Κεφάλαιο 4. Ανίχνευση «Προδοτών» σε Συστήµατα Αναµετάδοσης Κρυπτογραφηµένου Υλικού. 4.1 Εισαγωγή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 4. Ανίχνευση «Προδοτών» σε Συστήµατα Αναµετάδοσης Κρυπτογραφηµένου Υλικού. 4.1 Εισαγωγή"

Transcript

1 Κεφάλαιο 4 Ανίχνευση «Προδοτών» σε Συστήµατα Αναµετάδοσης Κρυπτογραφηµένου Υλικού Στο Κεφάλαιο αυτό περιγράφουµε και προτείνουµε τρόπους αντιµετώπισης της παράνοµης αντιγραφής και αναδιανοµής ηλεκτρονικής πληροφορίας. Θεωρούµε, µε κριτήρια ασφάλειας και πρακτικότητας, τα σχήµατα ανίχνευσης «προδοτών» που έχουν προταθεί στη διεθνή βιβλιογραφία για την προστασία των πνευµατικών δικαιωµάτων σε εφαρµογές αναµετάδοσης κρυπτογραφηµένου υλικού. Επίσης προτείνουµε ένα ασύµµετρο σχήµα ανίχνευσης «προδοτών» χωρίς τρίτη έµπιστη οντότητα, όπου ο παροχέας του υλικού δε γνωρίζει εκ των προτέρων το αποτύπωµα που περιέχει ο αποκωδικοποιητής ενός εξουσιοδοτηµένου χρήστη, αλλά µπορεί να ανιχνεύσει την ταυτότητα ενός «προδότη» που διαθέτει το αποτύπωµα του στην κατασκευή ενός πειρατικού αποκωδικοποιητή. Στο σχήµα ενσωµατώνουµε επιπλέον ελέγχους ορθότητας ώστε ο παροχέας να µη µπορεί να συµπεριφερθεί κακόβουλα και να ενοχοποιήσει άδικα έναν χρήστη. 4.1 Εισαγωγή Με την ταχεία εξάπλωση των εφαρµογών ηλεκτρονικού εµπορίου εγείρονται ζητήµατα προστασίας της πνευµατικής ιδιοκτησίας επί των ψηφιακών αγαθών που αντιγράφονται και αναδιανέµονται παράνοµα µέσω του ιαδικτύου ή άλλων ηλεκτρονικών δικτύων. Οι βασικοί άξονες προστασίας που µπορούν να υιοθετηθούν για την αντιµετώπιση του προβλήµατος, είναι δύο: η αποτροπή της αναδιανοµής, και η ανίχνευση «προδοτών».

2 Αποτροπή Αναδιανοµής Για την αποτροπή ή/και την αποθάρρυνση της παράνοµης αναδιανοµής ψηφιακών αγαθών απαιτείται ένας συνδυασµός από τεχνικά (π.χ. υδατογραφήµατα, χρήση ειδικού hardware) και µη τεχνικά (π.χ. λήψη νοµικών µέτρων) µέσα προστασίας. Υδατογραφήµατα. Οι τεχνικές υδατογράφησης χρησιµοποιούνται για την εισαγωγή ειδικών αναγνωριστικών (watermarks), κρυφών ή φανερών, σε ψηφιακό ή αναλογικό υλικό (κείµενο, εικόνα, ήχος, video), µε στόχο την εξασφάλιση της αυθεντικότητας και την αποτροπή της παράνοµης χρήσης του υλικού από µη εξουσιοδοτηµένες οντότητες [Pet99]. Η διαγραφή των υδατογραφηµάτων, εφόσον πρόκειται για φανερά υδατογραφήµατα, θα πρέπει να καθιστά το αγαθό δύσχρηστο ή µη λειτουργικό. Αντίθετα, οι τεχνικές εισαγωγής κρυφών υδατογραφηµάτων συνήθως αξιοποιούν και εφαρµόζουν µεθόδους που άπτονται της επιστήµης της στεγανογραφίας 1 [And98]. Πρέπει να τονιστεί ότι τα υδατογραφήµατα καταδεικνύουν, κατά τρόπο αδιαµφισβήτητο, τον δηµιουργό του υλικού. Ανίχνευση «Προδοτών» Οι τεχνικές ανίχνευσης «προδοτών» αποσκοπούν, όχι τόσο στην παρεµπόδιση της αναδιανοµής αλλά στον εντοπισµό των «προδοτών» που εκχώρησαν παράνοµα σε τρίτους («πειρατές») τα δικαιώµατα χρήσης του αγαθού που οι ίδιοι νόµιµα απέκτησαν. Τα ψηφιακά αποτυπώµατα αποτελούν το χαρακτηριστικότερο παράδειγµα αυτής της κατηγορίας. 1 Σε αντίθεση µε την κρυπτογραφία, η οποία έχει ως κύριο στόχο την απόκρυψη του περιεχοµένου ενός µηνύµατος, η επιστήµη της στεγανογραφίας αποσκοπεί στην απόκρυψη της ύπαρξης του µηνύµατος καθ αυτού. 131

3 Ψηφιακά Αποτυπώµατα. Σε αντίθεση µε τα υδατογραφήµατα, τα αποτυπώµατα καταδεικνύουν τον παραλήπτη του ψηφιακού ή αναλογικού υλικού. Με τα ψηφιακά αποτυπώµατα (digital fingerprints) ο δηµιουργός του ψηφιακού αγαθού εξατοµικεύει κάθε αντίγραφο του αγαθού ώστε να µπορεί να ανακαλύψει την ταυτότητα ενός «προδότη» [Cho94] που αναδιανέµει το αντίγραφο που κατέχει σε τρίτους, οι οποίοι αποκαλούνται και «πειρατές». Κάθε αποτύπωµα µπορεί να είναι ένα σύνολο από ειδικά σηµάδια (marks), δηλαδή µια µοναδική σειρά δυαδικών ψηφίων (bits) που ενσωµατώνονται στην ηλεκτρονική πληροφορία κατά τρόπο ώστε ο εντοπισµός τους να είναι δύσκολος ακόµα και στην περίπτωση όπου συνεργάζονται δύο ή και περισσότεροι αγοραστές 2, π.χ. συγκρίνοντας τα αντίγραφα µεταξύ τους [Wag83, Bon95]. Επίσης η διαγραφή των αποτυπωµάτων θα πρέπει να καθιστά το αγαθό δύσχρηστο ή µη λειτουργικό. Στο χώρο των ψηφιακών αποτυπωµάτων, η κρυπτογραφική προστασία από την παράνοµη αντιγραφή ψηφιακών αγαθών µπορεί γενικά να επιτευχθεί µε τρεις τρόπους: - Με συµµετρικές τεχνικές [Cho94,Bon95,Sti98,Bon99], όπου ο παροχέας και ο αγοραστής γνωρίζουν το εξατοµικευµένο αντίγραφο του αγαθού που πωλείται. Το σηµατικότερο µειονέκτηµα των συµµετρικών τεχνικών είναι ότι εάν ο παροχέας εντοπίσει ένα παράνοµα αναδιανεµηµένο αντίγραφο του ψηφιακού αγαθού, η πρότερη γνώση του αποτυπώµατος καθιστά δύσκολη, αν όχι αδύνατη, την απόδειξη ενοχής του «προδότη» ενώπιον µιας Αρχής: ο αγοραστής µπορεί να ισχυριστεί ότι ο παροχέας (ή κάποιος υπάλληλος του) επιχείρησε να τον ενοχοποιήσει, αφού γνώριζε το αποτύπωµα του. 2 Τα συστήµατα εισαγωγής ψηφιακών αποτυπωµάτων βασίζονται στην υπόθεση ότι η συνεργασία δυο χρηστών µε διαφορετικά αντίγραφα, στα οποία το bit που αντιστοιχεί σε ένα σηµάδι έχει την ίδια τιµή, δεν µπορεί να έχει ως αποτέλεσµα τη δηµιουργία ενός τρίτου αντίγραφου µε διαφορετική τιµή για αυτό το bit [Bon95]. 132

4 - Με ασύµµετρες τεχνικές [Pfi96,Pfi96_1,Bie97,Pfi97_2], όπου ο παροχέας και ο αγοραστής συνεργάζονται για την κατασκευή ή/και την εισαγωγή του αποτυπώµατος στο αντίγραφο του αγαθού που πρόκειται να πουληθεί. Στο τέλος του πρωτοκόλλου, ο αγοραστής κατέχει ένα εξατοµικευµένο αντίγραφο του αγαθού, ενώ ο παροχέας γνωρίζει την ταυτότητα του αγοραστή καθώς επίσης και µια «ειδική» πληροφορία. Η πληροφορία αυτή, εάν εντοπιστεί κάποιο παράνοµα αναδιανεµηµένο αντίγραφο, επιτρέπει στον παροχέα να ανακαλύψει (µε µεγάλη πιθανότητα) την ταυτότητα του αγοραστή και να αποδείξει σε µια Αρχή ότι είναι «προδότης». Παράλληλα, η «ειδική» αυτή πληροφορία είναι τέτοιας µορφής ώστε η πιθανότητα ο παροχέας να δηµιουργήσει ένα αντίγραφο του αγαθού που θα ενοχοποιήσει τον χρήστη, να είναι πολύ µικρή. Εάν µια συµπαιγνία από k αγοραστές συνδυάσουν τα αντίγραφα τους για να δηµιουργήσουν και στη συνέχεια να αναδιανείµουν ένα καινούριο αντίγραφο, τότε υπάρχει ένας αλγόριθµος ο οποίος, εάν δεχθεί ως είσοδο την «ειδική» πληροφορία που κατέχει ο παροχέας, επιτρέπει την ανίχνευση τουλάχιστον ενός «προδότη». Εάν ο αλγόριθµος ανακαλύπτει όλους τους «προδότες» που συµµετέχουν στη συµπαιγνία (π.χ. [Bon99]) τότε λέµε ότι προσφέρει ολική ανιχνευσιµότητα. Τα ασύµµετρα συστήµατα ανίχνευσης «προδοτών», εµπίπτουν στην κατηγορία των «δίκαιων» (equitable) συστηµάτων ηλεκτρονικών συναλλαγών, όπως αυτά ορίστηκαν στο Κεφάλαιο 1. - Με ανώνυµες ασύµµετρες τεχνικές [Pfi97, Dom98,Dom99], όπου επιτυγχάνεται για τον αγοραστή η επιπλέον προστασία της ανωνυµίας: ο αγοραστής µπορεί να αγοράσει ανώνυµα το ψηφιακό αγαθό, αλλά η ανωνυµία του θα καταργηθεί εάν ο παροχέας ανακαλύψει µια παράνοµα αναδιανεµηµένη έκδοση του αγαθού. Η ανωνυµία των συστηµάτων αυτής της κατηγορίας βασίζεται είτε στην ύπαρξη µιας τρίτης έµπιστης οντότητας η οποία βοηθάει τον 133

5 παροχέα στην ανακάλυψη της ταυτότητας του «προδότη» [Pfi97], είτε στη εκτέλεση πρωτοκόλλων ασφαλούς πολυµερούς υπολογισµού 33 µεταξύ του παροχέα και του αγοραστή [Dom98,Dom99] Συστήµατα Αναµετάδοσης Γενικά στα συστήµατα ανίχνευσης «προδοτών», δυο είναι οι βασικές προσεγγίσεις που ακολουθούνται: - Εξατοµίκευση του αγαθού (π.χ. αποτύπωµα σε ένα αρχείο ήχου). - Εξατοµίκευση του τρόπου πρόσβασης στο αγαθό (π.χ. διαφορετικός κωδικός ή κλειδί αποκρυπτογράφησης για πρόσβαση σε ηλεκτρονικά βιβλία, software, CD-ROM, τα οποία και παράγονται µαζικά). Η δεύτερη προσέγγιση χρησιµοποιείται όταν η αξία της πληροφορίας που διανέµεται δεν είναι πολύ µεγάλη, σε σχέση µε το κόστος διανοµής της. Κατά την έρευνα αυτή επικεντρώσαµε το ενδιαφέρον µας στα συστήµατα αναµετάδοσης κρυπτογραφηµένου υλικού (broadcast encryption), όπως συνδροµητική τηλεόραση (pay-per-view TV), παροχή ηλεκτρονικών υπηρεσιών σε πραγµατικό χρόνο µέσω ιαδικτύου (π.χ. online ενηµέρωση για τιµές µετοχών), διανοµή οπτικών δίσκων (CD-ROM) µε εµπορικό software, κ.λ.π. Το «Παλαιό» Μοντέλο (παράδειγµα: Συνδροµητική Ψηφιακή Τηλεόραση). Ο παροχέας διανέµει ψηφιακό υλικό στους συνδροµητές µέσω ενός καναλιού αναµετάδοσης. Τυπικά, ο παροχέας δίνει σε κάθε συνδροµητή έναν αποκωδικοποιητή (software ή hardware) που περιέχει ένα µυστικό κλειδί αποκρυπτογράφησης. Στη συνέχεια ο παροχέας αναµεταδίδει το κρυπτογραφηµένο ψηφιακό υλικό. Οι συνδροµητές µπορούν να 134

6 αποκρυπτογραφήσουν και να αποκτήσουν πρόσβαση στο υλικό. Εντούτοις, τίποτε δεν αποτρέπει έναν εξουσιοδοτηµένο συνδροµητή («προδότη») από το να δώσει ένα αντίγραφο του software αποκρυπτογράφησης σε κάποιον άλλο. Ή, ένας «προδότης» µπορεί να αποπειραθεί να εξάγει το µυστικό κλειδί που περιέχεται στον hardware αποκωδικοποιητή [Cry99], να κάνει αντίγραφα του και να τα καταστήσει γνωστά στο ευρύ κοινό. Το Μοντέλο «Ανίχνευσης Προδοτών». Οι Chor, Fiat και Naor [Cho94] εισήγαγαν την έννοια της ανίχνευσης «προδοτών» (traitor tracing) µε σκοπό την αποθάρρυνση των συνδροµητών που θέλουν να αναδιανείµουν αντίγραφα του κλειδιού τους. Στο µοντέλο αυτό κάθε κλειδί είναι προσωπικό, υπό την έννοια ότι αντιστοιχίζεται µοναδικά µε την ταυτότητα ενός συνδροµητή. Ο παροχέας του υλικού εκχωρεί τα προσωπικά κλειδιά και στη συνέχεια αναµεταδίδει κρυπτογραφηµένη πληροφορία την οποία µπορούν να αποκρυπτογραφήσουν µόνον οι εξουσιοδοτηµένοι χρήστες, µε τη χρήση των µοναδικών κλειδιών τους αποκρυπτογράφησης. Εάν κατασκευαστεί ένας πειρατικός αποκωδικοποιητής µε ένα ή περισσότερα κλειδιά από έναν ή περισσότερους εξουσιοδοτηµένους χρήστες («προδότες») αντίστοιχα, τότε ο αποκωδικοποιητής θα περιέχει ορισµένη µυστική πληροφορία, ικανή ώστε ο παροχέας να µπορεί να ταυτοποιήσει τουλάχιστον ένα «προδότη». Στο πλαίσιο αυτό έχουν κατά καιρούς προταθεί τεχνικές ανίχνευσης «προδοτών» [Sti98,Bon99,Pfi96,Pfi96_1,Pfi97_2,Pfi97,Kur98] οι οποίες υπάγονται στην κατηγορία των τεχνικών εισαγωγής ψηφιακών αποτυπωµάτων: στα συστήµατα αναµετάδοσης κρυπτογραφηµένου υλικού, το ψηφιακό αποτύπωµα ισούται µε το προσωπικό κρυπτογραφικό κλειδί κάθε χρήστη που είναι απαραίτητο για την αποκρυπτογράφηση του αναµεταδιδόµενου υλικού. 135

7 Σηµείωση: Στη συνέχεια του Κεφαλαίου χρησιµοποιούµε τον όρο «πειρατικός αποκωδικοποιητής» για να αναφερθούµε στη διαδικασία αποκρυπτογράφησης που εκτελεί ο «πειρατής» προκειµένου να αποκτήσει πρόσβαση στο αποκρυπτογραφηµένο υλικό. Η διαδικασία αυτή µπορεί να εκτελείται σε µια φυσική συσκευή ή απλά να είναι κώδικας software που µεταγλωττίζεται και εκτελείται σε έναν υπολογιστή. Ένα υσεπίλυτο Σενάριο Επίθεσης. Στο σενάριο αυτό, ο «προδότης» ενδέχεται να αναδιανείµει το αντίγραφο του αγαθού αφότου αυτό έχει αποκρυπτογραφηθεί. Η επίθεση αυτή είναι δύσκολο να αντιµετωπιστεί, ωστόσο µπορεί να χαρακτηριστεί ως µη πρακτική για τον επιτιθέµενο, ιδιαίτερα σε εφαρµογές όπως: - Αναµετάδοση εικόνας συνδροµητικής τηλεόρασης: θεωρείται ριψοκίνδυνο καθώς και οικονοµικά/υπολογιστικά επαχθές για κάποιον να στήσει έναν «πειρατικό» σταθµό αναµετάδοσης. Μια παρόµοια εφαρµογή είναι και η διανοµή περιεχοµένου µέσω ιαδικτύου µε τεχνολογίες «push» [Fia99]. - Online υπηρεσίες ή βάσεις δεδοµένων µέσω ιαδικτύου, όπου η πρόσβαση σε κάποια ή όλες τις εγγραφές (records) επιτρέπεται κατόπιν οικονοµικού αντιτίµου. Ο «προδότης» θα πρέπει να αντιγράψει ολόκληρη την πληροφορία που προσφέρεται από την online υπηρεσία, καθώς επίσης και να ανανεώνει τακτικά, ανάλογα µε την υπηρεσία, τα αντίγραφα που διατηρεί. Η αναλογία «ρίσκο/προσδοκώµενο όφελος» σε αυτές τις περιπτώσεις ενδεχοµένως να καθίσταται µη ιδιαίτερα ελκυστική για τον «προδότη» [Fia99]. Εναλλακτικά, ο «προδότης» µπορεί να προµηθεύσει τους πειρατές µε πληροφορίες µικρότερου µεγέθους τα κλειδιά αποκρυπτογράφησης. Κατά την έρευνα µας επικεντρώσαµε το ενδιαφέρον µας στην αποτροπή τέτοιων επιθέσεων. 136

8 Συνεισφορά / οµή του Κεφαλαίου Στα πλαίσια της έρευνας µας, θεωρήσαµε τα σχήµατα ανίχνευσης «προδοτών» σε συστήµατα αναµετάδοσης, από τη σκοπιά της ασφάλειας και της πρακτικότητας (Ενότητα 4.2). Επίσης µετατρέψαµε το ιδιαίτερα πρακτικό και ασφαλές συµµετρικό σχήµα ανίχνευσης «προδοτών» των Kurosawa- Desmedt [Kur98] (Ενότητα 4.3.1) σε ασύµµετρο (Ενότητα 4.4), χωρίς να υποθέτουµε την ανάµειξη τρίτης έµπιστης οντότητας [Mag01_1]. Για αυτό το σκοπό κάναµε χρήση ενός κρυπτογραφικού µηχανισµού που αποκαλείται Επιλήσµονα Μεταφορά [Eve85] Ενότητα Η λύση που προτείναµε µπορεί να εφαρµοστεί απευθείας στη διαδικασία δηµιουργίας κλειδιών του σχήµατος των Kurosawa-Desmedt [Kur98]. Επιπλέον, προτείναµε έναν µηχανισµό «ιαίρει και Επίλεξε» (Ενότητα 4.4.1) µε τον οποίο εξασφαλίζεται, µε µεγάλη πιθανότητα, η ορθότητα των αποτυπωµάτων που αποδίδονται στους χρήστες του συστήµατος. Ο µηχανισµός αυτός µπορεί να γενικευθεί ώστε να επιτυγχάνεται ορθότητα σε κάθε πρωτόκολλο που χρησιµοποιεί επιλήσµονα µεταφορά για την ανταλλαγή µηνυµάτων µεταξύ δύο οντοτήτων. 4.2 Θεώρηση Σχηµάτων Ανίχνευσης «Προδοτών» σε Συστήµατα Αναµετάδοσης Το Μοντέλο. Υπάρχουν n+ 2 συµµετέχοντες, ένας παροχέας υλικού T, ένα σύνολο n εξουσιοδοτηµένων χρηστών και ένας «πειρατικός» αποκωδικοποιητής. Ο T κατασκευάζει ένα κλειδί κρυπτογράφησης, και ένα προσωπικό κλειδί αποκρυπτογράφησης e T e i για κάθε εξουσιοδοτηµένο χρήστη i (συµµετρικά σχήµατα) ή συµµετέχει µε το χρήστη i σε ένα πρωτόκολλο για την κατασκευή και απόδοση στον i του προσωπικού του κλειδιού e i (ασύµµετρα σχήµατα). Για να σταλούν τα δεδοµένα στους m εξουσιοδοτηµένους χρήστες και µόνον, ο T επιλέγει ένα κλειδί συνόδου s. 137

9 Στη συνέχεια ο T αναµεταδίδει ( e ( s), ENC ( m )), όπου το T s h = e T (s) αποκαλείται επικεφαλίδα του κρυπτογραφήµατος, ενώ συνάρτηση κρυπτογράφησης συµµετρικού κλειδιού [Fia93]. ENC είναι µια Ασφάλεια. Θεωρούµε ( k, n) σχήµατα ανίχνευσης «προδοτών» σε ένα σύστηµα n εξουσιοδοτηµένων χρηστών, το οποίο µπορεί να αντιµετωπίσει έως k συµµετέχοντες «προδότες». Η ασφάλεια ενός σχήµατος ανίχνευσης «προδοτών» για συστήµατα αναµετάδοσης ανάγεται: - Στην ασφάλεια του υποσυστήµατος αναµετάδοσης, δηλαδή στην αποτροπή της πρόσβασης στο αποκρυπτογραφηµένο υλικό από µη εξουσιοδοτηµένους χρήστες. - Στην ασφάλεια του υποσυστήµατος ανίχνευσης, δηλαδή στον εντοπισµό του «προδότη» ή ενός εκ των (έως k) «προδοτών» ή όλων των (έως k) «προδοτών» (ολική ανιχνευσιµότητα) που συνεργάζονται για την κατασκευή του πειρατικού αποκωδικοποιητή. Πρέπει επίσης να τονιστεί πως ο µέγιστος αριθµός k των συνεργούντων «προδοτών» που µπορεί να αντιµετωπίσει το υποσύστηµα ανίχνευσης αποτελεί καθοριστικό παράγοντα για την αναλογία πρακτικότητα/ασφάλεια ολόκληρου του συστήµατος. Ορισµένοι αλγόριθµοι ανίχνευσης επιτρέπουν τον εντοπισµό της ταυτότητας ενός «προδότη» µεταχειρίζοντας τον πειρατικό αποκωδικοποιητή σαν ένα «µαύρο κουτί» (black box): αυτό σηµαίνει πως εξετάζεται και αναλύεται η συµπεριφορά του αποκωδικοποιητή, χωρίς να είναι απαραίτητο το «άνοιγµα» του και η ανάγνωση των πληροφοριών που αυτός περιέχει. Η ιδιότητα αυτή αποκαλείται και ανιχνευσιµότητα black-box [Bon99,Kur00]. Σηµείωση: Σε αρκετά σχήµατα ανίχνευσης «προδοτών» [Cho94,Bon95], ο αριθµός έχει διττή σηµασία ως προς την ασφάλεια του συστήµατος. Εάν συµµαχήσουν k 138

10 περισσότεροι από k «προδότες», τότε µπορούν να κατασκευάσουν έναν «πειρατικό» αποκωδικοποιητή που όχι απλά θα εµποδίζει την ανίχνευση κάποιου (-ων) από αυτούς, αλλά θα ενοχοποιεί έναν «αθώο» εξουσιοδοτηµένο χρήστη. Πρακτικότητα. Εκτός από την ασφάλεια, πρωτεύοντα ρόλο στην αξιολόγηση ενός σχήµατος ανίχνευσης «προδοτών» έχει η πρακτικότητα του. Αυτή συνήθως µετριέται συναρτήσει της παραµέτρου ασφάλειας k, όπου k είναι ο αριθµός των συνεργούντων «προδοτών» που µπορεί να ανεχθεί το σύστηµα. Σηµαντικοί παράγοντες στην αξιολόγηση της πρακτικότητας των σχηµάτων αυτών είναι: - Οι απαιτήσεις σε µνήµη και υπολογισµούς για τους εξουσιοδοτηµένους χρήστες. Η παράµετρος αυτή αποκτά ιδιαίτερη σηµασία όταν ο χρήστης έχει περιορισµένες υπολογιστικές ικανότητες, π.χ. στην περίπτωση των έξυπνων καρτών (smartcards). - Οι απαιτήσεις σε µνήµη και υπολογισµούς για τον παροχέα του υλικού. Αυτή η παράµετρος είναι δευτερεύουσας σηµασίας, αφού ο παροχέας αφενός µπορεί να εκτελεί τους υπολογισµούς του off-line, αφετέρου αναµένεται (ή υποτίθεται) ότι έχει υψηλές αποθηκευτικές δυνατότητες. - Οι απαιτήσεις σε πλεονάζοντα δεδοµένα, δηλαδή το επιπλέον µέγεθος των δεδοµένων που αποστέλλονται προκειµένου να είναι εφικτή η ανίχνευση. Στα συστήµατα αναµετάδοσης τα επιπλέον δεδοµένα µεταφράζονται σε κόστος σε επικοινωνία, ενώ σε εφαρµογές τύπου CD- ROM στον επιπλέον αποθηκευτικό χώρο του µέσου που ενδεχοµένως σπαταλείται. 139

11 Συµµετρικά Σχήµατα Τα πρώτα σχήµατα ανίχνευσης «προδοτών» ήταν αυτά των Chor, Fiat και Naor [Cho94] και βασίζονται στο υποσύστηµα αναµετάδοσης των Fiat και Naor [Fia93]. Στο αποδοτικότερο των σχηµάτων αυτών, και σε σύνολο n εξουσιοδοτηµένων χρηστών, το προσωπικό κλειδί του κάθε χρήστη αποτελείται από O ( k 2 log) n κλειδιά αποκρυπτογράφησης και ο παροχέας του αναµεταδιδόµενου υλικού πρέπει να µεταδώσει O ( k 4 log) n κρυπτογραφήµατα. Αργότερα, οι Stinson και Wei [Sti98], καθώς και οι Gafni et al [Gaf99] πρότειναν εναλλακτικούς µηχανισµούς ανίχνευσης, ανεξάρτητους µε το υποσύστηµα αναµετάδοσης που χρησιµοποιείται, οι οποίοι προσφέρουν καλύτερες αποδόσεις για µικρές τιµές των k και n. Πρόσφατα, οι Boneh και Franklin πρότειναν ένα σχήµα ανίχνευσης «προδοτών» [Bon99] για εφαρµογές αναµετάδοσης, όπου η ασφάλεια του υποσυστήµατος ανίχνευσης ανάγεται στο πρόβληµα εύρεσης διακριτών λογαρίθµων 15 [Dif76] ενώ η ασφάλεια του υποσυστήµατος αναµετάδοσης στο πρόβληµα Diffie-Hellman 44 [Dif76]. Το σχήµα τους απαιτεί ένα κλειδί κρυπτογράφησης, ένα προσωπικό κλειδί αποκρυπτογράφησης και την αναµετάδοση O ( 2k + 1) κρυπτογραφηµάτων από τον παροχέα. Επίσης παρέχει ολική επαληθευσιµότητα και επαληθευσιµότητα blackbox. Το Βέλτιστο (Optimum) Σύστηµα των Kurosawa-Desmedt [Kur98]. Πρόσφατα οι Kurosawa και Desmedt όρισαν κατώτατες τιµές (lower bounds) απόδοσης για σχήµατα ανίχνευσης «προδοτών» σε εφαρµογές αναµετάδοσης κρυπτογραφηµένου υλικού και πρότειναν δυο συµµετρικά σχήµατα. Το πρώτο σχήµα είναι µιας χρήσης (one-time) και επιτυγχάνει τις κατώτατες τιµές, καθώς απαιτούνται ένα κλειδί κρυπτογράφησης, ένα προσωπικό κλειδί αποκρυπτογράφησης και η αναµετάδοση O (k) κρυπτογραφηµάτων από τον παροχέα. Το σχήµα αυτό περιγράφεται ξεχωριστά στην Ενότητα 4.3.1, καθώς 140

12 αποτελεί τη βάση για το ασύµµετρο σχήµα ανίχνευσης που περιγράφουµε στην Ενότητα 4.4. Το δεύτερο σχήµα που περιγράφεται στην εργασία [Kur98] είναι ένα σχήµα πολλαπλών χρήσεων (multiple use). Η ασφάλεια του υποσυστήµατος αναµετάδοσης ανάγεται στην ασφάλεια του κρυπτογραφικού αλγορίθµου ElGamal [ElG85], ενώ η ανίχνευση «προδοτών» στο πρόβληµα εύρεσης διακριτών λογαρίθµων [Dif76]. Επίσης, απαιτούνται O (k) κλειδιά κρυπτογράφησης, ένα προσωπικό κλειδί αποκρυπτογράφησης, και O (k) κρυπτογραφήµατα. Τέλος, η πολυπλοκότητα της αποκρυπτογράφησης για τους εξουσιοδοτηµένους χρήστες είναι ανεξάρτητη του µεγέθους k της συµπαιγνίας. Αργότερα, οι Kurosawa-Desmedt πρότειναν έναν βελτιωµένο αλγόριθµο ανίχνευσης για τα ίδια σχήµατα. Μάλιστα προσέδωσαν στα σχήµατα τους την ιδιότητα της ολικής ανιχνευσιµότητας και της black-box ανιχνευσιµότητας [Kur00]. Σύµφωνα µε τις έως τώρα γνώσεις µας, τα βέλτιστα σχήµατα ανίχνευσης «προδοτών» των Kurosawa-Desmedt [Kur98] είναι τα πλέον πρακτικά µεταξύ των σχηµάτων ανίχνευσης «προδοτών» που έχουν παρουσιαστεί στη διεθνή βιβλιογραφία [Mag01_1]. Ασύµµετρα Σχήµατα Η Pfitzmann [Pfi96,Pfi96_1] εφάρµοσε τεχνικές ασφαλούς διµερούς υπολογισµού 33 [Cha87] ώστε να µετατρέψει το σχήµα των Fiat και Naor [Cho94] σε ασύµµετρο σχήµα. Αργότερα, οι Pfitzmann-Waidner [Pfi97_2] και Biehl- Meyer [Bie97] πέτυχαν το ίδιο αποτέλεσµα, αυτή τη φορά όµως χρησιµοποιώντας άλλες τεχνικές ασφαλούς διµερούς υπολογισµού ([Gol87] και [Bra87] αντίστοιχα) καθώς και κρυπτογραφικές συναρτήσεις κατακερµατισµού [Cha81]. Εντούτοις, τα παραπάνω ασύµµετρα σχήµατα 141

13 βασίζονται στο µη ιδιαίτερα αποδοτικό σχήµα, όπως αναφέρθηκε, των Chor, Fiat και Naor [Cho94]. Ασυµµετρία στα Σχήµατα των Kurosawa-Desmedt «ίκαια» Συστήµατα. Οι Kurosawa και Desmedt επίσης περιέγραψαν µια ασύµµετρη εκδοχή για κάθε ένα από τα δύο βασικά συµµετρικά τους σχήµατα [Kur98]. Ωστόσο, η ασυµµετρία των σχηµάτων οφείλεται στην ύπαρξη έµπιστων οντοτήτων (π.χ. έµπιστοι κατανεµηµένοι πράκτορες). Οι οντότητες αυτές κατέχουν τα κλειδιά αποκρυπτογράφησης όλων των χρηστών (αγοραστών) του συστήµατος, και οι χρήστες τις εµπιστεύονται ότι δεν θα επιχειρήσουν να τους ενοχοποιήσουν. Στην Ενότητα 4.4 θα περιγράψουµε ένα «δίκαιο» σχήµα για ασύµµετρη ανίχνευση «προδοτών», βασισµένο στο βέλτιστο συµµετρικό σχήµα µιας χρήσης των Kurosawa-Desmedt, χωρίς την ανάγκη ύπαρξης τρίτης έµπιστης οντότητας. 4.3 Βασικά Κρυπτογραφικά Εργαλεία Στην Ενότητα αυτή περιγράφουµε εν συντοµία το συµµετρικό σχήµα ανίχνευσης «προδοτών» των Kurosawa-Desmedt [Kur98]. Επίσης περιγράφουµε τον τρόπο λειτουργίας των µηχανισµών επιλήσµονος µεταφοράς και συγκεκριµένα ενός µηχανισµού που δεν απαιτεί αλληλεπίδραση (noninteractive) µεταξύ του αποστολέα και του παραλήπτη [Bel89] Το συµµετρικό σχήµα των Kurosawa-Desmedt Στην εργασία [Kur98] περιγράφονται δύο σχήµατα ανίχνευσης «προδοτών». Όπως αναφέρθηκε το πρώτο είναι ένα βέλτιστο ( k, n) σχήµα µιας χρήσης, όπου k είναι ο µέγιστος αριθµός συνεργούντων «προδοτών», σε σύνολο n χρηστών, που µπορεί να αντέξει το σύστηµα. Το δεύτερο σχήµα είναι µια 142

14 τροποποίηση του πρώτου, για πολλαπλές χρήσεις, το οποίο είναι επίσης βέλτιστο και ασφαλές. Η τροποποίηση που προτείνουµε στην Ενότητα 4.4 µπορεί να εφαρµοστεί και στα δυο σχήµατα, ωστόσο σε αυτήν την Ενότητα, χάριν απλότητας, περιγράφουµε το σχήµα µιας χρήσης. Ο παροχέας υλικού επιλέγει ένα τυχαίο πολυώνυµο f x )= a + a x a k x ( 0 1 k στο σύνολο Z q ως το κλειδί κρυπτογράφησης e T, όπου q είναι ένας πρώτος αριθµός, µε q > n για ένα σύνολο n εξουσιοδοτηµένων χρηστών. ηµιουργία Κλειδιού (Key Generation). Ο παροχέας δίνει σε κάθε εξουσιοδοτηµένο χρήστη i το προσωπικό του κλειδί αποκρυπτογράφησης, e i =< f( i) >, i 0 n 1. Κρυπτογράφηση (Encryption). Ο παροχέας υλικού κρυπτογραφεί ένα κλειδί συνόδου s ως e T (s)= h = h, h,..., h ) = ( s+ a, a,..., a ) Στη συνέχεια ο ( 0 1 k 0 1 k παροχέας αναµεταδίδει τα κρυπτογραφήµατα h σε όλους τους χρήστες του συστήµατος. Αργότερα, ο παροχέας κρυπτογραφεί συµµετρικά το υλικό (π.χ. εικόνα συνδροµητικής τηλεόρασης) µε το κλειδί συνόδου s και αναµεταδίδει το κρυπτογράφηµα σε όλους τους χρήστες τους συστήµατος. Σηµείωση: Στην εκδοχή του σχήµατος για πολλαπλές χρήσεις που περιγράφεται στην εργασία [Kur98], το κλειδί συνόδου ανανεώνεται ανά τακτά χρονικά διαστήµατα. Αποκρυπτογράφηση (Decryption). Από την επικεφαλίδα h και το κλειδί αποκρυπτογράφησης ei, κάθε χρήστης i υπολογίζει το κλειδί συνόδου k s= ( h0 + hi h i ) f() i k Ανίχνευση (Tracing). Όταν ανακαλυφθεί ένας «πειρατικός» αποκωδικοποιητής, τότε εκτίθεται το πειρατικό κλειδί e [Kur98]. Εάν το e περιέχει το p p 143

15 ζεύγος < j, f( j)> για κάποιον εξουσιοδοτηµένο χρήστη j, τότε ο παροχέας αποφασίζει ότι ο χρήστης j είναι «προδότης». Θεώρηµα: Το σχήµα των Kurosawa Desmedt [Kur98] ανιχνεύει τουλάχιστον ένα «προδότη» στην περίπτωση µιας συµπαιγνίας µεγέθους k. Απόδειξη. Έστω µια συµπαιγνία C «προδοτών» { i 1,..., } δηµιουργεί έναν «πειρατικό» αποκωδικοποιητή e, τέτοιον ώστε η πιθανότητα ο e να µην p περιέχει το ζεύγος ( i 1, f( i1) ) ή το ζεύγος ( i 1, f( i1 )) ή, ή το ζεύγος (i k, f( i k )) να είναι µεγαλύτερη από 1 / q. Αφού ο e µπορεί να αποκρυπτογραφήσει το p i k p κλειδί συνόδου s, τότε ο e p θα πρέπει να περιέχει τουλάχιστον ένα ( x 0, f( x ) για κάποιο x {i,..., }. Εντούτοις αυτό είναι αδύνατο, αφού ο 0 ) 0 1 i k βαθµός της συνάρτησης degf( x ) = k και η συµπαιγνία C γνωρίζει µόνον τα k σηµεία της f(x) Επιλήσµονα Μεταφορά 1 Η έννοια της επιλήσµονος µεταφοράς (oblivious transfer) προτάθηκε από 2 τους Even, Goldreich και Lempel [Eve85] ως µια γενίκευση του κρυπτογραφικού πρωτοκόλλου επιλήσµονος µεταφοράς που είχε προτείνει ο Rabin για εφαρµογές υπογραφής συµβολαίων (contract signing) [Rab81] µεταξύ δύο οντοτήτων που δεν εµπιστεύονται η µία την άλλη. Έστω ότι o Bob έχει στην κατοχή του δύο αλφαριθµητικά S και S. Συναρτήσει των δυο αυτών αλφαριθµητικών και του δηµοσίου κλειδιού της 0 1 Alice, ο Bob κατασκευάζει ένα µήνυµα OT S 0, S ) ( 1 και το αποστέλλει στην Alice. Η Alice χρησιµοποιώντας το ιδιωτικό της κλειδί µπορεί να εξάγει από 144

16 το OT ( S 0, S 1) ακριβώς ένα εκ των δύο αλφαριθµητικών S 0 ή S 1, και ο Bob δε µπορεί να γνωρίζει ποιο από τα δύο εξήγαγε η Alice. Στην αρχική υλοποίηση των Even, Goldreich και Lempel, η Alice και ο Bob πρέπει να ανταλλάξουν µια σειρά από µηνύµατα, πρόκειται δηλαδή για ένα αλληλεπιδραστικό (interactive) πρωτόκολλο [Eve85]. Το γεγονός αυτό καθιστά το πρωτόκολλο µη πρακτικό για εφαρµογές όπως αναµετάδοση κρυπτογραφηµένου υλικού. Στη συνέχεια περιγράφουµε ένα αντίστοιχο µη αλληλεπιδραστικό (non-interactive) πρωτόκολλο. Επιλήσµονα Μεταφορά Χωρίς Αλληλεπίδραση. Οι Bellare και Micali [Bel89] πρότειναν µια αποδοτικότερη εκδοχή του πρωτοκόλλου των Even, Goldreich και Lempel, όπου δεν υπάρχει αλληλεπίδραση µεταξύ της Alice και του Bob. Εν συντοµία: - Αρχικοποίηση (Setup). Έστω p πρώτος αριθµός και g γεννήτορας του Z * p.έστω ο αριθµός C Z * p είναι µια σταθερά, γνωστή σε όλους, η οποία δεν έχει διάκριτο λογάριθµο modulo p. Στην [Bel89] συζητούνται τρόποι εύρεσης τέτοιων αριθµών. - ηµιουργία Κλειδιού (Key Generation). H Alice επιλέγει ένα x {0,..., p 2} τυχαία και θέτει a g x mod p 0 = mod και x 1 1 mod p a = C ( g ). Στη συνέχεια παραλείπουµε τον τελεστή p, χάριν απλότητας. Το δηµόσιο κλειδί της είναι το ζεύγος a 0, a ) και το ιδιωτικό της κλειδί ( 1 είναι το x. Η ορθότητα του δηµόσιου κλειδιού της Alice επαληθεύεται ελέγχοντας ότι a a = 0 1 C. - Επιλήσµονα Μεταφορά. Ο Bob διαλέγει τυχαίους αριθµούς ψ ψ 0, ψ {0,...,2} p και υπολογίζει τα β = g και β = g 1. Επίσης χρησιµοποιεί το δηµόσιο κλειδί της Alice ώστε να υπολογίσει τα 1 ψ 145

17 γ r 0 = a ψ = S1 γ1, ψ 1 και γ =α 1. Τέλος ο Bob υπολογίζει τα r = S και 1 και στέλνει στην Alice το: 0 0 γ 0 OT ( S0, S1 ) = ( β0, β1, r0, r1 ) Με τη λήψη των β 0 β, 1, η Alice χρησιµοποιηθεί το ιδιωτικό της κλειδί και υπολογίζει τα γ = β, όπου i = ή i= 1. Στο τέλος υπολογίζει το i i x 0 ζητούµενο µυστικό ir γ i = S i. Σύµφωνα µε την υπόθεση των Diffie- Hellman 3 [Dif76], η Alice µπορεί να κατασκευάσει το γ ή το, αλλά σε καµία περίπτωση και τα δύο. Ως αποτέλεσµα, η Alice καταλήγει να έχει στην κατοχή της ακριβώς ένα εκ των δύο µυστικών, και ο Bob δε γνωρίζει ποιο από τα δύο µυστικά κατέχει η Alice. 0 γ Ένα Ασύµµετρο Πρωτόκολλο Ανίχνευσης «Προδοτών» Στην Ενότητα αυτή παρουσιάζουµε µια ασύµµετρη εκδοχή του σχήµατος των Kurosawa και Desmedt (στο εξής K-D) [Kur98] χωρίς να κάνουµε καµία υπόθεση για ύπαρξη έµπιστων οντοτήτων [Mag01_1]. Το βασικά εργαλεία που χρησιµοποιούµε είναι η τεχνική της επιλήσµονος µεταφοράς (oblivious transfer -ΟΤ) Ενότητα 4.3.2, καθώς και τεχνικές «διαίρει και επίλεξε» (Ενότητα 4.4.1) για τον έλεγχο της ορθότητας των ιδιωτικών κλειδιών που αποδίδει ο παροχέας στους χρήστες. Ο έλεγχος της ορθότητας είναι απαραίτητος, ώστε να αποτραπούν επιθέσεις όπως οι ακόλουθες: - Ο παροχέας χρησιµοποιεί δύο πανοµοιότυπα κλειδιά ως τιµές εισόδου (input) στον ΟΤ αλγόριθµο µεταφοράς κλειδιού στον χρήστη Α. a b ab DH ( g, g ) = g. 3 Ο τελεστής DH (Diffie-Hellman [Dif76]) ορίζεται ως εδοµένων των a αριθµών g, g b, το πρόβληµα του υπολογισµού του DH (g, g b ) αποκαλείται και ως πρόβληµα Diffie-Hellman. a 146

18 - Ο παροχέας χρησιµοποιεί δύο πανοµοιότυπα κλειδιά ως τιµές εισόδου στους ΟΤ αλγόριθµους µεταφοράς κλειδιού σε δύο χρήστες Α, Β. Υποθέτουµε ότι υπάρχει µια Υποδοµή ηµοσίου Κλειδιού για κρυπτογράφηση δηµοσίου κλειδιού, και ότι ο παροχέας έχει στη διάθεση του τα πιστοποιητικά µε τα δηµόσια κλειδιά των χρηστών του συστήµατος. Ο παροχέας επίσης χρησιµοποιεί έναν πίνακα ανακοινώσεων [Rei95] για την επικοινωνία του µε τους χρήστες και τους εξωτερικούς παρατηρητές. Το πρωτόκολλο Ο παροχέας υλικού επιλέγει ένα πολυώνυµο f x )= w + w x w k x ( 0 1 k στο σύνολο Z q ως το κλειδί κρυπτογράφησης για το αναµεταδιδόµενο κρυπτογραφηµένο υλικό (ή αλλιώς δηµόσιο κλειδί αναµετάδοσης) για ένα e T σύνολο n εξουσιοδοτηµένων χρηστών. Μεταφορά Κλειδιού. Ο παροχέας επιλέγει για κάθε έναν εξουσιοδοτηµένο χρήστη u ijδύο K-D κλειδιά S i =< i, f( i)> και =< j, f( j) >. Στη συνέχεια S j χρησιµοποιεί το δηµόσιο κλειδί του χρήστη και εκτελεί τον αλγόριθµο επιλήσµονος µεταφοράς χωρίς αλληλεπίδραση, όπως φαίνεται στο Σχήµα 13. Στην έξοδο του ΟΤ αλγορίθµου, ο χρήστης λαµβάνει ακριβώς ένα ιδιωτικό κλειδί αποκρυπτογράφησης (ή αλλιώς αποτύπωµα), e ij = < i, f() i > ή < j, f( j)>, όπου i,j= 12,,.. n,. µε i.j Ο παροχέας δε γνωρίζει ποιο από τα δύο κλειδιά S i, S j, έλαβε ο χρήστης. Κρυπτογράφηση. Ο παροχέας υλικού κρυπτογραφεί το κλειδί συνόδου s ως h = h, h,..., h ) = ( s+ w, w,..., w ) και αναµεταδίδει το h ( 0 1 k 0 1 k σε όλους τους χρήστες του συστήµατος. Αργότερα, χρησιµοποιεί το κλειδί s για να 147

19 κρυπτογραφήσει συµµετρικά το υλικό (π.χ. εικόνα συνδροµητικής τηλεόρασης) και αναµεταδίδει το κρυπτογράφηµα σε όλους τους χρήστες τους συστήµατος. Αποκρυπτογράφηση. Με βάση την επικεφαλίδα h και το κλειδί αποκρυπτογράφησης κάθε χρήστης ( 1 S i ή S j, που έλαβε στην έξοδο του OT αλγορίθµου, u ijυπολογίζει το κλειδί συνόδου: k k = h0 + h j h j ) f( j) s. ( k k = h + hi+... h i ) f( i) s ή Τί κατέχει η Alice a 0,a 1 ηµόσιο κλειδί x Ιδιωτικό κλειδί όπου x x 1 a0 = g, a1 = C ( g ) Τί κατέχει ο Παροχέας Υλικού k f ( x)= w0 + w1x w k x κλειδί κρυπτογράφησης S 0,S 1 πιθανά κλειδιά αποκρυπτογράφησης, όπου S0 =< i, f() i >, S1 =< j, f( j) > Alice ιαδίκτυο Παροχέας x ( β0) = γ 0 x ( β1) =?? r0 γ 0 = S0 r1?? =?? Η Alice βρίσκει ακριβώς ένα κλειδί, S 0 ή S 1. OT ( S0, S1 ) = β0, β1, ro, r1 Επιλήσµονα µεταφορά ψ β0 = g 0, ψ 0 - τυχαίο ψ β1 = g 1, ψ1- τυχαίο 0 0 = ( a ψ 0), γ ψ 1 = ( a 1) 1 0 = S0 γ0, r1 = S1 γ1 γ r Ο παροχέας δε γνωρίζει ποιο κλειδί έλαβε η Alice. Σχήµα 13. Το στάδιο της µεταφοράς ενός K-D κλειδιού αποκρυπτογράφησης Ανίχνευση. Όταν ανακαλυφθεί ένας «πειρατικός» αποκωδικοποιητής, τότε εκτίθεται το «πειρατικό» κλειδί e ij. Εάν το e ijπεριέχει το ζεύγος < i, f( i)> ή το ζεύγος < j, f( j)> για κάποιον εξουσιοδοτηµένο χρήστη, τότε ο παροχέας αποφασίζει ότι ο χρήστης u ijείναι «προδότης». Για την ανίχνευση µπορεί επίσης ο καινούριος αλγόριθµος των Kurosawa-Desmedt [Kur00] που, όπως αναφέρθηκε, υποστηρίζει ολική ανίχνευση και ανίχνευση blackbox. u ij 148

20 Ασφάλεια του Πρωτοκόλλου Είναι προφανές ότι ως προς τα υποσυστήµατα αναµετάδοσης και ανίχνευσης, το πρωτόκολλο κληρονοµεί την ασφάλεια του σχήµατος των Kurosawa- Desmedt [Kur98]. Στη συνέχεια θα εξετάσουµε την ασυµµετρία του πρωτοκόλλου. Εάν ο παροχέας επιθυµoύσε να ενοχοποιήσει έναν εξουσιοδοτηµένο χρήστη, π.χ. την Alice, τότε θα επιχειρούσε να κατασκευάσει έναν κάλπικο «πειρατικό» αποκωδικοποιητή στον οποίο θα εισήγαγε, µε τυχαία επιλογή, ένα από τα δύο µυστικά κλειδιά τα οποία µετέφερε, µε το πρωτόκολλο της επιλήσµονος µεταφοράς, στην Alice. H πιθανότητα επιτυχίας για έναν κακόβουλο παροχέα που επιθυµεί να ενοχοποιήσει την Alice είναι ½. Θεωρούµε πως ο παροχέας δε θα διακινδυνεύσει τη ζηµία που θα υποστεί από µια αποτυχηµένη απόπειρα ενοχοποίησης της Alice, κατά την οποία η Alice φυσικά θα µπορεί να αποδείξει στο δικαστήριο, µε πιθανότητα ½, πως ο αποκωδικοποιητής της περιέχει ένα αποτύπωµα διαφορετικό από αυτό που περιέχεται στον κάλπικο «πειρατικό» αποκωδικοποιητή. Είναι προφανές ότι το κόστος που θα υποστεί ο παροχέας από µια αποτυχηµένη απόπειρα ενοχοποίησης της Alice είναι µεγαλύτερο από τα οφέλη που θα αποκοµίσει από µια επιτυχηµένη ενοχοποίηση. Σηµείωση: Αντί για τη χρήση του 1 2 πρωτοκόλλου επιλήσµονος µεταφοράς, όπου η Alice αποκτά τυχαία πρόσβαση µόνον σε ένα από τα δύο µηνύµατα που της αποστέλλονται, θα µπορούσε να γίνει χρήση ενός 1 πρωτοκόλλου [Nao99], όπου η N Alice λαµβάνει, κατά τυχαίο τρόπο, ένα από N µηνύµατα που της αποστέλλονται. Σε 149

21 αυτήν την περίπτωση η πιθανότητα επιτυχίας µιας απόπειρας ενοχοποίησης της Alice, θα ήταν ίση µε 1/N. Πρέπει να τονιστεί ωστόσο ότι το πρωτόκολλο που περιγράφεται στο [Nao99] απαιτεί αλληλεπίδραση µεταξύ αποστολέα και παραλήπτη, και θεωρείται µη πρακτικό για µεγάλες τιµές του N [Mag01_1] Έλεγχος της Ορθότητας των K-D κλειδιών. Στο πρωτόκολλο που παρουσιάσαµε στην προηγούµενη Ενότητα, υποθέσαµε ότι ο παροχέας επιλέγει κατά τρόπο ορθό τα K-D κλειδιά που θα χρησιµοποιήσει ως είσοδο στον αλγόριθµο της επιλήσµονος µεταφοράς. Στο τέλος του πρωτοκόλλου, ο παροχέας δε γνωρίζει ποιο κλειδί κατέχει η Alice, ενώ η Alice κατέχει ακριβώς ένα και µόνον ένα από τα δύο K-D κλειδιά. Όµως, τί γίνεται στην περίπτωση όπου ο παροχέας επιλέγει δύο πανοµοιότυπα K-D κλειδιά ως είσοδο στον OT αλγόριθµο; Ή ακόµη χειρότερα, τι θα συµβεί εάν ο παροχέας µεταφέρει το ίδιο κλειδί σε παραπάνω από έναν εξουσιοδοτηµένους χρήστες; Επίθεση Α. Εάν ο παροχέας χρησιµοποιεί δύο ίδια κλειδιά ως είσοδο στον OT αλγόριθµο που εκτελεί µε αποδέκτη την Alice, τότε ο παροχέας τελικά θα γνωρίζει το αποτύπωµα της Alice, αφού η Alice θα έχει να επιλέξει µεταξύ δύο πανοµοιότυπων κλειδιών. Σε αυτήν την περίπτωση, η ασυµµετρία του πρωτοκόλλου καταλύεται και ένας κακόβουλος παροχέας έχει τη δυνατότητα να ενοχοποιήσει την Alice. Αντίστοιχα η Alice, εφόσον συµπεριφερθεί ως «προδότης», µπορεί αργότερα να αρνηθεί ευθύνη (repudiation) για τις πράξεις της, κάτι που επίσης παραβιάζει την ασφάλεια του συστήµατος. Επίθεση Β. Εάν πάλι το πρωτόκολλο δε µπορεί να εξασφαλίσει ότι κάθε υλοποίηση (instance) του OT αλγορίθµου αφορά δυο µοναδικά K-D κλειδιά τα οποία δε θα επαναχρησιµοποιηθούν σε µια άλλη υλοποίηση του αλγορίθµου µε έναν άλλον εξουσιοδοτηµένο χρήστη, τότε υπάρχει η (µη 150

22 αµελητέα) πιθανότητα δύο χρήστες να λάβουν το ίδιο K-D κλειδί ως έξοδο δυο διαφορετικών υλοποιήσεων του ίδιου αλγόριθµου. Κάτι τέτοιο θα έχει ως αποτέλεσµα να δηµιουργούνται δυσεπίλυτες αντιδικίες σχετικά µε το εάν ένας χρήστης κατηγορείται δίκαια ή άδικα ως «προδότης». Στη συνέχεια της Ενότητας περιγράφουµε τεχνικές «διαίρει και επίλεξε» (cutand-choose) βάσει των οποίων ο παροχέας υποχρεώνεται να επιλέξει ορθά K- D κλειδιά ως είσοδο για τον ΟΤ αλγόριθµο. Ο µηχανισµός που προτείνουµε θα πρέπει να ικανοποιεί τις ακόλουθες δύο συνθήκες: - Συνθήκη Α. Για κάθε χρήστη i, i= 1,... n, η υλοποίηση της επιλήσµονος µεταφοράς OT i ( S i0,,s i1, ) πρέπει να περιέχει δύο διαφορετικά K-D κλειδιά αποκρυπτογράφησης, δηλαδή S i0, Si1,. - Συνθήκη Β. Για δύο χρήστες i,j, i, j= 1,... n, µε i j, οι υλοποιήσεις της επιλήσµονος µεταφοράς OT i ( S i0,, S i1, ) και OT j ( S j0,, S j1, ) πρέπει να περιέχουν διαφορετικά K-D κλειδιά αποκρυπτογράφησης, δηλαδή S i0, Si1, Sj0, Sj1,. Για την υπόλοιπη Ενότητα θα χρησιµοποιήσουµε το συµβολισµό Enc X (m ) για να δηλώσουµε τη συµµετρική κρυπτογράφηση (π.χ. µε τον αλγόριθµο DES [Sch96]) ενός µηνύµατος m µε ένα κλειδί X, καθώς και το συµβολισµό hash(m ) για να δηλώσουµε την κρυπτογραφική τιµή κατακερµατισµού4 (hash) ενός µηνύµατος m π.χ. µε τον αλγόριθµο MD5 [Riv91]. 4 Οι συναρτήσεις κατακερµατισµού αντιστοιχίζουν δυαδικά αλφαριθµητικά οποιουδήποτε µεγέθους σε δυαδικά αλφαριθµητικά συγκεκριµένου µεγέθους (π.χ. 128 ή 160 bit) που αποκαλούνται τιµές hash. Προκειµένου να χρησιµοποιηθεί σε ένα κρυπτογραφικό πρωτόκολλο, µια συνάρτηση κατακερµατισµού h επιλέγεται κατά τέτοιον τρόπο ώστε να είναι υπολογιστικά ανέφικτη η εύρεση δυο διαφορετικών τιµών εισόδου x και y που να δίνουν ως έξοδο την ίδια τιµή hash, h(x)=h(y). Επίσης, δοθείσης µιας τιµής y, πρέπει να είναι υπολογιστικά ανέφικτη η εύρεση µιας τιµής εισόδου x ούτως ώστε h(x)=y. 151

23 Εξασφαλίζοντας τη Συνθήκη Α. Έστω OT =< Enc S ), Enc ( S )>, i K ( i i0, K i i1, i {01,}, δύο υλοποιήσεις του αλγορίθµου επιλήσµονος µεταφοράς για τον ίδιο χρήστη, έστω την Alice, όπου S i 0,, S i1, είναι τέσσερα διαφορετικά K-D κλειδιά αποκρυπτογράφησης και K i είναι δυο συµµετρικά κλειδιά κρυπτογράφησης. Ο παροχέας δεσµεύεται εκ των προτέρων στα κλειδιά τη χρήση συναρτήσεων κατακερµατισµού, και στέλνει, αφού πρώτα τα υπογράψει ψηφιακά, τα ζεύγη ( OT 0, hashk ( 0) OT1, hash( K1) ) στην Alice. K i µε - Φάση 1: έλεγχος της ορθότητας των κρυπτογραφήσεων. Η Alice επιλέγει τυχαία µία από τις δύο υλοποιήσεις (έστω, χωρίς απώλεια γενικότητας, την OT 0 ) και ο παροχέας αποκαλύπτει όλες τις µυστικές πληροφορίες που αφορούν την υλοποίηση αυτή (δηλαδή τα ψ o,ψ 1,ã 0, ã1 - Σχήµα 13) προκειµένου να αποδείξει ότι η υλοποίηση είναι ορθή. εδοµένων των πληροφοριών αυτών, η Alice λαµβάνει στην έξοδο του αλγορίθµου και τις δύο τιµές ( 0, Enc K 0 S 0 ) και ( 1, ) Enc K 0 S 0 Συγκρίνει τις τιµές αυτές, και εφόσον ισχύει Enc K ( S 0, ) 0 0 Enc πείθεται ότι S, αφού το ίδιο κλειδί K ( S 0 0 1, ) 0 0, S 01, K 0 χρησιµοποιήθηκε για να κρυπτογραφηθούν και τα δύο K-D κλειδιά. Εάν δεν ισχύει η ανισότητα, τότε αυτό σηµαίνει πως τα K-D κλειδιά είναι επίσης ίσα, εποµένως ο παροχέας έχει «κλέψει» και µπορεί να καταγγελθεί. - Φάση 2: έλεγχος της ορθότητας του συµµετρικού κλειδιού. Εάν οι έλεγχοι στη φάση 1 είναι επιτυχείς, η Alice εκτελεί την εναποµείνασα υλοποίηση OT 1. Η έξοδος του αλγορίθµου θα επιστρέψει στην Alice είτε το Enc K (, ) είτε το Enc 0 K ( S 1 11, ) Σε αυτό το σηµείο ζητείται από 1 S 1 τον παροχέα να αποστείλει το αντίστοιχο συµµετρικό κλειδί K 1. Η Alice ελέγχει την ορθότητα του K 1 κατά δύο τρόπους: πρώτα 152

24 ανακατασκευάζει τη δέσµευση hashk ( 1 ) - αυτό είναι εύκολο, αφού η συνάρτηση hash είναι δηµόσια - και ελέγχει εάν η δέσµευση είναι αυτή που είχε λάβει αρχικά. εύτερον, χρησιµοποιεί το κλειδί K 1 για να αποκρυπτογραφήσει την έξοδο του αλγορίθµου, δηλαδή το Enc K ( S 1 10, ) ή το ( 1, ) Enc K 1 S 0 και ελέγχει εάν προκύπτει ένα έγκυρο K-D κλειδί. Εάν κάποιος από τους δυο ελέγχους αποτύχει, τότε ο παροχέας καταγγέλλεται. Ένας κακόβουλος παροχέας δε γνωρίζει εκ των προτέρων ποια υλοποίηση του αλγορίθµου θα επιλέξει η Alice στην Φάση 1, και ποια θα εκτελέσει εν τέλει στη Φάση 2. Εποµένως, εάν µια από τις δύο υλοποιήσεις δεν είναι ορθώς κατασκευασµένη τότε η πιθανότητα να εκτεθεί ο παροχέας είναι ½ για κάθε εξουσιοδοτηµένο χρήστη. Πρέπει να τονιστεί επίσης ότι ο παροχέας θα µπορούσε να «κλέψει» κρυπτογραφώντας δυο πανοµοιότυπα K-D κλειδιά S = S µε δυο * διαφορετικά συµµετρικά κλειδιά K * K. Σε αυτήν την περίπτωση ισχύει Enc K (S) Enc ( * K * S ) και ο έλεγχος στην Φάση 1 θα είναι επιτυχής. Εντούτοις, ο παροχέας έχει ήδη δεσµευτεί στο K ή στο K και δε µπορεί εκ των προτέρων να γνωρίζει ποια από τις δυο κρυπτογραφήσεις θα λάβει η Alice στην έξοδο του αλγορίθµου. Εποµένως, η πιθανότητα να εκτεθεί ο παροχέας είναι πάλι ½. * Σηµείωση: Στο προηγούµενο παράδειγµα, τα κλειδιά που εµπεριέχονται στην υλοποίηση που επιλέγεται από την Alice στη Φάση 1, δηλαδή τα και δεν αχρηστεύονται µετά την ολοκλήρωση του ελέγχου ορθότητας: η Alice δε λαµβάνει ποτέ S 0 0, S 01, από τον παροχέα το κλειδί K 0, αφού σε αυτήν την περίπτωση θα κατέληγε να έχει (κατά τρόπο παράνοµο) δύο έγκυρα K-D κλειδιά. Αντίθετα, τα κλειδιά αυτά µπορούν να χρησιµοποιηθούν σε συναλλαγές µε άλλους χρήστες (αρκεί τα συµµετρικά κλειδιά που χρησιµοποιούνται να είναι διαφορετικά). 153

25 Εξασφαλίζοντας τη Συνθήκη Β. Προκειµένου να υποχρεώσουµε τον παροχέα να µεταφέρει διαφορετικά κλειδιά σε διαφορετικούς χρήστες, κάνουµε χρήση του Πίνακα Ανακοινώσεων. Η τεχνική µας µπορεί να θεωρηθεί ως µια επέκταση της τεχνικής που χρησιµοποιήσαµε για τη Συνθήκη Α. Απαιτούµε λοιπόν κάθε υλοποίηση της επιλήσµονος µεταφοράς να περιέχει επιπλέον τις hash τιµές των K_D κλειδιών: OT i =< EncK ( Si0, ), EncK ( Si1, ), hashs ( i0, ), hashs ( i1, ), hash( K i) >. i i Αφού εκτελεστεί το πρωτόκολλο για την τήρηση της Συνθήκης Α (υπενθυµίζουµε ότι στο προηγούµενο παράδειγµα µας η Alice εκτέλεσε την υλοποίηση OT 1 ) ο παροχέας δηµοσιεύει στον Πίνακα Ανακοινώσεων το ζεύγος των τιµών < hashs ), hash( )> ( 10, S1 1, καθώς και µια δήλωση (π.χ. υπογεγραµµένη ψηφιακά) ότι τα K-D κλειδιά που αντιστοιχούν σε αυτές τις τιµές hash έχουν ήδη κατοχυρωθεί σε κάποιον εξουσιοδοτηµένο χρήστη. Μετά την εκτέλεση της OT η Alice έχει ήδη λάβει ένα εκ των S,. Τότε η Alice 1, υπολογίζει τη τιµή hash του κλειδιού και ελέγχει εάν το αποτέλεσµα συµπίπτει µε την αντίστοιχη τιµή hash που είναι δηµοσιευµένη στον Πίνακα Ανακοινώσεων. Εάν όχι, ο παροχέας καταγγέλλεται. Το ίδιο θα συµβεί στην περίπτωση που η τιµή hash του κλειδιού της Alice εµφανίζεται να έχει κατοχυρωθεί περισσότερο από µία φορές. 10, S 11, Σηµείωση: Ο µηχανισµός «ιαίρει και Επίλεξε» που παρουσιάσαµε σε αυτήν την Ενότητα µπορεί να γενικευθεί για κάθε πρωτόκολλο το οποίο χρησιµοποιεί τον αλγόριθµο της επιλήσµονος µεταφοράς για την ανταλλαγή µηνυµάτων µεταξύ δύο οντοτήτων. Ωστόσο ο παραπάνω µηχανισµός απαιτεί αλληλεπίδραση µεταξύ του αποστολέα και του παραλήπτη. Θεωρούµε πως µια επέκταση του µηχανισµού αυτού, χωρίς αλληλεπίδραση, θα παρουσίαζε εξαιρετικό ενδιαφέρον. 154

26 4.5 Συζήτηση Το αντικείµενο του Κεφαλαίου ήταν η προστασία των πνευµατικών δικαιωµάτων κατά τη διανοµή ψηφιακών αγαθών µέσω ηλεκτρονικών καναλιών επικοινωνίας. Χαρακτηριστικότερο παράδειγµα αποτελούν τα συστήµατα ακρόασης τηλεοπτικών εκποµπών επί πληρωµή (pay-per-view), όπου οι συνδροµητές αγοράζουν τα δικαιώµατα ακρόασης συγκεκριµένων καναλιών ή προγραµµάτων. Στα συστήµατα αυτά το ψηφιακό περιεχόµενο διανέµεται µέσω επίγειων, καλωδιακών ή δορυφορικών καναλιών εκποµπής, ενώ ένα σύστηµα ελεγχόµενης πρόσβασης χρησιµοποιείται ώστε να εξασφαλίσει ότι µόνο οι εξουσιοδοτηµένοι συνδροµητές έχουν πρόσβαση στο περιεχόµενο το οποίο πληρώνουν. Παρότι τα συστήµατα συνδροµητικής τηλεόρασης αποτελούν τη χαρακτηριστικότερη εφαρµογή του µοντέλου µας, παρόµοια συστήµατα ελεγχόµενης πρόσβασης χρησιµοποιούνται εκτενώς σήµερα για την προστασία ηλεκτρονικών υπηρεσιών επί πληρωµή, µέσω Web. Χρήση Ασφαλούς Υλικού. Σήµερα, για την αποτροπή της πειρατείας θεωρείται επαρκής η υιοθέτηση λύσεων ασφαλούς υλικού (π.χ. έξυπνες κάρτες, αποκωδικοποιητές hardware). Οι συσκευές αυτές σχεδιάζονται ώστε να αποτρέπουν την επέµβαση και την πρόσβαση στα κρυπτογραφικά κλειδιά. Ωστόσο οι υποθέσεις που γίνονται σχετικά µε την ασφάλεια των µηχανισµών αυτών δεν ευσταθούν πάντα. Στο παρελθόν έχουν περιγραφεί µέθοδοι που εκµεταλλεύονται «λάθη» του υλικού µε αποτέλεσµα την πρόσβαση στα εσώκλειστα κρυπτογραφικά κλειδιά [And96,Bon97,Bih97,Cry00]. Τα σχήµατα που συζητήθηκαν στο Κεφάλαιο αυτό αποδεικνύονται ασφαλή χωρίς να απαιτούν τη χρήση ασφαλούς υλικού. Βεβαίως, η χρήση ασφαλούς υλικού θα καθιστούσε µια επίθεση ακόµα περισσότερο δύσκολη. Σηµείωση: Κατ ουσίαν, η χρήση αποκωδικοποιητών hardware, ανθεκτικών σε παραβιάσεις (tamper-resistant) σηµαίνει πως ο αριθµός k των «προδοτών», έναντι των οποίων ένα σύστηµα παρέχει προστασία, µπορεί να είναι ιδιαίτερα µικρός, σε σχέση µε 155

27 το σύνολο των χρηστών του συστήµατος. Κάτι τέτοιο προφανώς βελτιώνει την πρακτικότητα του συστήµατος. Στα πλαίσια της έρευνας µας παρουσιάσαµε ένα ασύµµετρο σχήµα ανίχνευσης «προδοτών» χωρίς έµπιστες οντότητες, για την προστασία από παράνοµη αναδιανοµή κλειδιών σε εφαρµογές αναµετάδοσης κρυπτογραφηµένης πληροφορίας [Mag01_1]. Για αυτόν το λόγο, αξιοποιήσαµε το ιδιαίτερα αποδοτικό και ασφαλές (συµµετρικό) σχήµα των Kurosawa-Desmedt [Kur98,Kur00] και τροποποιήσαµε το στάδιο της εκχώρησης κλειδιών ώστε ο παροχέας του υλικού να µη γνωρίζει το αποτύπωµα που αποδίδεται σε έναν εξουσιοδοτηµένο χρήστη του συστήµατος. Εάν ένας ή περισσότεροι «προδότες» συνδυάσουν τα αποτυπώµατα τους και κατασκευάσουν ένα «πειρατικό» αποκωδικοποιητή, τότε ο αποκωδικοποιητής θα περιέχει πληροφορίες που οδηγούν στην ταυτότητα τουλάχιστον ενός εκ των «προδοτών». Περιγράψαµε επίσης τρόπους µε τους οποίους οι χρήστες µπορούν να εξασφαλίσουν ότι τα κλειδιά που τοποθετούνται από τον παροχέα στην είσοδο του αλγορίθµου εκχώρησης είναι διαφορετικά µεταξύ τους, αλλά και ότι δεν πρόκειται να εκχωρηθούν σε κάποιον άλλον εξουσιοδοτηµένο χρήστη. Η τεχνική µας βασίζεται στις αρχές των πρωτοκόλλων «διαίρει και επίλεξε» [Sch96] και µπορεί να επεκταθεί σε κάθε εφαρµογή που χρησιµοποιεί επιλήσµονα µεταφορά για την απόδοση-µεταφορά µυστικών µεταξύ δύο οντοτήτων. Το σχήµα που προτείναµε είναι «δίκαιο» (equitable), υπό την έννοια ότι αφενός προστατεύει την ιδιωτικότητα των χρηστών του συστήµατος, και αφετέρου εξασφαλίζει την ορθότητα της διαδικασίας ανίχνευσης ενός «προδότη» που αναδιανέµει το κρυπτογραφικό του κλειδί, χωρίς να γίνεται κάποια υπόθεση για την ύπαρξη τρίτης έµπιστης οντότητας. Ως στόχο θέτουµε την επέκταση του πρωτοκόλλου ανίχνευσης «προδοτών» ώστε να προσφέρει ανωνυµία στους εξουσιοδοτηµένους χρήστες του συστήµατος. 156

28 Μελλοντική Έρευνα. Πρέπει να τονιστεί ότι η προστασία των πνευµατικών δικαιωµάτων για αναλογικά ή ηλεκτρονικά αγαθά µπορεί να επιτευχθεί µόνον µέσα από ένα συνονθύλευµα τεχνικών και νοµικών µέτρων. Από τεχνικής άποψης, η µελλοντική έρευνα στο χώρο της προστασίας των πνευµατικών δικαιωµάτων για ηλεκτρονικά αγαθά, αναµένεται να στραφεί: - Στην χρήση έξυπνων καρτών για την ασφαλή εκτέλεση τµήµατος ή όλων των λειτουργιών που καλείται να εκτελέσει ο αγοραστής του ψηφιακού αγαθού. - Στη µελέτη για την εύρεση ασφαλών και πρακτικών µεθόδων εισαγωγής υδατογραφηµάτων σε αρχεία πολυµέσων (κείµενο, εικόνα, ήχος, video). - Στην εύρεση µηχανισµών και µεθόδων αποτροπής (όχι απλά αποθάρρυνσης) της αντιγραφής και της αναδιανοµής του αγαθού. Οι µηχανισµοί αυτοί λογικά θα βασίζονται σε λύσεις ασφαλούς υλικού χαµηλού επιπέδου και θα υποστηρίζονται και σε επίπεδο λειτουργικού συστήµατος, θα είναι δηλαδή ανεξάρτητοι της εφαρµογής ή του αγαθού που προφυλάσσεται. Ειδικότερα για τα συστήµατα αναµετάδοσης κρυπτογραφηµένου υλικού, ιδιαίτερη έµφαση αναµένεται να δοθεί σε ζητήµατα όπως: - Εύρεση αποδοτικότερων αλγορίθµων ανίχνευσης «προδοτών», των οποίων η ασφάλεια έναντι µιας συµπαιγνίας «προδοτών» θα είναι ανεξάρτητη του µεγέθους της συµπαιγνίας. - Αντιµετώπιση της παράνοµης αναδιανοµής του ψηφιακού υλικού, µετά την αποκρυπτογράφηση του (π.χ. παράνοµοι πειρατικοί σταθµοί 157

29 εκποµπής, αναδιανοµή ταινιών που έχουν ήδη εγγραφεί σε µονάδες αποθήκευσης κ.λ.π.). 158

30

Κεφάλαιο 6 Συµπεράσµατα της ιατριβής

Κεφάλαιο 6 Συµπεράσµατα της ιατριβής Κεφάλαιο 6 Συµπεράσµατα της ιατριβής Στη σηµερινή εποχή όπου η καθολικότητα του ιαδικτύου είναι αδιαµφισβήτητη, πολλές από τις δραστηριότητες που έως σήµερα διενεργούνταν µε φυσικό τρόπο αποκτούν ηλεκτρονική

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστηµάτων

Ασφάλεια Υπολογιστικών Συστηµάτων Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας

Διαβάστε περισσότερα

8.3 Ασφάλεια ικτύων. Ερωτήσεις

8.3 Ασφάλεια ικτύων. Ερωτήσεις 8.3 Ασφάλεια ικτύων Ερωτήσεις 1. Με τι ασχολείται η ασφάλεια των συστηµάτων; 2. Τι είναι αυτό που προστατεύεται στην ασφάλεια των συστηµάτων και για ποιο λόγο γίνεται αυτό; 3. Ποια η διαφορά ανάµεσα στους

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Υπογραφές Επιπρόσθετης Λειτουργικότητας Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web

Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web Δρ. Απόστολος Γκάμας Λέκτορας (407/80) gkamas@uop.gr Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου Διαφάνεια 1 1 Εισαγωγικά Βασικές

Διαβάστε περισσότερα

ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007

ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007 Ψηφιακές υπογραφές Ψηφιακές υπογραφές Υπάρχει ανάγκη αντικατάστασης των χειρόγραφων υπογραφών µε ψηφιακές (ΨΥ) Αυτές πρέπει να διαθέτουν τα εξής χαρακτηριστικά: Ο παραλήπτης πρέπει να είναι σε θέση να

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 θα εξετάσουμε τα ακόλουθα εργαλεία κρυπτογραφίας: ψηφιακές υπογραφές κατακερματισμός (hashing) συνόψεις μηνυμάτων μ (message digests) ψευδοτυχαίοι

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΓΙΑ ΑΣΦΑΛΗ ΚΑΙ ΠΙΣΤΟΠΟΙΗΜΕΝΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ ΤΗΝ ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ. Οδηγίες προς τις Συνεργαζόμενες Τράπεζες

ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΓΙΑ ΑΣΦΑΛΗ ΚΑΙ ΠΙΣΤΟΠΟΙΗΜΕΝΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ ΤΗΝ ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ. Οδηγίες προς τις Συνεργαζόμενες Τράπεζες ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΓΙΑ ΑΣΦΑΛΗ ΚΑΙ ΠΙΣΤΟΠΟΙΗΜΕΝΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΕ ΤΗΝ ΤΡΑΠΕΖΑ ΤΗΣ ΕΛΛΑΔΟΣ Οδηγίες προς τις Συνεργαζόμενες Τράπεζες 1. Εισαγωγή Γνωριμία με τα Ψηφιακά Πιστοποιητικά Η χρήση ηλεκτρονικών

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης Ασφάλεια στο Ηλεκτρονικό Επιχειρείν ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης 1 Κίνδυνοι Η-Ε Μερικοί από τους κινδύνους ενός δικτυακού τόπου Ε-εμπορίου περιλαμβάνουν:

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΑ ΜΕΣΑ ΠΡΟΣΤΑΣΙΑΣ ΚΑΤΟΧΥΡΩΜΕΝΩΝ ΨΗΦΙΑΚΩΝ ΕΡΓΩΝ & ΨΗΦΙΑΚΗ ΙΑΧΕΙΡΙΣΗ ΙΚΑΙΩΜΑΤΩΝ

ΤΕΧΝΟΛΟΓΙΚΑ ΜΕΣΑ ΠΡΟΣΤΑΣΙΑΣ ΚΑΤΟΧΥΡΩΜΕΝΩΝ ΨΗΦΙΑΚΩΝ ΕΡΓΩΝ & ΨΗΦΙΑΚΗ ΙΑΧΕΙΡΙΣΗ ΙΚΑΙΩΜΑΤΩΝ ΤΕΧΝΟΛΟΓΙΚΑ ΜΕΣΑ ΠΡΟΣΤΑΣΙΑΣ ΚΑΤΟΧΥΡΩΜΕΝΩΝ ΨΗΦΙΑΚΩΝ ΕΡΓΩΝ & ΨΗΦΙΑΚΗ ΙΑΧΕΙΡΙΣΗ ΙΚΑΙΩΜΑΤΩΝ ρ. ηµήτριος Κ. Τσώλης Εργαστήριο Πληροφοριακών Συστηµάτων Υψηλών Επιδόσεων Τµήµα ΜηχανικώνΗ/Υ και Πληροφορικής Πανεπιστήµιο

Διαβάστε περισσότερα

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου

Διαβάστε περισσότερα

Παράρτημα Α Περισσότερα για την Ασφάλεια στο Διαδίκτυο

Παράρτημα Α Περισσότερα για την Ασφάλεια στο Διαδίκτυο Παράρτημα Α Περισσότερα για την Ασφάλεια στο Διαδίκτυο A.1 Κρυπτογράφηση Δημόσιου Κλειδιού Όπως αναφέρθηκε στην παράγραφο 2.3.2, η πιο διαδεδομένη μέθοδος κρυπτογραφίας στο Διαδίκτυο είναι η κρυπτογράφηση

Διαβάστε περισσότερα

Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να

Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Ορισμός κρυπτογραφίας Με τον όρο κρυπτογραφία, αναφερόμαστε στη μελέτη μαθηματικών τεχνικών

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές

Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Ψηφιακά Πιστοποιητικά Ψηφιακές Υπογραφές Ψηφιακά Πιστοποιητικά Υποδομή δημόσιου κλειδιού (Public Key Infrastructure

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 5: Διαχείριση κλειδιών Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. PGP (Pretty Good Privacy)

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. PGP (Pretty Good Privacy) Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων PGP (Pretty Good Privacy) Εισαγωγή Το λογισμικό Pretty Good Privacy (PGP), το οποίο σχεδιάστηκε από τον Phill Zimmerman, είναι ένα λογισμικό κρυπτογράφησης

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ. Απόστολος Πλεξίδας Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας

ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ. Απόστολος Πλεξίδας Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας ΨΗΦΙΑΚΗ ΥΠΟΓΡΑΦΗ Προϊστάµενος της ιεύθυνσης ιαφάνειας & Ηλεκτρονικής ιακυβέρνησης της Περιφέρεια Κεντρικής Μακεδονίας 1 ΠΕΡΙΕΧΟΜΕΝΑ Hλεκτρονική υπογραφή, τι είναι, τρόπος λειτουργίας Χειρογραφη Ηλεκτρονική

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

Λειτουργικά Συστήματα (ΗΥ321)

Λειτουργικά Συστήματα (ΗΥ321) Λειτουργικά Συστήματα (ΗΥ321) Διάλεξη 19: Ασφάλεια Κρυπτογράφηση Βασική ιδέα: Αποθήκευσε και μετάδωσε την πληροφορία σε κρυπτογραφημένη μορφή που «δε βγάζει νόημα» Ο βασικός μηχανισμός: Ξεκίνησε από το

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστηµάτων

Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Πληροφοριακών Συστηµάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 3η Δρ. A. Στεφανή Τµ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Ψηφιακές Υπογραφές- Βασικές Αρχές Η Ψηφιακή Υπογραφή είναι ένα µαθηµατικό

Διαβάστε περισσότερα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Ενότητα 5: ΚΡΥΠΤΟΓΡΑΦΗΣΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Διαχείριση κλειδιών. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Διαχείριση κλειδιών. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Διαχείριση κλειδιών Χρήστος Ξενάκης Διαχείριση κλειδιών Η ασφάλεια ενός κρυπτοσυστήματος εξαρτάται αποκλειστικά από τα κλειδιά (αρχή του Kerchoff)

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ

ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ Η κρυπτογράφηση δημοσίου κλειδιού (Public Key Cryptography) ή ασύμμετρου κλειδιού (Asymmetric Cryptography) επινοήθηκε στο τέλος της δεκαετίας του 1970 από τους Whitfield

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

Ασφάλεια ικτύων (Computer Security)

Ασφάλεια ικτύων (Computer Security) Ασφάλεια ικτύων (Computer Security) Τι Εννοούµε µε τον Όρο Ασφάλεια ικτύων; Ασφάλεια Μόνο ο αποστολέας και ο προοριζόµενος παραλήπτης µπορούν να διαβάσουν και να κατανοήσουν ένα µήνυµα. Ο αποστολέας το

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Ασφάλεια σε Συστήµατα Ανάκτησης Κλειδιού

Ασφάλεια σε Συστήµατα Ανάκτησης Κλειδιού Κεφάλαιο 5 Ασφάλεια σε Συστήµατα Ανάκτησης Κλειδιού Στο Κεφάλαιο αυτό αναλύουµε τους µηχανισµούς ασφάλειας των συστηµάτων ανάκτησης κλειδιού και προτείνουµε έναν µηχανισµό ανάκτησης κλειδιού µε ισχυρή

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou ιαχείριση Κλειδιών Ορισμός: Εγκαθίδρυση κλειδιού (key establishment) είναι η διαδικασία κατά την οποία

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

ΙΟΥΝΙΟΣ 2014 ΜΑΡΟΥΣΙ, ΑΘΗΝΑ

ΙΟΥΝΙΟΣ 2014 ΜΑΡΟΥΣΙ, ΑΘΗΝΑ ΣΥΝΟΨΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΗΣ ΗΜΟΣΙΑΣ ΙΑΒΟΥΛΕΥΣΗΣ ΑΝΑΦΟΡΙΚΑ ΜΕ ΤΟ ΣΧΕ ΙΟ ΚΑΝΟΝΙΣΜΟΥ ΓΙΑ ΤΟΝ ΚΑΘΟΡΙΣΜΟ ΟΡΩΝ ΚΑΙ ΠΡΟΫΠΟΘΕΣΕΩΝ ΠΑΡΟΧΗΣ ΠΡΟΣΒΑΣΗΣ, ΙΑΣΥΝ ΕΣΗΣ ΥΠΗΡΕΣΙΩΝ, ΣΥΜΠΕΡΙΛΑΜΒΑΝΟΜΕΝΗΣ ΤΗΣ ΠΡΟΣΒΑΣΗΣ ΣΤΙΣ

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 32 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Βασικές Έννοιες Κρυπτογραφίας

Βασικές Έννοιες Κρυπτογραφίας Βασικές Έννοιες Κρυπτογραφίας Παύλος Εφραιμίδης Κρυπτογραφία Βασικές Έννοιες 1 Τι θα μάθουμε Obscurity vs. Security Βασικές υπηρεσίες κρυπτογραφίας: Confidentiality, Authentication, Integrity, Non- Repudiation

Διαβάστε περισσότερα

1.1 Ένα Μοντέλο Ηλεκτρονικών Συστηµάτων Συναλλαγών και Εφαρµογές. Θεωρούµε ένα ηλεκτρονικό σύστηµα συναλλαγών [Bur_Mag02a] στο οποίο:

1.1 Ένα Μοντέλο Ηλεκτρονικών Συστηµάτων Συναλλαγών και Εφαρµογές. Θεωρούµε ένα ηλεκτρονικό σύστηµα συναλλαγών [Bur_Mag02a] στο οποίο: Κεφάλαιο 1 Εισαγωγή Στο κεφάλαιο αυτό περιγράφουµε ένα µοντέλο ηλεκτρονικών συναλλαγών µέσω ιαδικτύου, και αναφέρουµε τα προβλήµατα ασφάλειας που εντοπίζονται σε συστήµατα που βασίζονται σε αυτό το µοντέλο.

Διαβάστε περισσότερα

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού ΤΕΙ ΚΡΗΤΗΣ ΤΜΉΜΑ ΜΗΧΑΝΙΚΏΝ ΠΛΗΡΟΦΟΡΙΚΉΣ Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Συναρτήσεις Κατακερματισμού Ο όρος συνάρτηση κατακερματισμού (hash function) υποδηλώνει ένα μετασχηματισμό που παίρνει

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. προηγμένα κρυπτογραφικά πρωτόκολλα. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. προηγμένα κρυπτογραφικά πρωτόκολλα. Ασφ Υπολ Συστ Παύλος Εφραιμίδης προηγμένα κρυπτογραφικά πρωτόκολλα Ασφ Υπολ Συστ 1 Zero-Knowledge Proofs Zero-Knowledge Proofs of Identity Blind Signatures Oblivious Signatures Simultaneous Contract Signing Simultaneous

Διαβάστε περισσότερα

YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Ο στόχος της υβριδικής μεθόδου είναι να αντισταθμίσει τα μειονεκτήματα της συμμετρικής

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστημάτων

Ασφάλεια Υπολογιστικών Συστημάτων Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 4: Pretty Good Privacy (PGP) Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

8 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ. 8.1. Εισαγωγή. 8.2. Απαιτήσεις ορισµοί

8 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ. 8.1. Εισαγωγή. 8.2. Απαιτήσεις ορισµοί 8 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 8.1. Εισαγωγή Όπως είδαµε στο προηγούµενο κεφάλαιο, η ανταλλαγή κλειδιών πολλές φορές συνοδεύεται από αυθεντικοποίηση. Η αυθεντικοποίηση µπορεί να περιλαµβάνει ψηφιακές υπογραφές όπου

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 10 : Ασφάλεια Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ

7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ 7 ΔΙΑΧΕΙΡΙΣΗ ΚΛΕΙΔΙΩΝ 7.1. Εισαγωγή Το σημείο αναφοράς της ασφάλειας ενός κρυπτοσυστήματος είναι οι ειδικές ποσότητες πληροφορίας που ονομάζουμε κλειδιά. Σε ένα καλά σχεδιασμένο κρυπτοσύστημα, η ασφάλειά

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ ΚΑΤΑ ΤΗ ΙΑΚΙΝΗΣΗ ΠΟΛΥΜΕΣΙΚΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

ΑΣΦΑΛΕΙΑ ΚΑΤΑ ΤΗ ΙΑΚΙΝΗΣΗ ΠΟΛΥΜΕΣΙΚΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΑΣΦΑΛΕΙΑ ΚΑΤΑ ΤΗ ΙΑΚΙΝΗΣΗ ΠΟΛΥΜΕΣΙΚΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΡΑΚΤΙΚΟ ΜΕΡΟΣ 4 ης ΕΡΓΑΣΙΑΣ Κλώνη Απόστολου ΠΕΡΙΕΧΟΜΕΝΑ Κρυπτογραφία Ψηφιακές υπογραφές Ψηφιακά πιστοποιητικά Ψηφιακή υδατογραφία 2 Κρυπτογραφία Η επιστήµη

Διαβάστε περισσότερα

Προστασία Πολυμεσικού Περιεχομένου. Μοσχονάς Κων/νος ΕΑΠ ΓΤΠ61

Προστασία Πολυμεσικού Περιεχομένου. Μοσχονάς Κων/νος ΕΑΠ ΓΤΠ61 Προστασία Πολυμεσικού Περιεχομένου Μοσχονάς Κων/νος ΕΑΠ ΓΤΠ61 ΠΕΡΙΕΧΟΜΕΝΑ Αναγκαιότητα Λύσεις Digital Rights Management Μέσα Προστασίας Κρυπτογραφία Ψηφιακή Υπογραφή Υδατογράφημα Αντίλογος Συμπεράσματα

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο 2015 1 ΤΙ ΕΙΝΑΙ Η ΚΡΥΠΤΟΛΟΓΙΑ?

Διαβάστε περισσότερα

9 ΚΡΥΠΤΟΓΡΑΦΙΚΑ ΠΡΩΤΟΚΟΛΛΑ

9 ΚΡΥΠΤΟΓΡΑΦΙΚΑ ΠΡΩΤΟΚΟΛΛΑ 9 ΚΡΥΠΤΟΓΡΑΦΙΚΑ ΠΡΩΤΟΚΟΛΛΑ 9.1. Εισαγωγή Στο Kεφάλαιο 1, δώσαµε έναν ορισµό του πρωτοκόλλου. Είδαµε επίσης σε διάφορα σηµεία του βιβλίου ότι προκειµένου να ολοκληρωθούν ορισµένες διαδικασίες, όπως η ανταλλαγή

Διαβάστε περισσότερα

Κρυπτογραφικά Πρωτόκολλα

Κρυπτογραφικά Πρωτόκολλα Κρυπτογραφικά Πρωτόκολλα Παύλος Εφραιµίδης 25/04/2013 1 Κρυπτογραφικά Πρωτόκολλα Bit Commitment Fair Coin Mental Poker Secret Sharing Zero-Knowledge Protocol 2 πρωτόκολλα και υπηρεσίες χρήστης κρυπτογραφικές

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας Βοηθοί διδασκαλίας Παναγιώτης Γροντάς Αντώνης

Διαβάστε περισσότερα

Ένα Υβριδικό Μοντέλο Ανάκτησης Κλειδιού

Ένα Υβριδικό Μοντέλο Ανάκτησης Κλειδιού Ένα Υβριδικό Μοντέλο Ανάκτησης Κλειδιού Εµµανουήλ Μάγκος Abstract. Περιγράφουµε τις δυνατές µεθόδους ανάκτησης κλειδιού (key recovery) καθώς και τις επιθέσεις που µπορούν να γίνουν σε αυτά. Για την αντιµετώπιση

Διαβάστε περισσότερα

9 - Ασφάλεια Ηλεκτρονικών Συναλλαγών ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ

9 - Ασφάλεια Ηλεκτρονικών Συναλλαγών ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ 9 - Ασφάλεια Ηλεκτρονικών Συναλλαγών ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΑΥΤΟΔΙΟΙΚΗΣΗΣ Ενότητες Πυλώνες εμπιστοσύνης ηλεκτρονικών συναλλαγών Κρυπτογράφηση Δημόσιο και ιδιωτικό κλειδί Ψηφιακή υπογραφή Ψηφιακά

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir)

Κρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir) Κρυπτογραφία Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir) Πρωτόκολλα μηδενικής γνώσης Βασική ιδέα: Ένας χρήστης Α (claimant) αποδεικνύει την ταυτότητά του σε

Διαβάστε περισσότερα

ΤΟ ΣΥΣΤΗΜΑ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΥΘΕΝΙΚΟΤΗΤΑΣ ΚΕΡΒΕΡΟΣ

ΤΟ ΣΥΣΤΗΜΑ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΥΘΕΝΙΚΟΤΗΤΑΣ ΚΕΡΒΕΡΟΣ ΤΟ ΣΥΣΤΗΜΑ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΥΘΕΝΙΚΟΤΗΤΑΣ ΚΕΡΒΕΡΟΣ ΚΕΡΒΕΡΟΣ Ένας σταθµός εργασίας δε µπορεί να θεωρηθεί από µόνος του αξιόπιστος. Κέρβερος: Έµπιστη τριµερής υπηρεσία πιστοποίησης. Έµπιστη: Κάθε εξυπηρετούµενος

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou ιαχείριση Κλειδιών Ορισμός: Εγκαθίδρυση κλειδιού (key establishment) είναι η διαδικασία

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων 1 ΑΣΎΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΊΑ ΚΑΙ PGP...- 3-1.1 ΕΙΣΑΓΩΓΉ...- 3-1.2 ΤΙ ΕΊΝΑΙ ΤΟ PGP;...- 4-1.3 ΤΟ PGP ΒΉΜΑ ΒΉΜΑ......-

Διαβάστε περισσότερα

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ. στο µάθηµα : "ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ" Μπαλάφας Βασίλειος. Καθηγητής : Μελετίου Γεράσιµος

ΕΡΓΑΣΙΑ. στο µάθηµα : ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ Μπαλάφας Βασίλειος. Καθηγητής : Μελετίου Γεράσιµος ΕΡΓΑΣΙΑ στο µάθηµα : "ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ" Μπαλάφας Βασίλειος Καθηγητής : Μελετίου Γεράσιµος Μάιος 2000 Περιεχόµενα : Εισαγωγή - Ιστορική αναδροµή Η συνθήκη του συστήµατος των Diffie και Hellman Η κρυπτογράφηση

Διαβάστε περισσότερα

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται

Διαβάστε περισσότερα

Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική. Μια σύντοµη διαδροµή στα µονοπάτια της σύγχρονης κρυπτογραφίας

Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική. Μια σύντοµη διαδροµή στα µονοπάτια της σύγχρονης κρυπτογραφίας Ελληνικό Ανοικτό Πανεπιστήµιο Σπουδές στην Πληροφορική Μια σύντοµη διαδροµή στα µονοπάτια της σύγχρονης κρυπτογραφίας Γιάννης Κ. Σταµατίου ΣΕΠ ΠΛΗ 10 Πάτρα, Ιουνιος 2003 Τι θα εξετάσουµε Πώς η κρυπτογραφία

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος ttouskas@aueb.gr

Διαβάστε περισσότερα

Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών

Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών Ασύρματες Επικοινωνίες Μέρος V Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Slide: 1/30 Περιεχόμενα IEEE 802.11i ΤΟ ΠΡΩΤΟΚΟΛΛΟ CCMP Γενικά Λίγα

Διαβάστε περισσότερα

GPG & ΚΡΥΠΤΟΓΡΑΦΙΑ. Π. Αγγελάτος, Δ. Ζήνδρος

GPG & ΚΡΥΠΤΟΓΡΑΦΙΑ. Π. Αγγελάτος, Δ. Ζήνδρος GPG & ΚΡΥΠΤΟΓΡΑΦΙΑ Π. Αγγελάτος, Δ. Ζήνδρος Όσο ξεκινάμε... Κατεβάστε το GPG για το σύστημά σας: Αν έχετε Linux, το έχετε ήδη Αν έχετε Windows, Gpg4win: http://gpg4win.org/ Αν έχετε Mac, GPG Suite: https://gpgtools.org/

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 1

Κρυπτογραφία. Εργαστηριακό μάθημα 1 Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,

Διαβάστε περισσότερα

Freedom of Speech. Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet

Freedom of Speech. Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet Freedom of Speech Κρυπτογραφία και ασφαλής ανταλλαγή πληροφοριών στο Internet Freedom of Speech Ποιός ; & Γιατί ; Τι είναι Ιστορικά Στόχοι Είδη Μοντέρνων Αλγορίθμων Μοντέλα Εμπιστοσύνης 14/03/2012 Freedom

Διαβάστε περισσότερα

1 Diffie-Hellman Key Exchange Protocol

1 Diffie-Hellman Key Exchange Protocol 1 Diffie-Hellman Key Exchange Potocol To 1976, οι Whitefield Diffie και Matin Hellman δημοσίευσαν το άρθρο New Diections in Cyptogaphy, φέρνοντας επανάσταση στην οποία οφείλεται η λεγόμενη "μοντέρνα κρυπτογραφια".

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστηµάτων

Ασφάλεια Υπολογιστικών Συστηµάτων Ταυτοποίηση και Πιστοποίηση (Identification & Authentication) Εισαγωγή - Βασικές Έννοιες Τεχνικές Ταυτοποίησης και Πιστοποίησης Συστήµατα που βασίζονται στην πληροφορία Συστήµατα που βασίζονται στην κατοχή

Διαβάστε περισσότερα

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21 Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xiv xvi I Κρυπτανάλυση 21 1 Βασικές αρχές κρυπτανάλυσης 23 1.1 Εισαγωγή....................... 24 1.2 Βασικές επιθέσεις................... 25 1.3 Η επίθεση του Hellman-TMTO............

Διαβάστε περισσότερα

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013

Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013 Ψευδο-τυχαιότητα Συναρτήσεις µιας Κατεύθυνσης και Γεννήτριες Ψευδοτυχαίων Αριθµών Παύλος Εφραιµίδης 2013/02 1 Αριθµοί και String Όταν θα αναφερόµαστε σε αριθµούς θα εννοούµε ουσιαστικά ακολουθίες από δυαδικά

Διαβάστε περισσότερα

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση

Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη

Διαβάστε περισσότερα