Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ"

Transcript

1 1 η ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΧΡΥΣΗ ΤΟΜΗ ΤΕΧΝΕΣ ΜΑΘΗΤΕΣ ΛΑΜΠΡΟΠΟΥΛΟΥ ΕΥΑ ΜΑΝΕΝΤΗ ΖΩΗ ΑΝΤΩΝΑΤΟΥ ΑΣΠΑ ΔΡΟΓΓΙΤΗΣ ΓΙΩΡΓΟΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΗΤΡΙΑ ΑΝΤΩΝΟΠΟΥΛΟΥ ΕΛΠΙΔΑ ΠΑΤΡΑ 17 ΙΑΝΟΥΑΡΙΟΥ 2012 Εισαγωγή

2 Ο Πυθαγόρας υποστήριζε ότι αποτελεί μια από τις κρυμμένες αρμονίες της φύσης, ο Ικτίνος τη χρησιμοποίησε στην κατασκευή του Παρθενώνα και ο Λεονάρντο Ντα Βίντσι στα υπέροχα και διαχρονικά ανεπανάληπτα γλυπτά του. Κανένας όμως δεν θα μπορούσε να φανταστεί ότι χαρακτηρίζει τη μορφή φυσικών σχηματισμών σε όλες τις κλίμακες των μεγεθών, από τις μικρότερες όπως είναι τα όστρακα, έως τις μεγαλύτερες όπως είναι οι κυκλώνες και οι γαλαξίες. Πρόκειται, λοιπόν για τη χρυσή τομή! Ο αριθμός αυτός που ισούται με 1, ονομάστηκε έτσι από τους αρχαίους και διαιρούσε μια γραμμή με τον τελειότερο τρόπο. Γι αυτόν το λόγο ο Πλάτωνας θεωρούσε ότι αυτός ο αριθμός βρίσκεται στον υπερουράνιο τόπο. Η φαινομενικά αυτή εύκολη κατασκευή απέκτησε τεράστια σημασία με το πέρασμα των αιώνων. Αυτό είναι και το θέμα της παρούσας ερευνητικής εργασίας: Να βρούμε, να μελετήσουμε και να μάθουμε τη σπουδαιότητα του χρυσού κανόνα στις τέχνες, την αρχιτεκτονική, τη φωτογραφία, τη μουσική και τη ζωγραφική. Καταλήξαμε στο συμπέρασμα ότι η χρυσή τομή έχει άμεση σχέση με την τέχνη γιατί χρησιμοποιώντας οι ζωγράφοι, οι μουσικοί, οι φωτογράφοι αλλά και οι αρχιτέκτονες το χρυσό κανόνα το αποτέλεσμα είναι η πιο ωραία αισθητικά εμφάνιση. Για παράδειγμα, ο Παρθενώνας του Ικτίνου διέπεται από τον χρυσό κανόνα στις διαστάσεις του, όπως τα γλυπτά του Φειδία και του Πραξιτέλη, οι ζωγραφικοί πίνακες του Ιταλού Λεονάρντο Ντα Βίντσι και μια σειρά από άλλα καλλιτεχνήματα που προκαλούν το θαυμασμό στους θεατές με τη μαθηματική αρμονία του χρυσού λόγου που χρησιμοποίησαν οι δημιουργοί τους. Ο πασίγνωστος αρχιτέκτονας των αρχαίων χρόνων, κατασκεύαζε τα γλυπτά του έτσι ώστε οι αναλογίες των διαστάσεων να δίνουν τον αριθμό 1+ τετραγωνική ρίζα του 5 προς 2, αφού είχε διαπιστωθεί ότι ο χρυσός λόγος υπάρχει ακόμη και στις αναλογίες των διαστάσεων του ανθρώπινου σώματος ενός φυσιολογικού ενήλικου ατόμου. Ο αριθμός Φ παρατηρείται και στις αναλογίες αρχιτεκτονικών κτισμάτων όπως ο Παρθενώνας, το αρχαίο θέατρο της Επιδαύρου αλλά και κτίσματα σύγχρονων αρχιτεκτόνων, όπως το κτίριο του ΟΗΕ στη Νέα Υόρκη. ΜΟΥΣΙΚΗ ΚΑΙ ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ Η ΜΟΥΣΙΚΗ ΣΤΟΥΣ ΠΥΘΑΓΟΡΕΙΟΥΣ Πριν από 26 αιώνες στην αρχαία Ελλάδα γεννήθηκε από τον Πυθαγόρα η ιδέα της σύνθεσης των μαθηματικών και της μουσικής. Ο φιλόσοφος γνώριζε πολύ καλά τη σχέση της μουσικής με τα μαθηματικά. Σύμφωνα με ειδικούς ερευνητές ο ίδιος και οι μαθητές του εντρύφησαν στη σχέση της μουσικής και των αριθμών μελετώντας το αρχαίο όργανο, το

3 μονόχορδο. Το μονόχορδο ήταν ένα όργανο με μια χορδή και ένα κινητό καβαλάρη που διαιρούσε τη χορδή, επιτρέποντας μόνο ένα τμήμα της να ταλαντώνεται. Το συγκεκριμένο όργανο θεωρείται ότι ανήκει στην οικογένεια του λαούτου. Επιπρόσθετα, το μονόχορδο χρησιμοποιήθηκε για τον καθορισμό των μαθηματικών σχέσεων των μουσικών ήχων. Ονομαζόταν και «Πυθαγόρειος κανών» διότι η εφεύρεσή του αποδιδόταν στον Πυθαγόρα. Εντυπωσιακό ήταν το γεγονός ότι μόνο ακριβείς μαθηματικές σχέσεις έδιναν αρμονικούς ήχους στο μονόχορδο. Για παράδειγμα, έπρεπε να χωρίσουν ακριβώς στη μέση τη χορδή και όχι περίπου στη μέση, ώστε να προκαλούν ευχάριστο ψυχικό συναίσθημα που απορρέει από έναν αρμονικό ήχο. Η αποδέσμευση της μελέτης των μουσικών φαινομένων από την Πυθαγόρεια παράδοση γίνεται αργά, σταδιακά και πραγματοποιείται σε ένα συνεχώς μεταβαλλόμενο, ιστορικό, κοινωνικό και πολιτισμικό πλαίσιο. Το μονόχορδο του Πυθαγόρα ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΟΥΣΙΚΗ ΣΤΗ ΔΥΤΙΚΗ ΕΥΡΩΠΗ Ο αριθμός και ο ρυθμός έχουν κοινή καταγωγή την οποία έλκουν από την κατάκτηση του χρόνου και την 1 προς 1 αντιστοιχία των χρονικών στιγμών με γεγονότα. Σήμερα οι δύο αυτές έννοιες συνυπάρχουν στον τρόπο με τον οποίο γράφεται η Δυτική μουσική. Η ανάπτυξη της ναυσιπλοΐας του 16ου αιώνα, μετά την ανακάλυψη του Νέου Κόσμου, δημιουργεί νέες απαιτήσεις για μεγαλύτερη ακρίβεια στις μετρήσεις και ιδιαίτερα στην κατασκευή αξιόπιστων ορολογιών. Η στροφή αυτή είναι καταλυτική για την έρευνα των μουσικών φαινόμενων, η οποία προσανατολίζεται πλέον προς τη μελέτη του τρόπου παραγωγής των ήχων.

4 Τον 17ο αιώνα επίσης, η μελέτη των παλμικών κινήσεων οδηγεί στη συγκρότηση της μαθηματικής έννοιας των περιοδικών φαινόμενων και η Τριγωνομετρία στρέφεται από την παραδοσιακά υπολογιστική της στάση σε μια περισσότερη αναλυτική θεώρηση. Τέλος, με τη βοήθεια της ανάλυσης κατά Fourier είναι πλέον δυνατόν να λυθεί η διαφορική εξίσωση της παλλόμενης νότας. Έτσι ένα μουσικό όργανο παίζει μία νότα, παράγει ήχους διάφορων συχνοτήτων. Ο Μότσαρτ διαίρεσε μεγάλο αριθμό από τις σονάτες του σε δύο μέρη, η χρονική αναλογία των οποίων αντιστοιχεί στη χρυσή τομή, του αριθμού Φ. Σύμφωνα με τον Putz: Στον καιρό του Μότσαρτ, η μουσική φόρμα της σονάτας εξελίχθηκε σε δύο μέρη: στην έκθεση που το μουσικό θέμα εισάγεται και στην ανάπτυξη και επανέκθεση που το θέμα αναπτύσσεται και επανεπισκέπτεται. Είναι αυτός ο χωρισμός σε δύο ευδιάκριτα τμήματα που δίνει την αιτία να αναρωτηθεί κανείς πως ο Μότσαρτ διένειμε αυτές τις εργασίες. Δηλαδή ο Μότσαρτ, διαίρεσε τις σονάτες του σύμφωνα με τη χρυσή αναλογία. Άλλοι μουσικοί που εφάρμοσαν τον κανόνα της χρυσής τομής στα έργα τους ήταν οι: Μπέλα Μπάρτοκ( ) και Κλώντ Ντεμπισύ( ). Ένας μεγάλος Έλληνας μουσικός, ο Γιάννης Ξενάκης ( ) ήταν ένας από τους σημαντικότερους Έλληνες συνθέτες και αρχιτέκτονες του 20 ου αιώνα. Οι πρωτοποριακές συνθετικές μέθοδοι που ανέπτυξε συσχέτισαν τη μουσική και την αρχιτεκτονική με τα μαθηματικά και τη φυσική μέσω της χρησιμοποίησης μοντέλων από τη θεωρία των συνόλων, των πιθανοτήτων, τη θερμοδυναμική, τη χρυσή τομή και την ακολουθία Φιμπονάτσι. Αξιοσημείωτο είναι ότι από νωρίς ενδιαφερόταν για τη σχέση των μαθηματικών και της μουσικής προσπαθώντας να βρει πώς θα μπορούσε να εφαρμοστούν μαθηματικά μοντέλα στη τέχνη της Φούγκας του Μπαχ, έτσι ώστε οι μουσικές δομές να αποδοθούν με παραστάσεις με γραφήματα ως οπτικές αντιστοιχίες της μουσικής. Ο Ξενάκης χρησιμοποίησε ως βάση για τις περισσότερες συνθέσεις του τα μαθηματικά μοντέλα με αποτέλεσμα να χαρακτηριστεί νεοπυθαγόρειος.

5 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ Ο ιερός αριθμός Φ βρίσκει εφαρμογή και στην αρχιτεκτονική από τα αρχαία χρόνια ως τις ημέρες μας. Φωτεινά παραδείγματα είναι ο Παρθενώνας, το αρχαίο θέατρο της Επιδαύρου και το κτίριο του Ο.Η.Ε στη Νέα Υόρκη. ΠΑΡΘΕΝΩΝΑΣ Η γνώση του αριθμού Φ και του χρυσού ορθογωνίου ανάγεται στους αρχαίους Έλληνες οι οποίοι εμπνεύστηκαν απ αυτόν στο πιο γνωστό έργο τέχνης. Η χρυσή τομή παίζει σημαντικό ρόλο στην αισθητική των επιφανειών, δηλαδή το <<αρμονικότερο>> αυτό του οποίου οι πλευρές έχουν ίσο λόγο με την χρυσή τομή. Η τάση αυτή ήταν ήδη γνωστή στους αρχιτέκτονες της αρχαίας Ελλάδας όπως δείχνει το γεγονός ότι η βάση και το ύψος της πρόσοψης του Παρθενώνα αν συνυπολογίσει κανείς και το τμήμα του αετώματος που λείπει, έχουν λόγο ίσο με τη χρυσή τομή. Ο Παρθενώνας είναι γεμάτος χρυσά ορθογώνια και προσαρμόζεται σχεδόν ακριβώς στο χρυσό ορθογώνιο. Οι αναλογίες του είναι προσεκτικά μελετημένες και η μεταξύ τους σχέση δίνει ένα αισθητικό αποτέλεσμα άνευ προηγουμένου. Μοναδικές είναι και οι περίφημες καμπυλότητες του: δεν υπάρχει σχεδόν καμιά ευθεία γραμμή στο σύνολο του κτηρίου, με τις οριζόντιες επιφάνειες να κυρτώνουν και τις κάθετες να είναι γυρτές προς το εσωτερικό του κτηρίου. Η τεχνική αυτή γνωστή κυρίως από το έργο του ρωμαίου μελετητή Βιτρούβιου είναι εξαιρετικά δύσκολη και σπάνια. Είναι ναός περίπτερος με δυο σειρές κολώνες μήκους 70 μέτρων και πλάτους 31, δωρικού ρυθμού με αρκετά Ιωνικά στοιχεία. Αυτή η σύνθεση των δυο αρχιτεκτονικών στοιχείων έκανε το πελώριο οικοδόμημα πιο ανάλαφρο. Τέλειες Αναλογίες: Άρχισε να χτίζεται το 447π.χ και τελείωσε το 438π.χ, δηλαδή εννέα χρονιά αργότερα. Για να ολοκληρωθούν όμως τα ανάγλυφα χρειάστηκαν άλλα πέντε χρόνια. Ενώ οι συνηθισμένοι δωρικοί ναοί έχουν έξι κίονες στο πλάτος και 13 κίονες στο μήκος, ο Παρθενώνας είναι μεγαλύτερος. Έχει οχτώ και δεκαεπτά κίονες. Αν συγκρίνετε το μέγεθός του (69,54μ. μήκος, 30,78μ. πλάτος, 20μ. ύψος) με διάφορα σύγχρονα κτήρια θα δείτε την τεράστια διαφορά που προκαλεί η οπτική εντύπωση. Το οπτικό αποτέλεσμα είναι εκτός από αρμονικό πολλές φορές και απροσδόκητο, μιας και ο Παρθενώνας καταφέρνει να δείχνει εντυπωσιακά μεγαλύτερος από το πραγματικό του μέγεθος χωρίς όμως να βαραίνει τον χώρο!

6 Ο Παρθενώνας ΤΟ ΘΕΑΤΡΟ ΤΗΣ ΕΠΙΔΑΥΡΟΥ Κάποια θέατρα ήταν ασυνήθιστα μελετημένα ως προς την κατασκευή. Χαρακτηριστικό παράδειγμα αποτελεί το μεγάλο θέατρο της Επιδαύρου που κατασκευάστηκε στο τέλος του 4 ου αιώνα π.χ ενώ το πάνω διάζωμα προστέθηκε στα τέλη του 3 ου π.χ αιώνα. Η ορχήστρα του είναι ένας τέλειος κύκλος ενώ το κοίλον του αποτελεί τμήμα σφαίρας. Το κάτω διάζωμα αποτελείται από 34 σειρές καθισμάτων και το πάνω από 21 δίνοντας 55 σειρές συνολικά. Το άθροισμα των πρώτων 10 αριθμών ( ) δίνει 55 το άθροισμα των πρώτων 6 δίνει 21( ) και το άθροισμα των 4 τελευταίων( ) δίνει 34. Ο χρυσός αριθμός Φ παρουσιάζεται και πάλι μιας και η αναλογία των δύο διαζωμάτων 21 προς 34 ισούται με 0,618(αριθμός Φ) αλλά και η αναλογία του κάτω διαζώματος προς το σύνολο των σειρών 34 προς 55 ισούται με 0,618 (αριθμός Φ) αποτελεί απόδειξη ενδελεχούς αρχιτεκτονικής και μαθηματικής μελέτης Απ ότι φαίνεται υπήρχε γνώση, μελέτη και διαχρονική συνέχεια σε τέτοιες κατασκευές. Ο Έλληνας αρχιτέκτονας Άρης Κωνσταντινίδης κατασκεύασε το περίπτερο στη Διεθνή Εκθεση Θεσσαλονίκης (1960) και ένα συγκρότημα κτηρίων που εξυπηρετεί το θέατρο της Επιδαύρου.

7 Το θέατρο της Επιδαύρου ΤΟ ΚΤΗΡΙΟ ΤΟΥ ΟΗΕ Το κτίριο του Ο.Η.Ε στη Νέα Υόρκη στο σχεδιασμό του οποίου συμμετείχε και ο Λε Κορμπυζιέ συνάδελφος του Γιάννη Ξενάκη, συναντάμε συχνά χρυσά ορθογώνια (χρησιμοποιούνται συχνά στα έργα τέχνης και η βάση τους είναι η χρυσή τομή του ύψους τους). ΑΡΧΑΙΟΕΛΛΗΝΙΚΕΣ ΤΟΠΟΘΕΣΙΕΣ ΚΑΙ Η ΣΧΕΣΗ ΤΟΥΣ ΜΕ ΤΟΝ ΧΡΥΣΟ ΛΟΓΟ Φ Οι Αρχαίοι Έλληνες για τις αποστάσεις χρησιμοποιούσαν σαν μονάδα μέτρησης το "στάδιο". Υπάρχει μία απίστευτη Γεωγραφική συμμετρία του Ελλαδικού χώρου και των αποστάσεων ή των γεωμετρικών σχημάτων που σχηματίζουν σημαντικά μνημεία της Ελλαδικής αρχαιότητας.ένα παράδειγμα είναι ο σχηματισμός ισοσκελούς τριγώνου μεταξύ της Ακρόπολης της Αθήνας, με τον ναό του Ποσειδώνα στο Σούνιο και τον ναό της Αφαίας Αθηνάς στην Αίγινα με απόσταση 242 στάδια. Σε κάθε γνωστό μνημείο της Αρχαίας Ελλάδας (π.χ. μαντείο των Δελφών, το ιερό νησί της Δήλου, το ιερό της Δωδώνης κ.λπ.) όταν "χαράξουμε" κύκλο με κέντρο το μνημείο και ακτίνα ένα άλλο μνημείο, τότε η νοητή περιφέρεια του κύκλου θα περάσει και από άλλο ένα μνημείο ή πόλη! (π.χ. κέντρο "την Δωδώνη" και ακτίνα κύκλου "την Αθήνα"... τότε η περιφέρεια του Κύκλου θα περάσει από την Σπάρτη!, κέντρο "οι Δελφοί" - ακτίνα η Αθήνα - θα περάσει η περιφέρεια και από την Ολυμπία..., Δήλος - Αργος - Μυκήνες... και πάρα πολλά άλλα παραδείγματα...). Η Χαλκίδα απέχει απ' την Θήβα και το Αμφιάρειο, 162 (Φ*100) στάδια (το ίδιο). Η απόσταση Θήβας - Αμφιαρείου είναι 262 στάδια (162 x 1.62 = 2.62 αλλά

8 και 100 x 2φ= 262) το τρίγωνο υπακούει στην αρμονία του χρυσού αριθμού φ=1.62. Η Χαλκίδα ισαπέχει επίσης απ' την Αθήνα και τα Μέγαρα 314 στάδια. Δηλαδή παρουσιάζονται ο χρυσός αριθμός φ και το π εκατονταπλασιασμένα. Η Σμύρνη ισαπέχει απ' την Αθήνα και την Θεσσαλονίκη (1620 στάδια). (Φ x 1000). Εκτός από την "ιερή" γεωγραφία του αρχαίου Ελλαδικού χώρου, είναι γνωστό ότι ο Παρθενώνας έχει κατασκευαστεί με αναλογίες και συνδυασμούς του ΧΡΥΣΟΥ αριθμού Φ = 1, και του π =3, Είναι τυχαίο ότι θεωρείται από το πιο λαμπρά μνημεία στην ιστορία της ανθρωπότητας ; Είναι τυχαία και συμπτωματική η χρήση στην κατασκευή του ναού του ΧΡΥΣΟΥ ΑΡΙΘΜΟΥ Φ ; Το πρώτο πράγμα που σκέφτεται κανείς είναι ότι πρόκειται για κάτι το ασύλληπτο. Ποιός ανθρώπινος νους θα μπορούσε να κάνει ανάλογους υπολογισμούς; Ποιό μυαλό θα μπορούσε να τοποθετήσει με τέτοια ακρίβεια ένα χάρτη ναών και πόλεων επάνω στη χερσόνησο της Αρχαίας Ελλάδας και, το σημαντικότερο, πώς κατάφεραν να ιδρύσουν και να χτίσουν αυτούς τους ναούς και αυτές τις πόλεις-κράτη υπακούοντας με ευλάβεια τις προσταγές αυτού του ασύλληπτου χάρτη; Τι εξυπηρετούσε η μυστική αυτή γεωγραφία; Και κατά προέκταση, γιατί αυτά τα καταπληκτικά επιτεύγματα του αρχαίου ελληνικού πνεύματος δεν τα διδαχτήκαμε ποτέ στα σχολεία μας; Πριν από κάποια χρόνια, ο Γάλλος ερευνητής Ζαν Ρισσέν προσπάθησε να αποδείξει ότι η Ελλάδα είναι ο χάρτης του νοητού σύμπαντος χάρη στους ναούς, τα ιερά και τις πόλεις της.αρκετά χρόνια αργότερα, ο Θεοφάνης Μάνιας, επανεξέτασε πιο διεξοδικά το θέμα, καταλήγοντας μέσα από τα βιβλία του «Τα Άγνωστα Μεγαλουργήματα των Αρχαίων Ελλήνων» και «Το Ελληνικό Πνεύμα στις Πυραμίδες της Αιγύπτου» σε εκπληκτικά και ασύλληπτα συμπεράσματα. Παραθέτουμε κάποια από τα σημαντικότερα εξ αυτών: Η Δήλος απέχει: 1020 στάδια από το Ασκληπιείο της Κω, όσο ακριβώς και από το Ασκληπιείο Επιδαύρου.1296 στάδια από τη Σμύρνη, όσο ακριβώς και από τη Θήβα στάδια από τους Δελφούς, όσο ακριβώς και από την Αλεξάνδρεια Τρωάδος στάδια από τη Σπάρτη, όσο ακριβώς και από την Πέργαμο. 800 στάδια από την Αθήνα, όσο ακριβώς και από την Καρδαμύλη Χίου στάδια από το Ρέθυμνο, όσο ακριβώς και από την Κνωσσό στάδια από την Κόρινθο, όσο ακριβώς και από τη Μυτιλήνη στάδια από τη Σαμοθράκη, όσο ακριβώς και από το Θέρμον στάδια από τις Μυκήνες, όσο ακριβώς και από το Άργος. Η Ελευσίνα απέχει: 100 στάδια από την Αθήνα, όσο ακριβώς και από τα Μέγαρα. 330 στάδια από την Κόρινθο, όσο ακριβώς και από το Σούνιο 1815

9 στάδια από την Πέργαμο, όσο ακριβώς και από την Μίλητο αλλά και την Κνωσσό. Το ισοσκελές τρίγωνο Δωδώνης - Ολυμπίας - Τροφωνίου μαντείου ανήκει σε κανονικό δεκάγωνο του οποίου τα γεωμετρικά στοιχεία προεκτεινόμενα συναντούν το Ίλιον, Σμύρνη, Κνωσό, Λάρισα τρωάδος, Σπάρτη, Πάρο, Φαιστό κ.λ.π. Το ισοσκελές τρίγωνο Δωδώνης - Ανακτόρων Νέστορος - Ελευσίνας με γωνία κορυφής 40 ανήκει σε κανονικό 9γωνο. Το τρίγωνο Δωδώνης - Αθήνας - Σπάρτης ανήκει σε κανονικό 13γωνο. Το τρίγωνο Δωδώνης - Κνωσού - Μιλήτου ανήκει σε κανονικό 12γωνο με γωνία κορυφής 30. Το τρίγωνο Δωδώνης - Δελφών - Ιωλκού είναι ισοσκελές και ανήκει σε κανονικό δωδεκάγωνο. Το ισοσκελές τρίγωνο Δωδώνης - Ολυμπίας - Τροφωνίου μαντείου ανήκει σε κανονικό δεκάγωνο. Πολλές χαρακτηριστικές ευθείες του τριγωνισμού προεκτεινόμενες συναντούν διάσημα ιερά, ναούς ή κέντρα λατρείας της Ελλάδας. Η ευθεία Χαλκίδας - Θηβών συναντά την Ολυμπία. Η ευθεία Χαλκίδας - Σουνίου συναντά την Κνωσό Κρήτης. Η ευθεία Χαλκίδας - Κρομμυώνος συναντά την Σπάρτη. Τι μπορούμε λοιπόν να συμπεράνουμε; Μα, τίποτα παραπάνω, τίποτα παρακάτω, από το ότι οι θέσεις των πόλεων, των ναών και των λατρευτικών χώρων είναι για κάποιον άγνωστο λόγο υπολογισμένες στην ακρίβεια με μαθηματικά συστήματα! Είναι πραγματικά κάτι το ασύλληπτο και για τους σύγχρονους επιστήμονες. Η σοφία των αρχαίων Ελλήνων δείχνει για ακόμα μια φορά να ξεπερνά και την πιο φιλόδοξη και αχαλίνωτη φαντασία. ΖΩΓΡΑΦΙΚΗ LEONARDO DA VINCI Στο φωτισμένο μυαλό του εμπνευσμένου αυτού, κάθε επιστήμη ολοκληρώνει τις άλλες. Η γεωμετρία π.χ τον συναρπάζει για πολλά χρόνια. Το οφείλει και στη φιλία με τον μοναχό Λουκά Πατσιόλι αυθεντία σε αυτή την επιστήμη, ο οποίος στο σύγγραμμά του <<Περί θείας αναλογίας>> (οπού επαναλάμβανε τις ιδέες του Πέτρου ντελα Φραντσέσκα) είχε ορίσει τους νόμους και για τη σύνθεση ενός έργου τέχνης.

10 Με βάση τις αρχές αυτές ο Λεονάρντο κωδικοποίησε τις αναλογίες του ανθρωπίνου σώματος και χρησιμοποίησε τη γεωμετρία ως σκελετό για τα ζωγραφικά του έργα. Μελετά τις συνθέσεις του σύμφωνα με ένα αρμονικό σχήμα που μπορεί να προσδιοριστεί πολύ εύκολα: η διαγώνιος, το τρίγωνο, ο κόλουρος κώνος, το τόξο, το τραπέζιο, η ελικοειδής γραμμή, και το πεντάγωνο περικλείονται και δικαιολογούνται από όλα τα έργα του. Στο μυαλό του επικρατεί η τάξη και η ακρίβεια και τίποτα δεν αφήνετε στην τύχη. Εξάλλου ο Λεονάρντο είχε την τάση να κωδικοποιεί τα πάντα. Παράδειγμα οι ατελείωτες σημειώσεις του για τις πραγματείες σε διάφορα θέματα (Μona Lisa, vitrouvious, Άγιος Ιερώνυμος, μελέτη αναλογιών προσώπου γερού). Ο Άνθρωπος του Βιτρούβιου είναι ένα διάσημο σχέδιο με συνοδευτικές σημειώσεις του Λεονάρντο ντα Βίντσι, που φτιάχτηκε περίπου το 1490 σε ένα από τα ημερολόγιά του. Απεικονίζει μία γυμνή αντρική φιγούρα σε δύο αλληλοκαλυπτόμενες θέσεις με τα μέλη του ανεπτυγμένα και συγχρόνως εγγεγραμμένη σε ένα κύκλο και ένα τετράγωνο. Το σχέδιο και το κείμενο συχνά ονομάζονται Κανόνας των Αναλογιών. Η επαναφορά των ανακαλύψεων των μαθηματικών αναλογιών του ανθρώπινου σώματος τον 15ο αιώνα από τον ντα Βίντσι και άλλους θεωρείται ένα από τα μεγάλα επιτεύγματα που οδήγησαν στην Ιταλική Αναγέννηση. Ας σημειωθεί ότι το σχέδιο του ντα Βίντσι συνδυάζει μια προσεκτική ανάγνωση του αρχαίου κειμένου με τις δικές του παρατηρήσεις σε αληθινά ανθρώπινα σώματα. Κατά το σχεδιασμό του κύκλου και του τετραγώνου πολύ σωστά παρατήρησε ότι το τετράγωνο δεν μπορεί να έχει το ίδιο κέντρο με τον κύκλο, στον ομφαλό, αλλά κάπου χαμηλότερα στην ανατομία. Αυτή η ρύθμιση είναι μια καινοτομία στο σχέδιο του ντα Βίντσι και το ξεχωρίζει από προγενέστερες απεικονίσεις. Το ίδιο το σχέδιο συχνά χρησιμοποιείται ως ένα υπονοούμενο σύμβολο της ουσιώδους συμμετρίας του ανθρώπινου σώματος, και κατά προέκταση του σύμπαντος ως σύνολο. Ο άνθρωπος του Βιτρούβιου

11 SALVADOR DALI Ο Salvador Dali ( ) ήταν διάσημος Ισπανός σουρεαλιστής ζωγράφος. Οι πίνακές του απεικόνιζαν έντονα γεωμετρικά- τοπολογικά στοιχεία. Επιπλέον σε πολλά έργα του απεικόνισε τον τρισδιάστατο χώρο στο συμβατικό χώρο των δύο διαστάσεων των πινάκων. Στο διάσημο έργο του Νταλί «Σε αναζήτηση της τέταρτης διάστασης» μπορούν να παρατηρηθούν στοιχεία τοπολογίας και τετραδιάστατης γεωμετρίας, έτσι που ο πίνακας φαίνεται να κινείται γύρω από μια υπερσφαίρα. VINCENT VAN GOGH Στο έργο του ολλανδού ζωγράφου αποδίδονται χαοτικές δίνες που ακολουθούν με ακρίβεια τις μαθηματικές περιγραφές των αναταράξεων σε ρευστά υλικά (π.χ. στροβιλισμοί του νερού σε ένα ταραγμένο ποτάμι ή ανεμοστρόβιλοι) Ο ΙΕΡΟΣ ΑΡΙΘΜΟΣ Φ ΣΤΗ ΦΩΤΟΓΡΑΦΙΑ Ένας άλλος τομέας όπου ο αριθμός φ βρίσκει εφαρμογή είναι η τέχνη της φωτογραφίας.ο κανόνας λέει ότι :αβ/αγ=αγ/γβ=1,618. Δηλαδή εάν έχεις ένα τετράγωνο 1x1 το καλύτερο παραλληλόγραμμο που μπορείς να βγάλεις από αυτό με σκοπό να έχεις το συναίσθημα της χρυσής τομής θα είναι το 1x(1x1,618)=1x1,618.Απο κει και πέρα πολλαπλασιάζοντας η διαιρώντας με τον ίδιο αριθμό, θα έχεις το καλύτερο αισθητικό αποτέλεσμα (feeling than ever) στην εικόνα. Αλλιώς παίζεις με τα 2/3 η το 1/3 της εικόνας. Φυσικά κάποια τετράγωνα, από όλες τις συνθέσεις πάντα μπορούν να είναι άδεια και α αυτό που μας δίνει τον απαραίτητο αέρα στη σύνθεση π.χ στην κάτω εικόνα η πολυθρόνα είναι το πρώτο βασικό σχήμα. Το φωτιστικό έπρεπε να μην υπερβαίνει σε ύψος το τετράγωνο επί 1,618 αλλά και σε πλάτος φαίνεται ότι γεμίζει τα 2/3 της εικόνας και αφήνει το 1/3 κενό. Οι ίδιες συνθήκες αφορούν και στη λήψη φωτογραφίας. Από κάτω έχουμε μια φωτογραφία που βλέπεις ότι είναι χωρισμένη σε ένα κάναβο 1/3 και 2/3. Η κουρτινα γεμίζει το 1/3 της εικόνας σε πλάτος. Στο ύψος έχουμε διαιρέσει δια 3 και έχουμε ένα αντικείμενο σε κάθε κουτάκι. Όλα τα κουτάκια φυσικά ακολουθώντας τον κανόνα μπορούν να υποδιαιρεθούν αναλόγως και έτσι βρίσκουμε τη σωστή θέση του σκαμπό για μια άρτια οπτικά εικόνα. ΕΠΙΛΟΓΟΣ Συνοψίζοντας, η χρυσή τομή είναι μια συμπαντική σχέση που υφίσταται ανάμεσα σε δυο παράγοντες μια φυσικής εξίσωσης και εκφράζει την ιδανική αναλογία. Μέσα από τα λόγια μεγάλων μαθηματικών φαίνεται ότι η χρυσή

12 τομή είναι άρρηκτα συνδεδεμένη με τις εκφάνσεις της τέχνης που αναφέρθηκαν.ο Ηardy είπε χαρακτηριστικά : ο μαθηματικός όπως και ένας ζωγράφος ή ένας ποιητής είναι ένας σχεδιαστής. Ο ζωγράφος φτιάχνει σχέδια με σχήματα και χρώματα και ο ποιητής με ιδέες. Τα μαθηματικά σχεδιάσματα όπως εκείνα του ποιητή και του ζωγράφου πρέπει να είναι όμορφα. Δεν υπάρχει μόνιμη θέση στον κόσμο για άσχημα μαθηματικά! Επιπρόσθετα ο Paul Erdos είπε: Γιατί είναι όμορφοι οι αριθμοί; Είναι σαν να ρωτάς γιατί είναι όμορφη η ένατη συμφωνία του Μπετόβεν. Αν δεν μπορείς να δεις από μόνος σου δεν μπορεί να σου το πει κανείς. Γνωρίζω ότι τα μαθηματικά είναι όμορφα. Αν δεν είναι αυτά όμορφα τότε τίποτα δεν είναι!τέλος, η χρυσή τομή είναι το απαύγασμα της ιερής γεωμετρίας αντίστοιχη με τη χρυσή οδό του Βούδα. Αν η αγάπη είναι το θεμέλιο του δημιουργημένου κόσμου τότε η χρυσή τομή είναι το μαθηματικό της αντίστοιχο. ΒΙΒΛΙΟΓΡΑΦΙΑ Ελληνική Μαθηματική Εταιρία (Ευκλείδης) Βιβλιοθήκη 5 ου ΓΕΛ Πατρών Βιβλιοθήκη ανοιχτού Πανεπιστημίου Εφημερίδες Εγκυκλοπαίδειες(Δομή, Πάπυρος Λαρούς) Διαδίκτυο :( mathmosxos.blogspot.com)

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ

ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ ΠΩΣ ΕΠΗΡΕΑΣΑΝ ΔΙΑΧΡΟΝΙΚΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΝ ΖΩΓΡΑΦΙΚΗ Η ΟΜΑΔΑ μας ανέλαβε το θέμα της σχέσης των Μαθηματικών με τη ΖΩΓΡΑΦΙΚΗ!!! ΠΑΡΟΥΣΙΑΣΗ-ΕΠΙΜΕΛΕΙΑ: ΓΟΥΛΑ ΕΙΡΗΝΗ, ΡΑΛΛΙΟΥ ΕΥΑΝΘΙΑ, ΤΣΙΜΗΤΡΑ ΑΓΓΕΛΙΚΗ. ΙΣΤΟΡΙΚΗ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ

ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΑ Α ΛΥΚΕΙΟΥ Κατασκευή: Το μονόχορδο του Πυθαγόρα 2005-2006 Τόλιας Γιάννης Α1 Λ Υπεύθυνη Καθηγήτρια: Α. Τσαγκογέωργα Περιεχόμενα: Τίτλος Εργασίας Σκοπός Υπόθεση (Περιγραφή Κατασκευής) Ορισμός Μεταβλητών

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

Μιχάλης Μακρή EFIAP. www.michalismakri.com

Μιχάλης Μακρή EFIAP. www.michalismakri.com Μιχάλης Μακρή EFIAP www.michalismakri.com Γιατί κάποιες φωτογραφίες είναι πιο ελκυστικές από τις άλλες; Γιατί κάποιες φωτογραφίες παραμένουν κρεμασμένες σε γκαλερί για μήνες ή και για χρόνια για να τις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΠΑΡΑΧΩΡΗΣΕΙΣ ΑΡΧΑΙΟΛΟΓΙΚΩΝ ΧΩΡΩΝ ΚΑΙ ΜΝΗΜΕΙΩΝ ΠΡΟΣ ΚΙΝΗΜΑΤΟΓΡΑΦΗΣΗ. Ανακτορούπολη - εξωτερικά της νότιας πλευράς του χώρου, Νέα Πέραμος

ΠΑΡΑΧΩΡΗΣΕΙΣ ΑΡΧΑΙΟΛΟΓΙΚΩΝ ΧΩΡΩΝ ΚΑΙ ΜΝΗΜΕΙΩΝ ΠΡΟΣ ΚΙΝΗΜΑΤΟΓΡΑΦΗΣΗ. Ανακτορούπολη - εξωτερικά της νότιας πλευράς του χώρου, Νέα Πέραμος ΠΑΡΑΧΩΡΗΣΕΙΣ ΑΡΧΑΙΟΛΟΓΙΚΩΝ ΧΩΡΩΝ ΚΑΙ ΜΝΗΜΕΙΩΝ ΠΡΟΣ ΚΙΝΗΜΑΤΟΓΡΑΦΗΣΗ Περιφέρεια Ανατολικής Μακεδονίας & Θράκης Αρχαιολογικός Χώρος Αβδήρων Αρχαιολογικός Χώρος Ζώνης, Έβρος Ιερό Μεγάλων θεών, Σαμοθράκη Αρχαίο

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT

ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ PROJECT Βασιλίσιν Μιχάλης, Δέφτο Χριστίνα, Ιλινιούκ Ίον, Κάσα Μαρία, Κουζμίδου Ελένη, Λαμπαδάς Αλέξης, Μάνε Χρισόστομος, Μάρκο Χριστίνα, Μπάμπη Χριστίνα, Σακατελιάν Λίλιτ, Σαχμπαζίδου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Πρώτη νύχτα Μονάδα Όνειρα ( εργασία ) Η έννοια του απείρου Φρόυντ Κλάσματα Αριθμητικό σύστημα ( εργασία

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

Αισθητική φιλοσοφία της τέχνης και του ωραίου

Αισθητική φιλοσοφία της τέχνης και του ωραίου Αισθητική φιλοσοφία της τέχνης και του ωραίου Αικατερίνη Καλέρη, Αν. Καθηγήτρια το μάθημα Αισθητική διδάσκεται στο 4ο έτος, Ζ εξάμηνο εισάγει στις κλασσικές έννοιες και θεωρίες της φιλοσοφίας της τέχνης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΤΟ ΑΡΧΑΙΟ ΘΕΑΤΡΟ ΤΗΣ ΛΙΝΔΟΥ ΣΟΦΙΑ ΒΑΣΑΛΟΥ ΒΠΠΓ

ΤΟ ΑΡΧΑΙΟ ΘΕΑΤΡΟ ΤΗΣ ΛΙΝΔΟΥ ΣΟΦΙΑ ΒΑΣΑΛΟΥ ΒΠΠΓ ΤΟ ΑΡΧΑΙΟ ΘΕΑΤΡΟ ΤΗΣ ΛΙΝΔΟΥ ΣΟΦΙΑ ΒΑΣΑΛΟΥ ΒΠΠΓ Περιγραφή μνημείου Το αρχαίο θέατρο της Λίνδου διαμορφώνεται στους πρόποδες της δυτικής πλαγιάς του βράχου της λινδιακής ακρόπολης. Το κοίλο χωρίζεται σε

Διαβάστε περισσότερα

Νηπιαγωγείο - Δημοτικό

Νηπιαγωγείο - Δημοτικό Νηπιαγωγείο - Δημοτικό Το πρόγραμμα «Τέχνη και Μαθηματικά» για το νηπιαγωγείο δημοτικό, αποτελείται από τρία διδακτικά μέρη, δύο εκ των οποίων είναι κοινά για τους μαθητές όλων των τάξεων (Μέρη Α & Β )

Διαβάστε περισσότερα

Α Κύκλος: 1 14 Ιουλίου 2013

Α Κύκλος: 1 14 Ιουλίου 2013 Α Κύκλος: 1 14 Ιουλίου 2013 ΔΕΥΤΕΡΑ, 1 Ιουλίου Άφιξη στο ξενοδοχείο Ιλισός και τακτοποίηση στα δωμάτια 17:30 Κέρασμα και συνάντηση με τους υπεύθυνους των Θερινών Σχολείων 20:30-23:00 ΤΡΙΤΗ, 2 Ιουλίου 09:30-10:00

Διαβάστε περισσότερα

τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή

τέτοιους ώστε ο ένας να είναι µέσος των άλλων, δηλαδή Η ιδέα, ότι όλα τα υλικά πράγµατα συντίθενται από αυτά τα τέσσερα πρωταρχικά στοιχεία, αποδίδεται στον προγενέστερό Εµπεδοκλή, Έλληνα φιλόσοφο, ποιητή και πολιτικό [493-433 π.χ.] που γεννήθηκε στον Ακράγαντα

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ Εαρινό εξάμηνο 2011 23.02.11 Χ. Χαραλάμπους ΑΠΘ Υπολογισμός (ακρίβεια έως 5 δεκαδικά) Yale Babylonian collection, 1800 π.χ. 24 51 10 1+ + + = 1.41421296 2 3 60 60 60 Τετραγωνική ρίζα του 2 Ποια είναι η

Διαβάστε περισσότερα

Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Θαλής ο Μιλήσιος

Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Θαλής ο Μιλήσιος ΕΝΟΤΗΤΑ 1 - ΕΙΣΑΓΩΓΙΚΑ ΕΛΛΗΝΙΚΑ Κείμενο 1 Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Είναι γνωστό πως στην Αρχαία Ελλάδα γίνονται τα πρώτα σημαντικά βήματα για την ανάπτυξη των επιστημών,

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Κώστας Μαλλιάκας, Καθηγητής Δ.Ε., 1 ο ΓΕΛ Ρόδου, kmath@otenet.gr

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης)

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΣΧΕΔΙΟ (Ελεύθερο και Προοπτικό) και που ενδέχεται

Διαβάστε περισσότερα

Φύση και Μαθηματικά. Η χρυσή τομή φ

Φύση και Μαθηματικά. Η χρυσή τομή φ Φύση και Μαθηματικά Η χρυσή τομή φ Ερευνητική Εργασία (Project) Α' Λυκείου 1ο ΓΕΛ Ξάνθης 2011 2012 Επιβλέποντες καθηγητές Επαμεινώνδας Διαμαντόπουλος Βασιλική Κώττη Φύση και Μαθηματικά 2 Τι είναι η χρυσή

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ

Διαβάστε περισσότερα

ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ. ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης. 1 ο ΕΤΟΣ

ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ. ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης. 1 ο ΕΤΟΣ ΣΧΟΛΕΙΟ ΓΙΑΝΝΙΤΣΩΝ ΣΧΕΔΙΟ ΕΡΓΑΣΙΑΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ Πολυτίδης Δημήτρης 1 ο ΕΤΟΣ 1 η φάση: Ερώτημα συζήτησης: Που χρησιμοποιείται τη γεωμετρία στην εργασία σας και στην καθημερινή σας ζωή. (Μια διδακτική ώρα).

Διαβάστε περισσότερα

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007

2 ο Εργαστήρι Λεσχών Ανάγνωσης. Πάρος 2-6 Ιουλίου 2007 2 ο Εργαστήρι Λεσχών Ανάγνωσης Πάρος 2-6 Ιουλίου 2007 Περίληψη Η Αλίκη µισεί τα µαθηµατικά και θεωρεί πως δε χρησιµεύουν σε τίποτα. Μια µέρα που κάθεται και διαβάζει στο πάρκο, ένα παράξενο άτοµο την προσκαλεί

Διαβάστε περισσότερα

Λίγα για το Πριν, το Τώρα και το Μετά.

Λίγα για το Πριν, το Τώρα και το Μετά. 1 Λίγα για το Πριν, το Τώρα και το Μετά. Ψάχνοντας από το εσωτερικό κάποιων εφημερίδων μέχρι σε πιο εξειδικευμένα περιοδικά και βιβλία σίγουρα θα έχουμε διαβάσει ή θα έχουμε τέλος πάντων πληροφορηθεί,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0

ΕΞΙΣΩΣΕΙΣ. 2.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Η εξίσωση αx β 0 ΕΞΙΣΩΣΕΙΣ.1 ΕΞΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ Η εξίσωση α 0 Στο Γυμνάσιο μάθαμε τον τρόπο επίλυσης των εξισώσεων της μορφής α 0 για συγκεκριμένους αριθμούς α,,με α 0 Γενικότερα τώρα, θα δούμε πώς με την οήθεια των

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ

ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ Δραστηριότητα 1 Εξερευνώντας το σχηματισμό των ψηφιδωτών. Ένα Ολλανδός ζωγράφος, ο M.C. Escher ( 1898-1972 ), έφτιαχνε ζωγραφικούς πίνακες χρησιμοποιώντας

Διαβάστε περισσότερα

ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΧΩΡΩΝ ΘΕΑΣΗΣ ΚΑΙ ΑΚΡΟΑΣΗΣ ΑΝΑ ΓΕΩΓΡΑΦΙΚΗ ΠΕΡΙΦΕΡΕΙΑ

ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΧΩΡΩΝ ΘΕΑΣΗΣ ΚΑΙ ΑΚΡΟΑΣΗΣ ΑΝΑ ΓΕΩΓΡΑΦΙΚΗ ΠΕΡΙΦΕΡΕΙΑ ΚΑΤΑΛΟΓΟΣ ΠΡΟΤΕΙΝΟΜΕΝΩΝ ΧΩΡΩΝ ΘΕΑΣΗΣ ΚΑΙ ΑΚΡΟΑΣΗΣ ΑΝΑ ΓΕΩΓΡΑΦΙΚΗ ΠΕΡΙΦΕΡΕΙΑ Α. ΠΕΡΙΦΕΡΕΙΑ ΑΤΤΙΚΗΣ ΕΥΘΥΝΗΣ- ΕΠΚΑ Θέατρο Διονύσου, Ωδείο Περικλέους ς Αθήνα Α ΕΠΚΑ Ηρώδειο ς Αθήνα Α ΕΠΚΑ Θέατρο Αχαρνών Αχαρνών

Διαβάστε περισσότερα

Το παιχνίδι tangram. PIERCE Αμερικανικό Κολλέγιο Ελλάδος Μαθητε ς/τριες Γ, Β και Α Γυμνασι ου3, 2, 1. sdoukakis@acg.edu

Το παιχνίδι tangram. PIERCE Αμερικανικό Κολλέγιο Ελλάδος Μαθητε ς/τριες Γ, Β και Α Γυμνασι ου3, 2, 1. sdoukakis@acg.edu Το παιχνίδι tangram Ανδριανού Αφροδίτη 3, Γεωργιάδης Μάρκος 2, Γεωργιάδης Μάριος 1, Δεσποτάκης Γεράσιμος 2, Καραμπάσης Κλείτος 2, Κουτσιούμπας Ευριπίδης 1, Μελένιου Μιράντα 2, Ξενάκης Αριστοτέλης 1, Παπαβασιλόπουλος

Διαβάστε περισσότερα

ΘΕΟΔΩΡΟΣ ΠΑΓΚΑΛΟΣ. Συντροφιά με την Κιθάρα ΕΚΔΟΣΗ: ΠΝΕΥΜΑΤΙΚΟ ΚΕΝΤΡΟ ΙΕΡΟΥ ΝΑΟΥ ΕΥΑΓΓΕΛΙΣΤΡΙΑΣ ΠΕΙΡΑΙΩΣ

ΘΕΟΔΩΡΟΣ ΠΑΓΚΑΛΟΣ. Συντροφιά με την Κιθάρα ΕΚΔΟΣΗ: ΠΝΕΥΜΑΤΙΚΟ ΚΕΝΤΡΟ ΙΕΡΟΥ ΝΑΟΥ ΕΥΑΓΓΕΛΙΣΤΡΙΑΣ ΠΕΙΡΑΙΩΣ ΘΕΟΔΩΡΟΣ ΠΑΓΚΑΛΟΣ Συντροφιά με την Κιθάρα ΕΚΔΟΣΗ: ΠΝΕΥΜΑΤΙΚΟ ΚΕΝΤΡΟ ΙΕΡΟΥ ΝΑΟΥ ΕΥΑΓΓΕΛΙΣΤΡΙΑΣ ΠΕΙΡΑΙΩΣ Συντροφιά με την Κιθάρα ΘΕΟΔΩΡΟΣ ΠΑΓΚΑΛΟΣ Συντροφιά με την Κιθάρα ΑΘΗΝΑ 2011 Έκδοση: c Πνευματικό

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

AKTO Campus, Ευελπίδων 11Α, Αθήνα, 113 62

AKTO Campus, Ευελπίδων 11Α, Αθήνα, 113 62 AKTO Campus, Ευελπίδων 11Α, Αθήνα, 113 62 Ο ΑΚΤΟ με 40 και πλέον χρόνια δραστηριότητας στον χώρο των Εφαρμοσμένων και Καλών Τεχνών και η DESIGNEMBASSADOR.COM UG, που εξειδικεύεται στον σχεδιασμό φεστιβάλ,

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Το Πυθαγόρειο θεώρημα: μία διάσημη μαθηματική σχέση στον εργαστηριακό πάγκο της Φυσικής Παναγιώτης Μουρούζης Το Πυθαγόρειο θεώρημα, το οποίο συνήθως περιγράφεται φορμαλιστικά από μία σχέση της μορφής 2

Διαβάστε περισσότερα

ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή. Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo

ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή. Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo Εμπλεκόμενες έννοιες «Γραφή» και άμεση εκτέλεση εντολής. Αποτέλεσμα εκτέλεσης εντολής.

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ.

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ. ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003, Λευκωσία Τηλ. 357-22378101 Φαξ: 357-22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ. Ημερομηνία:

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

(Εξήγηση του τίτλου και της εικόνας που επέλεξα για το ιστολόγιό μου)

(Εξήγηση του τίτλου και της εικόνας που επέλεξα για το ιστολόγιό μου) Εν αρχή ην ο Λόγος. (Εξήγηση του τίτλου και της εικόνας που επέλεξα για το ιστολόγιό μου) Στις νωπογραφίες της οροφής της Καπέλα Σιξτίνα φαίνεται να απεικονίζονται μέρη του ανθρώπινου σώματος, όπως ο εγκέφαλος,

Διαβάστε περισσότερα

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Προσδιορισμός της σταθεράς ενός ελατηρίου. Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ναού του Ολύμπιου Διός που ολοκλήρωσε, το 131 μ.χ., ο Ρωμαίος αυτοκράτορας Αδριανός.

ναού του Ολύμπιου Διός που ολοκλήρωσε, το 131 μ.χ., ο Ρωμαίος αυτοκράτορας Αδριανός. ΜΝΗΜΕΙΑ ΤΗΣ ΑΘΗΝΑΣ ΠΥΛΗ ΤΟΥ ΑΔΡΙΑΝΟΥ Πρόκειται για τα απομεινάρια ενός από τους μεγαλύτερους ναούς του αρχαίου κόσμου, του ναού του Ολύμπιου Διός που ολοκλήρωσε, το 131 μ.χ., ο Ρωμαίος αυτοκράτορας Αδριανός.

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

ΣΥΜΜΕΤΡΙΑ ΚΑΙ ΕΠΙΠΕΔΟ

ΣΥΜΜΕΤΡΙΑ ΚΑΙ ΕΠΙΠΕΔΟ ΣΥΜΜΕΤΡΙΑ ΚΑΙ ΕΠΙΠΕΔΟ Το κεφάλαιο αυτό γράφτηκε από το Βαγγέλη Δρίβα Στο κεφάλαιο αυτό θα ασχοληθούμε με την συμμετρία στο επίπεδο. Αυτή έχει την έννοια της μεταφοράς όλων των σημείων ενός αντικειμένου

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

1. Γενικά περί Συμμετρίας

1. Γενικά περί Συμμετρίας 1. Γενικά περί Συμμετρίας ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o αναφέρετε τη διττή σημασία της έννοιας της συμμετρίας από την αρχαία Ελλάδα μέχρι και

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ΑΝΑΦΟΡΑ ΓΙΑ ΤΟΝ Α ΚΥΚΛΟ ΤΟΥ ΔΙΗΜΕΡΟΥ ΣΕΜΙΝΑΡΙΟΥ «ΕΣΥ ΚΑΙ ΕΓΩ ΜΑΖΙ» ΣΤΙΣ 26-27 ΦΕΒΡΟΥΑΡΙΟΥ 2015

ΑΝΑΦΟΡΑ ΓΙΑ ΤΟΝ Α ΚΥΚΛΟ ΤΟΥ ΔΙΗΜΕΡΟΥ ΣΕΜΙΝΑΡΙΟΥ «ΕΣΥ ΚΑΙ ΕΓΩ ΜΑΖΙ» ΣΤΙΣ 26-27 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΑΝΑΦΟΡΑ ΓΙΑ ΤΟΝ Α ΚΥΚΛΟ ΤΟΥ ΔΙΗΜΕΡΟΥ ΣΕΜΙΝΑΡΙΟΥ «ΕΣΥ ΚΑΙ ΕΓΩ ΜΑΖΙ» ΣΤΙΣ 26-27 ΦΕΒΡΟΥΑΡΙΟΥ 2015 Υπάρχουν άνθρωποι, δημιουργικοί, που λατρεύουν την τέχνη και διαθέτουν πολλά ταλέντα, χωρίς να είναι επαγγελματίες.

Διαβάστε περισσότερα

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός ρ. Ε. Λυκούδη Αθήνα 2005 Γεωγραφικά στοιχεία της Γης Η Φυσική Γεωγραφία εξετάζει: τον γήινο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ. Περιμένης Κυριάκος Καθηγητής Τεχνολογίας Υπ/ντής 3 ου ΓΕΛ Κερατσινίου perimeniskiriakos@windowslive.

Η ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ. Περιμένης Κυριάκος Καθηγητής Τεχνολογίας Υπ/ντής 3 ου ΓΕΛ Κερατσινίου perimeniskiriakos@windowslive. Η ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Περιμένης Κυριάκος Καθηγητής Τεχνολογίας Υπ/ντής 3 ου ΓΕΛ Κερατσινίου perimeniskiriakos@windowslive.com Ο Ρόλος του Εκπαιδευτικού Στηρίζει τους μαθητές στην αξιοποίηση

Διαβάστε περισσότερα

Εκπαιδευτικές μουσειοσκευές

Εκπαιδευτικές μουσειοσκευές Μουσείο Σχολείο Εκπαιδευτικές μουσειοσκευές Με τον όρο εκπαιδευτική μουσειοσκευή ονομάζουμε μια «βαλίτσα» που περιέχει ένα σύνολο από ποικίλα υλικά, τα οποία έχουν επιλεχθεί, σχεδιαστεί και κατασκευαστεί

Διαβάστε περισσότερα

Στη μορφολογία πρέπει αρχικά να εξετάσουμε το γενικό σχήμα του προσώπου.

Στη μορφολογία πρέπει αρχικά να εξετάσουμε το γενικό σχήμα του προσώπου. ΜΟΡΦΟΛΟΓΙΑ Στη μορφολογία πρέπει αρχικά να εξετάσουμε το γενικό σχήμα του προσώπου. Διακρίνουμε τα εξής σχήματα - Οβάλ - Οβάλ μακρύ - Ορθογωνικό - Στρογγυλό - Τετραγωνικό - Τριγωνικό - Εξαγωνικό - Τραπεζοειδές

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

ΑΝΑΜΟΡΦΩΣΕΙΣ. Ιστορικά

ΑΝΑΜΟΡΦΩΣΕΙΣ. Ιστορικά ΑΝΑΜΟΡΦΩΣΕΙΣ Ιστορικά Στις αρχές του 16 ου αιώνα ήταν ήδη γνωστές οι αρχές της γραμμικής προοπτικής, περίπου όπως την ξέρουμε σήμερα. Την περίοδο αυτή καλλιτέχνες, γλύπτες και αρχιτέκτονες άρχισαν να πειραματίζονται

Διαβάστε περισσότερα

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Ποια από τις πιο κάτω προτάσεις είναι ΛΑΝΘΑΣΜΕΝΗ; Α. 8 7 > 7 6 Β. 8 5 < 6 7 Γ. 7 0 < 8 8 Δ. 1 7 > 1 8 Ε. 60 7 > 60 8 2. Ο αδύναμος κρίκος μιας αλυσίδας είναι ο 7 ος από την αρχή της και ο 11 ος από

Διαβάστε περισσότερα

9. Τοπογραφική σχεδίαση

9. Τοπογραφική σχεδίαση 9. Τοπογραφική σχεδίαση 9.1 Εισαγωγή Το κεφάλαιο αυτό εξετάζει τις παραμέτρους, μεθόδους και τεχνικές της τοπογραφικής σχεδίασης. Η προσέγγιση του κεφαλαίου γίνεται τόσο για την περίπτωση της συμβατικής

Διαβάστε περισσότερα

ΕΛΓΙΝΕΙΑ ΜΑΡΜΑΡΑ Με τον όρο ΕΛΓΙΝΕΙΑ ΜΑΡΜΑΡΑ εννοούμε τα μαρμάρινα γλυπτά του Παρθενώνα που βρίσκονται στο Βρετανικό Μουσείο. Αυτά τα γλυπτά ήταν στα

ΕΛΓΙΝΕΙΑ ΜΑΡΜΑΡΑ Με τον όρο ΕΛΓΙΝΕΙΑ ΜΑΡΜΑΡΑ εννοούμε τα μαρμάρινα γλυπτά του Παρθενώνα που βρίσκονται στο Βρετανικό Μουσείο. Αυτά τα γλυπτά ήταν στα ΕΛΓΙΝΕΙΑ ΜΑΡΜΑΡΑ Με τον όρο ΕΛΓΙΝΕΙΑ ΜΑΡΜΑΡΑ εννοούμε τα μαρμάρινα γλυπτά του Παρθενώνα που βρίσκονται στο Βρετανικό Μουσείο. Αυτά τα γλυπτά ήταν στα αετώματα, στις μετώπες και στη ζωφόρο του Παρθενώνα,

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ 1 ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Κώστας Κύρος ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Ανοίξτε το λογισμικό Google Earth και προσπαθήστε να εντοπίσετε τη θέση της Ευρώπης στη Γη. Κατόπιν για να

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

1ο χειμ. Εξαμηνο, 2013-2014

1ο χειμ. Εξαμηνο, 2013-2014 1ο χειμ. Εξαμηνο, 2013-2014 Συνθεση πινακίδας παρουσίασης συνθετικά και γεωμετρικά στοιχεία Εισαγωγη στην Αρχιτεκτονικη Συνθεση Θεμα 1ο ΜΑΡΓΑΡΙΤΑ ΓΡΑΦΑΚΟΥ Καθηγήτρια της Σχολης Αρχιτεκτονων Ε.Μ.Π. Εικονογραφηση

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

Το Φως Είναι Εγκάρσιο Κύμα!

Το Φως Είναι Εγκάρσιο Κύμα! ΓΙΩΡΓΟΣ ΑΣΗΜΕΛΛΗΣ Μαθήματα Οπτικής 3. Πόλωση Το Φως Είναι Εγκάρσιο Κύμα! Αυτό που βλέπουμε με τα μάτια μας ή ανιχνεύουμε με αισθητήρες είναι το αποτέλεσμα που προκύπτει όταν φως με συγκεκριμένο χρώμα -είδος,

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΘΕΡΙΝΑ ΟΛΟΗΜΕΡΑ ΕΡΓΑΣΤΗΡΙΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ. MathemArtics Camp

ΘΕΡΙΝΑ ΟΛΟΗΜΕΡΑ ΕΡΓΑΣΤΗΡΙΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ. MathemArtics Camp ΘΕΡΙΝΑ ΟΛΟΗΜΕΡΑ ΕΡΓΑΣΤΗΡΙΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ MathemArtics Camp Τα Θερινά Ολοήμερα Εργαστήρια του Μουσείου Ηρακλειδών MathemArtics Camp πραγματοποιούνται σε κύκλους των δύο εβδομάδων. Για το καλοκαίρι

Διαβάστε περισσότερα

ΡΟΜΑΝΙΚΗ ΤΕΧΝΗ 1000-1150 μ.χ. Στα μέσα του 11 ου αιώνα οι κάτοικοι της κεντρικής και βόρειας Ευρώπης ανεξαρτητοποιούνται από το κλασικό και ρωμαϊκό

ΡΟΜΑΝΙΚΗ ΤΕΧΝΗ 1000-1150 μ.χ. Στα μέσα του 11 ου αιώνα οι κάτοικοι της κεντρικής και βόρειας Ευρώπης ανεξαρτητοποιούνται από το κλασικό και ρωμαϊκό ΡΟΜΑΝΙΚΗ ΤΕΧΝΗ 1000-1150 μ.χ. Στα μέσα του 11 ου αιώνα οι κάτοικοι της κεντρικής και βόρειας Ευρώπης ανεξαρτητοποιούνται από το κλασικό και ρωμαϊκό παρελθόν. Κατά την διάρκεια αυτής της περιόδου έχουμε

Διαβάστε περισσότερα

Να αξιολογήσει αν πληρούνται οι ουσιαστικές προϋποθέσεις πολιτογράφησης.

Να αξιολογήσει αν πληρούνται οι ουσιαστικές προϋποθέσεις πολιτογράφησης. Έξι μήνες μετά την κατάθεση της αίτησης για την κτήση Ελληνικής Ιθαγένειας με τη διαδικασία της πολιτογράφησης, θα κληθείτε σε συνέντευξη στην Επιτροπή Πολιτογράφησης που λειτουργεί στην Αποκεντρωμένη

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

ΙΔΙΩΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ «ΡΟΔΙΩΝ ΠΑΙΔΕΙΑ» ΓΡΑΠΤΟΙ ΔΙΑΓΩΝΙΣΜΟΙ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΥΠΟΤΡΟΦΙΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 ΡΟΔΟΣ, 22 ΙΟΥΝΙΟΥ 2014

ΙΔΙΩΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ «ΡΟΔΙΩΝ ΠΑΙΔΕΙΑ» ΓΡΑΠΤΟΙ ΔΙΑΓΩΝΙΣΜΟΙ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΥΠΟΤΡΟΦΙΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 ΡΟΔΟΣ, 22 ΙΟΥΝΙΟΥ 2014 ΙΔΙΩΤΙΚΑ ΕΚΠΑΙΔΕΥΤΗΡΙΑ «ΡΟΔΙΩΝ ΠΑΙΔΕΙΑ» ΓΡΑΠΤΟΙ ΔΙΑΓΩΝΙΣΜΟΙ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΥΠΟΤΡΟΦΙΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 ΒΑΘΜΙΔΑ: ΔΗΜΟΤΙΚΟ ΤΑΞΗ: ΣΤ ΡΟΔΟΣ, 22 ΙΟΥΝΙΟΥ 2014 Διάβασε προσεκτικά τις ερωτήσεις και προσπάθησε

Διαβάστε περισσότερα

Masaccio, ο πρόωρα χαμένος ιδρυτής της Αναγέννησης

Masaccio, ο πρόωρα χαμένος ιδρυτής της Αναγέννησης Masaccio, ο πρόωρα χαμένος ιδρυτής της Αναγέννησης Εικόνα 1: Η πληρωμή του φόρου, παρεκκλήσιο Brancacci, Φλωρεντία Εικόνα 2: Η εκδίωξη από τον παράδεισο, παρεκκλήσιο Brancacci. Πριν και μετά την αποκατάσταση

Διαβάστε περισσότερα

Επειδή η χορδή ταλαντώνεται µε την θεµελιώδη συχνότητα θα ισχύει. Όπου L είναι το µήκος της χορδής. Εποµένως, =2 0,635 m 245 Hz =311 m/s

Επειδή η χορδή ταλαντώνεται µε την θεµελιώδη συχνότητα θα ισχύει. Όπου L είναι το µήκος της χορδής. Εποµένως, =2 0,635 m 245 Hz =311 m/s 1. Μία χορδή κιθάρας µήκους 636 cm ρυθµίζεται ώστε να παράγει νότα συχνότητας 245 Hz, όταν ταλαντώνεται µε την θεµελιώδη συχνότητα. (a) Βρείτε την ταχύτητα των εγκαρσίων κυµάτων στην χορδή. (b) Αν η τάση

Διαβάστε περισσότερα