ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΝΕΕΣ ΑΡΧΕΣ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ» (ΜΒΑ) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΥΠΟ:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΝΕΕΣ ΑΡΧΕΣ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ» (ΜΒΑ) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΥΠΟ:"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΝΕΕΣ ΑΡΧΕΣ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ» (ΜΒΑ) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΥΠΟ: ΜΑΡΙΝΑΚΟΣ ΓΕΩΡΓΙΟΣ Α/Μ: 72 ΘΕΜΑ: «ΕΛΕΓΧΟΣ ΣΤΟ CAPITAL ASSET PRICING MODEL. ΜΟΝΤΕΛΑ GARCH.» ΕΠΙΒΛΕΠΩΝ : Κ. ΣΥΡΙΟΠΟΥΛΟΣ - Καθηγητής Τμήματος Διοίκησης Επιχειρήσεων Πανεπιστημίου Πατρών.

2 ΠΕΡΙΛΗΨΗ Βασικός στόχος αυτής τη εργασίας είναι να παρουσιάσει με λεπτομερή και τεκμηριωμένο τρόπο την διαδικασία που ακολουθεί ένας χρηματοοικονομικός αναλυτής έτσι ώστε να προσδιορίσει την σχέση απόδοσης και κινδύνου κάποιων χρεογράφων με απώτερο σκοπό να καταλήξει σε ορθολογικά συμπεράσματα που μπορούν να τον οδηγήσουν στις βέλτιστες αποφάσεις. Οι αποφάσεις αυτές θα αφορούν την δόμηση ενός βέλτιστου χαρτοφυλακίου χρεογράφων το οποίο για δεδομένο κίνδυνο θα αποφέρει την μέγιστη αναμενόμενη απόδοση η αντίστροφα με δεδομένη την επιθυμητή απόδοση θα ενέχει το ελάχιστο ρίσκο. Η χρήση του απλού γραμμικού υποδείγματος, της μεθόδου ελαχίστων τετραγώνων (OLS), των διαστημάτων εμπιστοσύνης και της στατιστικής συμπερασματολογίας είναι κάποιες από τις μεθόδους που θα εφαρμόσουμε για να προσδιορίσουμε με ακρίβεια την σχέση απόδοσης και κινδύνου χρεογράφων των οποίων έχουμε επιλέξει για τις εφαρμογές μας. Οι διαταράξεις των υποθέσεων του απλού γραμμικού υποδείγματος, όπως η αυτοσυσχέτιση και η ετεροσκεδαστικότητα είναι επίσης αντικείμενα προς εξέταση,παράγοντες οι οποίοι αλλοιώνουν τις οικονομετρικές εκτιμήσεις της μεθόδου των ελαχίστων τετραγώνων και πρέπει να άρονται από τον αναλυτή, έτσι ώστε να καταλήγει η ανάλυση και η έρευνα των χρηματοοικονομικών εφαρμογών σε αξιόπιστες εκτιμήσεις. Ιδίως στην αντιμετώπιση της ετεροσκεδαστικότητας, η χρήση των μοντέλων ARCH/GARCH, μπορεί να μας οδηγήσει στο ζητούμενο,το οποίο είναι η εκτίμηση και η πρόβλεψη του μελλοντικού κινδύνου αγοράς ενός χρεογράφου όπως η μετοχή. 2

3 ΠΕΡΙΕΧΟΜΕΝΑ ΣΕΛ. Κεφάλαιο 1: Εισαγωγή 4 Κεφάλαιο 2: Μεθοδολογία 6 2.1: Συλλογή Δεδομένων 6 2.2: Οικονομετρική Προσέγγιση 6 2.3: Χρηματοοικονομική Προσέγγιση 7 2.4: Εμπειρική Ανάλυση 8 2.5: Εκτιμώντας τα Μοντέλα r s =a+bx+u 12 Κεφάλαιο 3: Έλεγχος Αξιοπιστίας Εκτιμήσεων : Αυτοσυσχέτιση : Ετεροσκεδαστικότητα 19 Κεφάλαιο 4: Μοντέλα ARCH/GARCH : Η χρήση των Μοντέλων ARCH/GARCH : Πρόβλεψη της διακύμανσης των αποδόσεων της Μετοχής NBG : Προεκτάσεις και Τροποποιήσεις 31 Κεφάλαιο 5: Χρηματοοικονομική Προσέγγιση : Τι έχουν να προσφέρουν οι μετοχές : Ένα ιστορικό παράδειγμα για τη συμπεριφορά των μετοχών : Πλεονεκτήματα και Μειονεκτήματα της ιδιοκτησίας των μετοχών : Πηγές Κινδύνου Μετοχών 38 Κεφάλαιο 6: Περίληψη και Συμπεράσματα 41 3

4 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ: Η φαρέτρα της σύγχρονης χρηματοοικονομικής προσφέρει τα απαραίτητα εργαλεία στον εκάστοτε manager προκειμένου να μπορεί να συλλέγει στοιχεία, να εντοπίζει ενδείξεις, να εκτιμά ποσοτικά αποτελέσματα, να ελέγχει, να βελτιώνει, να φιλτράρει και να προβλέπει. Ο αναλυτής οικονομέτρης καλείται να εκτιμήσει το πόσο θα αλλάξει η τιμή μιας μεταβλητής σαν αντίδραση στην μεταβολή μιας άλλης μεταβλητής και επιπλέον να αναλύσει και να προβλέψει το σφάλμα του μοντέλου του οποίου χρησιμοποιεί. Στις χρηματοοικονομικές εφαρμογές μια από τις συνήθεις μορφές δεδομένων είναι οι χρονοσειρές. Στην προκειμένη περίπτωση θα επικεντρώσουμε την προσοχή μας στη επεξεργασία και την ανάλυση χρονοσειρων οι οποίες περιγράφουν την ιστορική διαχρονική πορεία των αποδόσεων μετοχών και δεικτών και θα χρησιμοποιήσουμε το κλασικό γραμμικό υπόδειγμα Y t = a + b X t + u t για να μελετήσουμε την μεταβλητικοτητα της κάθε χρονοσειρας η οποία ποικίλει και διαφοροποιείται από καιρού εις καιρόν. Η διαδικασία της οικονομετρικής ανάλυσης και επεξεργασίας των δεδομένων από την συλλογή των πρωτογενών δεδομένων (raw data) έως και την εξαγωγή των τελικών αποτελεσμάτων που οδηγούν στη αξιόπιστη συμπερασματολογία, αποτελεί πρόκληση για κάθε διαχειριστή οικονομολόγο, αφού αν εφαρμοστεί ορθολογικά και οδηγήσει στις βέλτιστες αποφάσεις, τότε πραγματικά επιτυγχάνεται το ζητούμενο που είναι το κέρδος η αντίστροφα η ελαχιστοποίηση της ζημίας. Το προσεγγιστικό πλαίσιο το οποίο θα χρησιμοποιήσουμε για να προσδιορίσουμε την σχέση απόδοσης κινδύνου είναι το υπόδειγμα Τιμολόγησης Περιουσιακών Στοιχείων (Capital Asset Pricing Model). Το υπόδειγμα αυτό εξειδικεύει τη σχέση απόδοσης και κινδύνου ενός μείγματος μετοχών οι οποίες δομούν ένα χαρτοφυλάκιο. Στόχος του διαχειριστή (optimal portfolio) το οποίο θα ικανοποιεί τις επενδυτικές ανάγκες, είτε του εργοδότη (company s dealing room), είτε του ατομικού επενδυτή (personal banking), είτε της πελατειακής βάσης μίας τράπεζας. Το προσεγγιστικό πλαίσιο CAPM και η εμπειρική ανάλυση (times series analysis) περιπτώσεων μπορούν να μας οδηγήσουν σε χρήσιμα συμπεράσματα για το συγκεκριμένο χαρτοφυλάκιο το οποίο θα μελετήσουμε. 4

5 Στις χρηματοοικονομικές εφαρμογές βασικό αντικείμενο μελέτης είναι η μεταβλητότητα. Σύγχρονα και αξιόπιστα εργαλεία σύμφωνα με την διεθνή βιβλιογραφία είναι τα μοντέλα ARCH/ GARCH. Η βασική μέθοδος των ελαχίστων τετραγώνων υποθέτει ότι η αναμενόμενη τιμή του διαταρακτικού όρου στο τετράγωνο είναι η ίδια σε κάθε δεδομένο σημείο. Αυτή η υπόθεση αποκαλείται ομοσκεδαστικότητα και είναι η υπόθεση στην οποία επικεντρώνουν τη δράση τους τα μοντέλα ARCH/ GARCH. Δεδομένα στα οποία οι διακυμάνσεις των διαταρακτικών όρων u t δεν είναι σταθερές και στα οποία τα σφάλματα αναμένονται να είναι μεγαλύτερα σε κάποια σημεία από κάποια άλλα, τότε λέγεται ότι πάσχουν από ετεροσκεδαστικότητα. Η βασική ένδειξη ύπαρξης ετεροσκεδαστικότητας είναι ότι οι εκτιμήτριες του μοντέλου μετά την OLS παραμένουν αμερόληπτες, αλλά τα τυπικά σφάλματα και τα διαστήματα εμπιστοσύνης υποεκτιμούνται με αποτέλεσμα να οδηγούμαστε σε λανθασμένα συμπεράσματα. Αντί να αντιμετωπιστεί η ετεροσκεδαστικότητα σαν μια διατάραξη η οποία πρέπει να θεραπευτεί με την χρήση των ARCH/ GARCH προσεγγίζεται σαν μία διατάραξη η οποία μοντελοποιείται. Με αυτό τον τρόπο δεν επιτυγχάνεται μόνο η διόρθωση των εκτιμήσεων της μεθόδου των ελαχίστων τετραγώνων, αλλά επιπλέον δίνεται και μία πρόβλεψη για τη διακύμανση των διαταρακτικών όρων. Αυτή η πρόβλεψη είναι πολύ χρήσιμη στις χρηματοοικονομικές εφαρμογές. Ένα εύλογο ερώτημα που αντιμετωπίζει ο αναλυτής είναι το ποσοστιαίο μέγεθος ακρίβειας πρόβλεψης του μοντέλου του. Σε αυτή την περίπτωση κομβικό σημείο είναι η διακύμανση του σφάλματος και οι παράγοντες που την μεταβάλλουν. Στις χρηματοοικονομικές εφαρμογές όταν η εξαρτημένη μεταβλητή του μοντέλου είναι η αναμενόμενη απόδοση της τιμής μιας μετοχής, η διακύμανση αυτής της απόδοσης θα αντιπροσωπεύει το επίπεδο κινδύνου αυτής της μετοχής. Το πιο συχνό φαινόμενο στην ανάλυση χρονοσειρών είναι ότι κάποιες χρονικές περίοδοι χαρακτηρίζονται από υψηλότερο κίνδυνο από ότι κάποιες άλλες, συνεπώς και η μεταβλητότητα των σφαλμάτων είναι μεγαλύτερη σε κάποιες χρονικές στιγμές από ότι σε κάποιες άλλες. Τα μοντέλα ARCH/ GARCH κατασκευάστηκαν για να αντιμετωπίζουν όλα αυτά τα ζητήματα και έχουν γίνει ευρέως διαδεδομένα, για τους αναλυτές, εργαλεία για την ανάλυση ετεροσκεδαστικών χρονοσειριακών μοντέλων. Ο στόχος των μοντέλων αυτών είναι να μετρούν τη μεταβλητότητα σαν μία τυπική απόκλιση που μπορεί να χρησιμοποιηθεί για χρηματοοικονομικές αποφάσεις που αφορούν την ανάλυση του ρίσκου, την επιλογή χαρτοφυλακίων και την τιμολόγηση ομολογιών. 5

6 ΚΕΦΑΛΑΙΟ 2 ΜΕΘΟΔΟΛΟΓΙΑ 2.1 Συλλογή δεδομένων Τα δεδομένα που χρησιμοποιούμε είναι της μορφής χρονοσειρών. Για την επεξεργασία, ανάλυση και την μοντελοποίηση των δεδομένων χρησιμοποιούμε το στατιστικό λογισμικό E-views το οποίο μας προσφέρει την πολυτέλεια να συλλέγουμε, να υπολογίζουμε και να παρουσιάζουμε γραφικές παραστάσεις χρήσιμες για την επιχειρηματολογία, μας γρήγορα και αξιόπιστα. Οι σειρές τις οποίες θα μελετήσουμε είναι οι ιστορικές αποδόσεις των μετοχών της Εθνικής Τράπεζας, της Τράπεζας Κύπρου όπως επίσης και του Γενικού Δείκτη του ΧΑΑ για τη χρονική περίοδο από έως , οι παρατηρήσεις της δειγματοληψίας θα είναι ημερήσιες (Daily Week-5Days) έτσι ώστε να μπορέσουμε να αποκρυσταλλώσουμε ρεαλιστικότερα τον κίνδυνο κάθε μετοχής. 2.2 Οικονομετρική προσέγγιση. Τα μοντέλα τα οποία θα δομήσουμε είναι της μορφής r s = a + bσ s + u s αφού η απόδοση και ο κίνδυνος χαρακτηρίζονται από γραμμική σχέση. Όπου r s (εξαρτημένη μεταβλητή) είναι η αναμενόμενη απόδοση της μετοχής και όπου σ s είναι η διακύμανση των αποδόσεων της μετοχής, a είναι το επιτόκιο χωρίς κίνδυνο ( risk free rate) και b είναι η εκτιμήτρια (συντελεστής κινδύνου) η οποία αντιπροσωπεύει την κλίση της ευθείας παλινδρόμησης και ερμηνεύεται ως το ποσό της μεταβολής της αναμενόμενης απόδοσης της μετοχής όταν ο κίνδυνος μεταβάλλεται κατά μία μονάδα. Η μέθοδος που θα ακολουθήσουμε για να υπολογίσουμε τις εκτιμήτριες b είναι η μέθοδος των ελαχίστων τετραγώνων και το πλαίσιο το οποίο θα διέπει την ανάλυσή μας θα είναι οι κλασικές υποθέσεις του απλού γραμμικού υποδείγματος. Αρχικές υποθέσεις: 1. r i = a+bx i +u i, i = 1, 2,, n 2. u i ~ (0,σ 2 ) Ε(u i )=0 6

7 Var (u i ) = σ 2 3. Cov (u i, u j ) =0 4. Η μεταβλητή x δεν είναι στοχαστική. Οι τιμές της παραμένουν σταθερές και δεν είναι όλες ίσες μεταξύ τους. Αφού γίνουν οι αρχικές εκτιμήσεις των μοντέλων θα ακολουθήσει η στατιστική συμπερασματολογία για την αξιοπιστία των εκτιμήσεων. Η πρακτική εφαρμογή της ανάλυσης των χρονοσειρών θα μας οδηγήσει στο συμπέρασμα ότι στην πραγματικότητα οι κλασικές υποθέσεις του απλού γραμμικού υποδείγματος διαταράσσονται με αποτέλεσμα οι εκτιμήσεις μας να μην είναι αξιόπιστες και τα μοντέλα μας να είναι ψευδή. Οι διαταράξεις τις οποίες θα αντιμετωπίσουμε είναι η αυτοσυσχέτιση των διαταρακτικών όρων και κατ επέκταση η ύπαρξη τάσης στα δεδομένα μας και δεύτερον η ετεροσκεδαστικότητα δηλαδή το φαινόμενο της μεταβλητότητας της διακύμανσης σ 2 των σφαλμάτων. Με τις μεθόδους που μας προσφέρει η σύγχρονη οικονομετρία θα επιχειρήσουμε να καταστήσουμε τις σειρές μας από μη στάσιμες σε στάσιμες έτσι ώστε να αποφύγουμε το σφάλμα τύπου 1 στις εκτιμήσεις μας και εν συνεχεία με τη χρήση των μοντέλων ARCH/ GARCH θα προσεγγίσουμε τη διακύμανση των σφαλμάτων ως εξαρτημένη μεταβλητή και θα προσδιορίσουμε τους συντελεστές παράγοντες οι οποίοι προκαλούν τη διαφοροποίηση της σε διαφορετικές χρονικές περιόδους. 2.3 Χρηματοοικονομική προσέγγιση. Capital Asset Pricing Model. Η ανάλυση και τα συμπεράσματα για τις αποδόσεις και τον κίνδυνο του δείγματος των μετοχών βασίζεται στην ανάπτυξη του υποδείγματος CAPM από τον W. Sharpe ο οποίος απέδειξε ότι ο κίνδυνος αγοράς (market risk) κάθε μετοχής μπορεί να υπολογιστεί από την τάση της μετοχής να συμπεριφέρεται όπως η συνολική αγορά (Γενικός Δείκτης ΧΑΑ). Συνεπώς στο απλό γραμμικό μοντέλο y t =a+bx t +u t η εξαρτημένη μεταβλητή Y εκφράζει τις αποδόσεις της μετοχής και η ανεξάρτητη μεταβλητή Χ τις αποδόσεις του Γενικού Δείκτη του ΧΑΑ. Με τη μέθοδο των ελαχίστων τετραγώνων θα εκτιμήσουμε την ευθεία παλινδρόμησης της εκάστοτε μετοχής και το συντελεστή b ο οποίος αποτελεί το συστηματικό κίνδυνο της μετοχής. 7

8 Σύμφωνα με τον Sharpe η ευθεία της παλινδρόμησης ονομάζεται χαρακτηριστική γραμμή. Οι βασικές υποθέσεις του CAPM προσφέρουν ένα ελεγχόμενο περιβάλλον για την ισχύ των αναλύσεων και των επιχειρημάτων μας. Βασικές υποθέσεις CAPM 1. Οι επενδυτές επιχειρούν να μεγιστοποιήσουν την χρησιμότητα τους και θα επιλέξουν μεταξύ μετοχών, με κριτήρια τον κίνδυνο και την αναμενόμενη απόδοση. 2. Όλοι οι επενδυτές μπορούν να δανείζουν και να δανείζονται κεφάλαια στο επιτόκιο χωρίς κίνδυνο (rfr). 3. Όλοι οι επενδυτές έχουν τις ίδιες εκτιμήσεις για τις αναμενόμενες αποδόσεις, διακυμάνσεις και συνδιακυμάνσεις μεταξύ των αποδόσεων των μετοχών. Άρα υπάρχει ομοιογένεια στις προσδοκίες. 4. Δεν υπάρχει κόστος συναλλαγών και τα χρεόγραφα είναι πλήρως και άμεσα ρευστοποιήσιμα. 5. Δεν υπάρχει φορολογία. 6. Οι τιμές δίνονται εξωγενώς και κανείς ατομικά δεν μπορεί να τις επηρεάσει. 7. Ο πληθωρισμός θεωρείται μηδενικός, τα επιτόκια και οι κεφαλαιαγορές βρίσκονται σε ισορροπία. 2.4 ΕΜΠΕΙΡΙΚΗ ΑΝΑΛΥΣΗ Περιγραφικά στατιστικά μέτρα Αρχικά θα εξετάσουμε την κάθε σειρά, μια προς μια, ως προς τα στατιστικά περιγραφικά μέτρα, έτσι ώστε να βγουν κάποια πρώτα συμπεράσματα για την διαχρονική πορεία των αποδόσεων των μετοχών της Εθνικής Τράπεζας, της Τράπεζας Κύπρου και του γενικού δείκτη του ΧΑΑ. Οι παρατηρήσεις μας είναι ημερήσιες σε πενθήμερη βάση και αφορούν την περίοδο από 20/9/2007 έως 18/9/2008, το πλήθος των παρατηρήσεων είναι 246. Τα περιγραφικά στατιστικά μέτρα για κάθε χρονοσειρα προκύπτουν από την επεξεργασία των δεδομένων στο στατιστικό λογισμικό E-views. Εξετάζοντας αρχικά την χρονοσειρα της Τράπεζας Κύπρου παρατηρούμε τα εξής : 8

9 Διάγραμμα 2.1 Στο παραπάνω γράφημα παρουσιάζονται το ιστόγραμμα και τα βασικά στατιστικά μέτρα για τις αποδόσεις της μετοχής της Τράπεζας Κύπρου. Παρατηρούμε ότι ο μέσος και η διάμεσος δεν συμπίπτουν (mean= -0,1783 median = -0,07).Το εύρος των παρατηρήσεων είναι από 6,61% έως + 9,32%.Ο συντελεστής SK=0,52 και αποκλίνει από την τιμή 0 ενώ o συντέλεστης κύρτωσης KU= 3,86 και αποκλίνει απ τήν τιμή 3. Αυτά τα χαρακτηριστικά μας οδηγούν στο συμπέρασμα ότι η σειρά δεν ακολουθεί κανονική κατανομή. Το παρακάτω διάγραμμα αφορά την διαγραμματική παρουσίαση της διαχρονικής πορείας των αποδόσεων της μετοχής της Cyprus Bank. Διάγραμμα 2.2 9

10 Στην συνέχεια παρουσιάζονται το ιστόγραμμα και τα βασικά περιγραφικά μέτρα των αποδόσεων της μετοχής της Εθνικής Τράπεζας (nbg). Διάγραμμα 2.3 Παρατηρούμε ότι ο μέσος αποκλίνει από την διάμεσο (mean= -0,14% median= - 0,24%).Το εύρος των παρατηρήσεων είναι από 8,01% έως + 12,41%. Ο συντελεστής SK αποκλίνει από την τιμή του 0 και ο συντελεστής κύρτωσης KU αποκλίνει από την τιμή 3(SK=0,83 KU=4,97). Επίσης τα χαρακτηριστικά της σειράς nbg μας οδηγούν στο συμπέρασμα ότι δεν ακολουθεί κανονική κατανομή. Το παρακάτω γράφημα αφορά την διαγραμματική παρουσίαση της διαχρονικής πορείας των αποδόσεων της μετοχής της Εθνικής Τράπεζας. Διάγραμμα

11 Την ίδια διαδικασία ακολουθούμε και για την χρονοσειρα του Γενικού Δείκτη του ΧΑΑ. Διάγραμμα 2.5 Και σε αυτήν την περίπτωση παρατηρούμε παρόμοια στατιστικά χαρακτηριστικά. Ο μέσος αποκλίνει από την διάμεσο (mean=-0,197% median=-0,035%).το εύρος της σειράς κυμαίνεται από -6,17% έως 8%.Ο συντελεστής SK είναι διάφορος του μηδέν ενώ ο συντελεστής κύρτωσης KU αποκλίνει από την τιμή 3(SK=0,34 KU=5,44). Συνεπώς ούτε η σειρά του γενικού δείκτη ακολουθεί την κανονική κατανομή. Το παρακάτω γράφημα παρουσιάζει διαγραμματικά την διαχρονική πορεία των αποδόσεων της αγοράς ως σύνολο. Διάγραμμα

12 Με μια πρώτη σύγκριση που μπορεί να γίνει μετά τον υπολογισμό των στατιστικών περιγραφικών μέτρων της κάθε σειράς ξεχωριστά είναι γεγονός ότι η σειρά της Τράπεζας Κύπρου είναι περισσότερο προβλέψιμη απ οτι είναι η σειρά της Εθνικής Τράπεζας.Η τυπική απόκλιση των αποδόσεων της Cyprus είναι 2,81 ενώ η τυπική απόκλιση της σειράς nbg είναι 2,99. Οι συντελεστές SK & KU είναι πιο κοντά στις τιμές των αντίστοιχων συντελεστών της κανονικής κατανομής για την σειρά Cyprus παρά για την σειρά nbg. Την πιο ομαλή πορεία από τις τρεις χρονοσειρες ακολουθούν οι αποδόσεις του Γενικού Δείκτη του ΧΑΑ αφού έχει την μικρότερη τυπική απόκλιση (sd=1,69) κάτι που επίσης φαίνεται και από την σύγκριση των διαγραμμάτων (linegrafs) των τριών χρονοσειρών. Το συμπέρασμα αυτό συμπλέει με το γεγονός ότι οι αποδόσεις του Γενικού Δείκτη αντιπροσωπεύουν τις αποδόσεις του συνόλου της αγοράς. Συνεπώς στην σειρά gindex υπάρχει η επίδραση της διαφοροποίησης η οποία και μειώνει τη μεταβλητότητα των παρατηρήσεων αφού η σειρά αποτελείται από πολλά συστατικά (μετοχές) είναι δηλαδή ένα χαρτοφυλάκιο. 2.5 Εκτιμώντας τα μοντέλα r s =a+b X+u Σύμφωνα με την προσέγγιση CAPM η αναμενόμενη απόδοση και ο κίνδυνος των αποδόσεων είναι γραμμικοί συνδυασμοί, συνεπώς μπορούμε να εντοπίσουμε τα σημεία εκείνα στα οποία με δεδομένο τον κίνδυνο μεγιστοποιείται η αναμενόμενη απόδοση ή αντίστροφα με δεδομένη την επιθυμητή απόδοση ελαχιστοποιείται το επίπεδο του κινδύνου. Από τα σημεία αυτά περνάει η γραμμή, η οποία είναι ο γεωμετρικός τόπος των σημείων όπου για δεδομένο επίπεδο κινδύνου (σ s ) έχουν την μέγιστη αναμενόμενη απόδοση (r s ) συνεπώς οι συντεταγμένες των σημείων θα είναι s=(r s,σ s ). Η γραμμή αυτή δεν περνάει από την αρχή των αξόνων αλλά τέμνει τον άξονα των αποδόσεων (κάθετος άξονας) στο σημείο που αντιστοιχεί στην τιμή του συντελεστή a στο απλό γραμμικό υπόδειγμα. Το σημείο αυτό αντιπροσωπεύει την απόδοση χωρίς κίνδυνο (risk free rate). Αυτός ο γεωμετρικός τόπος ονομάζεται καμπύλη χρεογράφων (SML). Κάτω από τις συνθήκες του CAPM η επικινδυνότητα μιας μετοχή μετράται με τον συντελεστή b (beta coefficient) που αντιπροσωπεύει την κλίση της καμπύλης χρεογράφων. Στην προκειμένη περίπτωση εφαρμόζουμε την ανάπτυξη του υποδείγματος τιμολόγησης περιουσιακών στοιχείων από τον W.Sharpe σύμφωνα με την οποία ο κίνδυνος αγοράς κάθε μετοχής (market risk) υπολογίζεται από την τάση της να 12

13 συμπεριφέρεται όπως η συνολική αγορά.κατ επεκταση ο κίνδυνος της αγοράς της Εθνικής Τράπεζας και της Τράπεζας Κύπρου προσδιορίζονται από την τάση τους να συμπεριφέρονται όπως ο Γενικός Δείκτης του ΧΑΑ. Με άλλα λόγια θα εκτιμήσουμε δυο μοντέλα της μορφής : r nbg = a + b r gindex + u και r cyprus = a + b r gindex + u Οι εξαρτημένες μεταβλητές r nbg και r cyprus εκφράζουν τις αποδόσεις των μετοχών της Εθνικής και της Κύπρου αντίστοιχα, η ανεξάρτητη μεταβλητή g index εκφράζει τις αποδόσεις της αγοράς ενώ u είναι τα σφάλματα κάτω από τις κλασικές υποθέσεις του απλού γραμμικού υποδείγματος και εκφράζει τον ειδικό κίνδυνο κάθε μετοχής. Με την μέθοδο των ελαχίστων τετραγώνων (OLS) εκτιμούμε τους συντελεστές b (systematic risk), η γραμμή παλινδρόμησης η οποία προκύπτει ονομάζεται σύμφωνα με τον Sharpe χαρακτηριστική γραμμή. Αποτελέσματα εκτιμήσεων r nbg = a + b r gindex + u Πίνακας 2.1 Μετά την εκτίμηση του μοντέλου με OLS παίρνει την μορφή : 13

14 r nbg = 0,16 + 1,53 r gindex + u Παρατηρούμε ότι η πορεία των αποδόσεων του Γενικού Δείκτη επηρεάζει θετικά τις αποδόσεις της μετοχής της Εθνικής. Επίσης η τιμή της στατιστικής t για τον συστηματικό κίνδυνο ειναι ο κατά απόλυτη τιμή μεγαλύτερη του 2 συνεπώς ο συντελεστής b είναι στατιστικά σημαντικός και ο παράγοντας r gindex επηρεάζει σημαντικά την απόδοση της μετοχής της Εθνικής. Ο συντελεστής προσδιορισμού R 2 ισούται με 0,76 άρα η συνολική μεταβλητότητα της μετοχής ερμηνεύεται κατά 76% από την ευθεία παλινδρόμησης η οποία και προσαρμόζεται σχετικά καλά στα δεδομένα. Η στατιστική Durbin-Watson ισούται με 1,80, προσεγγίζει αρκετά την τιμή 2 κάτι που αποτελεί ένδειξη για την μη ύπαρξη αυτοσυσχετισης στο μοντέλο. Η αυτοσυσχέτιση και γενικότερα η αξιοπιστία των εκτιμήσεων του μοντέλου μας είναι αντικείμενο εξέτασης παρακάτω. r cyprus = a + b r gindex + u Πίνακας 2.2 Μετά την εκτίμηση του μοντέλου με OLS παίρνει την μορφή: r cyprus = 0,09 + 1,39r gindex + u 14

15 Παρατηρούμε ότι η πορεία των αποδόσεων του Γενικού Δείκτη του ΧΑΑ επηρεάζει θετικά τις αποδόσεις της μετοχής της Cyprus Bank. Η τιμή της στατιστικής t είναι κατ απόλυτη τιμή μεγαλύτερη του 2, συνεπώς ο συντελεστής b είναι στατιστικά σημαντικός και ο παράγοντας r gindex επηρεάζει σημαντικά την απόδοση της μετοχής της Τράπεζας Κύπρου. Ο συντελεστής προσδιορισμού R 2 =0,70, που σημαίνει ότι το 70% της συνολικής μεταβλητότητας της r Cyprus ερμηνεύεται από την ευθεία παλινδρόμησης η οποία και προσαρμόζεται σχετικά καλά στα δεδομένα. Η στατιστική Durbin-Watson ισούται με 2 κάτι που σημαίνει ότι το μοντέλο μας δεν πάσχει από αυτοσυσχέτιση. 15

16 ΚΕΦΑΛΑΙΟ 3 ΕΛΕΓΧΟΣ ΑΞΙΟΠΙΣΤΙΑΣ ΕΚΤΙΜΗΣΕΩΝ 3.1 ΑΥΤΟΣΥΣΧΕΤΙΣΗ Η εμπειρική ανάλυση που βασίζεται σε χρονοσειριακά δεδομένα υποθέτει ότι οι σειρές αυτές είναι στάσιμες. Στις παραπάνω εκτιμήσεις και τα αποτελέσματα που παρουσιάσαμε οι ενδείξεις λένε πως τα μοντέλα μας έχουν αξιοπιστία και δεν δείχνουν ψευδή (spurious). Για να μπορέσουμε όμως να πούμε ότι οι εκτιμήσεις μας είναι αξιόπιστες πρέπει πρώτα απ όλα να εξετάσουμε τις σειρές από τις οποίες δομούνται τα μοντέλα μας ως προς την στασιμότητα τους. Στις χρηματοοικονομικές εφαρμογές, όπως είναι οι σειρές αποδόσεων ή τιμών μετοχών παρουσιάζεται το φαινόμενο του τυχαίου περίπατου (random walk phenomenon). Αυτό σημαίνει ότι η καλύτερη πρόβλεψη για την απόδοση μιας μετοχής αύριο, ισούται με την απόδοση της μετοχής σήμερα συν ένα τυχαίο shock(διαταρακτικός όρος). Εάν αυτό ίσχυε στην πράξη τότε η προβλέψεις θα ήταν πραγματικά μια εύκολη διαδικασία. Συνήθως και ιδίως για μεγάλα δείγματα ισχύει το φαινόμενο της ψευδούς παλινδρόμησης λόγω της μη στασιμότητας των σειρών που χρησιμοποιούνται και την αυτοσυσχετιση κατεπεκταση που διαταράσσει την αξιοπιστία του μοντέλου. Στις εκτιμήσεις μας παρατηρούμε ότι η ανεξάρτητη μεταβλητή gindex είναι στατιστικά σημαντική και στις δυο παλινδρομήσεις και ο συντελεστής προσδιορισμού R 2 δεν έχει χαμηλή τιμή (R 2 >70%) σε καμία από τις δυο περιπτώσεις. Επίσης η στατιστική Durbin-Watson είναι αρκετά μεγαλύτερη από 0 και μάλιστα προσεγγίζει την τιμή 2 κάτι που σύμφωνα με τον Yule αποδεικνύει την ανυπαρξία αυτοσυσχετισης στο μοντέλο μας. Ακόμα ο συντελεστής προσδιορισμού και στις δυο περιπτώσεις δεν είναι μεγαλύτερος από την στατιστική d κάτι που σύμφωνα με τους Granger & Newbold είναι ένας καλός λόγος να πιστεύουμε ότι οι παλινδρομήσεις μας είναι αξιόπιστες και όχι spurious. Εάν είχαμε ενδείξεις ότι οι εκτιμήσεις μας ενέχουν σφάλμα τύπου 1 είτε τύπου 2, τότε η καλύτερη πρακτική θα ήταν να υστερήσουμε τα μοντέλα μας κατά όσες περιόδους θα ήταν αναγκαίο για να καταστήσουμε τις σειρές μας από μη στάσιμες σε στάσιμες. 16

17 Στην οικονομετρική πρακτική λοιπόν αντιμετωπίζουμε δυο βασικά ερωτήματα, πρώτον το πως βρίσκουμε για μια συγκεκριμένη περίοδο, αν οι σειρές οι οποίες εξετάζουμε είναι στάσιμες και δεύτερον αν οι σειρές δεν είναι στάσιμες με ποιον τρόπο μπορούμε να τις καταστήσουμε στάσιμες. Αν και υπάρχουν πολλά είδη ελέγχων στασιμότητας των χρονοσειρων εμείς χρησιμοποιούμε την γραφική ανάλυση και τον έλεγχο του κορελλογράμματος. Για τις σειρές τις οποίες εξετάζουμε, οι γραφικές αναλύσεις (line graphs), οι οποίες έχουν ήδη παρουσιαστεί για κάθε σειρά ξεχωριστά δεν παρουσιάζουν κάποια ανοδική ή καθοδική τάση κάτι που μας δίνει το δικαίωμα να πιστεύουμε ότι χαρακτηρίζονται από στασιμότητα. Από την αίσθηση όμως, οφείλουμε να περάσουμε στην βεβαιότητα. Για να επιβεβαιώσουμε την στασιμότητα των σειρών που χρησιμοποιούμε εφαρμόζουμε autocorrelation function με την βοήθεια του συντελεστή αυτοσυσχετισης ρ κ. Για να υπολογίσουμε τον συντελεστή αυτοσυσχέτισης χρησιμοποιούμε την διακύμανση και την συνδιακύμανση του δείγματος. ρ κ = covariance (lag=k)/variance όπου κ=36 (E-views default) Η γραφική απεικόνιση του παραπάνω λόγου είναι γνωστή ως κορελόγραμμα του δείγματος. Με την βοήθεια του E-views εφαρμόζουμε την παραπάνω διαδικασία στις σειρές του παραδείγματος μας NBG, Cyprus & Gindex, παρακάτω παρουσιάζονται τα κορελογραμματα της κάθε σειράς. Πίνακας

18 Πίνακας 3.2 Πίνακας 3.3 Στον κάθε πίνακα η στήλη AC είναι το sample autocorrelation function και παρουσιάζεται στο αριστερό διάγραμμα αυτοσυσχέτισης. Η ενιαία γραμμή στο κέντρο του διαγράμματος αντιπροσωπεύει τον άξονα του 0. Οι παρατηρήσεις δεξιά του άξονος είναι οι θετικές, ενώ οι παρατηρήσεις αριστερά του άξονος είναι οι αρνητικές τιμές. Όπως είναι φανερό από τα παραπάνω κορελογραμματα οι αυτοσυσχετισεις κινούνται γύρω από την τιμή 0 συνεπώς οι σειρές που εξετάζουμε έχουν τα χαρακτηριστικά του λευκού θορύβου (white noise phenomenon) και είναι στάσιμες. Συνεπώς μπορούμε να πούμε ότι οι εκτιμήσεις που έγιναν αρχικά στην εμπειρική ανάλυση των μοντέλων r nbg = a + b r gindex + u r cyprus = a + b r gindex + u και 18

19 είναι αξιόπιστες και τα μοντέλα μας δεν είναι ψευδή. Αφού ελέγξαμε την ενδεχόμενη ύπαρξη αυτοσυσχετισης στα μοντέλα μας, στην συνέχεια θα αναλύσουμε τον άλλο άσπονδο φίλο των αξιόπιστων προβλέψεων που είναι η ετεροσκεδαστικότητα. 3.2 ΕΤΕΡΟΣΚΕΔΑΣΤΙΚΟΤΗΤΑ Μια από τις κλασικές υποθέσεις του απλού γραμμικού υποδείγματος είναι, ότι τα σφάλματα u t είναι ομοσκεδαστικά, που σημαίνει ότι η διακύμανση των σφαλμάτων είναι σταθερή var(u t )= σ 2 εναλλακτικά Ε(u 2 t)= σ 2 για t = 1,2,.,n. Παρ όλα αυτά στις χρηματοοικονομικές εφαρμογές ιδίως σε παραδείγματα μελέτης χρονοσειρών οι διακυμάνσεις των διαταρακτικων όρων δεν είναι σταθερές, αλλά μεταβάλλονται μεταξύ διαφορετικών χρονικών περιόδων. Ο χρόνος κατά τον οποίο εξελίσσονται οι παρατηρήσεις των αποδόσεων των μετοχών χωρίζεται σε τμήματα με μεγαλύτερη μεταβλητότητα και σε αλλά με μικρότερη μεταβλητότητα (volatility clustering). Συνεπώς σε αυτές τις περιπτώσεις διαταράσσεται η υπόθεση της ομοσκεδαστικότητας και εντοπίζεται η ύπαρξη της ετεροσκεδαστικότητας var(u) σ 2. Μια πρώτη ένδειξη της ύπαρξης της ετεροσκεδαστικοτητας είναι όταν παρατηρείται συστηματική σχέση μεταξύ των τετραγώνων των καταλοίπων είτε στις τιμές της εκτιμημένης εξαρτημένης μεταβλητής, που στην περίπτωση μας είναι οι r nbg και r cyprus είτε στις τιμές της ανεξάρτητης μεταβλητής r gindex.εάν υπάρχει ετεροσκεδαστικότητα οι εκτιμήτριες των συντελεστών είναι γραμμικές και αμερόληπτες, όμως δεν είναι αποτελεσματικές δηλαδή δεν έχουν την ελάχιστη διακύμανση. Επίσης τα διαστήματα εμπιστοσύνης των εκτιμητών θα υποεκτιμούνται και οι έλεγχοι t και F θα δέχονται την μηδενική υπόθεση, της μη σημαντικότητας της ανεξάρτητης μεταβλητής ενώ θα έπρεπε να την απορρίπτουν. Συνεπώς και πάλι θα πρέπει να εξετάσουμε την εκτιμητική αξιοπιστία των μοντέλων μας από την σκοπιά της ετεροσκεδαστικότητας. Υπάρχουν αρκετά είδη ελέγχων της ύπαρξης της ετεροσκεδαστικότητας, εμείς θα εφαρμόσουμε τον έλεγχο White. Ο έλεγχος αυτός δεν είναι ευαίσθητος στην υπόθεση της κανονικότητας. Εφαρμόζεται στην παλινδρόμηση τετραγώνων των καταλοίπων επάνω στην ανεξάρτητη μεταβλητή gindex.από την παραπάνω βοηθητική παλινδρόμηση υπολογίζεται ο συντελεστής προσδιορισμού. Κάτω από την υπόθεση της μη ύπαρξης ετεροσκεδαστικότητας, το γινόμενο του αριθμού των παρατηρήσεων 19

20 n επί τον συντελεστή προσδιορισμού R 2 ακολουθεί την κατανομή Χ 2 με βαθμούς ελευθερίας ίσους με τον αριθμό των ανεξάρτητων μεταβλητών, στην περίπτωση μας οι βαθμοί ελευθερίας ισούνται με 1 και το επίπεδο εμπιστοσύνης 0,05. n * R 2 X 2 Την παραπάνω διαδικασία την εφαρμόζουμε στα εκτιμημένα μοντέλα r nbg = 0,16 + 1,53 r gindex + u & r cyprus = 0,09 + 1,39r gindex + u και λαμβάνουμε τα παρακάτω αποτελέσματα. Πίνακας 3.4 Πίνακας

21 Για την περίπτωση της μετοχής της Εθνικής Τράπεζας παρατηρούμε ότι το γινόμενο nr 2 είναι πολύ μεγαλύτερο από την κριτική τιμή της κατανομής x 2 για διάστημα εμπιστοσύνης 0.05 και 1 βαθμό ελευθερίας (nr 2 = 24.62, p = 3.136) συνεπώς δε μπορούμε να δεχτούμε την αρχική υπόθεση της μη ύπαρξης ετεροσκεδαστικότητας. Το μοντέλο μας προφανώς, πάσχει από ετεροσκεδαστικότητα που σημαίνει ότι η διακύμανση των σφαλμάτων δεν είναι σταθερή και ο εκτιμητής b μπορεί να είναι γραμμικός και αμερόληπτος όμως δεν είναι αποτελεσματικός δηλαδή δεν έχει την ελάχιστη διακύμανση. Αντίθετα στην περίπτωση του δεύτερου γραμμικού μοντέλου με εξαρτημένη μεταβλητή την απόδοση της μετοχής της Τράπεζας Κύπρου το γινόμενο nr 2 είναι μικρότερο από την κριτική τιμή της κατανομής x 2 με διάστημα εμπιστοσύνης 0.05 και 1 βαθμό ελευθερίας (nr 2 = 2.66 p = 3.146). Συνεπώς δεν έχουμε λόγο να απορρίψουμε την αρχική υπόθεση της ομοσκεδαστικότητας των καταλοίπων. Στην περίπτωση αυτή λοιπόν οι εκτιμήσεις που προέκυψαν από τη μέθοδο OLS είναι αξιόπιστες γιατί το μοντέλο μας δεν πάσχει από ετεροσκεδαστικότητα ούτε από αυτοσυσχέτιση όπως αποδείξαμε παραπάνω. Οι συνέπειες της ύπαρξης ετεροσκεδαστικών καταλοίπων όπως αναφέρθησαν πιο πάνω είναι σοβαρές και ο αναλυτής οφείλει να τις άρει και όχι να τις αγνοήσει. Η σύγχρονη βιβλιογραφία μας προσφέρει δύο εναλλακτικούς τρόπους να αντιμετωπίσουμε την ετεροσκεδαστικότητα. Ο πρώτος είναι να εφαρμόσουμε διαδικασία θεραπείας του μοντέλου από την ετεροσκεδαστικότητα και ο δεύτερος είναι να ανάγουμε τα κατάλοιπα u t σε εξαρτημένη μεταβλητή προς εκτίμηση. Ο δικός μας στόχος είναι να προβλέψουμε και να αναλύσουμε το μέγεθος των σφαλμάτων του μοντέλου, έτσι ώστε να δώσουμε αξιόπιστες απαντήσεις για το μέγεθος της μεταβλητότητας των αποδόσεων της μετοχής της Εθνικής και της Κύπρου. Συνεπώς θα ακολουθήσουμε τον δεύτερο τρόπο ο οποίος μας παραπέμπει στην χρήση του ARCH/GARCH model. 21

22 ΚΕΦΑΛΑΙΟ 4 ΜΟΝΤΕΛΑ ARCH/GARCΗ 4.1 Η ΧΡΗΣΗ ΤΩΝ ΜΟΝΤΕΛΩΝ ARCH/GARCH Τα ARCH/GARCH μοντέλα που ετυμολογικά σημαίνουν αυτοπαλίνδρομος παράγοντας ετεροσκεδαστικότητας και γενικευμένος αυτοπαλίνδρομος παράγοντας ετεροσκεδαστικότητας αντίστοιχα, κατασκευάστηκαν για να αντιμετωπίζουν τη μεταβολή του μεγέθους της διακύμανσης μέσα στο χρόνο και έχουν γίνει ευρέως διαδεδομένα εργαλεία για την επεξεργασία και ανάλυση ετεροσκεδαστικών χρονοσειρών. Η χρήση τους στοχεύει στη μέτρηση της μεταβλητότητας και της προσέγγισής της ως προς μια τυπική απόκλιση η οποία μπορεί να χρησιμοποιηθεί στις χρηματοοικονομικές αποφάσεις που αφορούν ανάλυση κινδύνου, επιλογή χαρτοφυλακίου και τιμολόγηση ομολογιών. Θα προσαρμόσουμε τη θεωρητική βάση των μοντέλων ARCH/GARCH στην προκείμενη χρηματοοικονομική των αποδόσεων και του κινδύνου της μετοχής της Εθνικής Τράπεζας. Συνεπώς η εξαρτημένη μεταβλητή είναι η r nbg, η μέση τιμή είναι m και η διακύμανση είναι h. Τότε η απόδοση r ισούται με την μέση τιμή του r, συν την τυπική απόκλιση του r (τετραγωνική ρίζα της διακύμανσης) συν τον διαταρακτικό όρο για τη δεδομένη χρονική περίοδο. Η οικονομετρική πρόκληση είναι να προσδιορίσουμε τον τρόπο που θα χρησιμοποιήσουμε τα δεδομένα για να προβλέψουμε το μέσο και την διακύμανση της απόδοσης δεδομένων των ιστορικών στοιχείων. Πολλές προσπάθειες είχαν γίνει κατά το παρελθόν για την προσέγγιση της μέσης τιμής της απόδοσης, με σκοπό να προβλεφθούν οι μελλοντικές αποδόσεις, στην πραγματικότητα όμως καμία μέθοδος δεν ήταν διαθέσιμη για την πρόβλεψη της διακύμανσης, μέχρι την παρουσίαση των μοντέλων ARCH. Τα μέχρι τότε περιγραφικά εργαλεία ήταν η κινητή τυπική απόκλιση. Αυτή ήταν η τυπική απόκλιση που υπολογιζόταν με την χρήση ενός αριθμού που στηριζόταν στις πιο πρόσφατες παρατηρήσεις. Αυτός ήταν ο πρόδρομος για το πρώτο μοντέλο ARCH, αφού υπέθετε ότι η διακύμανση της αυριανής 22

23 απόδοσης είναι ένας ισοσταθμικός μέσος όρος των τετραγώνων των καταλοίπων των τελευταίων 22 ημερών. Η ισοσταθμική όμως προσέγγιση έδειχνε αναξιόπιστη, αφού η λογική έλεγε ότι οι πιο πρόσφατες παρατηρήσεις θα έπρεπε να φέρουν υψηλότερο ποσοστό στάθμισης. Το ARCH μοντέλο, που παρουσιάστηκε από τον Engle το 1982, αντιμετωπίζει αυτές τις σταθμίσεις ως παραμέτρους που πρέπει να εκτιμηθούν και αφήνει τα δεδομένα να μας οδηγήσουν στις βέλτιστες σταθμίσεις που θα χρησιμοποιηθούν στην πρόβλεψη της διακύμανσης. Μια αξιόπιστη γενίκευση αυτού του μοντέλου είναι η παραμετροποίηση GARCH, η οποία παρουσιάστηκε από τον Bollerslev το Αυτό το μοντέλο είναι επίσης ένας σταθμικός μέσος όρος των ιστορικών τετραγώνων των καταλοίπων, τα οποία φέρουν φθίνουσες σταθμίσεις που συγκλίνουν στο μηδέν αλλά δεν γίνονται μηδέν. Με τη χρήση των μοντέλων GARCH τα μοντέλα έχουν αξία προβλεψιμότητας ακόμα και στην πιο απλή τους μορφή και επίσης έχουν αποδειχθεί αρκετά αξιόπιστα στην πρόβλεψη της διακύμανσης. Η πιο ευρέως διαδεδομένη εφαρμογή GARCH, ισχυρίζεται ότι η καλύτερη πρόβλεψη της διακύμανσης στην επόμενη περίοδο είναι ένας σταθμικός μέσος όρος της μακροχρόνιας μέσης διακύμανσης, της εκτίμησης της διακύμανσης για τη δεδομένη περίοδο και των νέων δεδομένων αυτής της περιόδου που προσδιορίζονται από τα πιο πρόσφατα τετράγωνα των καταλοίπων. Για να γίνουμε πιο συγκεκριμένοι χρησιμοποιούμε το h για να ορίσουμε τη διακύμανση των καταλοίπων μιας παλινδρόμησης της μορφής: r t = m t + h t Σε αυτήν την περίπτωση η διακύμανση των ε t είναι 1. Το μοντέλο GARCH για τη διακύμανση έχει την εξής μορφή: h t+1 = ω + a(r t m t ) 2 + bh t = ω + ah t ε t 2 +bh t 23

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 4: ΘΕΩΡΙΑ ΤΗΣ ΚΕΦΑΛΑΙΑΓΟΡΑΣ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21 Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31 Άσκηση η 2 η Εργασία ΔEO3 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ3 Η επιχείρηση Α εκδίδει σήμερα ομολογία ονομαστικής αξίας.000 με ετήσιο επιτόκιο έκδοσης 7%. Το

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή

ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή 1 ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή Η ανάλυση ευαισθησίας μιάς οικονομικής πρότασης είναι η μελέτη της επιρροής των μεταβολών των τιμών των παραμέτρων της πρότασης στη διαμόρφωση της τελικής απόφασης. Η ανάλυση

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

Επιλογή επενδύσεων κάτω από αβεβαιότητα

Επιλογή επενδύσεων κάτω από αβεβαιότητα Επιλογή επενδύσεων κάτω από αβεβαιότητα Στατιστικά κριτήρια επιλογής υποδειγμάτων Παράδειγμα Θεωρήστε τον παρακάτω πίνακα ο οποίος δίνει τις ροές επενδυτικών σχεδίων λήξης μιας περιόδου στο μέλλον, όταν

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ by Dr. Stergios Athianos 1- ΟΡΙΣΜΟΣ ΤΗΣ ΕΠΕΝΔΥΣΗΣ Τοποθέτηση συγκεκριμένου ποσού με στόχο να αποκομίσει ο επενδυτής μελλοντικές αποδόσεις οι οποίες θα τον αποζημιώσουν

Διαβάστε περισσότερα

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Αγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής

Αγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής Αγορές Χρήματος και Κεφαλαίου Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Ορισμός των Ορθολογικών Προσδοκιών για Μία Περίοδο

Διαβάστε περισσότερα

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 5: Η ΥΠΟΘΕΣΗ ΤΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΤΩΝ ΑΓΟΡΩΝ

ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 5: Η ΥΠΟΘΕΣΗ ΤΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΤΩΝ ΑΓΟΡΩΝ ΔΙΕΘΝΕΙΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΕΣ ΑΓΟΡΕΣ Ενότητα 5: Η ΥΠΟΘΕΣΗ ΤΗΣ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑΣ ΤΩΝ ΑΓΟΡΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 31 www.frontistiria-eap.gr ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΔΕΟ 31 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ

ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 31 www.frontistiria-eap.gr ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΔΕΟ 31 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΔΕΟ 31 ΤΟΜΟΣ Β ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΛΟΓΙΑ ΤΩΝ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 01 1 ΤΟΜΟΣ ΚΑΘΑΡΑ ΠΑΡΟΥΣΑ ΑΞΙΑ Η καθαρή Παρούσα Αξία ισούται με το άθροισμα προεξοφλημένων καθαρών ταμειακών

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΙΙ ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ, ΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΣΙΜΟΣ ΜΕΙΝΤΑΝΗΣ, Αναπληρωτής Καθηγητής Τμήμα Οικονομικών Επιστημών, ΕΚΠΑ ΓΙΑΝΝΗΣ Κ. ΜΠΑΣΙΑΚΟΣ, Επίκουρος Καθηγητής Τμήμα Οικονομικών

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

Σύντομος πίνακας περιεχομένων

Σύντομος πίνακας περιεχομένων Σύντομος πίνακας περιεχομένων Πρόλογος 19 Οδηγός περιήγησης 25 Πλαίσια 28 Ευχαριστίες της ενδέκατης αγγλικής έκδοσης 35 Βιογραφικά συγγραφέων 36 ΜΕΡΟΣ 1 ΕΙΣΑΓΩΓΗ 37 1 Η οικονομική επιστήμη και η οικονομία

Διαβάστε περισσότερα

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ

ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ

ΗΡΑΚΛΕΙΟ 2007 ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΙΩΑΝΝΑ ΚΑΠΕΤΑΝΟΥ ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ 1.1 Γιατί οι επιχειρήσεις έχουν ανάγκη την πρόβλεψη σελ.1 1.2 Μέθοδοι πρόβλεψης....σελ.2 ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ 2.1 Υπόδειγμα του Κινητού μέσου όρου.σελ.5 2.2 Υπόδειγμα

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 5: Παλινδρόμηση Συσχέτιση θεωρητική προσέγγιση Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε

Διαβάστε περισσότερα

Α. Αυτάρκης Οικονομία

Α. Αυτάρκης Οικονομία σελ. από 9 Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Οικονομικής Επιστήμης Μάθημα: 473 Διεθνής Οικονομική Εαρινό Εξάμηνο 05 Καθηγητής: Γιώργος Αλογοσκούφης Φροντιστής: Αλέκος Παπαδόπουλος 8/5/05 Διαγραμματική

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης 1.1. Τι είναι η Οικονομική της Διοίκησης 1.2. Τι παρέχει η οικονομική θεωρία στην Οικονομική της Διοίκησης 1.3. Οι σχέσεις της οικονομικής της

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 9: Αυτοσυσχέτιση Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης

Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών. Καθ. Γιώργος Αλογοσκούφης Το Βασικό Κεϋνσιανό Υπόδειγμα και η Σταδιακή Προσαρμογή του Επιπέδου Τιμών Καθ. Γιώργος Αλογοσκούφης Καθηγητής Γιώργος Αλογοσκούφης, Δυναμική Μακροοικονομική, 2014 Η Κεϋνσιανή Προσέγγιση Η πιο διαδεδομένη

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή 2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

Γιατί μετράμε την διασπορά;

Γιατί μετράμε την διασπορά; Γιατί μετράμε την διασπορά; Παράδειγμα Δίνεται το ετήσιο ποσοστό κέρδους δύο επιχειρήσεων για 6 χρόνια. Αν έπρεπε να επιλέξετε την μετοχή μιας εκ των 2 με κριτήριο το ποσοστό κέρδους αυτά τα 6 χρόνια.

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών

Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών Η Διαχρονική Προσέγγιση στο Ισοζύγιο Πληρωμών Καθ. ΓΙΩΡΓΟΣ ΑΛΟΓΟΣΚΟΥΦΗΣ Οικονομικό Πανεπιστήμιο Αθηνών 1 Η Διαχρονική Προσέγγιση Η διαχρονική προσέγγιση έχει ως σημείο εκκίνησης τις τεχνολογικές και αγοραίες

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ Πρόλογος Ευχαριστίες Βιογραφικά συγγραφέων ΜΕΡΟΣ 1 Εισαγωγή 1 Η οικονομική επιστήμη και η οικονομία 1.1 Πώς αντιμετωπίζουν οι οικονομολόγοι τις επιλογές 1.2 Τα οικονομικά ζητήματα 1.3 Σπανιότητα και ανταγωνιστική

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΥΠΟΔΕΙΓΜΑ ΤΗΣ ΔΙΑΡΚΕΙΑΣ (DURATION MODEL)

ΚΕΦΑΛΑΙΟ 8 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΥΠΟΔΕΙΓΜΑ ΤΗΣ ΔΙΑΡΚΕΙΑΣ (DURATION MODEL) ΚΕΦΑΛΑΙΟ 8 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΥΠΟΔΕΙΓΜΑ ΤΗΣ ΔΙΑΡΚΕΙΑΣ (DURATION MODL) Ορισμός και μέτρηση της διάρκειας H διάρκεια ενός χρηματοοικονομικού προϊόντος είναι ο μέσος σταθμικός χρόνος που απαιτείται

Διαβάστε περισσότερα

Ο Συντελεστής Beta μιας Μετοχής

Ο Συντελεστής Beta μιας Μετοχής Φεβρουάριος 2005 Ο Συντελεστής Beta μιας Μετοχής Νικόλαος Ηρ. Γεωργιάδης Υπεύθυνος Ανάλυσης Valuation & Research Specialists ( VRS ) Investment Research & Analysis Journal - Value Invest - www.valueinvest.gr

Διαβάστε περισσότερα

Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών. ΔΠΜΣ Στην Οικονομική Επιστήμη. Διπλωματική Εργασία

Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών. ΔΠΜΣ Στην Οικονομική Επιστήμη. Διπλωματική Εργασία Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών ΔΠΜΣ Στην Οικονομική Επιστήμη Διπλωματική Εργασία Θέμα : «Ζήτηση Προθεσμιακών Καταθέσεων» Όνομα : Ελένη Ζίττη Αριθμός Μητρώου : Μ 08/04 Επιβλέπων

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104 ΘΕΜΑ 3 ΙΑ) Η οικονομική αξία της μετοχής BC θα υπολογιστεί από το συνδυασμό των υποδειγμάτων α) D D προεξόφλησης IV για τα πρώτα έτη 05 και 06 και β) σταθερής k k αύξησης μερισμάτων D IV (τυπολόγιο σελ.

Διαβάστε περισσότερα

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης)

(i) Νόμος Ζήτησης. Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) ΕΙΣΑΩΗ Μικροοικονομία Εξετάζει τη συμπεριφορά του οικονομούντος ατόμου (καταναλωτή, παραγωγού επιχείρησης) Μικροοικονομία ή Θεωρία Τιμών Σημείο αναφοράς είναι ο προσδιορισμός της τιμής ενός αγαθού. Ν Ο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ

ΚΕΦΑΛΑΙΟ 7 ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ ΚΕΦΑΛΑΙΟ 7 ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Α. Εισαγωγή Όταν μια επιχείρηση έχει περίσσια διαθέσιμα, μπορεί να πληρώσει άμεσα το διαθέσιμο χρηματικό ποσό ως μέρισμα στους μετόχους, ή να χρηματοδοτήσει κάποια νέα επένδυση.

Διαβάστε περισσότερα

Βραχυχρόνιες προβλέψεις του πραγματικού ΑΕΠ χρησιμοποιώντας δυναμικά υποδείγματα παραγόντων

Βραχυχρόνιες προβλέψεις του πραγματικού ΑΕΠ χρησιμοποιώντας δυναμικά υποδείγματα παραγόντων Βραχυχρόνιες προβλέψεις του πραγματικού ΑΕΠ χρησιμοποιώντας δυναμικά υποδείγματα παραγόντων 1. Εισαγωγή Αθανάσιος Καζάνας και Ευθύμιος Τσιώνας Τα υποδείγματα παραγόντων χρησιμοποιούνται ευρέως στη διαδικασία

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Στατιστική ανάλυση αποτελεσμάτων

Στατιστική ανάλυση αποτελεσμάτων HELLENIC OPEN UNIVERSITY School of Social Sciences ΜΒΑ Programme Στατιστική ανάλυση αποτελεσμάτων Βασίλης Αγγελής Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Πανεπιστήμιο Αιγαίου Κατερίνα Δημάκη Αν. Καθηγήτρια

Διαβάστε περισσότερα

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ

ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ SOS & ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΩΝ 5 ΟΥ ΕΞΑΜΗΝΟΥ www.dap papei.gr 2 ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Τι θα γράψω: Στις εξετάσεις τα θέματα περιλαμβάνουν ερωτήσεις και ασκήσεις (κυρίως ασκήσεις) όπου

Διαβάστε περισσότερα

Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2

Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Κεφάλαιο 8 1) Τι είναι ετεροσκεδαστικότητα και τι είδους προβλήµατα παρουσιάζονται; ( 2, 4, σελίδες 370-372). 2) Γράψτε τον τύπο της διακύµανσης της κλίσης όταν

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΘΕΜΑ 4 Υποθέστε ότι είστε ο διαχειριστής του αµοιβαίου κεφαλαίου ΑΠΟΛΛΩΝ το οποίο εξειδικεύεται σε µετοχές µεγάλης κεφαλαιοποίησης εσωτερικού. Έπειτα από την πρόσφατη ανοδική πορεία του Χρηματιστηρίου

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL. , και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής.

ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL. , και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής. ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL Το πακέτο Excel είναι ένα πρόγραμμα φύλλου εργασίας (spreadsheet) με το οποίο μπορούμε να κάνουμε υπολογισμούς και διαγράμματα που είναι χρήσιμοι στα οικονομικά. Στο Excel το φύλλο εργασίας

Διαβάστε περισσότερα

Οι οικονομολόγοι μελετούν...

Οι οικονομολόγοι μελετούν... Οι οικονομολόγοι μελετούν... Πώς αποφασίζουν οι άνθρωποι. Πώς αλληλεπιδρούν μεταξύ τους οι άνθρωποι. Ποιες δυνάμεις επηρεάζουν την οικονομία συνολικά. Ποιο είναι το αντικείμενο της μακροοικονομικής; Μακροοικονομική:

Διαβάστε περισσότερα

Τεχνική Ανάλυση Μετοχής ΣΑΡΑΝΤΗΣ ΓΡ.

Τεχνική Ανάλυση Μετοχής ΣΑΡΑΝΤΗΣ ΓΡ. Τεχνική Ανάλυση Μετοχής ΣΑΡΑΝΤΗΣ ΓΡ. Η µετοχή κατά το Σεπτέµβριο συνέχισε την ανοδική της πορεία µε αποτέλεσµα στις 19 Σεπτεµβρίου να καταφέρει να ξεπεράσει το επίπεδο αντίστασης των 10,7 ευρώ και να φτάσει

Διαβάστε περισσότερα

Κεφάλαιο 5. Αποταμίευση και επένδυση σε μια ανοικτή οικονομία

Κεφάλαιο 5. Αποταμίευση και επένδυση σε μια ανοικτή οικονομία Κεφάλαιο 5 Αποταμίευση και επένδυση σε μια ανοικτή οικονομία Περίγραμμα κεφαλαίου Ισοζύγιο Πληρωμών Ισορροπία της αγοράς αγαθών σε μια ανοικτή οικονομία Αποταμίευση και επένδυση σε μια μικρή ανοικτή οικονομία

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013 Τρίτη Γραπτή Εργασία Γενικές οδηγίες για την εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα