ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ"

Transcript

1 ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΤΙΤΛΟΣ ΣΕΝΑΡΙΟΥ Μέτρα διασποράς - Συντελεστής μεταβολής ΤΑΥΤΟΤΗΤΑ ΣΕΝΑΡΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: Καραγιάννης Βασίλης ΑΜ: Οικονόμου Κυριάκος AM: ΓΝΩΣΤΙΚΗ ΠΕΡΙΟΧΗ: Στατιστική Γ Λυκείου ΘΕΜΑ: Μέτρα διασποράς - Συντελεστής μεταβολής ΣΚΕΠΤΙΚΟ ΤΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ Το σκεπτικό της δραστηριότητας είναι η διδασκαλία των μέτρων διασποράς και του συντελεστή μεταβολής, να γίνει μέσω κατάλληλα επιλεγμένων προβλημάτων, τα οποία θα δημιουργήσουν στους μαθητές την ανάγκη αναζήτησης των νέων αυτών μαθηματικών εννοιών. Τα προβλήματα πλαισιώνονται με στοχευμένες ερωτήσεις που θα συμβάλλουν στην ενσάρκωση των εννοιών αυτών και θα αναδείξουν τη σημασία και το ρόλο τους. Η όλη δραστηριότητα διεξάγεται με ομαδοσυνεργατικό τρόπο. Οι μαθητές εργάζονται σε ομάδες, ώστε να έχουν τη δυνατότητα να προβληματιστούν, να διαπραγματευτούν να συνεργαστούν και με την κατάλληλη βοήθεια και ενθάρρυνση από τον καθηγητή, να αναπτύξουν τη μαθηματική τους σκέψη και να κατασκευάσουν τη νέα γνώση ενεργητικά. ΠΛΑΙΣΙΟ ΕΦΑΡΜΟΓΗΣ ΣΕ ΠΟΙΟΥΣ ΑΠΕΥΘΥΝΕΤΑΙ: Το σενάριο απευθύνεται στους μαθητές της Γ τάξης Γενικού Λυκείου. ΧΡΟΝΟΣ ΥΛΟΠΟΙΗΣΗΣ: Η υλοποίηση του σεναρίου απαιτεί τουλάχιστον δύο διδακτικές ώρες. ΧΩΡΟΣ ΥΛΟΠΟΙΗΣΗΣ: Οι μαθητές θα εργαστούν στο εργαστήριο πληροφορικής της σχολικής μονάδας. ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ: Οι μαθητές πρέπει να ξέρουν να κατασκευάζουν και να διαβάζουν στατιστικούς πίνακες και διαγράμματα, να γνωρίζουν ποια είναι τα μέτρα θέσης, να τα υπολογίζουν και επίσης να έχουν κατανοήσει τι εκτιμούμε με τα μέτρα θέσης. ΑΠΑΙΤΟΥΜΕΝΑ ΒΟΗΘΗΤΙΚΑ ΥΛΙΚΑ ΚΑΙ ΕΡΓΑΛΕΙΑ: Οι Η/Υ του εργαστηρίου πληροφορικής. Το πακέτο Excel

2 Σχετικά φύλλα εργασίας (βλ. στο τέλος σεναρίου). ΚΟΙΝΩΝΙΚΗ ΕΝΟΡΧΗΣΤΡΩΣΗ ΤΗΣ ΤΑΞΗΣ: Οι μαθητές θα εργαστούν, καθοδηγούμενοι από τα φύλλα εργασίας, σε ομάδες των 3 ατόμων στο εργαστήριο πληροφορικής. Ο καθηγητής θα εξειδικεύσει τις παρεμβάσεις του με κατάλληλες ερωτήσεις, άλλοτε απευθυνόμενος σε όλη την τάξη και άλλοτε σε κάθε ομάδα ξεχωριστά, αφήνοντας συγχρόνως, την πρωτοβουλία των κινήσεων στους μαθητές και τα περιθώρια για ανταλλαγή απόψεων. ΣΤΟΧΟΙ ΤΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΩΣ ΠΡΟΣ ΤΟ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: Οι μαθητές να αντιληφθούν την ανάγκη υπολογισμού μιας άλλης κατηγορίας αριθμητικών μέτρων, πέραν των μέτρων θέσης, που μας παρέχουν πληροφορίες διαφορετικής φύσης για μια κατανομή. Να μάθουν ποια είναι τα σπουδαιότερα μέτρα διασποράς (εύρος, διακύμανση, τυπική απόκλιση), να μπορούν να τα υπολογίζουν, να κατανοήσουν τι εκτιμούμε μέσω αυτών, και να συνειδητοποιήσουν τα πλεονεκτήματα και μειονεκτήματα του καθενός. Να μάθουν πως κατανέμονται οι τιμές σε μία κανονική κατανομή και κυρίως, πώς αυτό μπορεί να φανεί χρήσιμο σε πραγματικά προβλήματα. Να συνειδητοποιήσουν, μέσω πραγματικής κατάστασης, πως επηρεάζει ένας γραμμικός μετασχηματισμός τη μέση τιμή και την τυπική απόκλιση. Να κατανοήσουν το συντελεστή μεταβολής ως ένα μέτρο σχετικής και όχι απόλυτης διασποράς και να αντιληφθούν τη σημασία του. ΩΣ ΠΡΟΣ ΤΗΝ ΜΑΘΗΣΙΑΚΗ ΔΙΑΔΙΚΑΣΙΑ: Οι μαθητές να ενεργοποιηθούν, να αυτενεργήσουν, να συνεργαστούν και κυρίως να λειτουργήσουν μέσω της εικασίας και του ελέγχου. Να αναπτύξουν τη μαθηματική τους σκέψη εξελικτικά και να λειτουργήσουν ανακαλυπτικά απέναντι στη γνώση κατασκευάζοντάς τη ως ενεργητικά υποκείμενα. ΩΣ ΠΡΟΣ ΤΗ ΧΡΗΣΗ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ: Οι μαθητές μεταφέροντας δεδομένα σε περιβάλλοντα νέων τεχνολογιών να αντιληφθούν τη χρησιμότητά τους στο κομμάτι της επεξεργασίας και των υπολογισμών και γενικεύοντας, να συνειδητοποιήσουν το ρόλο που παίζουν οι Τεχνολογίες Πληροφορίας και Επικοινωνίας στον τομέα της Στατιστικής. ΥΛΟΠΟΙΗΣΗ Η υλοποίηση θα πραγματοποιηθεί σε τέσσερις φάσεις. Σε κάθε φάση οι μαθητές καθοδηγούνται από το αντίστοιχο φύλλο εργασίας. Οι δύο πρώτες φάσεις ολοκληρώνονται σε μία διδακτική ώρα και οι άλλες δύο στη δεύτερη διδακτική ώρα. Στην 1 η φάση παρουσιάζονται τα μέτρα διασποράς (εύρος, διακύμανση, τυπική απόκλιση), στη 2 η η κατανομή των τιμών της κανονικής κατανομής, στην 3 η το πώς επηρεάζει ένας γραμμικός μετασχηματισμός τη μέση τιμή και την τυπική απόκλιση και στην 4 η ο ρόλος του συντελεστή μεταβολής. 1 η ΦΑΣΗ Δίνεται στους μαθητές το 1 ο φύλλο εργασίας (βλ. τέλος σεναρίου) με ένα πρόβλημα που περιγράφει μια πραγματική κατάσταση. Στόχος των τριών ερωτημάτων που τίθενται είναι να διαπιστώσουν οι μαθητές ότι η γνώση της μέσης τιμής δεν τους βοηθάει να εκτιμήσουν τη διασπορά μιας κατανομής. Κατά συνέπεια πρέπει να αναζητηθούν άλλα μέτρα, διαφορετικής φύσης απ τα μέτρα θέσης

3 Στο φύλλο εργασίας παρουσιάζονται τα σπουδαιότερα μέτρα διασποράς, εύρος, διακύμανση, τυπική απόκλιση και οι τύποι με τους οποίους τα υπολογίζουμε. Στη συνέχεια τους δίνονται οι καταγραφείσες θερμοκρασίες, τους ζητείται να μεταφέρουν τα δεδομένα στο Excel και να υπολογίσουν, για κάθε πόλη, τη μέση τιμή και τα τρία μέτρα διασποράς. Για τη χρήση των ενσωματωμένων συναρτήσεων του Excel που απαιτούνται, κρίνονται απαραίτητες οι υποδείξεις του καθηγητή. Τα αποτελέσματα φαίνονται παρακάτω. ΠΟΛΗ Α x ν x*ν (x-xm)^2 ν*(x-xm)^2 x^2 x^2*ν Σύνολο xm R s^2 s ,6 1,26 1,6 ΠΟΛΗ Β x ν x*ν (x-xm)^2 ν*(x-xm)^2 x^2 x^2*ν Σύνολο xm R s^2 s ,47 3,08 9,47 Οι μαθητές καλούνται να συσχετίσουν τα μέτρα διασποράς που υπολόγισαν με τις ερωτήσεις του προβλήματος και να συμπεράνουν ποια πληροφορία παρέχουν για τα συγκεκριμένα δείγματα, αλλά και γενικά για μια κατανομή. Να συζητήσουν μεταξύ τους και υποβοηθούμενοι από εξιδεικευμένες παρεμβάσεις του καθηγητή, να αναγνωρίσουν ποιο από τα μέτρα διασποράς είναι το πιο αξιόπιστο και ποια είναι τα πλεονεκτήματα και μειονεκτήματα του καθενός. 2 η ΦΑΣΗ Με δεδομένο ότι οι μαθητές γνωρίζουν τη μορφή της κανονικής κατανομής («κωδονοειδής» συμμετρική), στο 2 ο φύλλο εργασίας που τους δίνεται (βλ. τέλος σεναρίου), βλέπουν το διάγραμμα κατανομής των παρατηρήσεων μιας κανονικής κατανομής και καλούνται, βάσει του διαγράμματος, να απαντήσουν σε δύο πραγματικά προβλήματα. Στο ερώτημα 1) του 1 ου προβλήματος πρέπει να εντοπίσουν ότι το διάστημα [1,5, 3] αντιστοιχεί στο x s,x 2s, και με βάση τα ποσοστά να υπολογίσουν το πλήθος των πελατών

4 Στο ερώτημα 2) για να υπολογίσουν το ποσοστό πρέπει να παρατηρήσουν ότι τα 30 mn αντιστοιχούν στην τιμή x 2s. Το 2 ο πρόβλημα απαιτεί αντίστροφη πορεία σκέψης. Οι μαθητές πρέπει να μεταφράσουν τα 50 και 1680 άτομα σε ποσοστά (2,5% και 84% αντίστοιχα), με βάση αυτά να παρατηρήσουν ότι τα 26 και 22 mn αντιστοιχούν στις x 2s και x s αντίστοιχα και τελικά να βρουν ότι x 18 και s 4. 3 η ΦΑΣΗ Στο πρόβλημα του 3 ου φύλλου εργασίας (βλ. τέλος σεναρίου), το 1 ο ερώτημα αντιστοιχεί στον μετασχηματισμό x b, το 2 ο στον μετασχηματισμό ax και το 3 ο στον γραμμικό μετασχηματισμό ax b. Ζητείται από τους μαθητές να μεταφέρουν τα δεδομένα στο Excel, να υπολογίσουν την αρχική μέση τιμή και τυπική απόκλιση και ακολούθως τη μέση τιμή και τυπική απόκλιση για κάθε ερώτημα. Στο σημείο αυτό ο καθηγητής, παρεμβαίνοντας, τους δείχνει ότι το Excel διαθέτει έτοιμες συναρτήσεις για τον υπολογισμό τους και τους υποδεικνύει πως να τις χρησιμοποιήσουν. Τα αποτελέσματα φαίνονται παρακάτω. x y z t x ,6 11, ,6 17,6 y ,6 17, ,2 21,2 z ,6 23,6 15,6 3, ,8 18, ,8 18,8 t ,8 12,8 17,6 3,6 Τα τρία ερωτήματα στη συνέχεια του φύλλου εργασίας, αναμένεται οι μαθητές να τα προσεγγίσουν διαισθητικά και μέσω της εικασίας και του ελέγχου να αντιληφθούν πώς επηρεάζει τη μέση τιμή και την τυπική απόκλιση η εφαρμογή ενός γραμμικού μετασχηματισμού στο σύνολο των παρατηρήσεων. Η άσκηση που ακολουθεί έχει στόχο να τους εμπλέξει στη διαδικασία μετασχηματισμού μιας οποιασδήποτε κατανομής, στην κατανομή με την πιο απλή μορφή. Στην αναζήτηση δηλαδή του κατάλληλου γραμμικού μετασχηματισμού, που θα την μετασχηματίσει στην κατανομή με μέση τιμή 0 και τυπική απόκλιση 1. Ο καθηγητής πρέπει με κατάλληλες παρεμβάσεις να βοηθήσει τους x x μαθητές να κατανοήσουν ότι ο ζητούμενος γραμμικός μετασχηματισμός είναι ο. s 4 η ΦΑΣΗ Το πρόβλημα του 4 ου φύλλου εργασίας (βλ. τέλος σεναρίου) έχει ως στόχο να δείξει στους μαθητές ότι η γνώση της τυπικής απόκλισης δεν αρκεί για να συγκρίνουμε δύο δείγματα ως προς την ομοιογένεια. Συνεπώς χρειαζόμαστε ένα άλλο μέτρο, το οποίο να εκφράζει τη σχετική και όχι την απόλυτη διασπορά. Τους ζητείται να μεταφέρουν τα δεδομένα στο Excel και να υπολογίσουν τη μέση τιμή και την τυπική απόκλιση. Τα αποτελέσματα της καταχώρησης και των υπολογισμών φαίνονται παρακάτω

5 A B A , B , Μέσω των ερωτημάτων που ακολουθούν οι μαθητές διαπιστώνουν ότι το να συγκρίνουν την ομοιογένεια των δύο τμημάτων βάσει των τυπικών αποκλίσεων, έρχεται σε αντίθεση με αυτό που διαισθητικά αντιλαμβάνονται ότι ισχύει. Συνεπώς γεννάται η ανάγκη αναζήτησης ενός μέτρου σχετικής και όχι απόλυτης διασποράς. Παρουσιάζεται ο ορισμός του συντελεστή μεταβολής και οι κυριότερες ιδιότητές του. Η άσκηση που ακολουθεί απαιτεί από τους μαθητές να συνδυάσουν τα συμπεράσματα της 3 ης φάσης (γραμμικός μετασχηματισμός) με τις ιδιότητες του συντελεστή μεταβολής

6 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Πρόβλημα: Καταγράψαμε την μέγιστη θερμοκρασία ημέρας δύο πόλεων Α και Β, για το 1 ο o δεκαπενθήμερο του Μαρτίου. Υπολογίσαμε τις μέσες τιμές και βρήκαμε ότι xa xb 15 C. Γνωρίζουμε ότι η κεντρική θέρμανση των πολυκατοικιών λειτουργεί ως εξής: Όταν η θερμοκρασία πέσει κάτω από 14 o C μέχρι και τους 11 o C μπαίνει σε λειτουργία αυτόματα για 3 ώρες την ημέρα, ενώ αν η θερμοκρασία πέσει κάτω από τους 11 o C μπαίνει σε λειτουργία για 5 ώρες την ημέρα. Μπορείτε να εκτιμήσετε αν σε κάποια πόλη, στο διάστημα αυτό, μπήκε σε λειτουργία η κεντρική θέρμανση; Πιστεύετε ότι υπήρξε μέρα που λειτούργησε για 5 ώρες; Το πλήθος των ημερών που η κεντρική θέρμανση λειτούργησε για 3 ώρες ή ενδεχομένως για 5 ώρες ήταν το ίδιο για τις πόλεις Α και Β; Ποια είναι η γνώμη σας; Τι νομίζετε ότι πρέπει να γνωρίζετε, εκτός από τη μέση τιμή, για να απαντήσετε στις προηγούμενες ερωτήσεις; Μέτρα διασποράς Τα σπουδαιότερα μέτρα διασποράς είναι: Εύρος R: Ορίζεται ως η διαφορά της μικρότερης από την μεγαλύτερη παρατήρηση. Όταν έχουμε ομαδοποιημένα δεδομένα το εύρος δίνεται από τη διαφορά του κατώτερου ορίου της πρώτης κλάσης από το ανώτερο όριο της τελευταίας κλάσης. Διακύμανση ή διασπορά s 2 : Για ένα σύνολο παρατηρήσεων t,t,..., ορίζεται από τη σχέση t 1 2 ν ν 2 ν 2 1 t ν s t x ή ισοδύναμα 1 s t. ν 1 ν 1 ν Όταν η μέση τιμή δεν είναι ακέραιος, τότε για τον υπολογισμό της διακύμανσης εξυπηρετεί ο δεύτερος τύπος. Αν οι παρατηρήσεις είναι x,x,..., x με αντίστοιχες σχετικές συχνότητες ν,ν,..., ν, ή αν οι 1 2 k 1 2 k ν παρατηρήσεις έχουν ομαδοποιηθεί σε κλάσεις, ορίζεται από τη σχέση s x x ν ή ν 1 k 2 x k ν ισοδύναμα 1 s x ν ν 1 ν Τυπική απόκλιση s: Ορίζεται ως η θετική τετραγωνική ρίζα της διακύμανσης Τα δεδομένα που καταγράψαμε για τις θερμοκρασίες των δύο πόλεων είναι: Α: 15, 13, 14, 15, 16, 16, 15, 15, 18, 16, 14, 13, 15, 16, 14 Β: 14, 15, 18, 20, 16, 15, 13, 10, 14, 16, 18, 20, 15, 11, 10 Υπολογίστε το εύρος R A και R B. s 2 s - 6 -

7 Σ ένα φύλλο Excel κατασκευάστε τον πίνακα συχνοτήτων της πόλης Α και σ ένα άλλο τον πίνακα συχνοτήτων της πόλης Β. Κατασκευάζοντας κατάλληλες στήλες υπολογίστε, για κάθε πόλη, τη μέση τιμή και τη διακύμανση χρησιμοποιώντας και τους δύο τύπους. Στη συνέχεια υπολογίστε τις τυπικές αποκλίσεις s A και s B. Εντοπίστε, παρατηρώντας τα δεδομένα, πόσες ημέρες λειτούργησε η κεντρική θέρμανση σε κάθε πόλη και αν υπήρξαν ημέρες που λειτούργησε για 5 ώρες. Συσχετίστε τα παραπάνω ευρήματα με τα μέτρα διασποράς που υπολογίσατε. Αν γνωρίζατε τα μέτρα διασποράς, πιστεύετε ότι θα σας διευκόλυνε να απαντήσετε στις αρχικές ερωτήσεις; Ποια είναι η γνώμη σας; Ποια χαρακτηριστικά της κατανομής πιστεύετε ότι περιγράφουν τα μέτρα διασποράς; Ποιο, κατά τη γνώμη σας, νομίζετε ότι είναι το πιο αξιόπιστο μέτρο διασποράς; Ποια νομίζετε ότι είναι τα πλεονεκτήματα και μειονεκτήματα του καθενός; Συμπληρώστε τον επόμενο πίνακα σχετικά με τα πλεονεκτήματα και μειονεκτήματα των μέτρων διασποράς. Πλεονεκτήματα Μειονεκτήματα Εύρος Διακύμανση Τυπική απόκλιση - 7 -

8 2 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Κανονική κατανομή: Πολλά φυσικά μεγέθη περιγράφονται ικανοποιητικά από μια χαρακτηριστική κατανομή που την ονομάζουμε κανονική. Όταν λέμε ότι ένα σύνολο παρατηρήσεων, με μέση τιμή x και τυπική απόκλιση s, ακολουθεί την κανονική, ή περίπου την κανονική, κατανομή τότε η καμπύλη συχνοτήτων του είναι «κωδωνοειδούς» μορφής, το εύρος της ισούται περίπου με έξι τυπικές αποκλίσεις R 6s και οι παρατηρήσεις είναι κατανεμημένες περίπου όπως δείχνει το παρακάτω διάγραμμα. ν x 3s x 2s x s x x s x 2s 68% 95% 99,7% x 3s x Πρόβλημα 1: Οι πελάτες μια εταιρείας κινητής τηλεφωνίας που χρησιμοποιούν ένα συγκεκριμένο πρόγραμμα Α είναι 150 χιλιάδες. Ο χρόνος χρήσης του κινητού κάθε μήνα από τα άτομα αυτά, ακολουθεί περίπου την κανονική κατανομή με μέση τιμή 2 ώρες και τυπική απόκλιση 30 mn. 1) Πόσοι περίπου πελάτες κάνουν χρήση του κινητού τους από 1,5 έως 3 ώρες το μήνα; 2) Γνωρίζοντας ότι αν κάποιος κάνει χρήση του κινητού κάτω από 30 mn το μήνα, τον συμφέρει να αγοράσει ένα άλλο πρόγραμμα Β αντί του Α, υπολογίστε πόσοι περίπου από τους 150 χιλιάδες χρήστες τους συμφέρει να αγοράσουν το πρόγραμμα Β. Πρόβλημα 2: Το Υπουργείο Εσωτερικών θέλει να εκτιμήσει το μέσο χρόνο αναμονής των πολιτών μέχρι να εξυπηρετηθούν, σε μια Δημόσια Υπηρεσία. Εξετάζοντας ένα δείγμα 2000 ατόμων, διαπίστωσε ότι απ αυτά, τα 50 άτομα χρειάστηκαν πάνω από 26 mn, ενώ τα 1680 άτομα εξυπηρετήθηκαν σε χρόνο λιγότερο από 22 mn. Αν θεωρήσουμε το δείγμα αντιπροσωπευτικό και το χρόνο αναμονής να ακολουθεί περίπου την κανονική κατανομή, εκτιμήστε τον μέσο χρόνο εξυπηρέτησης και την τυπική του απόκλιση

9 3 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Πρόβλημα: Κάναμε μια έρευνα αγοράς σχετικά με την τιμή πώλησης ενός συγκεκριμένου προιόντος σε μια πόλη. Επισκεφθήκαμε τα 10 καταστήματα της πόλης και οι τιμές που καταγράψαμε σε, χωρίς ΦΠΑ, είναι οι παρακάτω: 10, 8, 13, 15, 13, 16, 18, 14, 14, 9 Να μεταφέρετε τα δεδομένα στο Excel και με χρήση των ενσωματωμένων συναρτήσεων που διαθέτει, να υπολογίσετε τη μέση τιμή και την τυπική απόκλιση. Πως θα διαμορφωθεί η μέση τιμή και η τυπική απόκλιση της αξίας του προϊόντος στις παρακάτω περιπτώσεις: 1) Αν σε κάθε τιμή προστεθεί η ταχυδρομική αποστολή κόστους 2. 2) Αν κάθε τιμή επιβαρυνθεί με το ΦΠΑ 20%. 3) Αν σε κάθε τιμή συνυπολογίσουμε και την επιβάρυνση του ΦΠΑ και το κόστος της ταχυδρομικής αποστολής. Ποια είναι σχέση της νέας με την αρχική μέση τιμή σε καθεμία από τις παραπάνω περιπτώσεις; Ποια είναι σχέση της νέας με την αρχική τυπική απόκλιση σε καθεμία από τις παραπάνω περιπτώσεις; Έστω ότι η μέση τιμή και η τυπική απόκλιση, ενός συνόλου παρατηρήσεων x, είναι x και s x αντίστοιχα. Αν σε κάθε παρατήρηση επιβάλλουμε τον γραμμικό μετασχηματισμό y ax b a, b σταθερές ποια θα είναι η νέα μέση τιμή y και η νέα τυπική απόκλιση s y ; Να συμπεριλάβετε και την περίπτωση που οι σταθερές a, b είναι αρνητικές. Άσκηση: Έστω x, s η μέση τιμή και η τυπική απόκλιση, αντίστοιχα, ενός συνόλου x παρατηρήσεων x,x,..., x. Ποιο γραμμικό μετασχηματισμό πρέπει να επιβάλλουμε σε κάθε 1 2 k παρατήρηση x, ώστε οι νέες παρατηρήσεις y που θα προκύψουν να έχουν μέση τιμή 0 και τυπική απόκλιση 1; - 9 -

10 4 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Πρόβλημα: Μία επιχείρηση απασχολεί 20 εργαζόμενους, 10 στο τμήμα Α οι οποίοι πληρώνονται στο τέλος κάθε μήνα και 10 στο τμήμα Β οι οποίοι πληρώνονται στο τέλος κάθε εβδομάδας. Οι μηνιαίες και εβδομαδιαίες αποδοχές των αργαζομένων στα τμήματα Α και Β αντίστοιχα είναι: A: 950, 920, 1045, 980, 880, 965, 935, 930, 920, 925 Β: 210, 230, 175, 260, 265, 200, 225, 170, 175, 240 Θέλουμε να εξετάσουμε σε ποιο από τα δύο τμήματα οι αποδοχές παρουσιάζουν μικρότερη μεταβλητότητα, δηλαδή μεγαλύτερη ομοιογένεια; Να μεταφέρετε τα δεδομένα στο Excel και να υπολογίσετε, για κάθε τμήμα, την μέση τιμή και την τυπική απόκλιση των αποδοχών. Με βάση τις τυπικές αποκλίσεις που υπολογίσατε τι θα απαντούσατε στο ερώτημα; Πάρτε μια ιδέα για τη μεταβλητότητα κάθε τμήματος καταγράφοντας το πλήθος των αποδοχών που βρίσκονται στο διάστημα x s,x s. Ποιο από τα δύο φαίνεται ότι έχει την μικρότερη μεταβλητότητα; Γιατί πιστεύετε ότι αυτό έρχεται σε αντίθεση με τις τιμές των τυπικών αποκλίσεων; Ποια είναι η γνώμη σας; Συντελεστής μεταβολής ή μεταβλητότητας CV Είναι ένα μέτρο που μας δίνει τη σχετική διασπορά μιας κατανομής και ορίζεται ως ο λόγος: s CV x Πρέπει x 0. Αν x 0 τότε αντί της x χρησιμοποιούμε την x. Ο CV μας βοηθάει στη σύγκριση συνόλων παρατηρήσεων που, είτε εκφράζονται σε διαφορετικές μονάδες μέτρησης, είτε εκφράζονται στην ίδια μονάδα μέτρησης αλλά οι μέσες τιμές τους είναι σημαντικά διαφορετικές. Ο CV, ως λόγος, είναι ανεξάρτητος από τις μονάδες μέτρησης και συνήθως εκφράζεται επί τοις εκατό. Ένα σύνολο παρατηρήσεων χαρακτηρίζεται ομοιογενές αν CV 10% ή αν CV 0, 1. Αν για δύο σύνολα παρατηρήσεων Α και Β ισχύει CV CV τότε λέμε ότι το Α παρουσιάζει μεγαλύτερη A B ομοιογένεια έναντι του Β. Υπολογίστε το συντελεστή μεταβολής των τμημάτων Α κα Β και εξετάστε σε ποιο από τα δύο τμήματα οι αποδοχές παρουσιάζουν μεγαλύτερη ομοιογένεια. Είναι οι αποδοχές κάποιου τμήματος ομοιογενείς; Σε ποια περίπτωση, πιστεύετε, ότι θα αρκούσε η γνώση της μέσης τιμής και της τυπικής απόκλισης, για να αποφανθείτε με σιγουριά ποιο από τα δύο τμήματα παρουσιάζει μεγαλύτερη ομοιογένεια ως προς της αποδοχές; Άσκηση: Μια ομάδα φίλων υπολόγισε ότι η μέση ηλικία τους είναι 22 έτη και ο συντελεστής μεταβολής 0,15. Μετά από πόσα έτη η ομάδα των φίλων θα είναι ομοιoγενής ως προς την ηλικία;

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΟΣ ΣΑΡΑΚΗΝΟΣ Άσκηση 1 Οι βαθμοί 5 φοιτητών που πέρασαν το μάθημα της Στατιστικής ήταν: 6 5 7 5 9 5 6 6 8 10 8 5 6 7 5 6 5 7 8 9 5 6 7 5 8 i. Να κάνετε πίνακα κατανομής

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΔΕΥΤΕΡΑ, 22 ΑΠΡΙΛΙΟΥ 201 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2010-11 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ Α Σχολικό βιβλίο σελ 6 Α Σχολικό βιβλίο σελ 9 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΚΥΡΙΑΚΗ // - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Μάθημα Αστικής Γεωγραφίας

Μάθημα Αστικής Γεωγραφίας Μάθημα Αστικής Γεωγραφίας Διδακτικό Έτος 2015-2016 Παραδόσεις Διδακτικής Ενότητας: Πληθυσμιακή πρόβλεψη Δούκισσας Λεωνίδας, Στατιστικός, Υποψ. Διδάκτορας, Τμήμα Γεωγραφίας, Χαροκόπειο Πανεπιστήμιο Σελίδα

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού»

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» «Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» Ματοσσιάν Αλμπέρ-Ντικράν 1, Κουτσκουδής Παναγιώτης 2 1 Καθηγητής Μαθηματικών, Πρότυπο Πειραματικό Γενικό Λύκειο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ-13 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 2006-07 Τρίτη Γραπτή Εργασία στη Στατιστική Γενικές οδηγίες

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100

1-3 10 1-3 6 3-5 40 3-5 30 5-7 20 5-7 20 7-9 20 7-9 30 9-11 8 9-11 10 11-13 2 11-13 4 Σύνολο 100 Σύνολο 100 1. (Εξεταστ. Φεβ. 2004) Μια µεγάλη εταιρία θέλει να εξετάσει εάν το εκπαιδευτικό πρόγραµµα που ακολουθήσανε οι 100 πωλητές της ήταν αποτελεσµατικό (δηλαδή εάν αυξήθηκαν οι πωλήσεις). Οι δύο παρακάτω πίνακες

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

Α)Πλαίσιο σχεδιασμού και αναφοράς σεναρίου στο ΚΣΕ Β) Αναστοχασμός διδασκαλίας στο ΚΣΕ

Α)Πλαίσιο σχεδιασμού και αναφοράς σεναρίου στο ΚΣΕ Β) Αναστοχασμός διδασκαλίας στο ΚΣΕ ΕΚΠΑΙΔΕΥΣΗ ΕΠΙΜΟΡΦΩΤΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΣΤΑ ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΚΕΝΤΡΑ ΕΠΙΜΟΡΦΩΣΗΣ Πρακτική άσκηση εκπαιδευομένων στα Πανεπιστημιακά Κέντρα Επιμόρφωσης (ΠΑΚΕ) (ΕΚΠΑΙΔΕΥΣΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Α Να αποδείξετε ότι η παράγωγος της συνάρτησης f(x) x είναι f (x) Β Πότε µια συνάρτηση f σε ένα διάστηµα

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου Κανέλλα Κούτση ΚΣΕ 7ο

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

1 η υπό-ομάδα (Wind): Ισμαήλ Σερκάν Τσουλουχόπουλος Ιωάννης Φαρμακίδης Πασχάλης Τσακίρη Άννα Αριστινίδης Παύλος. 2 η υπό-ομάδα (Cosmote):

1 η υπό-ομάδα (Wind): Ισμαήλ Σερκάν Τσουλουχόπουλος Ιωάννης Φαρμακίδης Πασχάλης Τσακίρη Άννα Αριστινίδης Παύλος. 2 η υπό-ομάδα (Cosmote): 1 η υπό-ομάδα (Wind): Ισμαήλ Σερκάν Τσουλουχόπουλος Ιωάννης Φαρμακίδης Πασχάλης Τσακίρη Άννα Αριστινίδης Παύλος 2 η υπό-ομάδα (Cosmote): Αμυγδαλούδης Κωνσταντίνος Νερατζάκης Κωνσταντίνος Μποτούρ Μεμέτ

Διαβάστε περισσότερα

1.1. Η Χρησιμότητα της Στατιστικής

1.1. Η Χρησιμότητα της Στατιστικής ε ν ό τ η τ α 1 1.1. Η Χρησιμότητα της Στατιστικής Οι εφαρμογές των μεθόδων της στατιστικής είναι ευρείες. Πριν την αναφορά μας για τη χρησιμότητα της στατιστικής, είναι σκόπιμο να παραθέσουμε τους παρακάτω

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

1, αν κ το πλήθος των παρατηρήσεων ενός δείγματος. β)τι εκφράζουν η αθροιστική συχνότητα (

1, αν κ το πλήθος των παρατηρήσεων ενός δείγματος. β)τι εκφράζουν η αθροιστική συχνότητα ( ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ: ΣΤΑΤΙΣΤΙΚΗ ΔΙΑΓΩΝΙΣΜΑ 09-11-14 ΘΕΜΑ Α Α1. Να αναφέρετε ποιες μεταβλητές ονομάζονται ποσοτικές και σε ποιες κατηγορίες διακρίνονται. μονάδες 4 Α2.Τι ονομάζουμε

Διαβάστε περισσότερα

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος»

Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Ερευνητική Εργασία με θέμα: «Ερευνώντας τα χρονικά μυστικά του Σύμπαντος» Σωτήρης Τσαντίλας (PhD, MSc), Μαθηματικός Αστροφυσικός Σύντομη περιγραφή: Χρησιμοποιώντας δεδομένα από το διαστημικό τηλεσκόπιο

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ, Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: Μυκηναϊκός Πολιτισμός ΕΙΣΗΓΗΤΗΣ: ΚΑΛΛΙΑΔΟΥ ΜΑΡΙΑ ΘΕΜΑ: «Η καθημερινή ζωή στον Μυκηναϊκό Κόσμο» Οι μαθητές

Διαβάστε περισσότερα

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ

ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΔΕΟ 13 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ 3 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Τα δεδομένα της στήλης Grade (Αρχείο Excel, Φύλλο Ask1) αναφέρονται στη βαθμολογία 63 φοιτητών που έλαβαν μέρος σε

Διαβάστε περισσότερα

Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα. Γενικές οδηγίες

Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα. Γενικές οδηγίες ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΕΟ 31 Χρηματοοικονομική ιοίκηση Ακαδημαϊκό Έτος: 2011-2012 Γραπτή Εργασία 3 Παράγωγα Αξιόγραφα Γενικές

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 14 Οικονομικές Συναρτήσεις Δάνειων

Εργαστηριακή Άσκηση 14 Οικονομικές Συναρτήσεις Δάνειων Εργαστηριακή Άσκηση 14 Οικονομικές Συναρτήσεις Δάνειων Σκοπός της εργαστηριακής άσκησης είναι να σας εξοικειώσει με μια σειρά ενσωματωμένων οικονομικών συναρτήσεων που παρέχει το Excel και είναι σχετικές

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης

ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(5543) Κορρέ Πελαγία(5480) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης ΣΕΜΙΝΑΡΙΟ:Στατιστική περιγραφική εφαρμοσμένη στην ψυχοπαιδαγωγική Πούλιου Χριστίνα(55) Κορρέ Πελαγία(580) Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εαρινό εξάμηνο 0 Ρέθυμνο, 5/6/0 ΠΕΡΙΕΧΟΜΕΝΑ:. Εισαγωγή.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

«Γνωρίζοντας το Υλικό του Υπολογιστή μέσω της Εννοιολογικής Χαρτογράφησης Χρήση του CmapTools»

«Γνωρίζοντας το Υλικό του Υπολογιστή μέσω της Εννοιολογικής Χαρτογράφησης Χρήση του CmapTools» 3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ «Γνωρίζοντας το Υλικό του Υπολογιστή μέσω της Εννοιολογικής Χαρτογράφησης Χρήση του CmapTools» Αβραμίδου Μαργαρίτα Καθηγήτρια Πληροφορικής, 1 ο Γυμνάσιο

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

2013-14 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ. http://cutemaths.wordpress.

2013-14 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ. http://cutemaths.wordpress. 3-4 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΑ Βαγγέλης Α Νικολακάκης Μαθηματικός ttp://cutemats.wordpress.com/ ΛΙΓΑ ΛΟΓΙΑ Η παρούσα εργασία

Διαβάστε περισσότερα

Επαγγελματικές κάρτες

Επαγγελματικές κάρτες Επαγγελματικές κάρτες Αφροδίτη Οικονόμου Νηπιαγωγός afoikon@uth.gr Η παρουσίαση αναπτύχθηκε για την πλατφόρμα Ταξίδι στον γραμματισμό Θεματική: Τα επαγγέλματα των γονιών της τάξης μας ΤΙΤΛΟΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ:

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεµάτων

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 22559 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1561 17 Αυγούστου 2007 ΑΠΟΦΑΣΕΙΣ Αριθμ. 85038/Γ2 Αναλυτικό Πρόγραμμα Σπουδών του Τομέα Οικονομικών και Διοικητικών Υπηρεσιών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΗΣ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ- ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργασία για το σεµινάριο «Στατιστική περιγραφική εφαρµοσµένη στην ψυχοπαιδαγωγική(β06σ03)» ΤΙΤΛΟΣ: «ΜΕΛΕΤΗ ΠΕΡΙΓΡΑΦΙΚΗΣ

Διαβάστε περισσότερα

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού.

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. 1.ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Συγγραφέας: Μποζονέλου Κωνσταντίνα 1.1.Τίτλος διδακτικού σεναρίου Οι τέσσερις

Διαβάστε περισσότερα

Καρδιακοί κτύποι στους εφήβους

Καρδιακοί κτύποι στους εφήβους Καρδιακοί κτύποι στους εφήβους Σαμαρά Β., Γιαταγαντζίδης Α., Δώνης Α., Ισαακίδου Σ., Κοντού Ε., Κουγιουμτζίδης Ν., Μαρτάκου Α., Μεχανετζίδου Μ., Μπαλτζόπουλος Α., Νούλης Β., Πάδη Μ., Παπαϊωαννίδης Γ.,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 1 Τι είναι η Στατιστική;

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 1 Τι είναι η Στατιστική; ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή

Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή Αθανάσιος Βράντζας 1 vrantzas@sch.gr 1 Καθηγητής Πληροφορικής Περίληψη Στην εργασία αυτή θα επιχειρηθεί να παρουσιαστεί η διδασκαλία του εσωτερικού

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Θέμα Γραφικές παραστάσεις Ραβδόγραμμα - Ιστόγραμμα -Κυκλικό διάγραμμα Πίνακες-Σχετικές Συχνοτητες-Ποσοστα-Κλασματα Ενδεικτική πορεία διδασκαλίας Α. Δίνουμε στους εκπαιδευόμενους

Διαβάστε περισσότερα

Σενάριο 15: Ενεργός Μετεωρολογικός Χάρτης

Σενάριο 15: Ενεργός Μετεωρολογικός Χάρτης Σενάριο 15: Ενεργός Μετεωρολογικός Χάρτης Ταυτότητα Σεναρίου Τίτλος : Ενεργός Μετεωρολογικός Χάρτης Γνωστικό Αντικείμενο: Εφαρμογές Πληροφορικής-Υπολογιστών Διδακτική Ενότητα: Διερευνώ - Δημιουργώ Ανακαλύπτω,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ

Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επιμέλεια: Σ. Ασημέλλης 1. Σε ένα ποδοσφαιρικό πρωτάθλημα μετέχουν 16 ομάδες. Κάθε ομάδα παίζει με όλες τις υπόλοιπες ως γηπεδούχος και ως φιλοξενούμενη. Νίκη μιας ομάδας

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Πίνακας-1 Επίπεδο εκπαίδευσης πατέρα 2

Πίνακας-1 Επίπεδο εκπαίδευσης πατέρα 2 Περιγραφική Στατιστική Όπως, ήδη έχουμε αναφέρει, στόχος της Περιγραφικής Στατιστικής είναι, «η ανάπτυξη μεθόδων για τη συνοπτική και την αποτελεσματική παρουσίαση των δεδομένων» Για το σκοπό αυτό, έχουν

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΘΕΜ 4 www.onlineclassroom.gr ΕΡΩΤΗΜ Η εταιρεία «Ωμέγα» στην προσπάθεια της να βελτιώσει τα οικονομικά της αποτελέσματα, από την οικονομική ύφεση την οποία διανύουμε, πραγματοποίησε μια έρευνα αγοράς η

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Οι φορητοί υπολογιστές στην εκπαίδευση: Μελέτη περίπτωσης ως προς τις συνέπειες στη διδασκαλία και το μιντιακό γραμματισμό

Οι φορητοί υπολογιστές στην εκπαίδευση: Μελέτη περίπτωσης ως προς τις συνέπειες στη διδασκαλία και το μιντιακό γραμματισμό Παιδαγωγικά ρεύματα στο Αιγαίο Προσκήνιο 1 Οι φορητοί υπολογιστές στην εκπαίδευση: Μελέτη περίπτωσης ως προς τις συνέπειες στη διδασκαλία και το μιντιακό γραμματισμό Δημήτρης Σπανός 1 dimitris.spanos@gmail.com

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

ΔΗΜΗΤΡΗΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ

ΔΗΜΗΤΡΗΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΗΤΡΗΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Απάντηση ερωτήσεων σχετικά με την οργάνωση των Ερευνητικών Εργασιών στο Γενικό Λύκειο κατά το σχολικό έτος 2012-2013 ΛΑΜΙΑ: ΣΕΠΤΕΜΒΡΙΟΣ 2012 Αγαπητοί/ες

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Τίτλος διδακτικού σεναρίου: Ας ταξιδέψουμε στο βουνό των 12 θεών του Ολύμπου κι ας τους γνωρίσουμε από κοντά.

Τίτλος διδακτικού σεναρίου: Ας ταξιδέψουμε στο βουνό των 12 θεών του Ολύμπου κι ας τους γνωρίσουμε από κοντά. ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Τίτλος διδακτικού σεναρίου: Ας ταξιδέψουμε στο βουνό των 12 θεών του Ολύμπου κι ας τους γνωρίσουμε από κοντά. Τάξη/εις στις οποίες απευθύνεται: Το

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 5] 3η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να φθάσουν

Διαβάστε περισσότερα

Στατιστικοί έλεγχοι για διακριτά δεδομένα

Στατιστικοί έλεγχοι για διακριτά δεδομένα Στατιστικοί έλεγχοι για διακριτά δεδομένα Διαστρωμάτωση Mantel-Haenszel test Γεωργία Σαλαντή Λέκτορας επιδημιολογίας Λεπτοσπείρωση Πιο πολλά κρούσματα στις αγροτικές περιοχές; Πόσο επί τις εκατό του πληθυσμού

Διαβάστε περισσότερα

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική)

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) ΝΤΑΗ ΕΙΡΗΝΗ ΤΜΗΜΑ: Π.Τ.Δ.Ε, ΠΑΤΡΑΣ 2012-13 ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ Ε.ΚΟΛΕΖΑ «ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) [1] Στόχοι της ενότητας(οι μαθητές

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

Γιάννης Αγιοργιωτάκης Μαθηματικός στο Σ.Δ.Ε. Αλεξανδρούπολης Παρουσίαση Σχολικό έτος 2004-2005

Γιάννης Αγιοργιωτάκης Μαθηματικός στο Σ.Δ.Ε. Αλεξανδρούπολης Παρουσίαση Σχολικό έτος 2004-2005 Γιάννης Αγιοργιωτάκης Μαθηματικός στο Σ.Δ.Ε. Αλεξανδρούπολης Παρουσίαση Σχολικό έτος 24-25 Τίτλος Τα ποσοστά στην Εφορία (Μια πρόταση διδασκαλίας των ποσοστών στo Σ.Δ.Ε.) Σκοποί και Στόχοι 1. Να εξοικειωθούν

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

(c) EΠΑΦΟΣ ΑΘΗΝΑ Νοέµβριος 2013 Απαγορεύεται η αντιγραφή του παρόντος χωρίς την έγγραφη άδεια της ΕΠΑΦΟΣ ΕΠΕ.

(c) EΠΑΦΟΣ ΑΘΗΝΑ Νοέµβριος 2013 Απαγορεύεται η αντιγραφή του παρόντος χωρίς την έγγραφη άδεια της ΕΠΑΦΟΣ ΕΠΕ. (c) EΠΑΦΟΣ ΑΘΗΝΑ Νοέµβριος 2013 Απαγορεύεται η αντιγραφή του παρόντος χωρίς την έγγραφη άδεια της ΕΠΑΦΟΣ ΕΠΕ. 2 4teachers Γρήγορος οδηγός χρήσης (Βασικά βήματα) Για να αρχίσεις κι εσύ να χρησιμοποιείς

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης

ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης ΠΡΟΒΛΗΜΑ Ένας μαθητής της Γ γυμνασίου, για να περάσει το μάθημα της Πληροφορικής θα πρέπει να βγάλει γενικό μέσο όρο (ΓΜΟ) 9.5 Το πρόγραμμα που

Διαβάστε περισσότερα

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 1 Καθηγητής, Φυσικός, 2 ο Γενικό Λύκειο Αγ. Νικολάου Κρήτης xaralpan@gmail.com 2 Καθηγήτρια, Φυσικός,

Διαβάστε περισσότερα

Το Λογισμικό του υπολογιστή

Το Λογισμικό του υπολογιστή Το Λογισμικό του υπολογιστή Σεραλίδου Ελένη 1 eseralid@gmail.com 1 Καθηγήτρια Πληροφορικής ΠΕ20 MSc 5 ο ΓΕΛ Νίκαιας Περίληψη Το παρακάτω εκπαιδευτικό σενάριο αφορά το μάθημα των «Εφαρμογών Πληροφορικής»

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 270727 222594 ΑΡΤΑΚΗΣ 12 Κ. ΤΟΥΜΠΑ THΛ : 919113 949422 www.syghrono.gr

Διαβάστε περισσότερα

Απαιτούμενη υλικοτεχνική υποδομή: εργαστήριο πληροφορικής, διαδραστικός πίνακας Μέσα: ιστολόγιο http://www.teensafenet.wordpress.

Απαιτούμενη υλικοτεχνική υποδομή: εργαστήριο πληροφορικής, διαδραστικός πίνακας Μέσα: ιστολόγιο http://www.teensafenet.wordpress. ΣΤΑΔΙΟ I : Προετοιμασία-Εισαγωγή-Διερεύνηση (διάρκεια: 2 διδακτικές ώρες) Απαιτούμενη υλικοτεχνική υποδομή: εργαστήριο πληροφορικής, διαδραστικός πίνακας Μέσα: ιστολόγιο http://wwwteensafenetwordpresscom

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ 1 ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Κώστας Κύρος ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Ανοίξτε το λογισμικό Google Earth και προσπαθήστε να εντοπίσετε τη θέση της Ευρώπης στη Γη. Κατόπιν για να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

[Ε-LEARNING ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ ΤΗΣ ΕΘΝΙΚΗΣ ΤΡΑΠΕΖΑΣ] learn-era.gr. Βασίλης Παλίλης

[Ε-LEARNING ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ ΤΗΣ ΕΘΝΙΚΗΣ ΤΡΑΠΕΖΑΣ] learn-era.gr. Βασίλης Παλίλης 2014 learn-era.gr Βασίλης Παλίλης [Ε-LEARNING ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ ΤΗΣ ΕΘΝΙΚΗΣ ΤΡΑΠΕΖΑΣ] Ενημερωτικό δελτίο για το e-μάθημα που αφορά τον Διαγωνισμό για την πρόσληψη υπαλλήλων της Εθνικής Τράπεζας της Ελλάδος.

Διαβάστε περισσότερα

ενεργειακών απαιτήσεων πρώτης ύλης, ενεργειακού περιεχομένου παραπροϊόντων, τρόπους αξιοποίησής

ενεργειακών απαιτήσεων πρώτης ύλης, ενεργειακού περιεχομένου παραπροϊόντων, τρόπους αξιοποίησής Πίνακας. Πίνακας προτεινόμενων πτυχιακών εργασιών για το εαρινό εξάμηνο 03-4 ΤΜΗΜΑ: MHXANIKΩN ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΟΜΕΑΣ: ΕΝΕΡΓΕΙΑΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ Α/Α Τίτλος θέματος Μέλος Ε.Π Σύντομη περιγραφή Προαπαιτούμενα

Διαβάστε περισσότερα