Νεκρό σημείο είναι το ποσό εκείνο των πωλήσεων με το οποίο μια επιχείρηση καλύπτει ακριβώς τόσο τα σταθερά όσο και τα μεταβλητά της έξοδα χωρίς να

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Νεκρό σημείο είναι το ποσό εκείνο των πωλήσεων με το οποίο μια επιχείρηση καλύπτει ακριβώς τόσο τα σταθερά όσο και τα μεταβλητά της έξοδα χωρίς να"

Transcript

1

2 Νεκρό σημείο είναι το ποσό εκείνο των πωλήσεων με το οποίο μια επιχείρηση καλύπτει ακριβώς τόσο τα σταθερά όσο και τα μεταβλητά της έξοδα χωρίς να πραγματοποιεί κέρδος ή ζημιά. Η βασική αρχή πάνω στην οποία στηρίζεται η ανάλυση νεκρού σημείου είναι η συμπεριφορά του κόστους. Το κόστος μιας επιχείρησης είναι ίσο με το σταθερό + το μεταβλητό κόστος. Σταθερό κόστος είναι το τμήμα του συνολικού κόστους που δεν εξαρτάται από τον κύκλο εργασιών της επιχείρησης. Το μεταβλητό κόστος μεταβάλλεται ανάλογα με το ύψος των πωλήσεων ή την δραστηριότητα της κάθε επιχείρησης.

3 Οι σημαντικότερες υποθέσεις που συνήθως γίνονται στην πράξη προκειμένου να υπολογιστεί το νεκρό σημείο είναι οι εξής: Το συνολικό κόστος και τα έσοδα μπορούν να προσδιοριστούν με αξιοπιστία και η μεταξύ τους σχέση είναι γραμμική για ένα ορισμένο εύρος παραγωγής Το κόστος μπορεί να διαχωριστεί στο σταθερό και μεταβλητό του τμήμα χωρίς το σταθερό να μεταβάλλεται και το μεταβλητό μέρος είναι ανάλογο του ύψους των πωλήσεων. Οι τιμές πώλησης των προιόντων καθώς και οι τιμές των συντελεστών παραγωγής παραμένουν σταθερές.

4 Δεν υπήρξε σημαντική μεταβολή του γενικού επιπέδου των τιμών κατά την περίοδο που ζητείται ο προσδιορισμός του νεκρού σημείου Οι μέθοδοι παραγωγής και η παραγωγική δυναμικότητα της επιχείρησης δεν μεταβάλλονται Ο μόνος συντελεστής που επηρεάζει το κόστος είναι το ύψος των πωλήσεων.

5 Υπάρχουν 3 διαφορετικοί τρόποι που χρησιμοποιούνται για τον υπολογισμό του νεκρού σημείου μιας επιχείρησης: Η μέθοδος της μαθηματικής ισότητας Η μέθοδος του μικτού περιθωρίου Η μέθοδος της γραφικής παράστασης

6 Σύμφωνα με την συγκεκριμένη μέθοδο η σχέση μεταξύ των πωλήσεων μιας επιχείρησης, των μεταβλητών και σταθερών δαπανών καθώς και των κερδών μπορεί να εκφραστεί ως εξής: Έσοδα από πωλήσεις= Σταθ. Δαπάνες+Μεταβλ. Δαπάνες+Καθαρό Κέρδος ή Π=S+M+K Στο νεκρό σημείο ισχύει Κ=0 οπότε η παραπάνω σχέση γίνεται Π=S+M

7 Εάν ορίσουμε P την τιμή πώλησης κάθε μονάδας Χ την ζητούμενη ποσότητα σε μονάδες του πωληθέντος προιόντος S τις σταθερές δαπάνες V τις μεταβλητές δαπάνες ή το μεταβλητό κόστος ανά μονάδα προιόντος και Κ το καθαρό κέρδος το οποίο στο νεκρό σημείο θα είναι ίσο με 0 τότε προκύπτει: P X=S+V X+K (1)

8 Λύνοντας την παραπάνω εξίσωση ως προς Χ προκύπτει: X = P S V όπου P-V είναι οι σταθερές δαπάνες ανά μονάδα προιόντος αφαιρώντας από την τιμή πώλησης του προιόντος το κατά μονάδα μεταβλητό κόστος του προιόντος Ωστόσο, η παραπάνω σχέση δεν είναι χρήσιμη στην περίπτωση που η επιχείρηση παράγει περισσότερα του ενός προιόντα. Στην περίπτωση αυτή, μας ενδιαφέρει η αξία των πωλήσεων στο νεκρό σημείο και όχι οι μονάδες πωλήσεων.

9 Μας ενδιαφέρει λοιπόν να προσδιορίσουμε τα έσοδα πωλήσεων που πρέπει να πραγματοποιήσει η επιχείρηση ώστε να καλύψει τις σταθερές της δαπάνες χωρίς να πραγματοποεί κέρδος ή ζημιά. Χρειάζεται να γνωρίζουμε το % του συνόλου των μεταβλητών δαπανών στο σύνολο των δαπανών ή το % των μεταβλητών δαπανών προς την τιμή πώλησης. Ορίζουμε Χ ως τα ζητούμενα έσοδα πωλήσεων. Τότε X ' = (1 S V P )

10 Εναλλακτικά, εάν ορίσουμε α τον συντελεστή μεταβλητών δαπανών α =Σύνολο μεταβλητών δαπανών/συνολικές δαπάνες ή έσοδα από πωλήσεις= V /P τότε: X ' = (1 S α ' )

11 Περιθώριο κέρδους ορίζεται ως το ποσό εκείνο που απομένει μετά την αφαίρεση από την τιμή πώλησης των μεταβλητών και σταθερών δαπανών και το οποίο διατίθεται για να καλυφθούν πρώτα οι σταθερές δαπάνες και ότι απομένει είναι κέρδος.

12 Το νεκρό σημείο σε μονάδες πωλήσεων (Χ) προκύπτει από την παρακάτω σχέση: Χ= Σταθερές δαπάνες (S)+Καθαρά κέρδη/κατά μονάδα συμμετοχή των σταθερών δαπανών ή X = S +Κ P V όπου Κ=0 και P-V μικτό κέρδος ανά μονάδα προιόντος

13 Για να υπολογίσουμε την αξία πωλήσεων στο νεκρό σημείο είναι απαραίτητο να έχουμε τον συντελεστή μικτού περιθωρίου (α): Συντελεστής περιθωρίου = ( Τιμή πώλησης ανά μονάδα προιόντος Μεταβλητό κόστος ανά μονάδα προιόντος ) Τιμή πώλησης α = ( P V ) P ή α = 1 V P όπου α= συντελεστής μικτού περιθωρίου ή των σταθερών δαπανών P=τιμή πώλησης ανά μονάδα V=μεταβλητές δαπάνες ανά μονάδα

14 Το νεκρό σημείο σε αξία πωλήσεων όταν η επιχείρηση ασχολείται με περισσότερα του ενός προιόντα δίνεται από την παρακάτω σχέση: X ' = S + Κ ( P V ) P = S + Κ V 1 P X ' = S α

15 Εάν αντί των κατά μονάδα προιόντος μεγεθών δίνονται συνολικά μεγέθη όπως σύνολο εσόδων από πωλήσεις και σύνολο μεταβλητών δαπανών τότε οι παραπάνω τύποι θα δίνονται ως εξής: α' = ( Σύνολο εσόδων από πωλήσεις Σύνολο μεταβλητών δαπανών ) Σύνολο εσόδων από πωλήσεις X ' = S + Κ V ' 1 P' ή S X ' = α'

16 Η διαφορά μεταξύ των πραγματικών πωλήσεων μιας επιχείρησης και των πωλήσεων της στο νεκρό σημείο αποτελεί το περιθώριο ασφαλείας (margin of safety). Το περιθώριο ασφαλείας δείχνει κατά πόσο θα μπορούσαν να μειωθούν οι πωλήσεις της πριν η επιχείρηση αρχίσει να πραγματοποιεί ζημιές. Ο αριθμοδείκτης περιθωρίου ασφαλείας δείχνει το ποσοστό που οι πωλήσεις θα μπορούσαν να μειωθούν πριν η επιχείρηση αρχίσει να εμφανίζει ζημιά: Περιθώριο ασφαλε ίας Αριθμοδε ίκτης περιθωρ ίου ασφαλε ίας = 100 x Π ραγματικ ές πωλήσεις

17 Η συγκεκριμένη μέθοδος προϋποθέτει την σχεδίαση του αποκαλούμενου διαγράμματος νεκρού σημείου. Στην γραφική παράσταση ενδιαφερόμαστε για το νεκρό σημείο καθώς και το τμήμα όπου η επιχείρηση πραγματοποεί κέρδη ή ζημιές. Το σημείο τομής των ευθείων συνολικών δαπανών και συνολικών εσόδων αποτελεί το νεκρό σημείο της επιχείρησης. Στο σημείο αυτό τα σταθερά έξοδα της επιχείρησης καλύπτονται από τα έσοδά της αλλά δεν υπάρχει κέρδος.

18 Το νεκρό σημείο μιας επιχείρησης μετατοπίζεται εάν μεταβληθούν ένας ή περισσότεροι από τους προσδιοριστικούς παράγοντες. Οι βασικοί προσδιοριστικοί παράγοντες για τον καθορισμό του νεκρού σημείου μιας επιχείρησης είναι οι εξής: το σταθερό κόστος ή οι σταθερές δαπάνες το μεταβλητό κόστος ή οι μεταβλητές δαπάνες η τιμή πώλησης του ή των προιόντων της ο όγκος πωλήσεων αυτής

19 Σενάριο 1: οι σταθερές δαπάνες της επιχείρησης αυξάνονται κατά 10% (το μεταβλητό ανά μονάδα κόστος παραμένει 8). 10% μείωση στα κέρδη της επιχείρησης Ν έ ο νεκρ ό σημε ίο = = μον άδες

20 Σενάριο 2: οι μεταβλητές δαπάνες αυξάνονται κατά 10%! Άμεση μεταβολή στο μικτό περιθώριο κέρδους Ν έ ο νεκρό σημείο = = 11, μονάδες

21 Η επιτυχίατης πολιτικής τιμών που ακολουθεί μια επιχείρηση εξαρτάται από την αντίδραση της Αγοράς σε μια μεταβολή των τιμών πώλησης των προιόντων της. Έτσι, μπορεί σε μια μείωση των τιμών οι αγοραστές να αγοράζουν μεγαλύτερες ποσότητες των προιόντων με αποτέλεσμα τα έσοδα από τις πωλήσεις της επιχείρησης να αυξηθούν. Μπορεί όμως να συμβεί τα έσοδα να είναι μικρότερα ή ίσα με την διαφορά που προκύπτει από την μείωση της τιμής πωλήσεως. Επομένως, για να μπορέσει η επιχείρηση να προσδιορίσει την επίδραση που μπορεί να έχει μια μεταβολή της τιμής των προιόντων της στα έσοδα της είναι απαραίτητο να γνωρίζει την ελαστικότητα του ή των προιόντων της.

22 Σενάριο 3: Η τιμή πώλησης αυξάνει κατά 10% και η ελαστικότητα ζήτησης είναι ίση με τη μονάδα οπότε και οι πωλήσεις μειώνονται κατά 10%. Μείωση των μονάδων παραγωγής νεκρού σημείου κατά 14% ( /10.000) Ν έ ο νεκρ ό σημε ίο = = μον άδες

23 Σενάριο 3α:υποθέτουμε ότι μια αύξηση της τιμής κατά 10% οδηγεί σε μείωση της ζητούμενης ποσότητας κατά 20% (ΕΖ>1). Σενάριο 3β:υποθέτουμε ότι μια αύξηση της τιμής κατά 10% οδηγεί σε μείωση της ζητούμενης ποσότητας κατά 5% (ΕΖ<1).

24 Ο συντελεστής περιθωρίου κέρδους παραμένει σταθερός άρα και το νεκρό σημείο

25 Βασιλείου, Δ., Ηρειώτης, Ν., 2008, Χρηματοοικονομική Διοίκηση, Εκδόσεις Rosili Γκίκας, Δ.,2002, Η ανάλυση και οι χρήσεις των λογιστικών καταστάσεων, Εκδόσεις Μπένου Γκλεζάκος, Μ.,2008, Αξιολόγηση Επιχειρήσεων, Ιδιωτική Έκδοση Λαζαρίδης, Θ., Κοντέος, Γ.,Σαριαννίδης, Ν., 2013,Σύγχρονη Χρηματοοικοομική Ανάλυση, Ιδιωτική Έκδοση Μπατσινίλας, Ε. Πατατούκας, Κ., 2012, Σύγχρονη Ανάλυση & Διερεύνηση των Οικονομικών Καταστάσεων, Εκδόσεις Σταμούλης Νιάρχος, Ν., 2004, Χρηματοοικονομική Ανάλυση Λογιστικών Καταστάσεων, Εκδόσεις Σταμούλης Ξανθάκης, Ε., Αλεξάκης,Χ., 2007, Χρηματοοικονομική Ανάλυση Επιχειρήσεων, Εκδόσεις Σταμούλης

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Όταν η Κ.Π.Δ. είναι γραμμική τότε το κόστος ευκαιρίας είναι πάντοτε σταθερό και ίσο με τη μονάδα. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ.

ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : Α. Να σχεδιάσετε την καμπύλη ζήτησης Β. Να βρεθεί η εξίσωση ζήτησης Γ. ΕΞΙΣΩΣΕΙΣ ΖΗΤΗΣΗΣ ΑΣΚΗΣΗ 1 Δίνεται ο παρακάτω πίνακας : ΣΥΝΔΥΑΣΜΟΙ P Α 24 80 Β 35 64 Γ 45 50 Δ 55 36 Ε 60 29 Ζ 70 14 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Α. Να σχεδιάσετε την καμπύλη

Διαβάστε περισσότερα

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ

ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ 1 ΚΦΑΛΑΙΟ 6 ΖΗΤΗΣΗ, ΠΡΟΣΦΟΡΑ ΚΑΙ ΙΣΣΟΡΟΠΙΑ ΑΓΟΡΑΣ Οι καµπύλες ζήτησης και προσφοράς είναι αναγκαίες για να προσδιορίσουν την τιµή στην αγορά. Η εξοµοίωσή τους καθορίζει την τιµή και τη ποσότητα ισορροπίας,

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων.

ΑΠΑΝΤΗΣΕΙΣ. Α.1. Κάθε οικονομία παράγει πάντοτε τους συνδυασμούς των προϊόντων που βρίσκονται πάνω στην καμπύλη των παραγωγικών της δυνατοτήτων. ΟΜΑΔΑ Α ΑΠΑΝΤΗΣΕΙΣ Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα του την ένδειξη: Σωστό, αν η πρόταση είναι σωστή ή Λάθος, αν η πρόταση είναι λανθασμένη. Α.1.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16/3/2014)-ΣΕΙΡΑ Α

ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16/3/2014)-ΣΕΙΡΑ Α ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΟΘ (16//201)-ΣΕΙΡΑ Α ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό Α2. (β) Α. (γ) ΟΜΑΔΑ ΔΕΥΤΕΡΗ ΘΕΜΑ Β Β1.Η μεταβολή στην προσφερόμενη ποσότητα ενός αγαθού

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 2 ο : Η Ζήτηση των Αγαθών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ερωτήσεις πολλαπλής επιλογής 1. Η ελαστικότητα ζήτησης για το αγαθό "Κ" είναι ίση με 2. Αυτό σημαίνει

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr Θέμα 3 Το εστιατόριο πολυτελείας «Η Ωραία Θεσσαλονίκη» παρουσιάζει τους τελευταίους μήνες ραγδαία αύξηση των πωλήσεών του. Στοιχεία για τα έσοδα και έξοδα της επιχείρησης κατά το 2 ο τρίμηνο του 2013 δίνονται

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α

ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α Στις προτάσεις, από Α.1. μέχρι και Α.5., να γράψετε τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Προτεινόμενα θέματα στο μάθημα Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ (2009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ (2009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ (009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑΔΑ Α Α.1. Σωστό. Α.. Λάθος. Ο πληθωρισμός πλήττει όλα τα άτομα που το χρηματικό τους εισόδημα είναι σταθερό ή αυξάνεται

Διαβάστε περισσότερα

Συγκέντρωση Κόστους Παραγωγής Προϊόντων

Συγκέντρωση Κόστους Παραγωγής Προϊόντων Συγκέντρωση Κόστους Παραγωγής Προϊόντων I ενότητa Άσκηση 4: Οι παρακάτω δαπάνες πραγματοποιήθηκαν από την επιχείρηση ΑΘΗΝΑ ΑΕ το 2002. Άμεση Εργασία 10.000.000 Άμεσα Υλικά 7.500.000 Αμοιβές Μηχ/κού Παραγωγής

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α ΟΜΑ Α Β

ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α ΟΜΑ Α Β ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α Α Α.1: Σωστό, Α.: Λάθος, Α.: Σωστό, Α.: Λάθος, Α.5: Σωστό Α.6: β, Α.7: γ ΟΜΑ Α Β Υπάρχουν αγαθά στα οποία η τιµή του ενός αγαθού επηρεάζει τη ζήτηση ενός άλλου αγαθού. Τα αγαθά αυτά τα

Διαβάστε περισσότερα

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 Να λυθούν οι παρακάτω ασκήσεις: 1. Αν η τιµή των Ιταλικών επίπλων µειωθεί τι θα συµβεί στη ζήτηση α) των Ιταλικών επίπλων και β) των Ελληνικών επίπλων. 2. Αν η τιµή του υγραερίου

Διαβάστε περισσότερα

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ

Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Case 01: Προγραµµατισµός Αγροτικής Παραγωγής «AGRO» ΣΕΝΑΡΙΟ Προγραµµατισµός τεσσάρων διαφορετικών προϊόντων Σιτάρι, σόγια, βρώµη καικαλαµπόκι Μέγιστη συνολική έκταση 1.500 στρέµµατα Ακριβώς 100 στρέµµατα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΛΑΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Κεφάλαιο 1 ο : Βασικές Οικονομικές Έννοιες Επαναληπτική άσκηση στο Κεφάλαιο 1 Δίνεται ο παρακάτω πίνακας

Διαβάστε περισσότερα

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ

1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ 1. ΑΝΟΙΚΤΗ ΟΙΚΟΝΟΜΙΑ ΣΤΗ ΜΑΚΡΟΧΡΟΝΙΑ ΠΕΡΙΟΔΟ Το διάγραμμα κυκλικής ροής της οικονομίας (κεφ. 3, σελ. 100 Mankiw) Εισόδημα Υ Ιδιωτική αποταμίευση S Αγορά συντελεστών Αγορά χρήματος Πληρωμές συντελεστών

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ & Γ ΤΑΞΗΣ ΕΠΑ.Λ (ΟΜΑ Α Β ) 2 ΙΟΥΝΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ & Γ ΤΑΞΗΣ ΕΠΑ.Λ (ΟΜΑ Α Β ) 2 ΙΟΥΝΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΟΜΑ Α ΕΥΤΕΡΗ ΘΕΜΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ & Γ ΤΑΞΗΣ ΕΠΑ.Λ (ΟΜΑ Α Β ) 2 ΙΟΥΝΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α.1. α. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Λάθος Α.2. β Α.3. δ ΘΕΜΑ Β ΟΜΑ Α

Διαβάστε περισσότερα

Υπολογίζουμε το αρχικό περιθώριο ασφάλισης (ΠΑ) για τα 4 ΣΜΕ. ΠΣ=500 /συμβολαιο 4συμβόλαια

Υπολογίζουμε το αρχικό περιθώριο ασφάλισης (ΠΑ) για τα 4 ΣΜΕ. ΠΣ=500 /συμβολαιο 4συμβόλαια ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ 31 - Χρηματοοικονομική Διοίκηση Ακαδημαϊκό Έτος: 2012-2013 Γραπτή Εργασία 3 - Παράγωγα-Αξιόγραφα

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ. και το Κόστος ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 3 ο : Η Παραγωγή της Επιχείρησης και το Κόστος ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Παραγωγή: είναι η διαδικασία με την οποία οι διάφοροι παραγωγικοί συντελεστές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΕΠΕΝΔΥΣΕΩΝ. Κεφάλαιο 4ο. Πραγματική και σχεδιαζόμενη επένδυση

ΘΕΩΡΙΑ ΕΠΕΝΔΥΣΕΩΝ. Κεφάλαιο 4ο. Πραγματική και σχεδιαζόμενη επένδυση ΘΕΩΡΙΑ ΕΠΕΝΔΥΣΕΩΝ Κεφάλαιο 4ο Πραγματική και σχεδιαζόμενη επένδυση! Ως πραγματοποιούμενη (ή απλώς) επένδυση ορίζουμε την επένδυση που πραγματοποιείται κατά τη διάρκεια μιας χρονικής περιόδου! Η σχεδιαζόμενη,

Διαβάστε περισσότερα

(1 ) (1 ) S ) 1,0816 ΘΕΜΑ 1 Ο

(1 ) (1 ) S ) 1,0816 ΘΕΜΑ 1 Ο ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΗ ΕΡΓΑΣΙΑ Α ΤΟΜΟΥ ΘΕΜΑ 1 Ο Α. Για τον υπολογισμό της τρέχουσας συναλλαγματικής ισοτιμίας του ( /$ ) θα πρέπει να χρησιμοποιήσουμε τη σχέση ισοδυναμίας των επιτοκίων. Οπότε: Για

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης

Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφ. Ιο Εισαγωγή στην Οικονομική της Διοίκησης 1.1. Τι είναι η Οικονομική της Διοίκησης 1.2. Τι παρέχει η οικονομική θεωρία στην Οικονομική της Διοίκησης 1.3. Οι σχέσεις της οικονομικής της

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

MULTIPLE CHOICES ΣΤΗ ΛΟΓΙΣΤΙΚΗ (ΠΕ). ΙΔΑΝΙΚΟΣ (ΕΛΑΧΙΣΤΟΣ) ΧΡΟΝΟΣ ΟΛΟΚΛΗΡΩΣΗΣ ΤΟΥ TEST Η ΜΙΑ ΩΡΑ. Συντάκτης: Γεώργιος Μακρίδης

MULTIPLE CHOICES ΣΤΗ ΛΟΓΙΣΤΙΚΗ (ΠΕ). ΙΔΑΝΙΚΟΣ (ΕΛΑΧΙΣΤΟΣ) ΧΡΟΝΟΣ ΟΛΟΚΛΗΡΩΣΗΣ ΤΟΥ TEST Η ΜΙΑ ΩΡΑ. Συντάκτης: Γεώργιος Μακρίδης MULTIPLE CHOICES ΣΤΗ ΛΟΓΙΣΤΙΚΗ (ΠΕ). ΙΔΑΝΙΚΟΣ (ΕΛΑΧΙΣΤΟΣ) ΧΡΟΝΟΣ ΟΛΟΚΛΗΡΩΣΗΣ ΤΟΥ TEST Η ΜΙΑ ΩΡΑ. Συντάκτης: Γεώργιος Μακρίδης 1. O Ισολογισμός της 31/12/2003 μιας ατομικής επιχείρησης έχει την ακόλουθη

Διαβάστε περισσότερα

Βασικές έννοιες των Αποτελεσμάτων Εκμετάλλευσης & Χρήσεως

Βασικές έννοιες των Αποτελεσμάτων Εκμετάλλευσης & Χρήσεως 1 Βασικές έννοιες των Αποτελεσμάτων Εκμετάλλευσης & Χρήσεως Με τον όρο κατάσταση αποτελεσμάτων χρήσεως, εννοούμε τη λογιστική κατάσταση, η ο- ποία παρουσιάζει συνοπτικά όλους εκείνους τους παράγοντες που

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά

Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά Ζήτηση, Προσφορά και Ισορροπία στην Ανταγωνιστική Αγορά - Ορισμός: Η αγορά ενός αγαθού είναι η διαδικασία (θεσμικό πλαίσιο) μέσω της οποίας έρχονται σε επικοινωνία οι αγοραστές και οι πωλητές του συγκεκριμένου

Διαβάστε περισσότερα

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου

Φυσική Β Γυμνασίου - Κεφάλαιο 2: Κινήσεις ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ. Φυσική Β Γυμνασίου ΚΕΦΑΛΑΙΟ 2: ΚΙΝΗΣΕΙΣ Φυσική Β Γυμνασίου Εισαγωγή Τα πάντα γύρω μας κινούνται. Στο διάστημα όλα τα ουράνια σώματα κινούνται. Στο μικρόκοσμο συμβαίνουν κινήσεις που δεν μπορούμε να τις αντιληφθούμε άμεσα.

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων: v x ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Α.Προσπαθείστε και απομνημονεύστε τον παρακάτω πίνακα βασικών ολοκληρωμάτων:. c d c c. d c. d c. d c. e d e c 6. d c 7. d c 8. d ln c 9. d c. d c,. Β. Οι παρακάτω τύποι

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1 ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ Κεφάλαιο 8 Ε. Σαρτζετάκης Διαφορισμός τιμών Τιμολόγησηότανηεπιχείρησηέχειισχυρήθέσηστηναγορά: διαφορισμός τιμών Οι επιχειρήσεις οι οποίες έχουν σε κάποιο βαθμό δύναμη σε κάποια αγορά

Διαβάστε περισσότερα

Αριθμοδείκτες διάρθρωσης κεφαλαίων 7 φ

Αριθμοδείκτες διάρθρωσης κεφαλαίων 7 φ Αριθμοδείκτες διάρθρωσης κεφαλαίων 7 φ Προκειμένου να εξετάσουμε την οικονομική κατάσταση μίας οικονομικής μονάδας σε μακροχρόνια κλίμακα θα πρέπει να αναλύσουμε την διάρθρωση των κεφαλαίων της. Λέγοντας

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

Εάν το ποσοστό υποχρεωτικών καταθέσεων είναι 25% και υπάρξει μια αρχική κατάθεση όψεως 2.000 σε μια εμπορική Τράπεζα, τότε η μέγιστη ρευστότητα που μπορεί να δημιουργηθεί από αυτή την κατάθεση είναι: Α.

Διαβάστε περισσότερα

Επενδύσεις σε Ακίνητα ΔΛΠ 40. Investment Property IAS 40

Επενδύσεις σε Ακίνητα ΔΛΠ 40. Investment Property IAS 40 Επενδύσεις σε Ακίνητα ΔΛΠ 40 Investment Property IAS 40 Σκοπός : Να καθορίσει το λογιστικό χειρισμό των επενδύσεων σε ακίνητα και τις σχετικές γνωστοποιήσεις στις Επεξηγηματικές Σημειώσεις Εφαρμόζεται

Διαβάστε περισσότερα

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001

Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 Θέµατα Αρχών Οικονοµικής Θεωρίας Επιλογής Γ' Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Στις προτάσεις, από Α.1. µέχρι και Α.6, να γράψετε τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό την ένδειξη Σωστό, αν η

Διαβάστε περισσότερα

Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι

Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι 2η Γραπτή Εργασία: ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΗ 1 (Μονάδες 23) Το συνολικό κόστος μιας επιχείρησης είναι TC=550 ευρώ όταν η παραγωγή είναι Q=100 τεμάχια και το σταθερό κόστος είναι FC=50

Διαβάστε περισσότερα

H Ελαστικότητα και οι Εφαρμογές της

H Ελαστικότητα και οι Εφαρμογές της H Ελαστικότητα και οι Εφαρμογές της (1) Ελαστικότητα της Ζήτησης 1A. Ελαστικότητα της Ζήτησης ως προς την Τιμή - Γιαναμετρήσουμετηνευαισθησίατηςζητούμενηςποσότητας( ) στις μεταβολές της τιμής (), μπορούμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Άρα, ο χρόνος απλής επανείσπραξης της επένδυσης Α, είναι τα 3 έτη.

Άρα, ο χρόνος απλής επανείσπραξης της επένδυσης Α, είναι τα 3 έτη. Άσκηση Έστω δυο επενδυτικές προτάσεις, Α και Β, αρχικού κόστους 200000000 και 236000000 η καθεμία αντίστοιχα. Το ελάχιστο απαιτούμενο ποσοστό απόδοσης που θέτεται ως manager είναι 8%. Οι μελλοντικές ταμιακές

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Αθηνών ΛΥΜΕΝΗ ΑΣΚΗΣΗ: ΗΜΕΡΟΛΟΓΙΟ ΓΕΝΙΚΟ ΚΑΘΟΛΙΚΟ ΑΡΙΘΜΟΔΕΙΚΤΕΣ

Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Αθηνών ΛΥΜΕΝΗ ΑΣΚΗΣΗ: ΗΜΕΡΟΛΟΓΙΟ ΓΕΝΙΚΟ ΚΑΘΟΛΙΚΟ ΑΡΙΘΜΟΔΕΙΚΤΕΣ Λογιστική Ι Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Αθηνών ΛΥΜΕΝΗ ΑΣΚΗΣΗ: ΗΜΕΡΟΛΟΓΙΟ ΓΕΝΙΚΟ ΚΑΘΟΛΙΚΟ ΑΡΙΘΜΟΔΕΙΚΤΕΣ Διδάσκοντες: Νικόλαος Ηρειώτης - Δημήτριος Μπάλιος - Ιωάννης Ντόκας - Κανέλλος Τούντας

Διαβάστε περισσότερα

www.arnos.gr κλικ στη γνώση Τιμολόγηση

www.arnos.gr κλικ στη γνώση Τιμολόγηση ΚΕΦΑΛΑΙΟ 8 Τιμολόγηση Παράγοντες επηρεασμού της τιμής Στόχος της τιμολογιακής πολιτικής πρέπει να είναι ο καθορισμός μιας ιδανικής τιμής η οποία θα ικανοποιεί τόσο τους πωλητές όσο και τους αγοραστές.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ιδάσκοντες: ΜΑΘΗΜΑ: Οικονοµικές, Εµπορικές και Παραγωγικές

Διαβάστε περισσότερα

Πάντειο Πανεπιστήμιο. Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics. Lecture 1: Trading in a Ricardian Model

Πάντειο Πανεπιστήμιο. Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics. Lecture 1: Trading in a Ricardian Model Πάντειο Πανεπιστήμιο Τμήμα Οικονομικής και Περιφερειακής Ανάπτυξης Msc. In Applied Economics Lecture 1: Trading in a Ricardian Model Το Ρικαρδιανό υπόδειγμα με ένα συντελεστή (συνέχεια) 1. Ο μόνος σημαντικός

Διαβάστε περισσότερα

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

2.1. ΑΠΛΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΠΡΟΒΛΗΜΑΤΩΝ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ . ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ( Linear Programming ) Ο Γραμμικός Προγραμματισμός είναι μια τεχνική που επιτρέπει την κατανομή των περιορισμένων πόρων μιας επιχείρησης με τον πιο

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Επιχειρηματικό Σχέδιο - Βασικά

Επιχειρηματικό Σχέδιο - Βασικά Επιχειρηματικό Σχέδιο - Βασικά στοιχεία χρηματο-οικονομικής οικονομικής ανάλυσης 1 ο θερινό σχολείο νεανικής επιχειρηματικότητας Πανεπιστήμιο Αιγαίου Μ. Μπεκιάρης Ποια ζητήματα θα μας απασχολήσουν; Πώς

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Εισοδήματος και Απασχόλησης Determination of Income and Employment

Εισοδήματος και Απασχόλησης Determination of Income and Employment ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ Προσδιορισμός Εισοδήματος και Απασχόλησης Determination of Income and Employment 1. Κεϋνσιανή θεωρία - Υπόδειγμα. Keynesian Model 1 Βασικές αρχές: Το μέγεθος του Εθνικού εισοδήματος (παραγόμενου

Διαβάστε περισσότερα

ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ

ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ ΜAΚΡΟΟΙΚΟΝΟΜΙΑ Α ΜΕΡΟΣ ΤΥΠΟΛΟΓΙΟ και ΑΣΚΗΣΕΙΣ ΑΘΗΝΑ ΙΑΝΟΥΑΡΙΟΣ 2014 ΕΠΙΜΕΛΕΙΑ - ΣΥΝΤΑΞΗ ΠΑΝΤΕΛΗΣ ΝΙΚΟΣ 1 ΜAΚΡΟΟΙΚΟΝΟΜΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΑΕΠ ΑΠΟ ΤΗΝ ΠΛΕΥΡΑ ΤΗΣ ΤΕΛΙΚΗΣ ΔΑΠΑΝΗΣ Y = C + I + G + ( X M) Y

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΣΗΜΕΙΩΣΕΙΣ Δ.Α.Π. Ν.Δ.Φ.Κ. ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ www.dap-papei.gr ΠΑΡΑΔΕΙΓΜΑ 1 ΑΣΚΗΣΗ 1 Η FASHION Α.Ε είναι μια από

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ. ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Ηράκλειο Κρήτης, Τ.Κ. 71004, Τηλ.2810379610 Fax.2810379680 ΑΝΑΚΟΙΝΩΣΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ. ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Ηράκλειο Κρήτης, Τ.Κ. 71004, Τηλ.2810379610 Fax.2810379680 ΑΝΑΚΟΙΝΩΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ : ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ Ηράκλειο Κρήτης, Τ.Κ. 71004, Τηλ.2810379610 Fax.2810379680 ΑΝΑΚΟΙΝΩΣΗ Χρόνος κατάθεσης δικαιολογητικών Η αίτηση και τα δικαιολογητικά

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 3 (Μακροοικονομική) Ακαδ. Έτος: 2007-8 Οδηγίες

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ ΜΑΡΚΕΤΙΝΓΚ

ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ ΜΑΡΚΕΤΙΝΓΚ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΟΥ ΜΑΡΚΕΤΙΝΓΚ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΜΑΘΗΜΑ: ΜΑΡΚΕΤΙΝΓΚ ΠΡΟΙΌΝΤΩΝ ΞΥΛΟΥ ΚΑΙ ΕΠΙΠΛΟΥ Έρευνα μάρκετινγκ Τιμολόγηση Ανάπτυξη νέων προϊόντων ΜΑΡΚΕΤΙΝΓΚ Τμηματοποίηση της αγοράς Κανάλια

Διαβάστε περισσότερα

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ Κεφάλαιο 7 Οικονοµικά της ευηµερίας! Τα οικονοµικά της ευηµερίας εξετάζουν τους τρόπους µε τους οποίους η κατανοµή των πόρων επηρεάζει την ευηµερία

Διαβάστε περισσότερα

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft:

ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: Specisoft ΑΡΘΡΟ: Επισκεφθείτε το Management Portal της Specisoft: NPV & IRR: Αξιολόγηση & Ιεράρχηση Επενδυτικών Αποφάσεων Από Αβραάμ Σεκέρογλου, Οικονομολόγo, Συνεργάτη της Specisoft Επισκεφθείτε το Management

Διαβάστε περισσότερα

Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος

Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος Αποτέλεσμα Υποκατάστασης και Αποτέλεσμα Εισοδήματος (Επιπτώσεις Μεταβολής της Τιμής στη Ζητούμενη Ποσότητα) () Διαγραμματική Παρουσίαση Α. Επιπτώσεις Μεταβολής της Τιμής στα Κανονικά Αγαθά M x / p (Π)

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Κόστος- Έξοδα - Δαπάνες

Κόστος- Έξοδα - Δαπάνες Κόστος- Έξοδα - Δαπάνες του συνεργάτη μας λογιστή Α Τάξεως Γεωργίου Τσιμπίκου Κόστος. ΚΟΣΤΟΣ είναι ένα αριθμητικό μέγεθος που αντιπροσωπεύει τα ποσά που επενδύθηκαν για την απόκτηση υλικών ή άϋλων αγαθών

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑ Α Α κ ΙΑΓΩΝΙΣΜΑ Β Α.1. Να χαρακτηρίσετε ΣΩΣΤΗ ή ΛΑΘΟΣ καθεµία από τις παρακάτω προτάσεις. Α.1.1. Η ουσία του οικονοµικού προβλήµατος των κοινωνιών οφείλεται στην έλλειψη χρηµατικού

Διαβάστε περισσότερα

Οικονοµικό Νοµικής (Εξετάσεις Φεβρουαρίου 2003) (Ολοκληρωµένη άσκηση)

Οικονοµικό Νοµικής (Εξετάσεις Φεβρουαρίου 2003) (Ολοκληρωµένη άσκηση) Οικονοµικό Νοµικής (Εξετάσεις Φεβρουαρίου 2003) (Ολοκληρωµένη άσκηση) Ο ισολογισµός της 31/12/2000 της εµπορικής επιχειρήσεως «ΑΛΦΑ-ΒΗΤΑ Α.Ε.» είχε ως ακολούθως (σε ευρώ) : Ενεργητικό Παθητικό Ακίνητο

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ ΑΚΑΘΑΡΙΣΤΟ ΕΓΧΩΡΙΟ ΠΡΟΙΟΝ. 1. Τι πρέπει να κατανοήσει o μαθητής

ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ ΑΚΑΘΑΡΙΣΤΟ ΕΓΧΩΡΙΟ ΠΡΟΙΟΝ. 1. Τι πρέπει να κατανοήσει o μαθητής ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ ΑΚΑΘΑΡΙΣΤΟ ΕΓΧΩΡΙΟ ΠΡΟΙΟΝ 1. Τι πρέπει να κατανοήσει o μαθητής Είναι το πρώτο κεφάλαιο που εξετάζει τα οικονομικά φαινόμενα από μια διαφορετική οπτική, τη μακροοικονομική, και προσεγγίζει

Διαβάστε περισσότερα

Εξίσωση - Φάση Αρµονικού Κύµατος 4ο Σετ Ασκήσεων - Χειµώνας 2012. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://perifysikhs.wordpress.

Εξίσωση - Φάση Αρµονικού Κύµατος 4ο Σετ Ασκήσεων - Χειµώνας 2012. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://perifysikhs.wordpress. Εξίσωση - Φάση Αρµονικού Κύµατος - Χειµώνας 2012 Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός http://perifysikhs.wordpress.com Α. Ερωτήσεις πολλαπλής επιλογής Α.1. Κατά τη διάδοση ενός κύµατος σε ένα

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας Κ1.1: Αναμενόμενες Χρηματικές Αξίες (ΑΧΑ) Οι ΑΧΑ ορίζονται ως η πιθανότητα ενός ενδεχόμενου επί το καθαρό ή μεικτό κέρδος (ή κόστος) του ενδεχόμενου συν η πιθανότητα του άλλου ενδεχόμενου επί το καθαρό

Διαβάστε περισσότερα

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25 Διάλεξη 6 Μονοπωλιακή Συμπεριφορά VA 25 1 Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέχρι στιγμής το μονοπώλιο έχει θεωρηθεί σαν μια επιχείρηση η οποία πωλεί το προϊόν της σε κάθε πελάτη στην ίδια τιμή. Δηλαδή

Διαβάστε περισσότερα

Εκτίµηση και Οµόλογα. Κεφάλαιο. 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου

Εκτίµηση και Οµόλογα. Κεφάλαιο. 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου 1. Κεφάλαιο 6 Εκτίµηση και Οµόλογα 6.1 Εκτίµηση και Κόστος Ευκαιρίας Κεφαλαίου Είναι καµιά φορά δύσκολο να εξηγήσει κανείς τι σηµαίνει παρούσα αξία σε κάποιον που δεν το έχει µελετήσει. Αλλά, όπως έχει

Διαβάστε περισσότερα

Ζητείται ο προσδιορισµός του αποτελέσµατος µε την πλήρη και την άµεση κοστολόγηση.

Ζητείται ο προσδιορισµός του αποτελέσµατος µε την πλήρη και την άµεση κοστολόγηση. Πλήρης και Αναλογική / Άµεση Κοστολόγηση Εφαρµογή Έστω ότι έχουµε τις ακόλουθες πληροφορίες για µία επιχείρηση: Άµεσα Υλικά 1.000 Η παραγωγή και πώληση ανέρχεται σε 1.000 µονάδες Άµεση Εργασία 2.000 και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΜΕ ΒΑΣΗ ΤΟ ΒΙΒΛΙΟ «ΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ» ΤΩΝ GARISSON ΚΑΙ NOREEN

ΑΣΚΗΣΕΙΣ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΜΕ ΒΑΣΗ ΤΟ ΒΙΒΛΙΟ «ΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ» ΤΩΝ GARISSON ΚΑΙ NOREEN ΑΣΚΗΣΕΙΣ ΙΟΙΚΗΤΙΚΗΣ ΛΟΓΙΣΤΙΚΗΣ ΜΕ ΒΑΣΗ ΤΟ ΒΙΒΛΙΟ «ΙΟΙΚΗΤΙΚΗ ΛΟΓΙΣΤΙΚΗ» ΤΩΝ GARISSON ΚΑΙ NOREEN Σχεδιασµός συστηµάτων: Κοστολόγηση κατά έργο ή κατά παραγγελία Άσκηση 1. Η εταιρεία ΛΑΜΑΠΛΑΣΤ Α.Ε. αντιµετωπίζει

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και A5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό,

Διαβάστε περισσότερα

Οικονομικά για Νομικούς Μέρος 1ο Οι δυνάμεις της προσφοράς και της ζήτησης

Οικονομικά για Νομικούς Μέρος 1ο Οι δυνάμεις της προσφοράς και της ζήτησης Πανεπιστήμιο Πειραιώς, Τμήμα Τραπεζικής και Χρηματοοικονομικής Διοικητικής Μεταπτυχιακό Πρόγραμμα «Χρηματοοικονομική Ανάλυση για Στελέχη» Οικονομικά για Νομικούς Μέρος 1ο Οι δυνάμεις της προσφοράς και

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΛΥΚΕΙΑ 6 η Δοκιμασία ο Θέμα Στις ερωτήσεις έως και 4 να επιλέξτε τη σωστή απάντηση αιτιολογώντας την απάντησή σας. Ερώτηση

Διαβάστε περισσότερα

Βαθμός 1 ου πακέτου. Βαθμός 2 ου πακέτου

Βαθμός 1 ου πακέτου. Βαθμός 2 ου πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδημαϊκό έτος 2013-2014 Τμήμα Οικονομικών Επιστημών Χειμώνας-Άνοιξη Μάθημα: Δημόσια Οικονομική Διδασκαλία: Βασίλης Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Δ.Α.Π.-Ν.Δ.Φ.Κ. ΤΜΗΜΑΤΟΣ ΟΡΓΑΝΩΣΗΣ & ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ www.dap-papei.gr 1 ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΔΗΜΟΣΙΟΝΟΜΙΚΗΣ

Διαβάστε περισσότερα

Γενικές αρχές διοίκησης. μιας μικρής επιχείρησης

Γενικές αρχές διοίκησης. μιας μικρής επιχείρησης Γενικές αρχές διοίκησης μιας μικρής επιχείρησης Η επιχείρηση αποτελεί μια παραγωγική - οικονομική μονάδα, με την έννοια ότι συνδυάζει και αξιοποιεί τους συντελεστές παραγωγής (εργασία, κεφάλαιο, γνώση,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

ΑΡΧΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΑΡΧΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ, ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΑΡΧΕΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΠΙΜΕΛΕΙΑ: ρ. ΑΠΟΣΤΟΛΟΣ ΑΣΙΛΑΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2011-2012 1 ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το µάθηµα αυτό έχει σκοπό

Διαβάστε περισσότερα

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 1 2 3 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 31 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΡΙΣΜΟΣ: Έστω δύο σύνολα Α και Β ΑΠΕΙΚΟΝΙΣΗ του συνόλου Α στο Β είναι η διμελής σχέση f A B για την οποία A αντιστοιχεί ένα και μόνο ένα y B δηλαδή

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα