσουν

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ Κατασκευή: Το μονόχορδο του Πυθαγόρα 2005-2006 Τόλιας Γιάννης Α1 Λ Υπεύθυνη Καθηγήτρια: Α. Τσαγκογέωργα Περιεχόμενα: Τίτλος Εργασίας Σκοπός Υπόθεση (Περιγραφή Κατασκευής) Ορισμός Μεταβλητών

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci»

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Μάθημα: Άλγεβρα Υπεύθυνος καθηγητής: κ. Σκοτίδας Τάξη: Β Λυκείου Τμήμα Β2 Ονοματεπώνυμο: Λαμπρινή Μαρίνα Λάππα Σχολικό έτος: 2010 2011 1 ΠΕΡΙΕΧΟΜΕΝΑ 1) Ποιο πρόβλημα

Διαβάστε περισσότερα

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του Ανδρέας Ιωάννου Κασσέτας ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του 1. Υπάρχει αριθµός τέτοιος ώστε εάν τον υψώσεις στο τετράγωνο να αυξηθεί

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

Κορδάτος Κωνσταντίνος Λισέβσκι Αντριάν Μακελαράκη Μελίνα Μιράντα Νίξον Μπελέρης Άρης Νεζεργιώτης Ιωάννης Παβλόβσκα Μάρτα Τάμπα Ιουλιάν

Κορδάτος Κωνσταντίνος Λισέβσκι Αντριάν Μακελαράκη Μελίνα Μιράντα Νίξον Μπελέρης Άρης Νεζεργιώτης Ιωάννης Παβλόβσκα Μάρτα Τάμπα Ιουλιάν ΟΙ ΜΑΘΗΤΕΣ ΤΟΥ PROJECT Αντέμι Ορέστης Γκαντάλλα Μάρκος Γεωργακόπουλος Ευάγγελος Γιώργκο Σπύρο Καρούσης Στέφανος Κερμέζο Χριστίνα Κονιτόπουλος Πέτρος-Παύλος Κορδάτος Κωνσταντίνος Λισέβσκι Αντριάν Μακελαράκη

Διαβάστε περισσότερα

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΦΑΙΔΡΑ ΚΟΥΡΒΙΣΙΑΝΟΥ ΒΑΣΙΛΗΣ ΚΑΤΣΑΝΤΩΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΗΛΙΟΠΟΥΛΟΣ ΑΝΔΡΕΑΣ ΚΑΣΙΜΑΤΗΣ Ερευνητικά Ερωτήματα Ποιοι είναι ΟΙ ΣΗΜΑΝΤΙΚΟΙ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 ΣΑΒΒΑΤΟ, 19 ΟΚΤΩΒΡΙΟΥ 013 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

Διαβάστε περισσότερα

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν 1. Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών και να παραστήσετε σε ορθογώνιο σύστημα αξόνων τα αντίστοιχα σημεία. α. αν = 4ν + 3 β. αν = 2 + ( 1) ν γ. 1 1 1 1 αν = + + +... + 1 2 2

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Η θεώρηση και επεξεργασία του θέματος οφείλει να γίνεται κυρίως από αρχιτεκτονικής απόψεως. Προσπάθεια κατανόησης της συνθετικής και κατασκευαστικής

Η θεώρηση και επεξεργασία του θέματος οφείλει να γίνεται κυρίως από αρχιτεκτονικής απόψεως. Προσπάθεια κατανόησης της συνθετικής και κατασκευαστικής ΑΝΑΓΝΩΣΗ - ΠΕΡΙΓΡΑΦΗ ΜΝΗΜΕΙΟΥ ΝΑΟΣ ΤΟΥ ΗΦΑΙΣΤΟΥ Η θεώρηση και επεξεργασία του θέματος οφείλει να γίνεται κυρίως από αρχιτεκτονικής απόψεως. Προσπάθεια κατανόησης της συνθετικής και κατασκευαστικής δομής

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 9 10 (Γ Γυμνασίου Α Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Ποιο από τα ακόλουθα είναι το αποτέλεσμα της διαίρεσης του αριθμού 20102010 με τον

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

Φύση και Μαθηματικά. Η χρυσή τομή φ

Φύση και Μαθηματικά. Η χρυσή τομή φ Φύση και Μαθηματικά Η χρυσή τομή φ Ερευνητική Εργασία (Project) Α' Λυκείου 1ο ΓΕΛ Ξάνθης 2011 2012 Επιβλέποντες καθηγητές Επαμεινώνδας Διαμαντόπουλος Βασιλική Κώττη Φύση και Μαθηματικά 2 Τι είναι η χρυσή

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ!

ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ! ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ! - Κύριε, πόσο μας χρειάζονται αυτά που μάθαμε πέρσι στα μαθηματικά της κατεύθυνσης; - Σοφία, αν όχι όλα, αρκετά από αυτά. - Για πείτε

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΑΡΧΑΙΑ ΑΙΓΥΠΤΟ H γενική τάση των κατοίκων της Αιγύπτου στις επιστήμες χαρακτηριζόταν από την προσπάθεια

Διαβάστε περισσότερα

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά Ερευνητική Εργασία - Ζωγραφική και Μαθηµατικά Ηλίας Νίνος Ερευνητική Εργασία µε θέµα: Μαθηµατικά και Τέχνη Υποθέµα: Μαθηµατικά και Ζωγραφική Οµάδα: Μαρία Βαζαίου- Ηρώ Μπρούφα- Μαθηµατικά εννοούµε την επιστήµη

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

ΠΑΡΑΧΩΡΗΣΕΙΣ ΑΡΧΑΙΟΛΟΓΙΚΩΝ ΧΩΡΩΝ ΚΑΙ ΜΝΗΜΕΙΩΝ ΠΡΟΣ ΚΙΝΗΜΑΤΟΓΡΑΦΗΣΗ. Ανακτορούπολη - εξωτερικά της νότιας πλευράς του χώρου, Νέα Πέραμος

ΠΑΡΑΧΩΡΗΣΕΙΣ ΑΡΧΑΙΟΛΟΓΙΚΩΝ ΧΩΡΩΝ ΚΑΙ ΜΝΗΜΕΙΩΝ ΠΡΟΣ ΚΙΝΗΜΑΤΟΓΡΑΦΗΣΗ. Ανακτορούπολη - εξωτερικά της νότιας πλευράς του χώρου, Νέα Πέραμος ΠΑΡΑΧΩΡΗΣΕΙΣ ΑΡΧΑΙΟΛΟΓΙΚΩΝ ΧΩΡΩΝ ΚΑΙ ΜΝΗΜΕΙΩΝ ΠΡΟΣ ΚΙΝΗΜΑΤΟΓΡΑΦΗΣΗ Περιφέρεια Ανατολικής Μακεδονίας & Θράκης Αρχαιολογικός Χώρος Αβδήρων Αρχαιολογικός Χώρος Ζώνης, Έβρος Ιερό Μεγάλων θεών, Σαμοθράκη Αρχαίο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΘΕΜΑ ο ΘΕΜΑ 16950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας,

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας, ΠΡΟΟΠΤΙΚΗ Εισαγωγή Αυτό που στην εφαρμοσμένη γεωμετρία ονομάζουμε συχνά γραμμική προοπτική είναι ένα σύστημα αναπαράστασης του τρισδιάστατου χώρου σε επιφάνεια δύο διαστάσεων. Η μέθοδος αυτή απεικόνισης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

«ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ»

«ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ» ΤΑΚΕΦΑΛΑΙΑΤΟΥΒΙΒΛΙΟΥ 1. ΟΡΙΣΜΟΣ ΚΑΙ ΙΣΤΟΡΙΚΗ ΑΝΑΣΚΟΠΗΣΗ 2. ΒΙΟΓΡΑΦΙΕΣ:ΘΑΛΗΣ, ΠΥΘΑΓΟΡΑΣ, ΑΡΧΙΜΗ ΗΣ, ΕΥΚΛΕΙ ΗΣ 3. ΜΑΘΗΜΑΤΙΚΑ: ΑΝΑΚΑΛΥΨΗ Η ΕΠΙΝΟΗΣΗ; 4. Ο ΘΑΥΜΑΣΤΟΣ ΚΟΣΜΟΣ ΤΩΝ

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος

Διαβάστε περισσότερα

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Πρώτη νύχτα Μονάδα Όνειρα ( εργασία ) Η έννοια του απείρου Φρόυντ Κλάσματα Αριθμητικό σύστημα ( εργασία

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α ΤΑΞΗΣ Το αναλυτικό πρόγραμμα που παρουσιάζουμε εδώ είναι μια πρόταση από περιεχόμενα που θα μπορούσαν να διδαχτούν στο σχολείο δεύτερης ευκαιρίας. Αυτό δεν σημαίνει ότι το πρόγραμμα

Διαβάστε περισσότερα

Μιχάλης Μακρή EFIAP. www.michalismakri.com

Μιχάλης Μακρή EFIAP. www.michalismakri.com Μιχάλης Μακρή EFIAP www.michalismakri.com Γιατί κάποιες φωτογραφίες είναι πιο ελκυστικές από τις άλλες; Γιατί κάποιες φωτογραφίες παραμένουν κρεμασμένες σε γκαλερί για μήνες ή και για χρόνια για να τις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο.

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή

Διαβάστε περισσότερα

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58].

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. Η συνεισφορά του Kepler στα Αρχιµήδεια ήταν µεγάλη, γιατί αυτός απέδειξε

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Αισθητική φιλοσοφία της τέχνης και του ωραίου

Αισθητική φιλοσοφία της τέχνης και του ωραίου Αισθητική φιλοσοφία της τέχνης και του ωραίου Αικατερίνη Καλέρη, Αν. Καθηγήτρια το μάθημα Αισθητική διδάσκεται στο 4ο έτος, Ζ εξάμηνο εισάγει στις κλασσικές έννοιες και θεωρίες της φιλοσοφίας της τέχνης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα

ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ. Ηρεμία, στατικότατα, σταθερότητα ΘΕΜΑΤΑ ΤΕΧΝΗΣ Β και Γ ΛΥΚΕΙΟΥ (μάθημα κατεύθυνσης) Τι είναι η δομή και η σύνθεση ενός εικαστικού έργου. Είναι η οργάνωση όλων των στοιχείων ενός έργου σε ένα ενιαίο σύνολο με στόχο να εκφράσουν κάποια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί

Διαβάστε περισσότερα

«Οι Σπουδές στην Αρχιτεκτονική»

«Οι Σπουδές στην Αρχιτεκτονική» ΓΡΑΦΕΙΟ ΔΙΑΣΥΝΔΕΣΗΣ ΣΠΟΥΔΩΝ ΚΑΙ ΣΤΑΔΙΟΔΡΟΜΙΑΣ «Οι Σπουδές στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» Πολυτεχνική Σχολή Τμήμα Αρχιτεκτόνων Καθηγητής Μιχαήλ Ε. Νομικός «Οι Σπουδές στην Αρχιτεκτονική» Δεκέμβριος

Διαβάστε περισσότερα

Η γεωμετρία της ζωής. Ερευνητική εργασία Α Λυκείου 2ου ΓΕΛ ΚΑΒΑΛΑΣ

Η γεωμετρία της ζωής. Ερευνητική εργασία Α Λυκείου 2ου ΓΕΛ ΚΑΒΑΛΑΣ Η γεωμετρία της ζωής Ερευνητική εργασία Α Λυκείου 2ου ΓΕΛ ΚΑΒΑΛΑΣ Τι μελετά η γεωμετρία ; Γεωμετρία είναι ο κλάδος των μαθηματικών που ασχολείται με χωρικές σχέσεις, δηλαδή με τη σύνθεση του χώρου που

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα

Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή Δρ. Κυριακή Τσιλίκα Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Θεσσαλίας Η απαρχή της Γεωμετρίας Οι Βαβυλώνιοι, για πρώτη φορά,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα