TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:"

Transcript

1 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi a ucţiilor de producţie Cobb-Douglas Deiirea pricipalelor proprietăţi matematice ale derivatelor parţiale Aalia problemelor de mimi şi maim petru ucţii de două variabile Coțiut: 9.1 Proprietăţile ucţiilor de mai multe variabile Fucţii de utilitate Fucţii de producţie Cobb-Douglas Derivate parţiale Miim şi maim petru ucţii de două variabile Cocepte cheie 81

2 78 MODULUL 5: MODELE MULTIDIMENSIONALE 9.1 Proprietățile ucțiilor de mai multe variabile o ucţie cu domeiul de deiiţie : R R R care asociaă iecărei perechi de valori reale ( ) o valoare reală. Spuem că este o ucţie de două variabile. Variabilele şi se umesc variabile idepedete iar se umeşte variabilă depedetă. Graicul ucţiei ( ) va i repreetat î spaţiul aelor de coordoate. Cosiderâd plaurile aelor de coordoate şi perpediculare două câte două u puct di acest spaţiu va i deiit de trei coordoate P( ) aşa ca î Figura 9.1. Graicul uei ucţii de două variabile se prepreită î spaţiul tridimesioal (3D) pritr-o supraaţă. Fie ( ) 0 P( ) 0 0 Fiid dată ucţia ( ) Figura 9.1: Repreetarea uui puct î spaţiul 3D valoarea ucţiei petru valorile ( 0 0 ) este: ( ) Î geeral o ucţie cu variabile idepedete... ) ( 1 1 este o ucţie de orma:... deiită pe spaţiul -dimesioal R R R... R şi cu valori R. Cu toate că u mai putem repreeta graic ucţiile cu trei sau mai multe variabile aplicaţiile ecoomice ale acestora sut oarte umeroase. 9. Fucții de utilitate Cosiderăm ucţia: U ( ) care repreită utilitatea sau satisacţia petru u aumit cosumator ca urmare a utiliării (cosumului) a două buuri X şi Y ude şi repreită catităţile utilioate (cosumate) di cele două produse X şi Y.

3 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 79 Presupuâd ucţia de utilitate U cotiuă o aumită valoare de utilitate poate i obţiută ditr-o iiitate de combiaţii ale lui şi. Graicul tuturor puctelor ( ) care dau aceeaşi valoare de utilitate se umeşte curbă de idiereţă. 9.3 Fucții de producție Cobb Douglas O ucţie de producţie de tip Cobb-Douglas petru o aumită irmă este o ucţie de două variabile de orma: ude: Q este catitatea de producţie (î uităţi de produs) A este o costată ce depide de iecare irmă K este capitalul ivestit al irmei (î u.m.) L este catitatea de mucă (î ore) α este o costată 0 < α < 1. α 1 α Q A K L (9.1) 9.4 Derivate parțiale Dacă ( ) este o ucţie de două variabile atuci derivatele parţiale ale ucţiei sut respectiv: - derivata parţială a lui î raport cu - derivata parţială a lui î raport cu. Petru derivatele parţiale se mai olosesc şi următoarele otaţii echivalete: ( ) ( ) - petru derivata parţială a lui î raport cu ( ) ( ) - petru derivata parţială a lui î raport cu. Derivata parţială î raport cu o variabilă se obţie cosiderâd cealaltă variabilă ca iid costată şi aplicâd apoi regulile de derivare. Valoarea derivatelor parţiale î puctul ( 0 0 ) sut respectiv: ( 0 0) ) ( 0 0 ( 0 0). ) ( 0 0

4 80 MODULUL 5: MODELE MULTIDIMENSIONALE Petru o ucţie de două variabile ( ) derivatele parţiale de ordiul ale ucţiei sut respectiv:. Î geeral petru determiarea derivatei parţiale de ordiul avem: Miim şi maim petru ucții de două variabile Petru ucţiile de două variabile vom aalia î cotiuare problema determiării puctelor critice respectiv ale puctelor de miim şi de maim dacă acestea eistă. Vom determia puctele critice ără a deii restricţii suplimetare petru ucţiile aaliate. Fie ( ) o ucţie de două variabile petru care derivatele de ordiul îtâi se auleaă î puctul ( 0 0 ) adică: 0 şi presupuem că derivatele parţiale de ordiul ale lui sut cotiue. Petru determiarea puctelor critice ale ucţiei ( ) se aplică următorul algoritm: [P1]: Determiăm epresia: D. (9.) [P]: Dacă 0 D şi 0 0 î ( 0 0 ) atuci avem u miim î ( 0 0 ). [P3]: Dacă 0 D şi 0 0 < < î ( 0 0 ) atuci avem u maim î ( 0 0 ). [P4]: Dacă 0 < D î ( 0 0 ) atuci u avem ici miim şi ici maim î ( 0 0 ). Puctul ( 0 0 ) se umeşte puct şa. [P5]: Dacă 0 D î ( 0 0 ) atuci ucţia trebuie aaliată îtr-o veciătate a puctului ( 0 0 ).

5 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Cocepte cheie Fucţie de două variabile Fucţie de variabile Fucţie de utilitate Curbă de idiereţă Fucţie de producţie de tip Cobb-Douglas Derivate parţiale Derivate parţiale de ordiul Derivate parţiale de ordiul Puct de miim / maim Puct şa

6 8 MODULUL 5: MODELE MULTIDIMENSIONALE

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011 Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5..8 Ecuaţia difereţială Riccati Ecuaţia difereţială de ordiul îtâi de forma: d q( ) p( ) r( ) d + + (4) r sut fucţii cotiue pe u iterval, cuoscute, iar fucţia ude q( ), p ( ) şi ( ) este ecuoscuta se

Διαβάστε περισσότερα

6.1. DERIVATE ŞI DIFERENŢIALE PENTRU FUNCŢII REALE DE O VARIABILĂ REALĂ. APLICAŢII

6.1. DERIVATE ŞI DIFERENŢIALE PENTRU FUNCŢII REALE DE O VARIABILĂ REALĂ. APLICAŢII 7 7 Modulul 6 APLICAŢII DIFERENŢIABILE Subiecte : Derivate şi difereţiale petru fucţii reale de o variabilă reală Formula lui Taylor şi Mac-Lauri petru fucţii de o variabilă reală Serii Taylor 3 Derivate

Διαβάστε περισσότερα

TEMA 1: FUNCȚII LINIARE. Obiective:

TEMA 1: FUNCȚII LINIARE. Obiective: TEMA : FUNCȚII LINIARE TEMA : FUNCȚII LINIARE Obiective: Defiirea pricipalelor proprietăţi matematice ale fucţiei, ecuaţiei şi iecuaţiei de gradul Cuoaşterea uor elemete de geometrie aalitică a dreptei

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

Inegalitati. I. Monotonia functiilor

Inegalitati. I. Monotonia functiilor Iegalitati I acest compartimet vor fi prezetate diverse metode de demostrare a iegalitatilor, utilizad metodele propuse vor fi demostrate atat iegalitati clasice precum si iegalitati propuse la diferite

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

Formula lui Taylor. 25 februarie 2017

Formula lui Taylor. 25 februarie 2017 Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =

Διαβάστε περισσότερα

5.1. ŞIRURI DE FUNCŢII

5.1. ŞIRURI DE FUNCŢII Modulul 5 ŞIRURI ŞI SERII DE FUNCŢII Subiecte :. Şiruri de fucţii.. Serii de fucţii. 3. Serii de puteri. Evaluare :. Covergeţa puctuală şi covergeţa uiformă la şiruri şi serii de fucţii.. Teorema lui Abel.

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

3. Serii de puteri. Serii Taylor. Aplicaţii.

3. Serii de puteri. Serii Taylor. Aplicaţii. Fucţiile f ( ) cos t = sut de clasă C pe R cu α si derivatelor satisface codiţiile: α f ' ( ) si = şi seria ' ( ), α α f R cu = b α ' coverge petru α > f este (ormal covergetă) absolut şi uiform covergetă

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ

CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ CAPITOLUL IV CALCULUL DIFEENŢIAL PENTU FUNCŢII EALE DE O VAIABILA EALĂ Fucţii derivabile Fucţii difereţiabile Derivata şi difereţiala sut duă ccepte fudametale ale matematicii, care reprezită siteză pe

Διαβάστε περισσότερα

lim = dacă se aplică teorema lui 3. Derivate de ordin superior. Aplicaţii.

lim = dacă se aplică teorema lui 3. Derivate de ordin superior. Aplicaţii. 5 Petru limita determiată: 2 + lim = dacă se aplică terema lui LHspital: 2 + 2 lim = lim = rezultatul este icrect. 3. Derivate de rdi superir. Aplicaţii. Fie A R mulţime care îşi cţie puctele de acumulare

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică

CURS III, IV. Capitolul II: Serii de numere reale. a n sau cu a n. Deci lungimea segmentului este suma lungimilor sub-segmentelor obţinute, adică Capitolul II: Serii de umere reale Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC CURS III, IV Capitolul

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE

REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE REZOLVAREA NUMERICĂ A ECUAŢIILOR ŞI SISTEMELOR DE ECUAŢII ALGEBRICE NELINIARE Forma geerală a ecuaţiei: cu : I R R Î particular poliom / adus la o ormă poliomială dar şi ecuaţiile trascedete Rezolvarea

Διαβάστε περισσότερα

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs

Διαβάστε περισσότερα

Laborator 4 Interpolare numerica. Polinoame ortogonale

Laborator 4 Interpolare numerica. Polinoame ortogonale Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode

Διαβάστε περισσότερα

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea

CLASA a V-a CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ EDIŢIA A IV-A MAI I. Să se determine abcd cu proprietatea EDIŢIA A IV-A 4 6 MAI 004 CLASA a V-a I. Să se determie abcd cu proprietatea abcd - abc - ab -a = 004 Gheorghe Loboţ II Comparaţi umerele A B ude A = 00 00 004 004 şi B = 00 004 004 00. Vasile Şerdea III.

Διαβάστε περισσότερα

4. Ecuaţii diferenţiale de ordin superior

4. Ecuaţii diferenţiale de ordin superior 4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã

Διαβάστε περισσότερα

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ

Sala: 2103 Decembrie 2014 CURS 10: ALGEBRĂ Sala: 203 Decembrie 204 Cof. uiv. dr.: Dragoş-Pătru Covei CURS 0: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs u a fost supus uui proces riguros de recezare petru a fi oficial publicat. distribuit

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Analiză I Curs 1. Curs 1., a n. dacă ε, ( )N ( ε ) a.î. n x n ε ; ε sunt numere reale şi deci (a n. şi fie

Analiză I Curs 1. Curs 1., a n. dacă ε, ( )N ( ε ) a.î. n x n ε ; ε sunt numere reale şi deci (a n. şi fie Aaliză I Curs Curs Şiruri de umere: D : Fie u şir de umere (a ), a. Spuem că dacă ( )M 0, a.î. a M. (a ) este mărgiit D : Spuem că (a ) coverge către l dacă ( )V (l), ( )N (V ) şi N (V ) a V. D 3 : a l

Διαβάστε περισσότερα

ŞIRURI DE VARIABILE ALEATOARE. PROBLEME ASIMPTOTICE

ŞIRURI DE VARIABILE ALEATOARE. PROBLEME ASIMPTOTICE 8. ŞIRURI DE VARIABILE ALEATOARE. PROBLEME ASIMPTOTICE 8.. Şiruri de variabile aleatoare Î teoria probabilităţilor şi î aplicaţiile ei o problemă importată o costituie studiul şirurilor de variabile aleatoare,

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

CAPITOLUL III FUNCŢII CONTINUE

CAPITOLUL III FUNCŢII CONTINUE CAPITOLUL III FUNCŢII CONTINUE. Fucţii de o variabilă reală Fucţiile defiite pe mulţimi abstracte X, Y cu f : X Y au î geeral puţie proprietăţi şi di acest motiv, puţie aplicaţii î rezolvarea uor probleme

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE ŞIRURI ŞI SERII DE NUMERE REALE Noţiui teoretice şi rezultate fudametale Şiruri de umere reale Presupuem cuoscute oţiuile de bază despre mulţimea N a umerelor aturale, mulţimea Z a umerelor îtregi, mulţimea

Διαβάστε περισσότερα

ECUATII NELINIARE PE R

ECUATII NELINIARE PE R ANALIZA NUMERICA-ECUATII NELINIARE PE R. http://bavaria.utcluj.ro/~ccosmi ECUATII NELINIARE PE R. CONSIDERATII GENERALE Se vor studia urmatoarele probleme:. Radaciile uei ecuatii eliiare de orma. Radaciile

Διαβάστε περισσότερα

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii...

1. Operaţii cu numere reale Funcţii Ecuaţii şi inecuaţii de gradul întâi Numere complexe Progresii... Cupris 1. Operaţii cu umere reale... 1 1.1. Radicali, puteri... 1 1.1.1. Puteri... 1 1.1.. Radicali... 1 1.. Idetităţi... 1.3. Iegalităţi... 3. Fucţii... 6.1. Noţiuea de fucţii... 6.. Fucţii ijective,

Διαβάστε περισσότερα

Analiza bivariata a datelor

Analiza bivariata a datelor Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele

Διαβάστε περισσότερα

3.1. DEFINIŢII. PROPRIETĂŢI

3.1. DEFINIŢII. PROPRIETĂŢI Modulul 3 SERII NUMERICE Subiecte :. Criterii de covergeţă petşru serii cu termei oarecare. Serii alterate 3. Criterii de covergeţă petru serii cu termei poziţivi Evaluare. Criterii de covergeţă petru

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008

Concursul Naţional Al. Myller Ediţia a VI - a Iaşi, 2008 Cocursul Naţioal Al. Myller CLASA a VII-a Numerele reale disticte x, yz, au proprietatea că Să se arate că x+ y+ z = 0. 3 3 3 x x= y y= z z. a) Să se arate că, ditre cici umere aturale oarecare, se pot

Διαβάστε περισσότερα

ŞIRURI ŞI SERII DE FUNCŢII

ŞIRURI ŞI SERII DE FUNCŢII Capitolul 8 ŞIRURI ŞI SERII DE FUNCŢII 8. Şiruri de fucţii Fie D R, D = şi fie f 0, f, f 2,... fucţii reale defiite pe mulţimea D. Şirul f 0, f, f 2,... se umeşte şir de fucţii şi se otează cu ( f ) 0.

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

TEMA 10 TESTE DE CONCORDANŢĂ

TEMA 10 TESTE DE CONCORDANŢĂ TEMA 0 TESTE DE CONCORDANŢĂ Obiective Cuoaşterea coceptelor reritoare la testele de cocordaţă Aaliza pricipalelor teste de cocordaţă Aplicaţii rezolvate Aplicaţii propuse Cupris 0. Cocepte reritoare la

Διαβάστε περισσότερα

2.1. DEFINIŢIE. EXEMPLE

2.1. DEFINIŢIE. EXEMPLE Modulul SPAŢII METRICE Subiecte :. Spaţii metrice. Defiiţii, exemple.. Mulţimi deschise, mulţimi îchise î spaţii metrice. Mulţimi compacte. 3. Spaţii metrice complete. Pricipiul cotracţiei. Evaluare:.Răspusuri

Διαβάστε περισσότερα

PENTRU CERCURILE DE ELEVI

PENTRU CERCURILE DE ELEVI 122 Petru cercurile de elevi PENTRU CERCURILE DE ELEVI Petru N, otăm: POLINOAME CICLOTOMICE Marcel Ţea 1) U = x C x = 1} = cos 2kπ + i si 2kπ } k = 0, 1. Mulţimea U se umeşte mulţimea rădăciilor de ordi

Διαβάστε περισσότερα

CAPITOLUL 4 SPAŢII VECTORIALE EUCLIDIENE/UNITARE Produs scalar. Spaţii euclidiene şi spaţii unitare-definiţie

CAPITOLUL 4 SPAŢII VECTORIALE EUCLIDIENE/UNITARE Produs scalar. Spaţii euclidiene şi spaţii unitare-definiţie Spaţii vectoriale euclidiee/uitare CAPITOLUL 4 SPAŢII VECTORIALE EUCLIDIENE/UNITARE 4.. Produs scalar. Spaţii euclidiee şi spaţii uitare-defiiţie Defiiţia 4... Fie V u spaţiu vectorial peste corpul K (K=R

Διαβάστε περισσότερα

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5 Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei

Διαβάστε περισσότερα

Polinoame Fibonacci, polinoame ciclotomice

Polinoame Fibonacci, polinoame ciclotomice Polioame Fiboacci, polioame ciclotomice Loredaa STRUGARIU, Cipria STRUGARIU 1 Deoarece şirul lui Fiboacci este cuoscut elevilor îcă dicl.aix-a,iarrădăciile de ordiul ale uităţii şi polioamele ciclotomice

Διαβάστε περισσότερα

sistemelor de algebrice liniarel

sistemelor de algebrice liniarel Uivesitatea Tehică a Moldovei Facultatea de Eergetică Catedra Electroeergetica Soluţioarea sistemelor de ecuaţii algebrice liiarel lect.uiv. Victor Gropa «Programarea si Utilizarea Calculatoarelor I» Cupris

Διαβάστε περισσότερα

2. Metode de calcul pentru optimizarea fără restricţii

2. Metode de calcul pentru optimizarea fără restricţii . Metode de calcul petru optimizarea fără restricţii Problemele de optimizare îtâlite î practică sut probleme cu restricţii, dar metodele de calcul petru optimizarea fără restricţii sut importate pri faptul

Διαβάστε περισσότερα

Curs 12. Intervale de încredere Intervale de încredere pentru medie în cazul σ cunoscut

Curs 12. Intervale de încredere Intervale de încredere pentru medie în cazul σ cunoscut Curs Itervale de îcredere Am văzut cum poate fi estimat u parametru folosid datele furizate de u eşatio Parametrul di populaţie u este, î geeral, egal cu statistica calculată cu ajutorul eşatioului Ne

Διαβάστε περισσότερα

Spaţii topologice. Spaţii metrice. Spaţii normate. Spaţii Hilbert

Spaţii topologice. Spaţii metrice. Spaţii normate. Spaţii Hilbert Metode de Optimizare Noţiui recapitulative de Aaliză Matematică şi Algebră Liiară Spaţii topologice. Spaţii metrice. Spaţii ormate. Spaţii Hilbert Reamitim o serie de defiiţii şi teoreme legate de spaţiile

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

Cap. IV Serii Fourier. 4.1 Serii trigonometrice. (1) Numărul T se numeşte perioadă pentru funcţia f ( x )., x D, x ± T D

Cap. IV Serii Fourier. 4.1 Serii trigonometrice. (1) Numărul T se numeşte perioadă pentru funcţia f ( x )., x D, x ± T D Cp. IV Serii Fourier 4. Serii trigoometrice Defiiţie: O fucţie f ( ) defiită pe o muţime ifiită D se umeşte periodică dcă eistă u umăr T stfe îcât: f ( ± T) = f ( ), D, ± T D () Număru T se umeşte periodă

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

4. Integrale improprii cu parametru real

4. Integrale improprii cu parametru real 4. Itegrle improprii cu prmetru rel Fie f: [ b, ) [ cd, ] y [, itegrl improprie R cu < b +, stfel îcât petru fiecre b cd ] f (, ) ydeste covergetă. Atuci eistă o fucţie defiită pritr-o itegrlă improprie

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

CAPITOLUL I PROGRAMARE LINIARA. 1. Forma generală a unei probleme de programare liniară

CAPITOLUL I PROGRAMARE LINIARA. 1. Forma generală a unei probleme de programare liniară CAPITOLUL I PROGRAMARE LINIARA. Forma geerală a uei probleme de programare liiară Problemele de maim şi de miim apar frecvet î cele mai diferite domeii ale matematicilor pure sau aplicate.î domeiul ecoomic,

Διαβάστε περισσότερα

BAREM DE CORECTARE CLASA A IX A

BAREM DE CORECTARE CLASA A IX A ETAPA JUDEŢEANĂ - martie 0 Filiera tehologica : profil tehic BAREM DE CORECTARE CLASA A IX A a) Daţi exemplu de o ecuaţie de gradul al doilea avâd coeficieţi raţioali care admite ca rădăciă umărul x= +

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A

Clasa a IX-a. 1. Rezolvaţi în R ecuaţiile: (3p) b) x x x Se consideră mulţimile A = { }, (2p) a) Determinaţi elementele mulţimii A 1 Rezolvaţi î R ecuaţiile: (4p) a) x 1 5 = 8 (3p) b) Clasa a IX-a x 1 x x 1 + + + =, N x x x Se cosideră mulţimile A = { }, A = { 3,5}, A { 7, 9,11}, 1 1 3 = (p) a) Determiaţi elemetele mulţimii A 6 (3p)

Διαβάστε περισσότερα

OLIMPIADA DE MATEMATICĂ FAZA LOCALĂ CLASA a V-a

OLIMPIADA DE MATEMATICĂ FAZA LOCALĂ CLASA a V-a CLASA a V-a 1. Îtr-o familie de 4 persoae, suma vârstelor acestora este de 97 de ai. Băiatul s-a ăscut câd tatăl avea 3 de ai, iar fata s-a ăscut câd mama avea de ai şi fratele său 4 ai.puteţi găsi ce

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

IV. Rezolvarea sistemelor liniare

IV. Rezolvarea sistemelor liniare IV. Rezolvarea sistemelor liiare IV.. Elemete de aaliză matriceală Fie V u spaţiu vectorial (liiar peste corpul K (K=R sau K=C. Reamitim o serie de defiiţii şi teoreme legate de spaţiile ormate şi spaţiile

Διαβάστε περισσότερα

PRELEGEREA VI STATISTICĂ MATEMATICĂ

PRELEGEREA VI STATISTICĂ MATEMATICĂ PRELEGEREA VI STATISTICĂ MATEMATICĂ I. Variabile aleatoare 6. Repartiţia şi desitatea de probabilitate a uei variabile aleatoare Caracteristica, variabila studiată di ştiiţele eperimetale se modelează

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

( ) ( ) ( ) Funcţii diferenţiabile. cos x cos x 2. Fie D R o mulţime deschisă f : D R şi x0 D. Funcţia f este

( ) ( ) ( ) Funcţii diferenţiabile. cos x cos x 2. Fie D R o mulţime deschisă f : D R şi x0 D. Funcţia f este o ( ) o ( ) sin π ( sec ) = = ; R 2 + kπ k Z cos cos 2 cos ( cosec ) = = ; R 2 { kπ k Z} sin sin ( arcsec ) = ; (, ) (, ) 2 ( arcosec ) = ; (, ) (, ) 2 Funcţii dierenţiabile. Fie D R o mulţime deschisă

Διαβάστε περισσότερα

în care suma termenilor din fiecare grup este 0, poate conduce la ideea că valoarea acestei sume este 0. De asemenea, gruparea în modul

în care suma termenilor din fiecare grup este 0, poate conduce la ideea că valoarea acestei sume este 0. De asemenea, gruparea în modul Capitolul 3 SERII NUMERICE Date fiid umerele reale x 0, x,..., x, î umăr fiit, suma lor x 0 + x +... + x se poate calcula fără dificultate, după regulile uzuale. Extiderea oţiuii de sumă petru mulţimi

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

PENTRU CERCURILE DE ELEVI

PENTRU CERCURILE DE ELEVI G.-F. Şerba, Aplicaţii la teorema lui Frobeius despre matrice 7 PENTRU CERCURILE DE ELEVI APLICAŢII LA TEOREMA LUI FROBENIUS DESPRE MATRICE George-Flori Şerba 1) Î această lecţie vom prezeta rezolvarea

Διαβάστε περισσότερα

Capitolul 2 ŞIRURI DE NUMERE REALE. 2.1 Proprietăţi generale Moduri de definire a unui şir. (x n ) n 0 : x n =

Capitolul 2 ŞIRURI DE NUMERE REALE. 2.1 Proprietăţi generale Moduri de definire a unui şir. (x n ) n 0 : x n = Capitolul 2 ŞIRURI DE NUMERE REALE 2. Proprietăţi geerale Fie A = o mulţime dată. Se umeşte şir de elemete di A o fucţie f : N A. Dacă A = R, şirul respectiv se va umi şir de umere reale, şir umeric sau,

Διαβάστε περισσότερα

CULEGERE DE PROBLEME

CULEGERE DE PROBLEME Colecţia "LICEU CULEGERE DE PROBLEME petru eameul de admitere la Facultatea de Automatică şi Calculatoare, Facultatea de Electroică şi Telecomuicaţii, Facultatea de Arhitectură Descrierea CIP a Bibliotecii

Διαβάστε περισσότερα

5. PROBABILITĂŢI Evenimente

5. PROBABILITĂŢI Evenimente 5 PROBABILITĂŢI Teoria probabilităţilor este u domeiu importat al matematicii, apărut di activităţi şi ecesităţi practice ale oameilor sau di observaţii directe asupra aturii Î viaţa de zi cu zi se îtâlesc

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU

6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU 6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU 6.1. Noţiui teoretice şi rezultte fudmetle 6.1.1. Metod lui Droux de defii itegrl simplă Fie [, ] u itervl. Descompuem itervlul [, ] îtr-u umăr orecre

Διαβάστε περισσότερα

Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul diferenţial

Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul diferenţial Seria MATEMATICĂ ANALIZĂ MATEMATICĂ Calcul difereţial MATHEMATICAL ANALYSIS Differetial calculus The preset book is the first part of the cours of Mathematical Aalysis give by the author for may years

Διαβάστε περισσότερα

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ].

Examenul de bacalaureat nańional 2013 Proba E. c) Matematică M_mate-info. log 2 = log x. 6 j. DeterminaŃi lungimea segmentului [ AC ]. Miisterul EducaŃiei, Cercetării, Tieretului şi Sportului Cetrul NaŃioal de Evaluare şi Eamiare Eameul de bacalaureat ańioal 0 Proba E c) Matematică M_mate-ifo Filiera teoretică, profilul real, specializarea

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα