ΑΝΑΠΤΥΞΗ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΝΟΗΜΟΣΥΝΗΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΚΡΙΣΙΜΩΝ ΜΕΓΕΘΩΝ ΣΕ ΜΟΝΩΤΗΡΕΣ ΥΨΗΛΗΣ ΤΑΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΝΑΠΤΥΞΗ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΝΟΗΜΟΣΥΝΗΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΚΡΙΣΙΜΩΝ ΜΕΓΕΘΩΝ ΣΕ ΜΟΝΩΤΗΡΕΣ ΥΨΗΛΗΣ ΤΑΣΗΣ"

Transcript

1 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΑΝΑΠΤΥΞΗ ΜΕΘΟΔΩΝ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΝΟΗΜΟΣΥΝΗΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΚΡΙΣΙΜΩΝ ΜΕΓΕΘΩΝ ΣΕ ΜΟΝΩΤΗΡΕΣ ΥΨΗΛΗΣ ΤΑΣΗΣ ΑΣΗΜΑΚΟΠΟΥΛΟΥ Η. ΓΕΩΡΓΙΑ Επιβλέποντες: ΙΩΑΝΝΗΣ ΑΘ. ΣΤΑΘΟΠΟΥΛΟΣ, ΒΑΣΙΛΙΚΗ Θ. ΚΟΝΤΑΡΓΥΡΗ, Ηλεκτρολόγος Μηχανικός Τριμελής Επιτροπή: ΙΩΑΝΝΗΣ ΑΘ. ΣΤΑΘΟΠΟΥΛΟΣ, Καθηγητής Ε.Μ.Π. ΠΕΡΙΚΛΗΣ Δ. ΜΠΟΥΡΚΑΣ, Καθηγητής Ε.Μ.Π. ΦΡΑΓΚΙΣΚΟΣ Β. ΤΟΠΑΛΗΣ Αναπληρωτής Καθηγητής Ε.Μ.Π. 1. ΕΙΣΑΓΩΓΗ Σκοπός της διπλωματικής εργασίας είναι η εκτίμηση της τιμής κρίσιμων μεγεθών σε μονωτήρες με τη βοήθεια των Τεχνητών Νευρωνικών Δικτύων (ΤΝΔ) και της Ασαφούς Λογικής. Η εκτίμηση της κρίσιμης τάσης υπερπήδησης ενός μονωτήρα βάσει των κατασκευαστικών χαρακτηριστικών του και του επιπέδου ρύπανσής του είναι πολύ σημαντική, καθόσον η αξιοπιστία του συστήματος ηλεκτρικής ενέργειας εξαρτάται σε σημαντικό βαθμό από την ικανότητα των μονωτήρων να απομονώνουν τα ηλεκτροφόρα στοιχεία ενός δικτύου μεταφοράς ηλεκτρικής ενέργειας από τα μη ηλεκτροφόρα. Ωστόσο, το φαινόμενο της υπερπήδησης των μονωτήρων προκαλεί την απώλεια της μονωτικής τους ικανότητας, γεγονός που μπορεί να οδηγήσει σε βλάβες του συστήματος. Αποδεικνύεται ότι, στην προσπάθεια που καταβάλλουμε για την εκτίμηση της κρίσιμης τάσης υπερπήδησης, η συμβολή των ΤΝΔ και της Ασαφούς Λογικής είναι σημαντική. Ο αλγόριθμος που αναπτύχθηκε τόσο στην περίπτωση των ΤΝΔ, όσο και στην Ασαφή Λογική δέχεται ως εισόδους τη μέγιστη διάμετρο, το ύψος, το μήκος ερπυσμού, το συντελεστή μορφής του μονωτήρα και την επιφανειακή αγωγιμότητα του στρώματος ρύπανσης. Κατόπιν, βάσει διαφόρων μεθόδων εκπαίδευσης των Τεχνητών Νευρωνικών Δικτύων και

2 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 2 μεθόδων εξαγωγής συμπεράσματος Ασαφούς Λογικής προκύπτει η προβλεπόμενη τιμή της κρίσιμης τάσης υπερπήδησης. Τέλος, συγκρίνονται τα αποτελέσματα των διαφόρων μεθόδων χρησιμοποιώντας ως μέτρο σύγκρισης τη συσχέτιση μεταξύ των πραγματικών και των εκτιμούμενων τιμών, ώστε να διαπιστωθεί η καταλληλότητα τους. 2. ΤΟ ΦΑΙΝΟΜΕΝΟ ΤΗΣ ΥΠΕΡΠΗΔΗΣΗΣ ΣΤΟΥΣ ΜΟΝΩΤΗΡΕΣ Το φαινόμενο της υπερπήδησης μονωτήρων λόγω ρύπανσης αναφέρεται στο γεγονός ότι δημιουργείται γεφύρωση με ηλεκτρικό τόξο, που οδεύει διαμέσου του αέρα του διακένου, μεταξύ του σημείου πρόσδεσης του αγωγού της γραμμής στο μονωτήρα και του γειωμένου σημείου στήριξης ή ανάρτησης του μονωτήρα. University of Stellenbosch, South Africa Helsinki University of Technology NGK - High Voltage Laboratory Σχήμα 1: Διάσπαση μονωτήρων Το φαινομενικό παράδοξο στην υπερπήδηση μονωτήρων λόγω ρύπανσης είναι ότι πα-

3 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 3 ράγονται καταστροφικές ηλεκτρικές εκκενώσεις, που επεκτείνονται σε μέτρα αέρα, από ηλεκτρικά δυναμικά τα οποία, σε κανονικές συνθήκες, θα μπορούσαν να αναχαιτιστούν από διάκενα αέρος μήκους λίγων εκατοστών. Με κάποιον τρόπο, η παρουσία δυσδιάκριτων αγώγιμων σωματιδίων, τα οποία επικάθονται σε μια επιφάνεια, που αλλιώς θα ήταν ισχυρά μονωτική, μειώνει την πραγματική ηλεκτρική αντοχή της κατά έναν παράγοντα όχι πολύ μικρότερο του 100. Τα αίτια γι αυτό είναι δύο: α) η εντοπισμένη αφυδάτωση ενός στρώματος ηλεκτρολύτη αυξάνει τις ασυνέχειες στο αγώγιμο στρώμα γνωστές και ως ξηρές ζώνες κατά μήκος των οποίων παράγονται ηλεκτρικές τάσεις (stresses) που επαρκούν για να ιονιστεί ο αέρας και β) τα τόξα σε ένα αέριο, που από τη στιγμή που δημιουργούνται μπορούν εύκολα να επεκταθούν χωρίς εξασθένηση. Για μεγάλο μέρος της ζωής του ένας μονωτήρας θα λειτουργεί με ξηρές ζώνες στην επιφάνειά του τις οποίες κατά καιρούς διαπερνούν ηλεκτρικές εκκενώσεις. Αυτές οι εκκενώσεις είναι ακίνδυνες, εκτός από τα προβλήματα πιθανής πρόκλησης παρεμβολών και επιφανειακών βλαβών για τα οποία ευθύνονται. Μόνο πολύ σπάνια ο συνδυασμός αγωγιμότητας και ηλεκτρικής τάσης θα είναι τέτοιος που θα επιτρέπει την ανάπτυξη ενός τόξου με τόσο ρεύμα, ώστε να αυτο-διατηρείται και να διαδίδεται: τότε προκαλείται διάσπαση. Το τεχνικό πρόβλημα είναι ότι η επιφανειακή αγωγιμότητα που προκαλεί τη διάσπαση παραμένει, ακόμα κι όταν το τόξο έχει εξαλειφθεί από τη λειτουργία της προστασίας, γεγονός που επιτρέπει να ακολουθήσουν κι άλλες διασπάσεις [1]. Παραπάνω (Σχήμα 1) παρουσιάζονται χαρακτηριστικές φωτογραφίες του φαινομένου της υπερπήδησης προερχόμενες από ιστοσελίδες Εργαστηρίων Υψηλών Τάσεων Στάδια της υπερπήδησης σε ένα μονωτήρα εξαιτίας της ρύπανσης Α) Δημιουργία στρώματος ρύπανσης στην επιφάνεια του μονωτήρα Η ρύπανση μπορεί να προκληθεί από διάφορες πηγές, όπως είναι η αιωρούμενη τέφρα, το αλάτι της θάλασσας, η σκόνη από τις βιομηχανίες κ.ά.. Η εναπόθεση των ρύπων επηρεάζεται από την αλληλεπίδραση διαφόρων δυνάμεων που επιδρούν ταυτόχρονα στα σωματίδια που τους αποτελούν (π.χ. της βαρύτητας, του ανέμου και των ηλεκτροστατικών δυνάμεων). Τα αγώγιμα συστατικά των ρύπων επηρεάζουν την τάση διάσπασης του

4 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 4 μονωτήρα δημιουργώντας, όταν αυτός βραχεί, ένα αγώγιμο στρώμα στην επιφάνειά του. Τα αδρανή συστατικά απ την άλλη είναι το ποσοστό του στερεού υλικού που δεν διαλύεται, αλλά σχηματίζει ένα μηχανικό περίβλημα στο οποίο ενσωματώνεται το αγώγιμο στρώμα [2]. Υγρασία μπορεί να παραχθεί υπό συνθήκες ομίχλης ή πάχνης κατά τις πρωινές ώρες. Επίσης, το ψιχάλισμα και η βροχή μπορεί να έχουν το ίδιο αποτέλεσμα. Έτσι, καταστάσεις που προειδοποιούν για πιθανή διάσπαση του μονωτήρα είναι οι εξής: 1. Η πτώση σχεδόν καθαρού νερού, όπως σταγόνες, βροχή ή ομίχλη, σε ένα μονωτήρα, πάνω στον οποίο βρίσκεται ποσότητα ρύπανσης που περιλαμβάνει διαλυτά ιοντικά στοιχεία, όπως το κοινό αλάτι. 2. Η εναπόθεση σταγονιδίων θαλάσσιας ή βιομηχανικής ομίχλης, ή άλλου συνδυασμού νερού και ηλεκτρολύτη. 3. Η συγκέντρωση παγετού, παγετώδους ομίχλης ή πάγου στη βρώμικη επιφάνεια ενός μονωτήρα. Τότε, τα ιοντικά συστατικά των ρύπων ενεργούν, ώστε να μειώσουν το σημείο ψύξης του νερού κι έτσι επιτρέπουν την ύπαρξη υγρού διαλύματος στο σημείο επαφής των δύο επιφανειών. 4. Η ένταξη ενός κυκλώματος που περιέχει υγρούς και βρώμικους μονωτήρες. 5. Η έλευση μιας προσωρινής υπέρτασης, ή μιας μεταβατικής αιχμής, σε ένα μονωτήρα υγρό, βρώμικο και πιθανόν ήδη ενεργοποιημένο. Από αυτές τις περιπτώσεις, η πρώτη είναι η πιο συνηθισμένη. Κυρίως σε ερημικές περιοχές, τα περιστατικά διασπάσεων σχετίζονται με περιόδους υγρασίας και πρωινής πάχνης, ενώ στις θαλάσσιες περιοχές οι επικίνδυνες ώρες είναι αυτές της ομίχλης με άπνοια. Ταυτόχρονη εναπόθεση νερού και διαλυμένων ουσιών συμβαίνει συνήθως σε καταιγίδες στην ξηρά. Η περίπτωση της παγετώδους ομίχλης έχει προκαλέσει μερικά απ τα πιο σοβαρά περιστατικά, όπως ήταν το 1962 τα πολλαπλά προβλήματα και η προσωρινή διακοπή στο δίκτυο μεταφοράς της Αγγλίας. Το στρώμα ηλεκτρολύτη που προκαλεί το πρόβλημα είναι κολλημένο πάνω στο μονωτήρα και απαιτείται η αφαίρεσή του με καθαρισμό. Η τέταρτη και η πέμπτη περίπτωση είναι λιγότερο συνηθισμένες [1].

5 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 5 Β) Σχηματισμός ξηρών ζωνών Το στρώμα ηλεκτρολύτη, που σχηματίζεται κατά μήκος του μονωτήρα, μειώνει την επιφανειακή αντίσταση και ένα υπολογίσιμο ρεύμα διαρροής μπορεί πλέον να κυκλοφορήσει. Το επιφανειακό αυτό ρεύμα έχει σαν αποτέλεσμα την ωμική θέρμανση της επιφάνειας. Η αγωγιμότητα αρχικά αυξάνεται με την αύξηση της θερμοκρασίας, αλλά όταν φτάσει μια συγκεκριμένη τιμή, η εξάτμιση του νερού γίνεται υπολογίσιμη και το διάλυμα γίνεται υπερκορεσμένο σε αλάτι. Η επιφάνεια αρχίζει να ξηραίνεται στις ζώνες με τη μεγαλύτερη διαφεύγουσα ισχύ και η αγωγιμότητα σ αυτές τις ζώνες πέφτει γρήγορα, έως ότου μηδενιστεί. Η κατανομή της ροής του ρεύματος μεταβάλλεται, εντείνοντας την πλευρική ξήρανση και δημιουργώντας ξηρές ζώνες [2]. Καθώς οι ξηρές ζώνες είναι απομονωμένες, η επιφανειακή δραστηριότητα συνεχίζεται μέσα στην περιοχή της ζώνης. Γ) Μερικές εκκενώσεις και υπερπήδηση Μετά τη δημιουργία μια ξηρής ζώνης, το μεγαλύτερο μέρος της τάσης που εφαρμόζεται στο μονωτήρα επιβάλλεται στην ξηρή ζώνη, λόγω της υψηλότερης αντίστασης που αυτή έχει. Υπερπήδηση λαμβάνει χώρα εάν μια εκκένωση ξηρής ζώνης επεκταθεί στην εναπομένουσα υγρή επιφάνεια του μονωτήρα. Οι μερικές εκκενώσεις εξαλείφονται λίγο πριν το μηδενισμό της τάσης. Εάν παρ όλ αυτά η τιμή της τάσης και του ρεύματος διαρροής είναι αρκετά υψηλή, οι εκκενώσεις μπορεί να επεκταθούν σε ολόκληρο το μήκος του μονωτικού και να αρχίσει το φαινόμενο της υπερπήδησης. Η ορατή δραστηριότητα στην επιφάνεια δεν σημαίνει πάντα ότι θα συμβεί υπερπήδηση, καθώς το ρεύμα διαρροής μπορεί να εξαλειφθεί εάν υπάρχει ανεπαρκής διαφεύγουσα ισχύς. Αν όμως το τόξο επεκταθεί και καταφέρει να καλύψει ένα κρίσιμο μήκος, τότε η διάσπαση είναι πρακτικά αναπόφευκτη. Τα παραπάνω ισχύουν για τους μονωτήρες πορσελάνης. Στους πολυμερείς μονωτήρες υπάρχουν κάποιες διαφοροποιήσεις στη διαδικασία της διάσπασης. Τα στάδια αυτής είναι: Εναπόθεση ρύπανσης: Πραγματοποιείται με τον ίδιο τρόπο, όπως και στους μονωτήρες πορσελάνης. Ύγρανση: Επειδή οι πολυμερείς μονωτήρες έχουν υδρόφοβες επιφάνειες, η υγρασία σχηματίζει σταγονίδια πάνω σ αυτές, τα οποία κυλούν εξαιτίας της βαρύτητας. Όταν η

6 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 6 βαρύτητα δεν είναι ικανή να ενισχύσει την κίνηση των σταγονιδίων, αυτά παραμένουν διαχωρισμένα στις θέσεις τους. Άλατα και/ή αγώγιμη ρύπανση διαλύονται στις σταγόνες νερού αυξάνοντας την αγωγιμότητα του υγρού. Σχηματισμός αγώγιμου στρώματος: Η παραμένουσα ξηρή επιφάνεια ρύπανσης σταδιακά υγραίνεται μέσω της μετακίνησης των σταγονιδίων. Αυτό σχηματίζει ένα αγώγιμο στρώμα ισχυρά ωμικής συμπεριφοράς με αποτέλεσμα το ρεύμα διαρροής να μεταβάλλεται από χωρητικό σε ωμικό. Θερμότητα (ωμική): Πραγματοποιείται με τον ίδιο τρόπο, όπως και στους μονωτήρες πορσελάνης. Επίδραση του ηλεκτρικού πεδίου σε υδροφοβική επιφάνεια: Το εφαρμοζόμενο ηλεκτρικό πεδίο προκαλεί την ένωση των σταγονιδίων, που βρίσκονται σε μικρή απόσταση μεταξύ τους, σε μια μεγάλη σταγόνα νηματοειδούς μορφής. Ο μηχανισμός της υπερπήδησης διαρκεί περισσότερο σε μια υδροφοβική επιφάνεια εξαιτίας του χρόνου που απαιτείται για να σχηματιστεί μια αγώγιμη διαδρομή με νηματοειδείς σταγόνες. Μερικές εκκενώσεις σε υδροφοβικές επιφάνειες: Οι νηματοειδείς σταγόνες μειώνουν την απόσταση μεταξύ των άκρων του μονωτικού, αυξάνοντας το ηλεκτρικό πεδίο μεταξύ των γειτονικών νηματοειδών σταγόνων. Όταν η τάση αποκτήσει κατάλληλη τιμή, τότε μπορεί να συμβούν επιφανειακές εκκενώσεις. Εξασθένηση της υδροφοβικότητας: Οι εκκενώσεις καταστρέφουν ένα λεπτό στρώμα πολυμερούς γύρω από τα σταγονίδια και μειώνουν την υδροφοβικότητα, περιστρέφοντας ή σπάζοντας τις πολυμερείς αλυσίδες. Η απώλεια ή η εξασθένηση της επιφανειακής υδροφοβικότητας έχει ως αποτέλεσμα την εξάπλωση των σταγόνων και το σχηματισμό ενός συνεχούς αγώγιμου στρώματος, επιτρέποντας τη ροή του ρεύματος διαρροής. Σχηματισμός ξηρής ζώνης: Οι ξηρές ζώνες σχηματίζονται όπως και στους μονωτήρες πορσελάνης. Η προκύπτουσα δραστηριότητα προκαλεί επιφανειακή διάβρωση, ο ρυθμός της οποίας εξαρτάται από τον τρόπο σχηματισμού του συγκεκριμένου υλικού και συμβάλλει στη γήρανση. Αποκατάσταση της υδροφοβικότητας: Η ολική ή μερική αποκατάσταση της υδροφοβικότητας είναι δυνατή μόνο αν το υλικό εκφορτιστεί ελεύθερα για ικανό χρονικό διάστη-

7 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 7 μα. Η διαδικασία αποκατάστασης εξαρτάται από το υλικό, τον τρόπο σχηματισμού του, το σχεδιασμό του μονωτήρα και το περιβάλλον. Επανάληψη του κύκλου γήρανσης: Η επανάληψη του κύκλου γήρανσης προκαλεί επιπλέον ύγρανση και πιθανόν διάβρωση της επιφάνειας, φαινόμενα τα οποία ενισχύονται από χημικές αντιδράσεις και τοπική άνοδο της θερμοκρασίας. Κατά τη διάρκεια εκκένωσης η θερμοκρασία σε κάποια σημεία μπορεί να φτάσει τους 400 ο C. Υπερπήδηση: Η υπερπήδηση μπορεί να συμβεί, ακολουθώντας την ίδια διαδικασία όπως σε μονωτήρες πορσελάνης, εάν η επιφάνεια γίνει υδρόφιλη. Οι υδρόφοβες επιφάνειες αντιστέκονται περισσότερο στη ροή του ρεύματος διαρροής από τις υδρόφιλες επιφάνειες και απαιτούν υψηλότερο ρεύμα διαρροής και αντίστοιχη έκλυση ενέργειας, προκειμένου να ξεκινήσει η υπερπήδηση. Αυτός είναι ο λόγος για τον οποίο οι πολυμερείς μονωτήρες παρουσιάζουν μεγαλύτερη τάση υπερπήδησης από τους μονωτήρες πορσελάνης. Όπως και στους πορσελάνινους μονωτήρες, όλοι οι παραπάνω μηχανισμοί πρέπει να συμβούν διαδοχικά για να οδηγήσουν σε υπερπήδηση. Εάν η διαδικασία διακοπεί, η υπερπήδηση δεν λαμβάνει χώρα. 3. ΥΠΟΛΟΓΙΣΤΙΚΗ ΝΟΗΜΟΣΥΝΗ 3.1. Εισαγωγή Η υπολογιστική νοημοσύνη αποτελεί έναν επιστημονικό τομέα που αναπτύχθηκε κατά τη διάρκεια του 20 ου αιώνα και παρουσιάζει ένα πλήθος εφαρμογών. Οι τρεις κλάδοι, από τους οποίους αποτελείται, καλούνται να λύσουν προβλήματα τα οποία άπτονται θεμάτων αναγνώρισης προτύπων, αυτομάτου ελέγχου και επιχειρησιακών-διοικητικών αποφάσεων [3] και είναι οι εξής: τα τεχνητά νευρωνικά δίκτυα, η ασαφής λογική και οι γενετικοί αλγόριθμοι Νευρωνικά Δίκτυα Γενικά περί Νευρωνικών Δικτύων Τα Τεχνητά Νευρωνικά Δίκτυα (Artificial Neural Networks - ΤΝΔ) μιμούνται την κατανεμημένη λειτουργία του ανθρωπίνου εγκεφάλου, εξ ου και το όνομά τους [3]. Απο-

8 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 8 τελούνται από ένα μεγάλο αριθμό μη γραμμικών επεξεργαστών ειδικού τύπου (πολλά δομικά στοιχεία) οι οποίοι καλούνται τεχνητά νευρόνια. Τα νευρόνια ελέγχονται από προσαρμοζόμενες παραμέτρους και είναι ικανά να μαθαίνουν, να γενικεύουν και να ανταποκρίνονται με εξυπνάδα σε νέα ερεθίσματα. Η κυριότερη εφαρμογή τους αφορά στη μοντελοποίηση αγνώστων συστημάτων με μη γραμμική συμπεριφορά χωρίς να είναι απαραίτητη η a priori γνώση κάποιου μαθηματικού μοντέλου αυτών. Η λειτουργία τους βασίζεται στη λειτουργία του ανθρωπίνου εγκεφάλου και επικαλούνται την ιδέα της μοντελοποίησης μαύρου κουτιού χρησιμοποιώντας μοντέλα του ανθρωπίνου εγκεφάλου τα οποία εμπνέονται από τη βιολογία και τη νευροφυσιολογία. Το νευρόνιο ή νευρώνας είναι το θεμελιακό δομικό στοιχείο του ανθρώπινου νευρικού συστήματος. Όλα τα νευρόνια αποτελούνται από το κυτταρικό σώμα, τους δενδρίτες και τον άξονα (βλ. Σχήμα 2). Σχήμα 2: Δομή τυπικού βιολογικού νευρονίου. Το κυτταρικό σώμα είναι το κεντρικό μέρος του νευρονίου και το σχήμα του μπορεί να είναι στρογγυλό, τριγωνικό, σταγονοειδές, μυτερό στα δύο άκρα κλπ., ανάλογα με το είδος του νευρονίου: οπτικό, ακουστικό, αφής, μυϊκό (κίνησης) κοκ. Η σύνδεση του νευρονίου με τα πολυάριθμα γειτονικά νευρόνια γίνεται μέσω του άξονα και των συνάψεων. Οι δενδρίτες συνθέτουν την εξωτερική επιφάνεια του νευρονίου και μεταφέρουν πληροφορίες στο σώμα του κυττάρου. Ο άξονας, που αποτελεί το τμήμα εξόδου του νευρικού κυττάρου, είναι μία λεπτή κυλινδρική ίνα η οποία μπορεί να μεταφέρει ηλεκτροχημικά πληροφορίες με βάση την κατάσταση του κυττάρου. Κάθε ΤΝΔ χαρακτηρίζεται από μία κατάσταση, ένα σύνολο εισόδων με βάρη που προέρχονται από άλλα νευρόνια και μία εξίσωση η οποία περιγράφει τη δυναμική λειτουργία του. Τα βάρη του ΤΝΔ ανανεώνονται μέσω μίας διαδικασίας μάθησης (εκπαίδευσης), η

9 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 9 οποία πραγματοποιείται με την ελαχιστοποίηση κάποιας συνάρτησης κόστους (σφάλματος). Οι βέλτιστες τιμές των βαρών αποθηκεύονται (ως δυνάμεις των διασυνδέσεων μεταξύ των νευρονίων) και χρησιμοποιούνται κατά την εκτέλεση της εργασίας για την οποία προορίζεται το ΤΝΔ. Τα ΤΝΔ είναι κατάλληλα για προβλήματα για τα οποία ο συνήθης υπολογισμός δεν είναι αποδοτικός, λ.χ. μηχανική όραση, αναγνώριση προτύπων, αναγνώριση φωνής, μη γραμμική πρόβλεψη, ελεύθερη μοντέλου αναγνώριση συστημάτων, αυτόματο έλεγχο, ρομποτική, επιχειρησιακά προβλήματα κοκ. Στο Σχήμα 3 φαίνεται το βασικό μοντέλο του τεχνητού νευρονίου και το οποίο στηρίζεται στο μοντέλο των McCulloch και Pitts. Σχήμα 3: Βασικό μοντέλο τεχνητού νευρονίου. Το τεχνητό νευρόνιο αποτελείται από: α) ένα σύνολο κλάδων διασύνδεσης (συνάψεις), β) έναν κόμβο γραμμικής άθροισης και γ) μία συνάρτηση ενεργοποίησης (μη γραμμικότητα). Κάθε κλάδος διασύνδεσης έχει ένα βάρος το οποίο είναι θετικό αν η σύναψη είναι διεγερτικού τύπου ή αρνητικό αν η σύναψη είναι απαγορευτικού ή αναχαιτιστικού τύπου. Ο κόμβος άθροισης αθροίζει τα σήματα εισόδου αφού αυτά πολλαπλασιάζονται με τα αντίστοιχα βάρη των συνάψεων. Συνεπώς, ο κόμβος άθροισης είναι μια μονάδα γραμμικού συνδυασμού. Τέλος, η συνάρτηση ενεργοποίησης περιορίζει το επιτρεπόμενο πλάτος του σήματος εξόδου σε κάποια πεπερασμένη τιμή (συνήθως στο κανονικοποιημένο διάστημα [0,1] ή, εναλλακτικά, στο διάστημα [-1,1]). Το μοντέλο του νευρονίου περιέχει επίσης ένα κατώφλι θ, που εφαρμόζεται εξωτερικά και, πρακτικά, υποβιβάζει την καθαρή είσοδο στη συνάρτηση ενεργοποίησης. Ως συναρτήσεις ενεργοποίησης χρησιμοποιήθηκαν οι εξής:

10 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 10 Λογιστική Υπερβολική εφαπτομένη Γραμμική f(u)=1/(1+e -(αu+b) ) f(u)=tanh(αu+b) f(u)=αu+b Μάθηση Νευρωνικών Δικτύων Η μάθηση είναι μια θεμελιακή ικανότητα των ΤΝΔ, η οποία τους επιτρέπει να μαθαίνουν από το περιβάλλον τους και να βελτιώνουν τη συμπεριφορά τους με το πέρασμα του χρόνου [3]. Στα ΤΝΔ, η μάθηση αναφέρεται στη διεργασία επίτευξης μιας επιθυμητής συμπεριφοράς μέσω ανανέωσης της τιμής των συναπτικών βαρών. Μ αυτόν τον τρόπο, ένα ΤΝΔ μαθαίνει για το περιβάλλον του μέσω μιας επαναληπτικής διαδικασίας ανανέωσης (αλλαγής) των συναπτικών βαρών και κατωφλίων. Αλγόριθμος μάθησης ή εκπαίδευσης είναι κάθε προκαθορισμένο σύνολο καλά ορισμένων κανόνων επίλυσης του προβλήματος εκπαίδευσης του ΤΝΔ. Υπάρχουν πολλοί αλγόριθμοι μάθησης στα ΤΝΔ κάθε ένας από τους οποίους προσφέρει έναν άλλο τρόπο προσαρμογής (επιλογής/ανανέωσης των συναπτικών βαρών). Στην εργασία αυτή χρησιμοποιήθηκε μάθηση με επίβλεψη. Σε αυτήν την περίπτωση, τα νευρωνικά δίκτυα πρέπει να έχουν ελεύθερες (επιλέξιμες) παραμέτρους οι οποίες ανανεώνονται με κάποιο κανόνα επιβλεπόμενης μάθησης, όπως φαίνεται στο Σχήμα 4. Σχήμα 4: Δομή της επιβλεπόμενης μάθησης Ο Αλγόριθμος Ανάστροφης Διάδοσης Σφάλματος Έστω ότι έχουμε ένα σύνολο εκπαίδευσης που αποτελείται από Ν ζεύγη της μορφής [ x, d ], όπου x διάνυσμα εισόδου (πρότυπο) και d το διάνυσμα των επιθυμητών εξόδων όταν εφαρμοσθεί σαν είσοδος το πρότυπο x [4]. Το σφάλμα στην έξοδο του τυχαίου νευρώνα j, ο οποίος είναι κόμβος εξόδου, για την n- ιοστή επανάληψη όπου και εφαρμόζεται η είσοδος x( n), n 1,..., Nδίνεται από τον τύπο: e ( n) d ( n) y ( n) (1) j j j

11 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 11 όπου d j και y j η επιθυμητή και η πραγματική έξοδος αντίστοιχα του νευρώνα j όταν εφαρμόζεται η x( n). Σχήμα 5: Δομή του k νευρονίου εξόδου. Η στιγμιαία τιμή του τετραγωνικού σφάλματος για τον νευρώνα j ορίζεται ως 1 2 e ( n ) και το άθροισμα των τετραγωνικών σφαλμάτων όλων των νευρώνων εξόδου για την επανάληψη n δίδεται από τη σχέση: 1 G n e n (2) 2 ( ) j ( ) 2 jc 2 j όπου C το σύνολο των νευρώνων. Επιπρόσθετα ορίζουμε τη μέση τιμή των σφαλμάτων για όλα τα Ν πρότυπα ως εξής: 1 1 Gav G n e n N N N 2 ( ) j ( ) n1 2N n1 jc (3) Προφανώς τόσο το G, όσο και το G av εξαρτώνται από τις ελεύθερες παραμέτρους του δικτύου, που δεν είναι άλλες από τα βάρη μεταξύ των συνδέσεων, αλλά και τις πολώσεις. Ο σκοπός της διαδικασίας εκπαίδευσης είναι φυσικά η ελαχιστοποίηση της μέσης τιμής των σφαλμάτων G av, με την ανάλογη προσαρμογή των ελευθέρων παραμέτρων του δικτύου. Για να επιτευχθεί αυτό χρησιμοποιούμε μια συγκεκριμένη λογική όπου θεωρούμε ότι τα βάρη ενημερώνονται μετά το πέρασμα κάθε προτύπου, σύμφωνα με τα σφάλματα που παρουσιάζονται κατά την παρουσίαση του αντίστοιχου προτύπου στο δίκτυο. Ουσιαστικά θα λέγαμε ότι η μέση τιμή των μεταβολών όλων των βαρών είναι μια προσεκτική εκτίμηση της πραγματικής μεταβολής των βαρών, που προκύπτει από τη διαδικασία ελαχιστοποίησης του G av.

12 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 12 Όπως παρατηρούμε από το Σχήμα 5, ο νευρώνας εξόδου j τροφοδοτείται από τα σήματα εξόδου όλων των νευρώνων του προηγούμενου επιπέδου. Οπότε το σήμα u j (n) δίνεται από τη σχέση: p u ( n) w ( n) y ( n) (4) j ji i i0 όπου p είναι το σύνολο όλων των νευρώνων του προηγούμενου επιπέδου. Θα πρέπει να σημειωθεί ότι το βάρος w j0 (για i=0) είναι η λεγόμενη πόλωση και αντιστοιχεί σε εξωτερική είσοδο y 0 =-1. Συνεπώς το σήμα εξόδου y j (n) του νευρώνα εξόδου j κατά την επανάληψη n θα δίνεται από τη σχέση: y ( n) u ( n) (5) j j Ο αλγόριθμος προβαίνει σε κάθε επανάληψη σε μια διόρθωση Δw ji (n) στο βάρος w ji (n), G( n) η οποία είναι ανάλογη της κλίσης, σύμφωνα με τον τύπο της πιο απότομης κα- w ( n) τάβασης (steepest descent): ji G( n) wki ( n) (για το n πρότυπο εισόδου) (6) w ( n) ji Η τελική σχέση για τη διόρθωση των βαρών είναι: w ( n) ( n) y ( n) (7) ji j i όπου j ( n) e j ( n) u j ( n) για το επίπεδο εξόδου και j ( n) u j ( n) k ( n) wkj ( n) για ενδιάμεσο επίπεδο. Κρίσιμα ζητήματα για την απόδοση του πολυεπίπεδου τεχνητού νευρωνικού δικτύου είναι τα ακόλουθα: Προσθήκη όρου ορμής: Ο αλγόριθμος της οπίσθιας τροφοδότησης δίνει μια προσέγγιση της τροχιάς των βαρών, η οποία υπολογίζεται με τη λεγόμενη μέθοδο της απότομης καθόδου. Όσο μικρότερος είναι ο ρυθμός μάθησης, τόσο μικρότερη είναι η μεταβολή των βαρών σε κάθε επανάληψη και άρα τόσο πιο ομαλή είναι και η τροχιά της καμπύλης των βαρών. Συνεπώς το κόστος για υψηλό επίπεδο μάθησης είναι ο αργός ρυθμός μάθησης. Αν χρησιμοποιηθεί υψηλός ρυθμός μάθησης για να επιταχυνθεί η διαδικασία, η καμπύλη των βαρών δεν θα είναι ομαλή, καθώς θα υπάρξουν απότομες μεταβο- k

13 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 13 λές, με αποτέλεσμα να εμφανίζεται κίνδυνος αστάθειας του αλγόριθμου. Ένας τρόπος εξάλειψης των παραπάνω κινδύνων είναι η τροποποίηση του κανόνα αναπροσαρμογής των βαρών που περιγράφεται από τη σχέση (7) με την προσθήκη ενός όρου ορμής (momentum term) α, που ονομάζεται και σταθερά ορμής και είναι συνήθως θετικός αριθμός: w ( n) w ( n 1) ( n) y ( n) (8) ji ji j i Τρόποι εκπαίδευσης: Η διαδικασία εκπαίδευσης κατά τον αλγόριθμο οπισθοδρομικής διάδοσης σφάλματος πραγματοποιείται με την παρουσίαση και εφαρμογή στο νευρωνικό δίκτυο ενός συνόλου διανυσμάτων εκπαίδευσης. Η παρουσίαση όλων των προτύπων εκπαίδευσης μια φορά το καθένα στο δίκτυο ονομάζεται εποχή (epoch). Κατά τη συνολική διαδικασία εκπαίδευσης εκτελούνται επαναλήψεις των εποχών, ώσπου τα βάρη του δικτύου να σταθεροποιηθούν σε συγκεκριμένες τιμές που οδηγούν στη σύγκλιση της μέσης τιμής των σφαλμάτων για όλα τα πρότυπα εκπαίδευσης. Σε κάθε εποχή υπάρχει ο τυχαίος και ο σειριακός τρόπος παρουσίασης των προτύπων εκπαίδευσης. Ο πρώτος τρόπος έχει το πλεονέκτημα της εξασφάλισης του στοχαστικού χαρακτήρα της μάθησης και το μειονέκτημα των συνεχών και μη αμελητέων ταλαντώσεων των σφαλμάτων εκπαίδευσης και αξιολόγησης, ώσπου να καταλήξει στο τελικό αποτέλεσμα. Από την άλλη ο δεύτερος τρόπος, της εν σειρά παρουσίασης προτύπων, δίνει συνήθως χαμηλότερο σφάλμα εκπαίδευσης και μεγαλύτερη δυνατότητα ελέγχου αυτού του σφάλματος, αλλά εμπεριέχει τον κίνδυνο της λεγόμενης «αποστήθισης» του δικτύου της συγκεκριμένης σειράς παρουσίασης των προτύπων, με αποτέλεσμα το τελικό σφάλμα αξιολόγησης να είναι συνήθως υψηλότερο σε σχέση με εκείνο του τυχαίου τρόπου παρουσίασης. Κριτήρια τερματισμόυ: Χρησιμοποιήθηκε μία ολοκληρωμένη τεχνική αξιολόγησης των τεχνητών νευρωνικών δικτύων. Συγκεκριμένα αξιοποιήθηκε ένα ανεξάρτητο σύνολο προτύπων, που ονομάζεται σύνολο επικύρωσης ή αξιολόγησης (validation set) και με βάση το μέγεθος των σφαλμάτων στο σύνολο αυτό υπολογίστηκε το συνολικό σφάλμα μοντέλου. Επομένως, αν δίνεται ένας αριθμός μοντέλων (είτε του ίδιου αλγορίθμου κατά τη βελτιστοποίηση των παραμέτρων του, είτε κατά τη σύγκριση διαφορετικών αλ-

14 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 14 γορίθμων) που έχουν εκπαιδευτεί με βάση το ίδιο σύνολο εκπαίδευσης, για να επιλεγεί το καλύτερο, υπολογίζεται το σφάλμα καθενός για τα δεδομένα του συνόλου επικύρωσης και επιλέγεται εκείνο με το μικρότερο σφάλμα επικύρωσης. Για τον υπολογισμό του σφάλματος γενίκευσης του νευρωνικού δικτύου, που τελικά επιλέγεται, χρησιμοποιήθηκε και ένα τρίτο σύνολο δεδομένων που ονομάζεται σύνολο ελέγχου (test set) Διαστήματα εμπιστοσύνης στα Τεχνητά Νευρωνικά Δίκτυα Ο υπολογισμός των διαστημάτων εμπιστοσύνης στα νευρωνικά δίκτυα δεν γίνεται άμεσα. Άλλωστε αποτελεί ένα βασικό μειονέκτημα των ΤΝΔ έναντι των κλασικών μεθόδων. Για την αντιμετώπιση αυτού του ζητήματος χρησιμοποιήθηκε η μέθοδος της επαναδειγματοληψίας [5]: Ταξινομούνται τα σφάλματα σε αύξουσα σειρά και ανάλογα με το επιθυμητό διάστημα εμπιστοσύνης, (π.χ. με πιθανότητα ουράς 5%), απορρίπτουμε το αντίστοιχο ποσοστό του συνόλου σφαλμάτων από την αρχή και το τέλος. Τα όρια του διαστήματος εμπιστοσύνης είναι οι ακραίες τιμές των σφαλμάτων που έχουν απομείνει. Με τη μέθοδο αυτή τα διαστήματα εμπιστοσύνης που προκύπτουν είναι συμμετρικά ως προς την πιθανότητα, όχι όμως απαραίτητα συμμετρικά και ως προς το μέσον τους Μέθοδοι εκπαίδευσης Στη συνέχεια (Σχήμα 6) φαίνεται το διάγραμμα ροής του αλγορίθμου που αναπτύχθηκε. Ως κριτήρια σύγκλισης χρησιμοποιήθηκαν τα εξής: 1. η μεταβολή στις τιμές των βαρών του ΤΝΔ από τη μία επανάληψη στην άλλη να μην ξεπερνά ένα συγκεκριμένο όριο, 2. ο αριθμός των εποχών να μην ξεπερνά μία μέγιστη τιμή και 3. η μεταβολή στην τιμή της συνάρτησης σφάλματος από τη μία επανάληψη στην άλλη να είναι μικρότερη μίας προκαθορισμένης τιμής. Σε κάθε ένα από τα ΤΝΔ ακολουθήθηκαν δύο προσεγγίσεις. Στην πρώτη (που απ εδώ και στο εξής θα αναφέρεται ως περίπτωση α) χρησιμοποιήθηκαν και τα τρία προαναφερθέντα κριτήρια, ενώ στη δεύτερη (που απ εδώ και στο εξής θα αναφέρεται ως περίπτωση β) χρησιμοποιήθηκαν μόνο τα δύο πρώτα. Για την εκπαίδευση του ΤΝΔ χρησιμοποιήθηκαν δεδομένα που αφορούν μονωτήρες

15 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 15 τύπου cap & pin [6]. Συγκεκριμένα, ως μεταβλητές εισόδου χρησιμοποιήθηκαν τα εξής χαρακτηριστικά: μέγιστη διάμετρος D m (σε cm) του δίσκου του μονωτήρα, ύψος H (σε cm) του μονωτήρα, μήκος ερπυσμού L (σε cm), συντελεστής μορφής F και αγωγιμότητα στρώματος σ s ή επιφανειακή αγωγιμότητα (σε μs). Μεταβλητή εξόδου του νευρωνικού δικτύου θεωρήθηκε η κρίσιμη τάση U c (σε kv). Σχήμα 6: Διάγραμμα ροής του αλγορίθμου που αναπτύχθηκε για τη δημιουργία των ΤΝΔ Αποτελέσματα ΤΝΔ Στους πίνακες (1) και (2), που ακολουθούν, συνοψίζονται τα αποτελέσματα της εκπαίδευσης των ΤΝΔ με τις διάφορες μεθόδους που εφαρμόστηκαν. Από τις μεθόδους εκπαί-

16 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 16 δευσης στις οποίες γίνεται τυχαία παρουσίαση των προτύπων εκπαίδευσης (1 έως 3), τα καλύτερα αποτελέσματα για το πρόβλημα της εκτίμησης της κρίσιμης τάσης υπερπήδησης σε μονωτήρες τα αποκτούμε με την εφαρμογή της εκπαίδευσης ανά πρότυπο με χρήση ρυθμού εκπαίδευσης και όρου ορμής (συσχέτιση πραγματικών-εκτιμούμενων τιμών συνόλου ελέγχου: ). Από τις μεθόδους εκπαίδευσης στις οποίες γίνεται σειριακή παρουσίαση των προτύπων εκπαίδευσης (4 έως 12), ο αλγόριθμος βαθμωτής συζευγμένης μεταβολής κλίσης με εκπαίδευση ανά εποχή δίνει τα καλύτερα αποτελέσματα (συσχέτιση πραγματικών-εκτιμούμενων τιμών συνόλου ελέγχου: ). Και στις δύο μεθόδους, που έδωσαν τα καλύτερα αποτελέσματα, χρησιμοποιήθηκαν και τα τρία κριτήρια τερματισμού. Πίνακας 1: Περιγραφή μεθόδων εκπαίδευσης ΤΝΔ. α/α Περιγραφή μεθόδου εκπαίδευσης ΤΝΔ 1 Εκπαίδευση ανά πρότυπο, χρήση ρυθμού εκπαίδευσης και όρου ορμής (φθίνουσες εκθετικές συναρτήσεις) 2 Εκπαίδευση ανά πρότυπο, χρήση προσαρμοστικών κανόνων ρυθμού εκπαίδευσης και όρου ορμής 3 Εκπαίδευση ανά πρότυπο, χρήση σταθερού ρυθμού εκπαίδευσης 4 Εκπαίδευση ανά εποχή, χρήση σταθερού ρυθμού εκπαίδευσης 5 Εκπαίδευση ανά εποχή, χρήση ρυθμού εκπαίδευσης και όρου ορμής 6 Εκπαίδευση ανά εποχή, χρήση προσαρμοστικών κανόνων ρυθμού εκπαίδευσης και όρου ορμής 7 Εκπαίδευση ανά εποχή, χρήση αλγορίθμου συζευγμένης μεταβολής κλίσης κατά Fletcher-Reeves [7, 8] 8 Εκπαίδευση ανά εποχή, χρήση συζευγμένης μεταβολής κλίσης κατά Fletcher-Reeves, επανεκκίνηση Powell-Beale [9] 9 Εκπαίδευση ανά εποχή, χρήση αλγορίθμου συζευγμένης μεταβολής κλίσης κατά Polak-Ribiere [7, 10] 10 Εκπαίδευση ανά εποχή, χρήση αλγορίθμου συζευγμένης μεταβολής κλίσης Polak-Ribiere, επανεκκίνηση Powell-Beale 11 Εκπαίδευση ανά εποχή, χρήση αλγορίθμου βαθμωτής συζευγμένης μεταβολής κλίσης [11] 12 Εκπαίδευση ανά εποχή, χρήση ευπροσάρμοστου αλγορίθμου Πίνακας 2: Σύνοψη του μέσου σφάλματος G av των συνόλων εκπαίδευσης, αξιολόγησης και ελέγχου και των παραμέτρων των ΤΝΔ για τις διάφορες μεθόδους εκπαίδευσής τους. α/α μεθόδου εκπαίδευσης ΤΝΔ G av συνόλου εκπαίδευσης ( 10-4 ) G av συνόλου αξιολόγησης ( 10-4 ) G av συνόλου ελέγχου ( 10-4 ) Νευρώνες Συναρτήσεις ενεργο-ποίησης 1α f 1 =tanh(0.9x) =tanh(0.4x) 1β f 1 =tanh(x) =tanh(x) 2α f 1 =tanh(0.9x) =tanh(0.5x) 2β f 1 =tanh(x) =tanh(x) 3α f 1 =tanh(0.9x) =tanh(x) f 1 =tanh(x) 3β =1/(1+exp(- 0.6x)) Λοιπές παράμετροι α 0 =0.9, Τ α =1400, η 0 =0.9, Τ η =1400, α 0 =0.8, Τ α =1600, η 0 =0.2, Τ η =400, α 0 =η 0 =0.9, Τ α =1200, Τ η =800, max_ epochs=7000 α 0 =0.4, Τ α =2800, η 0 =0.1, Τ η =2600, α 0 =0.4, Τ α =1000, η 0 =0.32, Τ η =1000, α 0 =0.4, Τ α =1000, η 0 =0.13, Τ η =1000,

17 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 17 4α f 1 =tanh(0.8x) =0.1x α 0 =0.3, Τ α =2000, η 0 =3, Τ η =2000, max_epochs=5000 4β f 1 =tanh(x) =0.5x α 0 =0.3, Τ α =2000, η 0 =3, Τ η =2000, max_epochs=5000 5α f 1 =1/(1+exp(-x)) =0.25x α 0 =0.4, Τ α =400, η 0 =0.4, Τ η =200, 5β f 1 =tanh(x) =1/(1+exp(-x)) α 0 =0.9, Τ α =4800, η 0 =0.9, Τ η =5600, 6α f 1 =tanh(0.9x) =0.2x α 0 =0.9, Τ α =3000, η 0 =0.8, Τ η =2600, 6β f 1 =tanh(x) =tanh(0.9x) α 0 =0.9, Τ α =5200, η 0 =0.8, Τ η =5600, 7α f 1 =tanh(x) =tanh(0.4x) s=0.2, T bv =20, T trix =50, e trix =10-6, 7β f 1 =tanh(x) =tanh(0.8x) s=0.2, T bv =20, T trix =50, e trix =10-6, 8α f 1 =tanh(1.2x) =tanh(0.04x) s=0.2, T bv =20, T trix =50, e trix =10-6, 8β f 1 =tanh(x) =tanh(0.07x) s=0.2, T bv =20, T trix =50, e trix =10-6, 9α f 1 =tanh(0.9x) =tanh(0.1x) s=0.2, T bv =20, T trix =50, e trix =10-6, 9β f 1 =tanh(0.6x) =tanh(0.1x) s=0.2, T bv =20, T trix =50, e trix =10-6, 10α f 1 =tanh(1.2x) =tanh(0.1x) s=0.2, T bv =20, T trix =50, e trix =10-6, 10β f 1 =tanh(1.2x) =tanh(0.04x) s=0.2, T bv =20, T trix =50, e trix =10-6, 11α f 1 =tanh(0.325x) =tanh(0.1x) σ=10-5, λ 0 =510-8, 11β f 1 =tanh(0.35x) =tanh(0.2x) σ=10-5, λ 0 =510-8, 12α-β # # # # # Πρακτική αδυναμία σύγκλισης Στη συνέχεια παρατίθενται τα αποτελέσματα του ΤΝΔ για το σύνολο ελέγχου για τη μέθοδο εκπαίδευσης 1α σε κοινό γράφημα με τις αντίστοιχες πραγματικές τιμές (Σχήμα 7). Οι ίδιες τιμές (πραγματικές και εκτιμούμενες) φαίνονται και στο Σχήμα 8 με την επιπλέον πληροφορία της μεταξύ τους συσχέτισης (kv) µ µ µµ µ Σχήμα 7: Πραγματικές και εκτιμούμενες τιμές για την κρίσιμη τάση υπερπήδησης του συνόλου ελέγχου.

18 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 18 µµ µ (kv) R = 0, µ µ (kv) Σχήμα 8: Συσχέτιση μεταξύ των πραγματικών και των εκτιμούμενων τιμών της κρίσιμης τάσης υπερπήδησης. Στο Σχήμα 9 φαίνονται οι πραγματικές και οι εκτιμούμενες τιμές και το άνω και το κάτω όριο του συνόλου ελέγχου. Στην ίδια γραφική σημειώνονται και τα όρια του συνόλου αξιολόγησης. Είναι προφανές ότι η περιοχή του συνόλου ελέγχου είναι πιο στενή από την περιοχή του συνόλου αξιολόγησης, γεγονός που υποδηλώνει ότι, αν η εκτίμηση της κρίσιμης τάσης υπερπήδησης των μονωτήρων γινόταν μόνο βάσει των δεδομένων του συνόλου αξιολόγησης (μια προσέγγιση πολύ κοντά στην πραγματικότητα, αφού υπό πραγματικές συνθήκες επίλυσης του προβλήματος πρόβλεψης δεν είναι γνωστό εκ των προτέρων το διάστημα εμπιστοσύνης του συνόλου ελέγχου), η προσέγγιση θα ήταν ακριβής. (kv) µ µ µ µ µ µ µµ µ Σχήμα 9: Γραφική παράσταση των πραγματικών τιμών, των εκτιμούμενων τιμών και των ορίων των συνόλων ελέγχου και αξιολόγησης για διάστημα εμπιστοσύνης με 5% πιθανότητα ουράς για τη μέθοδο εκπαίδευσης 1α. Επίσης, παρατηρούμε, ότι οι εκτιμούμενες τιμές είναι αρκετά κοντά στις πραγματικές.

19 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 19 Παράλληλα, τόσο οι πραγματικές όσο και οι εκτιμούμενες τιμές βρίσκονται εντός του διαστήματος εμπιστοσύνης. Στη συνέχεια παρατίθενται οι αντίστοιχες γραφικές παραστάσεις για τη μέθοδο εκπαίδευσης 11α (Σχήματα 10, 11 και 12) (kv) µ µ µµ µ Σχήμα 10: Πραγματικές και εκτιμούμενες τιμές για την κρίσιμη τάση υπερπήδησης του συνόλου ελέγχου. µµ µ (kv) R = 0, µ µ (kv) Σχήμα 11: Συσχέτιση μεταξύ των πραγματικών και των εκτιμούμενων τιμών της κρίσιμης τάσης υπερπήδησης. (kv) µ µ µ µ µ µ µµ µ Σχήμα 12: Γραφική παράσταση των πραγματικών τιμών, των εκτιμούμενων τιμών και των ορίων των συνόλων ελέγχου και αξιολόγησης για διάστημα εμπιστοσύνης με 5% πιθανότητα ουράς για τη μέθοδο εκπαίδευσης 11α.

20 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 20 Τα συμπεράσματα που προκύπτουν και εδώ είναι ανάλογα με αυτά της μεθόδου 1α Ασαφής Λογική Εισαγωγή Το μαθηματικό υπόβαθρο της ασαφούς συλλογιστικής και των ασαφών συστημάτων είναι τα ασαφή σύνολα [3]. Η ασάφεια είναι ένα χαρακτηριστικό της γλώσσας και πηγάζει από την ανακρίβεια που ενυπάρχει στο (γλωσσικό) ορισμό και τη χρήση των εννοιών και των συμβόλων. Η θεωρία της ασαφούς λογικής βρήκε αρχικά μεγάλη αντίδραση από τους οπαδούς της κλασικής (Αριστοτελικής) λογικής και τους πιθανοθεωρητικούς επιστήμονες, σήμερα όμως αποτελεί ένα από τα ισχυρότερα καθολικά εργαλεία λήψης αποφάσεων και ανάπτυξης αλγορίθμων ελέγχου και έμπειρων συστημάτων μέσα σε αβεβαιότητα. Η θεωρία των ασαφών συνόλων θεμελιώθηκε στην παρούσα μορφή της από τον μηχανικό αυτομάτου ελέγχου Lofti Zadeh το Η ιδέα, όμως, της χρήσης ασαφών μαθηματικών δομών είχε χρησιμοποιηθεί από τον Poincarè τον 19 ο αιώνα στο πλαίσιο της οπτικής αντίληψης. Η θεωρία του Zadeh βρήκε εφαρμογές στην τεχνολογία, στην οργάνωση επιχειρήσεων, την ψυχολογία. Τα ασαφή σύνολα και η ασαφής συλλογιστική χρησιμοποιήθηκαν για την επίλυση πολλών πρακτικών προβλημάτων. Με τη θεωρία των ασαφών συνόλων και της ασαφούς συλλογιστικής βρίσκουμε χρήσιμες και αποδοτικές λύσεις σε δύσκολα πρακτικά προβλήματα για τα οποία δεν έχουμε ακριβείς περιγραφές και μοντέλα, όπως αυτό της εκτίμησης κρίσιμων μεγεθών σε μονωτήρες Ασαφή Σύνολα και Ασαφής Λογική Τα μαθηματικά στηρίζονται κατά βάση στη συνολοθεωρία και αυτή στηρίζεται εξ ολοκλήρου σε ένα αξίωμα βασισμένο στη διχοτομία (ανήκει ή δεν ανήκει, είναι εντός ή εκτός του συνόλου) [3]. Στην κλασική συνολοθεωρία η χαρακτηριστική συνάρτηση είναι της μορφής: X A 0 ( x) 1 iff x A iff x A X ( A x ) : X 0,1 (9)

21 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 21 Αμφισβητώντας τη διχοτομία, η κλασική συνολοθεωρία καταστρέφεται εκ θεμελίων και στη θέση της αναδύεται μία άλλη προσέγγιση, η θεωρία των ασαφών συνόλων (theory of fuzzy sets). Στην περίπτωση της ασαφούς λογικής περισσότεροι από δύο βαθμοί συμμετοχής είναι επιτρεπτοί και η συνάρτηση συμμετοχής είναι της μορφής: ( x A ) : X [0,1] (10) που ουσιαστικά αποτελεί γενίκευση της σχέσης (9). Η ασαφής λογική παρέχει ένα μαθηματικό πλαίσιο εργασίας για το χειρισμό της αβεβαιότητας (uncertainty) [4]. Η αβεβαιότητα συναντάται συχνά σε προβλήματα μοντελοποίησης πολύπλοκων συστημάτων, όπου η αυστηρή (ακριβής) μαθηματική περιγραφή δεν είναι εφικτή. Στη μοντελοποίηση και τον έλεγχο με ασαφείς προσεγγίσεις, η βασική ιδέα είναι η ενσωμάτωση της εμπειρίας του ανθρώπου-χειριστή του συστήματος σε ένα σύστημα ασαφούς λογικής (ασαφές έμπειρο σύστημα). Αν η μεταφορά της εμπειρίας είναι επιτυχής, αυτός ο τρόπος είναι δυνατόν να οδηγήσει στην εξασφάλιση ικανοποιητικού ελέγχου της συμπεριφοράς του συστήματος, αν σκεφτεί κανείς ότι σε πολλές περιπτώσεις ένα σύστημα ελέγχεται καλύτερα από έναν έμπειρο χειριστή παρά από μια τυπική αυτόματη μηχανή ελέγχου. Συνήθεις συναρτήσεις συμμετοχής που χρησιμοποιούνται στην πράξη φαίνονται στον Πίνακα 3. Στην παρούσα εργασία χρησιμοποιήθηκε η τριγωνική. Πίνακας 3: Συναρτήσεις συμμετοχής. x a c x max min,, 0 b a c b x a d x max min,1,, 0 b a d c µ 1, b 0 2b x c 1 a e 2 xc Γενική αρχιτεκτονική ασαφών συστημάτων Η γενική αρχιτεκτονική (δομή) των ασαφών συστημάτων εικονίζεται στο Σχήμα 13.

22 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 22 Σχήμα 13: Γενική αρχιτεκτονική ασαφούς συστήματος. Τα τέσσερα βασικά στοιχεία που απαρτίζουν ένα ασαφές μοντέλο είναι τα εξής: Μονάδα ασαφοποίησης: οι μη ασαφείς τιμές των μεταβλητών μετατρέπονται σε ασαφείς με τη χρήση της συνάρτησης συμμετοχής (τριγωνική). Βάση κανόνων: σύνολο ασαφών κανόνων που περιγράφουν την αλληλεξάρτηση των διαφόρων γλωσσικών μεταβλητών και έχουν την ακόλουθη δομή: ΕΑΝ Α 1 είναι x 1 ΚΑΙ ΚΑΙ ΕΑΝ Α Ν είναι x Ν ΤΟΤΕ Β είναι y όπου Α 1,,Α Ν : μεταβλητές εισόδου, x 1,, x Ν : ασαφείς τιμές των μεταβλητών Α 1,,Α Ν αντίστοιχα, Β: μεταβλητή εξόδου και y: ασαφής τιμή της μεταβλητής εξόδου. Μηχανισμός εξαγωγής συμπεράσματος: περιλαμβάνει τρία διαδοχικά βήματα [12]: i) Για κάθε κανόνα μίας εισόδου-μίας εξόδου εφαρμόζεται ο κανόνας σύνθεσης γινομένου (Larsen-Max Product Implication), που ουσιαστικά είναι η συνάρτηση συμμετοχής. ii) Υπολογίζεται η τιμή του βαθμού πλήρωσης (DOF - degree of fulfillment), δηλαδή ο προηγούμενος κανόνας σύνθεσης για περισσότερες της μίας εισόδους. Ο g-κανόνας για το k-διάνυσμα προσδιορίζεται ως: dof m x m x g A1, l1, g 1 k AN, ln, g Nk iii) Η τελική συνάρτηση της μεταβλητής εξόδου παράγεται βάσει των κανόνων και της μεθόδου της περιβάλλουσας, για την περίπτωση δύο γειτονικών ενεργοποιημένων τριγώνων, όπως φαίνεται στο σχήμα που ακολουθεί. m(x) m(x) m (x) 2 µ µ µ m (x) 1 x 0 µ µ µ Σχήμα 14: Διαμόρφωση της συνάρτησης συμμετοχής της μεταβλητής εξόδου. 1 2 f(x) x

23 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 23 Αποασαφοποίηση: Ως μέθοδος αποασαφοποίησης χρησιμοποιήθηκε η μέθοδος του κέντρου βάρους (COG center of gravity ή COA center of area) (Σχέση (11)). w 0 i i w ( w ) i B i ( w ) B i (11) Το κριτήριο του κέντρου βάρους είναι το καταλληλότερο, όταν χρησιμοποιείται η μέθοδος του βαθμού πλήρωσης. Η επιφάνεια της οποίας το κέντρο βάρους υπολογίζουμε είναι αυτή που έχει προκύψει από το βήμα (iii) του μηχανισμού εξαγωγής συμπεράσματος Μέθοδοι εκπαίδευσης Τα βασικά βήματα για τον υπολογισμό της εκτίμησης της τιμής της κρίσιμης τάσης υπερπήδησης μονωτήρων με χρήση ασαφούς λογικής περιλαμβάνουν τα εξής [12]: 1. για κάθε μεταβλητή εισόδου καθορίζονται τα χαρακτηριστικά μεγέθη των συναρτήσεων συμμετοχής που, για τις τριγωνικές συναρτήσεις, οι οποίες χρησιμοποιούνται εδώ, είναι το εύρος της βάσης των τριγώνων και το πλήθος τους, 2. αφού καθοριστούν το πλήθος t των τριγώνων (3, 5, 7 ή 9) και το εύρος της βάσης κάθε τριγώνου, υπολογίζεται το κέντρο c j του μεσαίου τριγώνου της μεταβλητής p j ως εξής: j Y c p Y (12) k 1 jk καθώς επίσης και η αρχική τιμή του εύρους της βάσης των τριγώνων b ji ως εξής: k 1,..., Y k 1,..., Y b 2 max p min p t 1 ji jk jk j όπου Y είναι το πλήθος των διανυσμάτων που διαθέτουμε ως δεδομένα εκπαίδευσης. Εναλλακτικά, το κέντρο c j του μεσαίου τριγώνου μπορεί να προσδιοριστεί από οριζόμενες από το χρήστη τιμές ως: c max{ p } min{ p } 2 j jk jk Ακολούθως, το εύρος της βάσης των τριγώνων μεταβάλλεται κατά ±α% με βήμα s%, ενόσω το κέντρο του μεσαίου τριγώνου παραμένει σταθερό. Άρα, το πλήθος των τριγώνων για κάθε μεταβλητή είναι: h = 2 a/s + 1. Συνεπώς, για n μεταβλητές εισόδου,

24 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 24 το πλήθος των δυνατών συνδυασμών είναι h n. 3. πραγματοποιείται η ασαφοποίηση των τιμών των μεταβλητών 4. παράγονται οι κανόνες που θα αποτελέσουν τη βάση κανόνων. Η παραγωγή των κανόνων αυτών γίνεται μέσω της μεθόδου των βαρών ως εξής: για τους διάφορους συνδυασμούς υπολογίζεται η ασαφής τιμή της εξόδου του συνόλου εκπαίδευσης βάσει του μηχανισμού εξαγωγής συμπεράσματος. Υποθέτουμε ότι σε κάθε ασαφή τιμή εξόδου αντιστοιχεί ένα βάρος, για παράδειγμα οι αριθμοί 1, 2, 3, 4, 5 αντιστοιχούν στις ασαφείς τιμές «Πολύ Αρνητικό», «Αρνητικό», «Μηδέν», «Θετικό», «Πολύ Θετικό». Αν για έναν κανόνα οι ασαφείς τιμές της εξόδου εμφανίζονται με την ακόλουθη συχνότητα: ΠΑ(1), Α(3), Μ(2), Θ(2), ΠΘ(2), τότε η τιμή της εξόδου θα ήταν «Αρνητικό» αν ως κριτήριο χρησιμοποιείτο η μέγιστη συχνότητα. Με τη διαδικασία χρήσης των βαρών η έξοδος είναι: ( )/( )=3.1, δηλαδή «Μηδέν». Κατ αυτόν τον τρόπο, η ασαφής τιμή της εξόδου για κάθε κανόνα είναι εκείνη με τη μεγαλύτερη αξία σύμφωνα με τη διαδικασία εκπαίδευσης. Εν συνεχεία, τα στοιχεία του συνόλου αξιολόγησης χρησιμοποιούνται ώστε να καθοριστεί το αριστερό μέλος των κανόνων και να παραχθούν οι αντίστοιχες τιμές της εξόδου. Με την εφαρμογή του μηχανισμού εξαγωγής συμπεράσματος και της μεθόδου κέντρου βάρους παράγονται οι μη ασαφείς τιμές της εξόδου, οι οποίες, στη συνέχεια, συγκρίνονται με τις αντίστοιχες πραγματικές ώστε να εκτιμηθεί η ακρίβεια της επιτυγχανόμενης προσέγγισης και να συγκριθούν τα αποτελέσματα των διαφόρων συνδυασμών προς επιλογή του καταλληλότερου. Για την εξαγωγή του ολικού συμπεράσματος ακολουθούνται τρεις μέθοδοι: 1. το συνολικό συμπέρασμα είναι εκείνο που εμφανίζεται με τη μεγαλύτερη συχνότητα, 2. το συνολικό συμπέρασμα προκύπτει ως ένας σταθμισμένος μέσος όρος βάσει της σχέσης: 2. y f y y i της εξόδου και i f i i (με στρογγυλοποίηση), όπου f είναι η συχνότητα εμφάνισης της τιμής i 3. για τη διαμόρφωση του αποτελέσματος συμμετέχουν δύο τρίγωνα με βάση το σταθμισμένο μέσο όρο χωρίς στρογγυλοποίηση (για παράδειγμα, αν η έξοδος βρεθεί ότι ανήκει στο τρίγωνο 2.75 με τη 2 η μέθοδο θα γίνει η στρογγυλοποίηση στην τιμή 3,

25 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 25 ενώ με την 3 η μέθοδο στην διαμόρφωση της τελικής τιμής της εξόδου θα συνεισφέρει το 3 ο τρίγωνο κατά 75% και το 2 ο τρίγωνο κατά 25%.). Για κάθε μια απ αυτές τις μεθόδους εξετάζονται δύο υποπεριπτώσεις που αφορούν στον προσδιορισμό του κέντρου του μεσαίου τριγώνου: α. είτε ως η μέση τιμή των τιμών του συνόλου εκπαίδευσης, β. είτε ορίζεται εξωτερικά με βάση τα διαστήματα που εισάγει ο χρήστης του προγράμματος. Στο Σχήμα 15 φαίνεται το διάγραμμα ροής του αλγορίθμου που αναπτύχθηκε για την εκτίμηση της τιμής της κρίσιμης τάσης υπερπήδησης με χρήση ασαφούς λογικής.

26 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 26 Σχήμα 15: Διάγραμμα ροής του αλγορίθμου που αναπτύχθηκε για την εκτίμηση της κρίσιμης τάσης υπερπήδησης σε μονωτήρες με χρήση ασαφούς λογικής.

27 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 27 Τα δεδομένα εκπαίδευσης που χρησιμοποιήθηκαν στην περίπτωση της Ασαφούς Λογικής είναι τα ίδια με αυτά που χρησιμοποιήθηκαν και για την εκπαίδευση των ΤΝΔ Αποτελέσματα Ασαφούς Λογικής Στον Πίνακα 4 που ακολουθεί συνοψίζονται τα αποτελέσματα της εφαρμογής μεθόδων Ασαφούς Λογικής στο πρόβλημα της εκτίμησης της κρίσιμης τάσης υπερπήδησης μονωτήρων. Καλύτερα αποτελέσματα παίρνουμε για τις δύο πρώτες μεθόδους όταν ο υπολογισμός για την εύρεση της κορυφής του μεσαίου τριγώνου γίνεται βάσει της μέσης τιμής των τιμών του συνόλου εκπαίδευσης (περίπτωση α) και όχι όταν ορίζεται εξωτερικά με βάση τα διαστήματα που εισάγει ο χρήστης του προγράμματος (περίπτωση β). Στην τρίτη μέθοδο η τάση αυτή αντιστρέφεται με την περίπτωση β να δίνει αισθητά καλύτερα αποτελέσματα εν συγκρίσει με την α. Η περίπτωση β μελετάται διότι δίνει ένα πιο «ευρύχωρο» διάστημα τιμών γεγονός που μας δίνει τη δυνατότητα να συμπεριλάβουμε τιμές στα σύνολα εκπαίδευσης και αξιολόγησης που θα προκύψουν από μεταγενέστερα πειράματα. Όσον αφορά τις μεθόδους, αυτή που δίνει τα καλύτερα αποτελέσματα είναι εκείνη στην οποία για τη διαμόρφωση του αποτελέσματος συμμετέχουν δύο τρίγωνα και ο προσδιορισμός του κέντρου του μεσαίου τριγώνου ορίζεται εξωτερικά με βάση τα διαστήματα που εισάγει ο χρήστης του προγράμματος. Όπως είναι αναμενόμενο, επιτυγχάνεται μεγαλύτερη ακρίβεια με την τρίτη μέθοδο. Πίνακας 4: Σύνοψη της συσχέτισης των τιμών του συνόλου ελέγχου και των παραμέτρων της Ασαφούς Λογικής για τις διάφορες μεθόδους. α/α μεθόδου Συσχέτιση τιμών συνόλου εκπαίδευσης αξιολόγησης ελέγχου Εύρος και πλήθος τριγώνων 1α h 1 =5, α 1 =-15%, h 2 =3, α 2 =0, h 3 =3, α 3 =0, 1β h 4 =3, α 4 =-20%, h 5 =5, α 5 =25%, h 6 =9, α 6 =0 h 1 =9, α 1 =35%, h 2 =3, α 2 =0, h 3 =3, α 3 =0, h 4 =5, α 4 =15%, h 5 =7, α 5 =15%, h 6 =5, α 6 =35% 2α h 1 =5, α 1 =5%, h 2 =3, α 2 =0, h 3 =3, α 3 =0, h 4 =9, 2β α 4 =5%, h 5 =9, α 5 =0, h 6 =5, α 6 =-5% h 1 =3, α 1 =25%, h 2 =3, α 2 =-30%, h 3 =3, α 3 =25%, h 4 =5, α 4 =0, h 5 =9, α 5 =45%, h 6 =5, α 6 =5% 3α h 1 =3, α 1 =0, h 2 =7, α 2 =5%, h 3 =5, α 3 =0, h 4 =3, α 4 =0, h 5 =5, α 5 =0, h 6 =5, α 6 =-5% 3β h 1 =3, α 1 =0, h 2 =3, α 2 =0, h 3 =3, α 3 =0, h 4 =9, α 4 =0, h 5 =9, α 5 =-5%, h 6 =3, α 6 =-40% Στη συνέχεια παρατίθενται τα αποτελέσματα της εφαορμογής της Ασαφούς Λογικής

28 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 28 στο πρόβλημα της εκτίμησης της κρίσιμης τάσης υπερπήδησης σε μονωτήρες για το σύνολο ελέγχου για τη μέθοδο εκπαίδευσης 3β σε κοινό γράφημα με τις αντίστοιχες πραγματικές τιμές (Σχήμα 16). Οι ίδιες τιμές (πραγματικές και εκτιμούμενες) φαίνονται και στο Σχήμα 17 με την επιπλέον πληροφορία της μεταξύ τους συσχέτισης. 20 (kv) µ µ µµ µ Σχήμα 16: Πραγματικές και εκτιμούμενες τιμές για την κρίσιμη τάση υπερπήδησης του συνόλου ελέγχου. µµ µ (kv) R = 0, µ µ (kv) Σχήμα 17: Συσχέτιση μεταξύ των πραγματικών και των εκτιμούμενων τιμών της κρίσιμης τάσης υπερπήδησης του συνόλου ελέγχου. Ανάλογα προς τα ΤΝΔ έτσι και εδώ προσδιορίστηκαν τα διαστήματα εμπιστοσύνης των συνόλων εκπαίδευσης, αξιολόγησης και ελέγχου με πιθανότητα ουράς ίση με 5%, δηλαδή το αντίστοιχο διάστημα εμπιστοσύνης να καλύπτει το 90% του πληθυσμού. Στο Σχήμα 18 καταδεικνύονται σε κοινή γραφική παράσταση οι πραγματικές και οι εκτιμούμενες τιμές και το άνω και το κάτω όριο του συνόλου ελέγχου καθώς επίσης και τα όρια του συνόλου αξιολόγησης. Είναι προφανές ότι η περιοχή του συνόλου αξιολόγησης περιλαμβάνει την περιοχή του συνόλου ελέγχου.

29 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ (kv) µ µ µ µ µ µ µµ µ Σχήμα 18: Γραφική παράσταση των πραγματικών τιμών, των εκτιμούμενων τιμών και των ορίων των συνόλων ελέγχου και αξιολόγησης για διάστημα εμπιστοσύνης με 5% πιθανότητα ουράς για τη μέθοδο εκπαίδευσης 3β. 4. ΣΥΓΚΡΙΣΗ-ΣΥΜΠΕΡΑΣΜΑΤΑ Από τις δώδεκα διαφορετικές μεθόδους που εφαρμόστηκαν για την εκπαίδευση των ΤΝΔ, τα καλύτερα αποτελέσματα ανάμεσα σε αυτές στις οποίες γίνεται τυχαία παρουσίαση των προτύπων εκπαίδευσης αποκτώνται κατά την εκπαίδευση ανά πρότυπο με χρήση ρυθμού εκπαίδευσης και όρου ορμής (φθίνουσες εκθετικές συναρτήσεις) όταν γίνεται χρήση και των τριών κριτηρίων τερματισμού. Τότε, η συσχέτιση μεταξύ πραγματικών και εκτιμούμενων τιμών του συνόλου ελέγχου είναι Μεταξύ των μεθόδων εκπαίδευσης, στις οποίες γίνεται σειριακή παρουσίαση των προτύπων εκπαίδευσης, ο αλγόριθμος βαθμωτής συζευγμένης μεταβολής κλίσης με εκπαίδευση ανά εποχή όταν χρησιμοποιούνται και τα τρία κριτήρια τερματισμού δίνει τα καλύτερα αποτελέσματα με συσχέτιση πραγματικών-εκτιμούμενων τιμών συνόλου ελέγχου ίση προς Η Ασαφής Λογική μας δίνει τα καλύτερα αποτελέσματα όταν στη διαμόρφωση του αποτελέσματος συμμετέχουν δύο διαδοχικά τρίγωνα με βάση το σταθμισμένο μέσο όρο χωρίς στρογγυλοποίηση και το κέντρο του μεσαίου τριγώνου ορίζεται εξωτερικά με βάση τα διαστήματα που εισάγει ο χρήστης του προγράμματος. Η συσχέτιση για το σύνολο ελέγχου σε αυτήν την περίπτωση είναι

30 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 30 Κρίνοντας από την τιμή της συσχέτισης μεταξύ πραγματικών και εκτιμούμενων τιμών του συνόλου ελέγχου είναι προφανές ότι τα ΤΝΔ δίνουν καλύτερη εκτίμηση συγκρινόμενα με την Ασαφή Λογική. Θα μπορούσε να ειπωθεί ότι, όπως φαίνεται και από την εκτεταμένη βιβλιογραφία που υπάρχει πάνω στις μεθόδους εκπαίδευσης των ΤΝΔ και την όχι και τόσο εκτεταμένη βιβλιογραφία που αναφέρεται σε μεθόδους Ασαφούς Λογικής, ο τομέας των ΤΝΔ είναι ιδιαιτέρως ανεπτυγμένος και εις βάθος μελετημένος. Ωστόσο, στην Ασαφή Λογική στηριχθήκαμε στον βασικό πυρήνα της μεθόδου. Μελλοντικά άλλες παραλλαγές της βασικής μεθόδου μπορούν να οδηγήσουν σε καλύτερα αποτελέσματα. Στην παρούσα διπλωματική εργασία το πλήθος των πειραματικών δεδομένων που χρησιμοποιήθηκαν από τις δύο μεθόδους δεν ήταν ιδιαιτέρως εκτεταμένο, όπως συνηθίζεται στις περιπτώσεις εφαρμογής των μεθόδων υπολογιστικής νοημοσύνης. Στο μέλλον θα μπορούσαν να χρησιμοποιηθούν δεδομένα και από άλλους τύπους μονωτήρων, ώστε να παραχθεί ένα πλήρες μοντέλο για την εκτίμηση της κρίσιμης τάσης υπερπήδησης σε μονωτήρες. Τέλος, ενδιαφέρον θα παρουσίαζε η εφαρμογή και άλλων μεθόδων Ασαφούς Λογικής που πιθανόν υπάρχουν στη βιβλιογραφία πέραν αυτών που μελετήθηκαν στην εργασία αυτή. ΒΙΒΛΙΟΓΡΑΦΙΑ [1] J. S. T. Looms, Insulators for high voltages, Peter Peregrinus Ltd., London, Unighted Kingdom, 1990 [2] Eugenio Concha: ILMOS, Insulator Leakage Current Monitor. Άρθρο διαθέσιμο στην ιστοσελίδα: [3] Σ. Γ. Τζαφέστας, Υπολογιστική Νοημοσύνη, Τόμος Α: Μεθοδολογίες, Αθήνα 2002 [4] Αριστείδης Λύκας, Υπολογιστική Νοημοσύνη, Σεπτέμβριος 1999 [5] A. P. A. Silva, L. S. Moulin: Confidence intervals for neural network based shortterm load forecasting, IEEE Transactions on Power Systems, Vol. 15, No. 4, November 2000, pp

31 ΙΟΥΛΙΟΣ-ΑΥΓΟΥΣΤΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 31 [6] Αγγελική Αθ. Γιαλκέτση: Εκτίμηση της κρίσιμης τάσης υπερπήδησης σε μονωτήρεςμε τη χρήση Τεχνητών Νευρωνικών Δικτύων, Διπλωματική Εργασία, Αθήνα 2005 [7] L. M. Saini, M. K. Soni: Artificial neural network-based peak load forecasting using conjugate gradient methods, IEEE Transactions on Power Systems, Vol. 17, No 3, August 2002, pp [8] R. Fletcher, C. M. Reeves: Function minimization by conjugate gradients, Computer Journal, Vol. 7, pp , 1964 [9] M. J. Powell: Restart procedures for the conjugate gradient method, Mathematical Programming, Vol. 12, pp , 1977 [10] E. Polak: Computational Methods in Optimization: A Unified Approach, Academic Publication, New York, 1d edition, 1971 [11] M. F. Moller: A scaled conjugate gradient algorithm for fast supervised learning, Neural Networks, Vol. 6, pp , 1993 [12] Χαράλαμπος Ν. Ηλίας, Ανάπτυξη μοντέλου βραχυπρόθεσμης πρόβλεψης φορτίου με χρήση Ασαφούς Λογικής και κατηγοριοποίηση τυπικών ημερών, Μεταπτυχιακή Διπλωματική Εργασία, Διατμηματικό πρόγραμμα μεταπτυχιακών σπουδών «Παραγωγή και Διαχείριση Ενέργειας», ΕΜΠ, Αθήνα, Οκτώβριος 2002

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες

Διαβάστε περισσότερα

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα Τεχνητή Νοημοσύνη (Artificial Intelligence) Ανάπτυξη μεθόδων και τεχνολογιών για την επίλυση προβλημάτων στα οποία ο άνθρωπος υπερέχει (?) του υπολογιστή Συλλογισμοί

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΡΥΠΑΣΜΕΝΩΝ ΜΟΝΩΤΗΡΩΝ

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΡΥΠΑΣΜΕΝΩΝ ΜΟΝΩΤΗΡΩΝ ΝΟΕΜΒΡΙΟΣ-ΔΕΚΕΜΒΡΙΟΣ 2007 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ 1 ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΡΥΠΑΣΜΕΝΩΝ ΜΟΝΩΤΗΡΩΝ ΒΑΣΙΛΙΚΗ Θ. ΚΟΝΤΑΡΓΥΡΗ Δρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π. Επιβλέπων Καθηγητής:

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

ηλεκτρικό ρεύμα ampere

ηλεκτρικό ρεύμα ampere Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα

ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή καμπυλών και να μπορέσει εν τέλει

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΥΚΛΩΜΑΤΑ AC-DC ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ Βασικά στοιχεία κυκλωμάτων Ένα ηλεκτρονικό κύκλωμα αποτελείται από: Πηγή ενέργειας (τάσης ή ρεύματος) Αγωγούς Μονωτές

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου 7. Απαραίτητα όργανα και υλικά. Τροφοδοτικό DC.. Πολύμετρα (αμπερόμετρο, βολτόμετρο).. Πλακέτα για την

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Ασάφεια (Fuzziness) Ποσοτικοποίηση της ποιοτικής πληροφορίας Οφείλεται κυρίως

Διαβάστε περισσότερα

Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής

Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Έλεγχος λειτουργίας δικτύων διανομής με χρήση μοντέλων υδραυλικής ανάλυσης Βασικό ζητούμενο της υδραυλικής ανάλυσης είναι ο έλεγχος

Διαβάστε περισσότερα

Μέσα Προστασίας II. Τ.Ε.Ι. Κρήτης Σ.Τ.ΕΦ./ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Εργαστήριο Υψηλών Τάσεων. Ηλεκτρικές Εγκαταστάσεις Ι

Μέσα Προστασίας II. Τ.Ε.Ι. Κρήτης Σ.Τ.ΕΦ./ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Εργαστήριο Υψηλών Τάσεων. Ηλεκτρικές Εγκαταστάσεις Ι Τ.Ε.Ι. Κρήτης Σ.Τ.ΕΦ./ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Μέσα Προστασίας II Προστασία από την ηλεκτροπληξία Ηλεκτρικές Εγκαταστάσεις Ι Επίκουρος Καθηγητής Τηλ:2810379231 Email: ksiderakis@staff.teicrete.gr

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΥΑΓΓΕΛΙΑΣ Π. ΛΟΥΚΟΓΕΩΡΓΑΚΗ Διπλωματούχου Πολιτικού Μηχανικού ΟΛΟΚΛΗΡΩΜΕΝΟ

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα & Περιβάλλον

Πληροφοριακά Συστήματα & Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης

Διαβάστε περισσότερα

Αντικείμενο. Ερμηνεία της έννοιας της ηλεκτροπληξίας. Περιγραφή των παραμέτρων που επηρεάζουν ένα επεισόδιο ηλεκτροπληξίας.

Αντικείμενο. Ερμηνεία της έννοιας της ηλεκτροπληξίας. Περιγραφή των παραμέτρων που επηρεάζουν ένα επεισόδιο ηλεκτροπληξίας. Αντικείμενο Ερμηνεία της έννοιας της ηλεκτροπληξίας. Περιγραφή των παραμέτρων που επηρεάζουν ένα επεισόδιο ηλεκτροπληξίας. Θανατηφόρα ατυχήματα από ηλεκτροπληξία στην Ελλάδα κατά την περίοδο 1980-1995

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ

ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ η ΠΕΡΙΠΤΩΣΗ ΕΞΑΝΑΓΚΑΣΜΕΝΗ ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ Ο ΣΥΝΤΟΝΙΣΜΟΣ ΚΑΙ ΟΙ ΕΚ ΟΧΕΣ ΤΟΥ ΣΥΝΤΟΝΙΣΜΟΣ ΣΕ ΚΥΚΛΩΜΑ -L-C ΣΕ ΣΕΙΡΑ Κύκλωµα που αποτελείται από ωµική αντίσταση,ιδανικό πηνίο µε συντελεστή αυτεπαγωγής L

Διαβάστε περισσότερα

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων

ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΗ ΜΙΚΡΟΚΥΜAΤΩΝ ΜΕ ΔΙΟΔΟ GUNN

ΠΑΡΑΓΩΓΗ ΜΙΚΡΟΚΥΜAΤΩΝ ΜΕ ΔΙΟΔΟ GUNN ΠΑΡΑΓΩΓΗ ΜΙΚΡΟΚΥΜAΤΩΝ ΜΕ ΔΙΟΔΟ GUNN Το φαινόμενο Gunn, ή το φαινόμενο των μεταφερόμενων ηλεκτρονίων, που ανακαλύφθηκε από τον Gunn το 1963 δηλώνει ότι όταν μια μικρή τάση DC εφαρμόζεται κατά μήκος του

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ. 3 η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. ρ. Λάμπρος Μπισδούνης.

ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ. 3 η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. ρ. Λάμπρος Μπισδούνης. ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ ρ. Λάμπρος Μπισδούνης Καθηγητής η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ T... ΥΤΙΚΗΣ ΕΛΛΑ ΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Περιεχόμενα ης ενότητας

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Ασαφής Λογική (Fuzzy Logic)

Ασαφής Λογική (Fuzzy Logic) Ασαφής Λογική (Fuzzy Logic) Ασάφεια: έννοια που σχετίζεται με την ποσοτικοποίηση της πληροφορίας και οφείλεται κυρίως σε μη-ακριβή (imprecise) δεδομένα. Π.χ. "Ο Νίκος είναι ψηλός": δεν προσδιορίζεται με

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Χαρακτηρισμός και μοντέλα τρανζίστορ λεπτών υμενίων βιομηχανικής παραγωγής: Τεχνολογία μικροκρυσταλλικού πυριτίου χαμηλής θερμοκρασίας

Χαρακτηρισμός και μοντέλα τρανζίστορ λεπτών υμενίων βιομηχανικής παραγωγής: Τεχνολογία μικροκρυσταλλικού πυριτίου χαμηλής θερμοκρασίας Χαρακτηρισμός και μοντέλα τρανζίστορ λεπτών υμενίων βιομηχανικής παραγωγής: Τεχνολογία μικροκρυσταλλικού πυριτίου χαμηλής θερμοκρασίας Υποψήφιος Διδάκτορας: Α. Χατζόπουλος Περίληψη Οι τελευταίες εξελίξεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Οι γεννήτριες συνεχούς ρεύματος διαχωρίζονται στις ακόλουθες κατηγορίες: Ανεξάρτητης (ξένης) διέγερσης. Παράλληλης διέγερσης. Διέγερσης σειράς. Αθροιστικής σύνθετης διέγερσης.

Διαβάστε περισσότερα

ηλεκτρικό ρεύµα ampere

ηλεκτρικό ρεύµα ampere Ηλεκτρικό ρεύµα Το ηλεκτρικό ρεύµα είναι ο ρυθµός µε τον οποίο διέρχεται ηλεκτρικό φορτίο από µια περιοχή του χώρου. Η µονάδα µέτρησης του ηλεκτρικού ρεύµατος στο σύστηµα SI είναι το ampere (A). 1 A =

Διαβάστε περισσότερα

Ανάπτυξη µεθόδων υπολογιστικής νοηµοσύνης για τον υπολογισµό κρίσιµων µεγεθών σε µονωτήρες υψηλής τάσης ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Ανάπτυξη µεθόδων υπολογιστικής νοηµοσύνης για τον υπολογισµό κρίσιµων µεγεθών σε µονωτήρες υψηλής τάσης ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Ανάπτυξη µεθόδων υπολογιστικής νοηµοσύνης για τον υπολογισµό κρίσιµων

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός

ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός ΑΣΚΗΣΗ 6 Συνδεσμολογία Αντιστάσεων ΙI (αντιστάσεις σε παράλληλη σύνδεση) Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να σχεδιάζει κύκλωμα αντιστάσεων σε παράλληλη σύνδεση και να μετράει

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ MM505 ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΒΙΟΜΗΧΑΝΙΚΟΙ ΑΥΤΟΜΑΤΙΣΜΟΙ Εργαστήριο ο - Θεωρητικό Μέρος Βασικές ηλεκτρικές μετρήσεις σε συνεχές και εναλλασσόμενο

Διαβάστε περισσότερα

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Βιολογικά Νευρωνικά Δίκτυα Η έννοια των Τεχνητών Νευρωνικών Δικτύων Η δομή ενός νευρώνα Διαδικασία εκπαίδευσης Παραδείγματα απλών

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος 2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός

mu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Μαθηματικό εκκρεμές ονομάζεται μια σημειακή μάζα, η οποία είναι αναρτημένη σε νήμα. Το ίδιο το νήμα δεν έχει δική του μάζα και το οποίο εξάλλου δεν μπορεί να επιμηκυνθεί.

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ

Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ 1. ΓΕΝΙΚΑ Τα ηλιακά στοιχεία χρησιμοποιούνται για τη μετατροπή του φωτός (που αποτελεί μία μορφή ηλεκτρομαγνητικής ενέργειας) σε ηλεκτρική ενέργεια. Κατασκευάζονται από

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

ΡΑΔΙΟΧΗΜΕΙΑ 2. ΑΤΜΟΣΦΑΙΡΑ ΚΕΦΑΛΑΙΟ 7. ΔΙΑΧΕΙΡΙΣΗ ΡΑΔΙΕΝΕΡΓΩΝ ΣΤΟΙΧΕΙΩΝ

ΡΑΔΙΟΧΗΜΕΙΑ 2. ΑΤΜΟΣΦΑΙΡΑ ΚΕΦΑΛΑΙΟ 7. ΔΙΑΧΕΙΡΙΣΗ ΡΑΔΙΕΝΕΡΓΩΝ ΣΤΟΙΧΕΙΩΝ ΡΑΔΙΟΧΗΜΕΙΑ ΔΙΑΧΕΙΡΙΣΗ ΡΑΔΙΕΝΕΡΓΩΝ ΑΠΟΒΛΗΤΩΝ ΤΟΞΙΚΟΤΗΤΑ ΡΑΔΙΕΝΕΡΓΩΝ ΙΣΟΤΟΠΩΝ Τμήμα Χημικών Μηχανικών Ιωάννα Δ. Αναστασοπούλου Βασιλική Δρίτσα ΚΕΦΑΛΑΙΟ 7. ΔΙΑΧΕΙΡΙΣΗ ΡΑΔΙΕΝΕΡΓΩΝ ΣΤΟΙΧΕΙΩΝ 2. ΑΤΜΟΣΦΑΙΡΑ

Διαβάστε περισσότερα

Κινητήρας παράλληλης διέγερσης

Κινητήρας παράλληλης διέγερσης Κινητήρας παράλληλης διέγερσης Ισοδύναμο κύκλωμα V = E + I T V = I I T = I F L R F I F R Η διέγερση τοποθετείται παράλληλα με το κύκλωμα οπλισμού Χαρακτηριστική φορτίου Έλεγχος ταχύτητας Μεταβολή τάσης

Διαβάστε περισσότερα

Πληροφορική 2. Τεχνητή νοημοσύνη

Πληροφορική 2. Τεχνητή νοημοσύνη Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο

Διαβάστε περισσότερα

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3 Θεωρητική Εξέταση. Τρίτη 15 Ιουλίου 2014 1/3 Πρόβλημα 3. Απλό μοντέλο εκκένωσης αερίου (10 ) Η διέλευση ηλεκτρικού ρεύματος μέσα από ένα αέριο ονομάζεται εκκένωση αερίου. Υπάρχουν πολλοί τύποι εκκένωσης

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING)

ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING) ΧΡΗΣΤΟΣ. ΤΑΡΑΝΤΙΛΗΣ ΚΛΑΣΙΚΟΙ ΕΥΡΕΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ Κλασικοί Ευρετικοί Classical Heuristics Κατασκευαστικοί Ευρετικοί Αλγόριθµοι

Διαβάστε περισσότερα

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3.1 Εισαγωγή Η μετάδοση θερμότητας, στην πράξη, γίνεται όχι αποκλειστικά με έναν από τους τρεις δυνατούς μηχανισμούς (αγωγή, μεταφορά, ακτινοβολία),

Διαβάστε περισσότερα

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης Κεφάλαιο 5 ΣΥΜΠΕΡΑΣΜΑΤΑ Το σηµαντικό στην επιστήµη δεν είναι να βρίσκεις καινούρια στοιχεία, αλλά να ανακαλύπτεις νέους τρόπους σκέψης γι' αυτά. Sir William Henry Bragg 5.1 Ανακεφαλαίωση της διατριβής

Διαβάστε περισσότερα

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες)

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Q2-1 Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Εισαγωγή Τα δισταθή μη γραμμικά ημιαγώγιμα

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Διάλεξη 2: Δίοδος pn Δρ Δημήτριος Λαμπάκης 1 Δίοδος pn Είναι μια μη γραμμική συσκευή Η γραφική παράσταση του ρεύματος σε σχέση με την τάση δεν είναι ευθεία γραμμή Η εξωτερική τάση

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ ΔΠΜΣ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΗΧΑΝΙΚΗ Ακαδημαϊκό Έτος: 2015-2016 / Εαρινό Εξάμηνο 1/30 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΟΛΥΦΑΣΙΚΑ, ΠΟΛΥΣΥΣΤΑΤΙΚΑ & ΑΝΤΙΔΡΩΝΤΑ ΣΥΣΤΗΜΑΤΑ Καθηγήτρια Φούντη Μαρία Γενικευμένη Εξίσωση Μεταφοράς

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Συλλογή μεταφορά και έλεγχος Δεδομένων ΘΟΡΥΒΟΣ - ΓΕΙΩΣΕΙΣ

Συλλογή μεταφορά και έλεγχος Δεδομένων ΘΟΡΥΒΟΣ - ΓΕΙΩΣΕΙΣ Συλλογή μεταφορά και έλεγχος Δεδομένων ΘΟΡΥΒΟΣ - ΓΕΙΩΣΕΙΣ ΘΟΡΥΒΟΣ - ΓΕΙΩΣΕΙΣ Σε ένα ηλεκτρικό κύκλωμα δημιουργούνται ανεπιθύμητα ηλεκτρικά σήματα, που οφείλεται σε διάφορους παράγοντες, καθώς επίσης και

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...13

Περιεχόμενα. Πρόλογος...13 Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.

Διαβάστε περισσότερα

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες)

Theory Greek (Greece) Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Q2-1 Μη Γραμμική Δυναμική σε Ηλεκτρικά Κυκλώματα (10 Μονάδες) Παρακαλείστε να διαβάσετε τις Γενικές Οδηγίες στον ξεχωριστό φάκελο πριν ξεκινήσετε το πρόβλημα αυτό. Εισαγωγή Τα δισταθή μη γραμμικά ημιαγώγιμα

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 8 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Μεθοδολογίες παρεµβολής σε DTM.

Μεθοδολογίες παρεµβολής σε DTM. Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον.

Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον. ΜΗ ΓΡΑΜΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΧΩΡΙΣ ΠΕΡΙΟΡΙΣΜΟΥΣ Τα περισσότερα προβλήματα βελτιστοποίησης είναι με περιορισμούς, αλλά οι μέθοδοι επίλυσης χωρίς περιορισμούς έχουν γενικό ενδιαφέρον. Μέθοδοι που απαιτούν

Διαβάστε περισσότερα

Εκτίµηση της κρίσιµης τάσης υπερπήδησης σε µονωτήρες µε τη χρήση Τεχνητών Νευρωνικών ικτύων ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Εκτίµηση της κρίσιµης τάσης υπερπήδησης σε µονωτήρες µε τη χρήση Τεχνητών Νευρωνικών ικτύων ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Εκτίµηση της κρίσιµης τάσης υπερπήδησης σε µονωτήρες µε τη χρήση Τεχνητών

Διαβάστε περισσότερα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα

Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο

Διαβάστε περισσότερα

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης

Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Υφαλμύρινση Παράκτιων Υδροφορέων - προσδιορισμός και αντιμετώπιση του φαινομένου με συνδυασμό μοντέλων προσομοίωσης και μεθόδων βελτιστοποίησης Καθ. Καρατζάς Γεώργιος Υπ. Διδ. Δόκου Ζωή Σχολή Μηχανικών

Διαβάστε περισσότερα

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Φθίνουσες μηχανικές ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ταλαντώσεις. Η ελάττωση του πλάτους (απόσβεση)

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα

Διαβάστε περισσότερα

Ορθή πόλωση της επαφής p n

Ορθή πόλωση της επαφής p n Δύο τρόποι πόλωσης της επαφής p n Ορθή πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ορθή πόλωση p n Άνοδος Κάθοδος Ανάστροφη πόλωση p n Άνοδος Κάθοδος

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

Ανάστροφη πόλωση της επαφής p n

Ανάστροφη πόλωση της επαφής p n Ανάστροφη πόλωση της επαφής p n Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Επαφή p n Ανάστροφη πόλωση Πολώνουμε

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

ΜΕΡΟΣ 6 ΕΛΕΓΧΟΣ ΤΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ

ΜΕΡΟΣ 6 ΕΛΕΓΧΟΣ ΤΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΕΛΟΤ HD 3S4 ΕΛΟΤ ΜΕΡΟΣ 6 ΕΛΕΓΧΟΣ ΤΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 61 Αρχικός έλεγχος 610 Γενικά 610.1 Κάθε ηλεκτρική εγκατάσταση πρέπει να ελέγχεται μετά την αποπεράτωση της και πριν να τεθεί σε λειτουργία από

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Α. Εξαναγκασμένες μηχανικές ταλαντώσεις Ελεύθερη - αμείωτη ταλάντωση και ποια η συχνότητα και η περίοδος της. Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα

Διαβάστε περισσότερα

Περιεχόμενο της άσκησης

Περιεχόμενο της άσκησης Προαπαιτούμενες γνώσεις Επαφή p- Στάθμη Fermi Χαρακτηριστική ρεύματος-τάσης Ορθή και ανάστροφη πόλωση Περιεχόμενο της άσκησης Οι επαφές p- παρουσιάζουν σημαντικό ενδιαφέρον επειδή βρίσκουν εφαρμογή στη

Διαβάστε περισσότερα

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5)

F el = z k e 0 (3) F f = f k v k (4) F tot = z k e 0 x f kv k (5) Κίνηση των ιόντων υπό την επίδραση ηλεκτρικού πεδίου Αντώνης Καραντώνης 15 Μαρτίου 2011 1 Σκοπός της άσκησης Σκοπός της άσκησης είναι ο προσδιορισμός της οριακής ταχύτητας των ιόντων υπό την επίδραση ηλεκτρικού

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y)

Συμπεριφορά συναρτήσεως σε κλειστές φραγμένες περιοχές. (x 0, y 0, f(x 0, y 0 ) z = L(x, y) 11.7. Aκρότατα και σαγματικά σημεία 903 39. Εκτίμηση μέγιστου σφάλματος Έστω ότι u e sin και ότι τα,, και μπορούν να μετρηθούν με μέγιστα δυνατά σφάλματα 0,, 0,6, και / 180, αντίστοιχα. Εκτιμήστε το μέγιστο

Διαβάστε περισσότερα

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

Διαβάστε περισσότερα

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Προηγμένος έλεγχος ηλεκτρικών μηχανών Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 3: Βαθμωτός Έλεγχος Ασύχρονων Μηχανών Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΨΗΛΩΝ ΤΑΣΕΩΝ Πανεπιστημιακές παραδόσεις

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...13

Περιεχόμενα. Πρόλογος...13 Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.

Διαβάστε περισσότερα

3.2 ΧΗΜΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ

3.2 ΧΗΜΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 3.2 ΧΗΜΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ 1 Λέξεις κλειδιά: Ηλεκτρολυτικά διαλύματα, ηλεκτρόλυση,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα

Διαβάστε περισσότερα