[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3"

Transcript

1 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s- + ( l ) Expltio l + ( -) d s [ + l] s +l s l - + d l l - d s - + ( l) Q. No to tems If 7, the to 0 tems Optio 5 Optio 6 Optio 7 Optio 4 40 Coet Aswe Expltio 6+ ( -) ( 0- ) [ 4+] [ ] [ + ] 5 (7) 5

2 Q. No. If,,,... e i A.P. whee > 0V, the Optio - Optio + Optio - Optio Coet Aswe Expltio d -d -d d - - -d - d ( ) Q. No. 4 If the sum of the 0 tems of A.P. is 4 times to the sum of its 5 tems, the the tio of fist tems d ommo diffeee is Optio : Optio : Optio : Optio 4 : Coet Aswe Expltio [ ] +9 d 4 [ +4d] 5 + 9d 4 + 8d d d

3 Q. No. 5 A seies whose th tems is + y, the sum of tems will be x Optio ( +) + y, x Optio ( -) x Optio ( -)- y, x Optio 4 ( +) - x y Coet Aswe Expltio s + y x ( + ) + y x Q. No. 6 If α, β be oots of x - x + 0 d γ, δe δ the oots of x - x + b 0 d α, β, γ, δ (i ode) fom iesig G.P., the Optio, b Optio, b Optio, b Optio 4 4, b 6 Coet Aswe Expltio α A, β A, γ A, δ A A + A, A. A A + A A.A b (A + A) ± A b Q. No. 7 If, b, e thee uequl umbes suh tht, b, e i A.P. d b -, - b, e i G.P., the : b : Optio : : 5 Optio : : 4 Optio : : 5 Optio 4 : : Coet Aswe 4 Expltio (- b) (b- ) () d d ( ) d b + d + d tio is : :

4 Q. No. 8 The sum of tems of the followig seies +(+ x)+(+ x+ x )+... will be Optio -x -x Optio x(- x ) -x Optio (- x)- x(- x ) (- x) Optio 4 oe Coet Aswe Expltio (- x)+(- x)(+ x)+(- x) ( + x+ x ) +... (- x) (- ) x x x x ( -x ) -x (- x) -x Q. No. 9 If the thid tem of G.P. is 4, the the podut of its fist 5 tems is Optio 4 Optio 4 4 Optio 4 5 Optio 4 Noe Coet Aswe Expltio Let the 5 tems be,,,, 4 podut Q. No. 0 If, b, e thee uequl umbes suh tht, b, e i A.P. d b -, - b, 4 - e i G.P. the : b : is Optio : : Optio : : 4 Optio : : 4 Optio 4 : : 4 Coet Aswe Expltio (- b) (b- ) (4- ) d d(4-( + d ) d - d d d b + d + d Rtio : :

5 Q. No. The lest vlue of fo whih the sum to tems is gete th Is Optio 7 Optio 9 Optio Optio 4 Coet Aswe Expltio > - > 4000 > 400 Q. No. If, 4, b e i A.P;,, b e i G.P., the,, b e i Optio HP Optio AP Optio GP Optio 4 oe of these Coet Aswe Expltio + b 8 b 4 b + b HP Q. No. If p, q, e i A.P., the pth, qth d th tems of y G.P. e i Optio A.P. Optio G.P. Optio H.P. Optio 4 A.G.P. Coet Aswe Expltio q p + T p R p - T q R q- T R - T q R q- T p. T R p + - R q - T q T p.t Q. No. 4 I G.P. if the(m + ) th tem be p d (m- ) th tems be q the the m th tems is Optio pq Optio p/ q Optio q/ p Optio 4 p/ q Coet Aswe Expltio T m + p m+- T m - p m-- pq m- m - pq Tm

6 Q. No. 5 The fouth, seveth d teth tems of G.P. e p, q, espetively the, Optio p q + Optio q p Optio p q Optio 4 pq + pq + 0 Coet Aswe Expltio T y p R T 7 q R 6 T 0 R q q p Q. No. 6 The sum of ifiite G.P. seies is. A seies whih is fomed by sques of its tems hve the sum lso. Fist seies will be Optio,,, Optio,,, Optio,,, Optio 4,-,,-,... Coet Aswe Expltio S - S Seies,,,

7 Q. No. 7 Optio A.P. Optio G.P. Optio H.P. Optio 4 Noe Coet Aswe 4 Expltio b + + b If, b, e i A.P., the,. e i b b 4,, ( + ) ( + ) 4 ) + ( + ) ( + ) would be +4 ( + ) ( + ) ( + + ) ( + ) ( + ) + ( + ) Not ( ) 8 b) ( + ) Not (b) ) ( + ) + 4 ( + ) +( + ) 4 ( + )(+ ) 4 Not ( ) Q. No. 8 If, b, e i H.P., the whih oe of the followig is tue Optio + b- b- b Optio b + Optio b+ b+ + b- b- Optio 4 Noe Coet Aswe 4 Expltio ) + S b + + b b- b-( + ) b ( b- )( b- ) b - b ( + )+ b - b b - +

8 ( b - ) b( b - ) b Flse b) Flse ( b+ )( b- )+( b+ )( b- ) ) ( b- )( b- ) b + b - b - + b - b + b b - b( + )+ ( b - ) b( b - ) Flse Q. No to tems Optio + - Optio Optio - - Optio 4 Noe Coet Aswe Expltio - T - - S - ( -) Q. No. 0 If x,, z e i A.P. d x,, z e i G.P., the x, 4,z will be i Optio A.P. Optio G.P. Optio H.P. Optio 4 Noe Coet Aswe Expltio x + z xz 4 xz 8 4 x+ z HP

9 Q. No. If the sum of tems of G.P., is S, podut is P d sum of thei iveses is R, the P Optio R S Optio S R Optio R S Optio 4 S R Coet Aswe 4 Expltio - S - P ( (- ) - R. - - R - S R - S R - ( -) P Q. No. If, b, e positive umbe i A.P. d, b, e i H.P., the Optio b Optio b + Optio / b 8 Optio 4 Noe Coet Aswe Expltio b + b ( + + ) ( + ) 8 ( + ) + ( + ) ( + ) ( + )- 4 ( - ) + ( + - ) 0 ( + ) (- ) + (- ) 0 (- ) [( + ) + ] 0 b

10 Q. No. If, b, e i H.P., the the vlue of Optio 0 Optio Optio Optio 4 Coet Aswe Expltio b + b ( b+ )( b- )+( b+ )( b- ) ( b- )( b- ) b + b - b - + b - b + b - ( b -) b - b( + )+ b - b + b ( b ) ( b -) - b b b- b- is Q. No. 4 The sum of thee oseutive tems i G.P. is 4. If is dded to the fist d the seod tems d subtted fom the thid, the esultig ew tems e i A.P. The the lowest of the oigil tems is Optio Optio Optio 4 Optio 4 8 Coet Aswe Expltio ( + ) + ( - ) ( + ) (- 8) (- ) 0, 8, Lowest tem is

11 Q. No. 5 If l(x + z) + l(x - y + z) l(x - z), the x, y, z e i Optio A.P Optio GP Optio H.P. Optio 4 oe of these Coet Aswe Expltio ( + )( - ) l ( x z x y+ z) l( x+ z) (x + z)(x - y + z) (x- z) x - xy+ xz+ xz- yz+ z x + z -xz 4xz xy + yz xz xy + yz Divided by xzy + HP y x Q. No. 6 The vlue of will be Optio Optio Optio Optio 4 Coet Aswe Expltio Q. No. 7 If x y b z d, b, i G.P., the x, y, z e i Optio A.P. Optio G.P. Optio H.P. Optio 4 oe Coet Aswe Expltio x y b z t t x t z b t y t x+z y x + z

12 Q. No. 8 The hmoi me of oots of the equtio (5+ ) x -(4+ 5) x+(8+ 5)0is Optio Optio 4 Optio 6 Optio 4 8 Coet Aswe Expltio αβ H.M. α + β Q. No. 9 The hmoi me betwee two umbes is getest umbe betwee them is : Optio 7 Optio 6 Optio 8 Optio 4 60 Coet Aswe Expltio 7 HM4 5 5 GM 4 b 7 b4 + b 5 (576) 7 + b 5 + b , 8 Lgest No d the geometi me is 4. The Q. No. 0 If, b d e positive el umbes, the the lest vlue of ( + b+ ) + + is b Optio 9 Optio Optio 0/ Optio 4 oe of these Coet Aswe Expltio + b+ + + b ( + b+ ) b Lest vlue 9

13 Q. No. b If, b d e positive el umbes the + + b Optio Optio 6 Optio 7 Optio 4 oe of these Coet Aswe Expltio b + + b b.. b b + + b is gete th o equl to Q. No. Let x be the ithmeti me d y, z be the two geometi mes betwee y two y + z positive umbe. The vlue of is xyz Optio Optio Optio Optio 4 Coet Aswe Expltio + b x b b b y. b b z b y + z b+ b xyz + b ( b) b( + b) + b ( b)

14 Q. No. Six ithmeti mes e iseted betwee d 9, the 4th ithmeti me is Optio Optio Optio Optio 4 4 Coet Aswe Expltio 9,,,, 4, 5, 6, 9 +7 d 7 7 d d 4 + 4d +4. Q. No. 4 The sum of seies upto 0 tems is Optio Optio Optio Optio 4 Noe Coet Aswe Expltio S T 0 T ( + ) ( ) ( +) ( +)( +) ( +) S S 4(0) + 4(870) Q. No. 5 The sum (!) + (!) + (!)+ +(!) equls to Optio (!) + - Optio ( +)!-(- )! Optio ( +)!- Optio 4 (!)- - Coet Aswe Expltio T (!) (( + ) - )! T ( + )! -! S ( +)!-

15 Q. No. 6 If th tem of seies is ( +)( +)' the sum of ifiite tems of the seies Optio Optio Optio 5 Optio 4 5 Coet Aswe 4 Expltio T T - 4 T - 5 T 4-6 T S + Q. No. 7 The sum of the tems of the seies + ( + ) + ( + + 5).. Optio Optio ( +) Optio ( +)( +) 6 Optio 4 oe of these Coet Aswe Expltio T ( +)( +) S 6 Q. No. 8 The sum of the seies is Optio Optio Optio Optio Coet Aswe 4 Expltio It is GP with S

16 Q. No. 9 If the sum to tems of seies be 5 +,the seod tems is Optio 5 Optio 7 Optio 0 Optio 4 5 Coet Aswe Expltio S Q. No. 40 Let 4 f( ), the ( -) Optio f() - 6f() Optio f() - 7f() Optio f( - ) - 8f() Optio 4 oe of these Coet Aswe Expltio f( ) 4 4 ( -) (- ) ( ) f() - 6f() 4 is equl to Q. No. 4 Coeffiiet of x 99 i the polyomil (x- )(x - ) (x- 00) is Optio 00! Optio Optio 5050 Optio 4-00 Coet Aswe Expltio Coeffiiet of x 99 ( ) Q. No Optio A miimum Optio A mximum Optio A miimum 50 Optio 4 A mximum 50 Coet Aswe Expltio x + x x 50 If x + x + x x 50d ( x +... x50 ) x +... x 50 x x... x Athe

17 m Mx vlueof x... x50 A miimum Q. No. 4 Give p A.P. s, eh of whih osists of tems. If thei fist tems e,,,, p d ommo diffeees e,, 5,, p - espetively, the sum of the tems of ll the pogessios is Optio p( p +) Optio ( +) p Optio p( + ) Optio 4 oe of these Coet Aswe Expltio S [ +( -)] ( +) S [ 4+( -)] [ +] S [ 6+( -)5] [5 +] S [( -) +] Sum of ll tems is. ( p )( p +) - p +P p + p p [ p +] Q. No. 44 If oe G.M. g d two A.M. s p d q e iseted betwee two umbe d b, the (p- q)( p- q) g Optio Optio - Optio Optio 4 - Coet Aswe Expltio g b, p, q, b e i Ap b + d b- d + b- + b p

18 b- +b q-- (p- q)( p- q) 4 + b -- b g + b--4b b (- b) - b Q. No. 45 Optio Optio Optio Optio 4 Coet Aswe Expltio x (0 digits) If x (0 digits), y (0 digits) d z (0 digits,) the x 9 9 y ( )(0 digits) ( ) y y 0 0 ( 0 -) ( 0 -) x y z 0 ( ) ( 0 -)( 0 +) -( 0 -) 0 ( 0 -) x-y z Q. No. 46 The sum of the fist 0 tems of is Optio Optio Optio - -0 Optio 4 oe of these Coet Aswe Expltio S S

19 Q. No. 47 The sum of the seies to 0 tems is Optio 9600 Optio 760 Optio Optio Coet Aswe Expltio tems [ ].. [ ] 0 40 (4) 0 0 () -8 (0) - 8 (0) Q. No to tems Optio 0 Optio Optio -0 Optio 4 - Coet Aswe Expltio (- )( + ) + (- 4)( + 4) + (9-0)(9 + 0) + -[ ] Q. No. 49 Coside the sequee,,,,, whee ous times. The umbe tht ous s 007 th tem is Optio 6 Optio 6 Optio 6 Optio 4 64 Coet Aswe Expltio ( +) 007 ( +) 404 6

20 Q. No. 50 If the A.M. of two umbes d b, > b > 0is twie thei G.M., the b Optio + Optio 7+ Optio 4+ Optio Coet Aswe 4 Expltio AM GM A+ A -G No A- A -G G+ G G- G Q. No. 5 A G.P. osist of eve umbe of tems. If the sum of the tems oupyig the odd ples is S d tht of the tems i the eve ples is S, the the ommo tio of the G.P. is Optio S S Optio Optio Optio 4 S S S S S S Coet Aswe Expltio,,, S - S - S S ( ) - ( ) -

21 Q. No. 5 If 5x - y, x + y, x + y e i A.P. d (x- ),(xy + ),(y + ) e i G.P., x 0, the x + y Optio 4 Optio Optio -5 Optio 4 oe of these Coet Aswe Expltio (x + y) 5x - y + x + y 4x + y 6x + y y x (xy + ) (x- ) (y + ) xy+ ± ( xy+ x-y-) xy + xy - y+ x - -x x - y -4 xy + -xy- x+ y + x 4 y x+ y -6 o 4 Q. No. 5 If the sum of m oseutive odd iteges is m 4, the the fist itege is Optio m + m + Optio m + m - Optio m - m - Optio 4 m - m + Coet Aswe 4 Expltio. +(m+) +m m m - m + Q. No. 54 The lgest positive tem of the H.P., whose fist two tems e d 5 is Optio Optio 6 Optio 5 Optio 4 8 Coet Aswe Expltio 5, e i A. P 5-7 d - Lst positive tem : 0

22 5-7 +( -) ( -) 0 ( -) Lgest tem of H.P 6 Q. No. 55 Fou distit iteges, b,, d e i A.P. If + b + d, the + b+ +d Optio Optio 0 Optio - Optio 4 oe of these Coet Aswe 4 Expltio + b + d -, b 0,, d + b + + d Q. No. 56 Assetio : If ll tems of seies with positive tems e smlle th 0-5, the the sum of the seies upto ifiity will be fiite. Reso : If S < the lim S is fiite. Optio Optio 5 0 If ASSERTION is tue, REASON is tue, REASON is oet expltio fo ASSERTION. If ASSERTION is tue, REASON is tue, REASON is ot oet expltio fo ASSERTION. If ASSERTION is tue, REASON is flse If ASSERTION is flse, REASON is tue ASSERTION d REASON Both e flse Optio Optio 4 Optio 5 Coet Aswe 5 Expltio ASSERTION d REASON Both e flse

23 Q. No. 57 Assetio : If thee positive umbe i G.P. epeset sides of tigle, the the 5-5+ ommo tio of the G.P. must lie betwee d Reso : Thee positive el umbes fom sides of tigle if sum of y two is gete th the thid. Optio If ASSERTION is tue, REASON is tue, REASON is oet expltio fo ASSERTION. Optio If ASSERTION is tue, REASON is tue, REASON is ot oet expltio fo ASSERTION. Optio If ASSERTION is tue, REASON is flse Optio 4 If ASSERTION is flse, REASON IS tue Optio 5 ASSERTION d REASON Both e flse Coet Aswe Expltio + > + - > 0 - ± ,, () - > -- > 0 ± , () Tkig itesetio 5-5+, Q. No. 58 Assetio : Thee exists A.P. whose thee tems e,, 5. Reso : Thee exists distit el umbes p, q, stisfyig Optio Optio Optio Optio 4 Optio 5 Coet Aswe Expltio A+( p-) d A+( p-) d, A+( q-) d, 5A+( -) d. If ASSERTION is tue, REASON is tue, REASON is oet expltio fo ASSERTION. If ASSERTION is tue, REASON is tue, REASON is ot oet expltio fo ASSERTION. If ASSERTION is tue, REASON is flse If ASSERTION is flse, REASON IS tue ASSERTION d REASON Both e flse A+( q-) d 5A+( -) d - p-q - 5 q- Itiol Rtiol

24 No suh t exists Assetio d eso both e flse. Q. No. 59 Assetio : The mximum umbe of ute gles i ovex polygo of sides is Reso : The sum of itel gles of y ovex polygo is (- ) 80 0 Optio If ASSERTION is tue, REASON is tue, REASON is oet expltio fo ASSERTION. Optio If ASSERTION is tue, REASON is tue, REASON is ot oet expltio fo ASSERTION. Optio If ASSERTION is tue, REASON is flse Optio 4 If ASSERTION is flse, REASON IS tue Optio 5 ASSERTION d REASON Both e flse Coet Aswe Expltio Let us ssume thee exist 4 ute gles Thei sum is less th 60. So, sum of est (- 4) gles should be gete th (- ) (- 4)80 Some gles must be gete 80 Hee ot ovex polygo. Q. No. 60 Assetio : The sum of ifiite A.G.P. +( + d) x+( + d) x +( + d) x +..., whee x < lwys exist. Reso : The sum of the ifiite seies oveges if < Optio If ASSERTION is tue, REASON is tue, REASON is oet expltio fo ASSERTION. Optio If ASSERTION is tue, REASON is tue, REASON is ot oet expltio fo ASSERTION. Optio If ASSERTION is tue, REASON is flse Optio 4 If ASSERTION is flse, REASON IS tue Optio 5 ASSERTION d REASON Both e flse Coet Aswe Expltio If ASSERTION is tue, REASON is tue, REASON is oet expltio fo ASSERTION. Q. No. 6 If the fist two tems of pogessio e log 56 d log 8 espetively, the whih of the followig sttemets e tue : Optio If thid tem is log 4 6, the the tems e i G.P. Optio If thid tem is log 6, the the tems e i A.P. Optio If thid tem is log 6, the the tems e i H.P. Optio 4 If the thid tem is log 8, the tems e i A.P. Expltio log 8 8 log 8 4 ) log 4 4 Coet b) 0, Coet 4 8 ) log the Coet d) 0 Flse

25 Q. No The vlue of fo whih , is Expltio S S ( +) +. -S ( ) - -S - - -S S (- ) ( -) + ( -).. 9 (- ) Q. No. 6 5 If S - + the S, the the umeil qutity k must be + ( +) k Expltio S ( +) 5 S S S S S S k544

26 Q. No. 64 Expltio The oly itege solutio of the equtio ( x-) +( x-) +( x-) +( x-007) 0is This is zeo t middle tem Q. No. 65 Two oseutive umbes fom,, e emoved. The ithmeti me of emiig - umbes is 05. The must be 4 Expltio + - x - y 05-4 ( + ) - 4( + y) 05( - ) x + y x x 8 x should be the itege should be eve x x 4 (- ) +0 x 4 5, 9,, 7,, 5, fo 5 x 7 50 Fo > 5, x > must be 50

27 Q. No. 66 The sum of the sques of thee distit el umbes, whih e i G.P., is S. If thei sum is αs, show tht α (,). ' Expltio,, ( -) αs - ( ) 6 ( -) αs + + S - S ( ) S ( + + )( - + ) ( + +) S α α ( + +) α t - + (t- ) -(t- ) + (t- ) 0 0, t ( t-) 4( t-)( t-) 0 ( t-) -(t -) 0 ( t++t-)( t+- t+) 0 (t -)(- t+) 0 (t -)( t+) 0 t, -{,} Fo t whih is ot possible α (,) ' ( )( ) Q. No ( ) Show tht (-)( +) 48 6( +) Expltio 4 T ( -)( +) ( )( ) 6( 4 -) T + 6( -)( +) T ( -)( +) S S

28 ( +)( +) S ( ) Fo S T T - T - 5 T S - + S 6( +) ( ) S ( +) Q. No. 68 Fid the sum of the seies tems Expltio T..5...( -)(+) T ( -)..5...( +) T -. T T T ( -)..5...( +) ( +)

29 Q. No. 69 A sequee of el umbes,,, is suh tht Expltio 0 0, +, +, pove tht - i. i ( - ) + ( ) ( ) ( -) ( ) - Poved. Q. No. 70 Fo positive el umbes x, y, z pove tht Expltio ( x+ y+ z) ( x+ y+ z) x + y + z x y z x+ y+ z X Y Z x+ y+ z x+ x+... x+ y+ y+... y+ z+ z... z x y z ( x y z ) x+ y+ z x+ y+ z x + y + z x y z x + y + z x+ y+ z x y z x + y + z x+ y+ z x + y + z x+ y+ z x+ y+ z x + y + z x+ y+ z x+ y+ z x+ y+ z x+ y+ z

30 Q. No. 7 If the equtio x 4-4x + x + bx + 0 hs fou positive oots, the fid d b. Expltio x 4-4x + x + bx + 0 Let the oot be α, β, γ, δ α + β + γ + δ 4 AM 4 4 GM( αβ γ δ ) 4 () 4 s AM GM α β γ δ 4 α 4 α + + αβ + αγ + αδ + βγ + βδ + γδ +6 b αβγ + αγδ + αβγ + βγδ b -4 Q. No If, b, e diffeet positive umbes pove tht + b + > b ( + b+ ). Expltio b + + b+ > b + + b+ > b + b+ > b + + b+ > b 4 Q. No. 7 If x,y, z e positive el umbes stisfyig the equtio x + 9y + 5z xy + 5yz + 5zx the fid the pogessio of x, y, d z. Expltio x + 9y + 5z xy + 5yz + 5zx x + 8y + 50z - 6xy - 0yz - 0zx 0 (x + 9y - 6xy) + (9y + 5z - 0yz) + (x +5z - 0zx) (x- y) + (y- 5z) + (x- 5z) y y, y 5z, x 5z y t x t, z t 5 + y x y x, y, z e i H.P

31 Q. No. 74 Mth the oditios fo the equtio x + bx + x + d 0 hvig oots i No. Colum A Colum B Colum C Id of Additiol Aswe AP (P) b d R GP (Q) 7 d 9bd - d P HP (R) b - 9b + 7 d 0 Q Expltio x + bx + x + d 0 () α -D, α, α +D - α -D+ α + α +D+ b -b α -b b b d0 7 9 b b - + d0 7 b - 9b + 7 d 0 (R) (b) α, α, α α -.. d α α -d α -d d d + b - + d0 bd d bd b d (P) (),, e oots of x + bx + x + d α -D α α +D α -D, α, α +De oots of x + x + bx α d - α d - b d d 9d d b d d - 9bd + 7d 0 7d 9bd - d (Q)

32 Q. No. 75 Mth the followig. If, b, e i HP, the No. Colum A Colum B Colum C Id of Additiol Aswe, b, (P) HP P b b + b- (Q) GP R,, b- b b- b b b (R) AP Q -,, - 4, b, P b+ + + b Expltio (A),, i A.P b Multiple by + b + + b+ + b+ + b+ i AP () b Subtt b b + b-,, i AP b, b, i HP b b + b- (A) (P) I () subtt b+ + + b,, i AP b, b, i HP b+ + + b (D) (P) (B) b + +,, ,, ( - ) ( - ) Addig st d d tem ( - ) ( - ) + ( - ) ( - ) + + (B) (R) (C) -,, ,, Multiplyig st d d tem ( tem) ( + ) (C) (Q) d

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation Qudrti Equtios d Iequtios Polyomil Algeri epressio otiig my terms of the form, eig o-egtive iteger is lled polyomil ie, f ( + + + + + +, where is vrile,,,, re ostts d Emple : + 7 + 5 +, + + 5 () Rel polyomil

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te

Διαβάστε περισσότερα

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

SHORT REVISION. FREE Download Study Package from website:  2 5π (c)sin 15 or sin = = cos 75 or cos ; 12 SHORT REVISION Trigoometric Rtios & Idetities BASIC TRIGONOMETRIC IDENTITIES : ()si θ + cos θ ; si θ ; cos θ θ R (b)sec θ t θ ; sec θ θ R (c)cosec θ cot θ ; cosec θ θ R IMPORTANT T RATIOS: ()si π 0 ; cos

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . Leve lk A O c C B Figue The poits A, B C hve positio vectos, c espectively, eltive to fie oigi O, s show i Figue. It is give tht i j, i j k c i j k. Clculte () c, ().( c), (c) the

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Identities of Generalized Fibonacci-Like Sequence

Identities of Generalized Fibonacci-Like Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol., No. 5, 7-75 Available olie at http://pubs.sciepub.com/tjat//5/ Sciece ad Educatio Publishig DOI:.69/tjat--5- Idetities of Geealized Fiboacci-Lie Sequece

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Optimal Placing of Crop Circles in a Rectangle

Optimal Placing of Crop Circles in a Rectangle Optiml Plcing of Cop Cicles in Rectngle Abstct Mny lge-scle wteing configutions fo fming e done with cicles becuse of the cicle s pcticlity, but cicle obviously cnnot tessellte plne, no do they fit vey

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Differential Equations (Mathematics)

Differential Equations (Mathematics) H I SHIVAJI UNIVERSITY, KOLHAPUR CENTRE FOR DISTANCE EDUCATION Diffeetial Equatios (Mathematics) Fo K M. Sc. Pat-I J Copyight Pescibed fo Regista, Shivaji Uivesity, Kolhapu. (Mahaashta) Fist Editio 8 Secod

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

Perturbation Series in Light-Cone Diagrams of Green Function of String Field Petuto Sees ht-coe Dms of ee Fucto of St Fel Am-l Te-So Km Chol-M So- m Detmet of Eey Scece Km l Su Uvesty Pyoy DPR Koe E-y Km l Su Uvesty Pyoy DPR Koe Detmet of Physcs Km l Su Uvesty Pyoy DPR Koe Astct

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς; ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

β α β α β α α α β α β α β α α γ α β α) β β β αβ α β β β α β α β μ μ μ μ μ μ μ α β α μ α β αβ α β α α β α α α α αβ α β α β α β α α β α α α α α α α α α α α α α α α α α β β γδ β αβ α α β β β β β β

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ. VOX Feel Pretty MARA et Trois Filles - N 12 BERNSTEN Leonrd Adpttion F. Pissloux Violons Contrebsse A 2 7 2 7 Allegro qd 69 1 2 4 5 6 7 8 9 B 10 11 12 1 14 15 16 17 18 19 20 21 22 2 24 C 25 26 27 28 29

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης 2 η Διάλεξη Ακολουθίες 29 Νοεµβρίου 206 Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ, ΤΟΜΟΣ Ι - Fiey R.L. / Weir M.D. / Giordao F.R. Πανεπιστημιακές Εκδόσεις Κρήτης 2 Όρια Ακολουθιών

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems. Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

δ β β γ δ ββ γ α β α α α α α α α α δ δ γ γ δ δ δ δ β β α α α α α α α α β γδ α β γ δ α βγδ αβγδ δγ βα α β γ δ O α β γ δ αγ α γ α γ δ αγδ α αγ γ γ δ γ α γ β β β β β β β α γ β β β β β μ μ β β

Διαβάστε περισσότερα

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)

Διαβάστε περισσότερα

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3 Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Orthogonal polynomials

Orthogonal polynomials Orthogol polyomils We strt with Defiitio. A sequece of polyomils {p x} with degree[p x] for ech is clled orthogol with respect to the weight fuctio wx o the itervl, b with < b if { b, m wxp m xp x dx h

Διαβάστε περισσότερα

Sheet H d-2 3D Pythagoras - Answers

Sheet H d-2 3D Pythagoras - Answers 1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials Itertiol Jourl of Siee Reserh (IJSR ISSN (Olie: 39-764 Ie Coperius Vlue (3: 6.4 Ipt Ftor (3: 4.438 Quruple Siulteous Fourier series Equtios Ivolvig Het Poloils Guj Shukl, K.C. Tripthi. Dr. Aekr Istitute

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3. . F/ /3 3. I F/ 7 7 0 0 Mo ode del 0 00 0 00 A 6 A C00 00 0 S 0 C 0 008 06 007 07 09 A 0 00 0 00 0 009 09 A 7 I 7 7 0 0 F/.. 6 6 8 8 0 00 0 F/3 /3. fo I t o nt un D ou s ds 3. ird F/ /3 Thi ur T ou 0 Fo

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

f (x) g (x) f (x) g (x) + f (x) g (x) f (x) g (x) Solved Examples Example 2: Prove that the determinant sinθ x 1

f (x) g (x) f (x) g (x) + f (x) g (x) f (x) g (x) Solved Examples Example 2: Prove that the determinant sinθ x 1 Mthemtis 7. f (x) g (x) (g) If (x) f (x) g (x) then f (x) g f (x) (x) g (x) (x) + or f (x) g (x) f (x) g (x) f (x) g (x) f (x) g (x) + f (x) g (x) f (x) g (x) (h) If f(x) g(x) h(x) (x) α β γ then f(x)dx

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1

τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1 VOLTERR ERE EXO O LER OE RTE EQUTO The i ler diode eutio re: [ ][ ] V The exio of eutio i: [ ] ddig eutio d V V The iut urret i ooed of the u of,. ooet, Î, tie vryig ooet. We thu let 6 The Volterr exio

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS

CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS Asia Pacific Joual of Mathematics, Vol. 5, No. 08, 9-08 ISSN 57-05 CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS M.I.QURESHI, SULAKSHANA BAJAJ, Depatmet of

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα