Κρυπτογραφία. Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης. Άρης Παγουρτζής - Πέτρος Ποτίκας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κρυπτογραφία. Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης. Άρης Παγουρτζής - Πέτρος Ποτίκας"

Transcript

1 Κρυπτογραφία Μονόδρομες συναρτήσεις - Συναρτήσεις σύνοψης Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 31

2 Περιεχόμενα 1 Μονόδρομες Συναρτήσεις 2 Συναρτήσεις σύνοψης (hash functions) 3 Δένδρα Merkle Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 2 / 31

3 Συναρτήσεις μονόδρομες ή μονής-κατεύθυνσης (one-way functions) Συνάρτηση που είναι εύκολο να υπολογιστεί, αλλά δύσκολο να αντιστραφεί Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 31

4 Συναρτήσεις μονόδρομες ή μονής-κατεύθυνσης (one-way functions) Συνάρτηση που είναι εύκολο να υπολογιστεί, αλλά δύσκολο να αντιστραφεί Απαραίτητη προϋπόθεση για κρυπτογραφία ιδιωτικού κλειδιού Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 31

5 Συναρτήσεις μονόδρομες ή μονής-κατεύθυνσης (one-way functions) Συνάρτηση που είναι εύκολο να υπολογιστεί, αλλά δύσκολο να αντιστραφεί Απαραίτητη προϋπόθεση για κρυπτογραφία ιδιωτικού κλειδιού Γεννήτριες ψευδοτυχαιότητας βασίζονται στην υπόθεση ύπαρξης μονόδρομων συναρτήσεων Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 31

6 Συναρτήσεις μονόδρομες ή μονής-κατεύθυνσης (one-way functions) Συνάρτηση που είναι εύκολο να υπολογιστεί, αλλά δύσκολο να αντιστραφεί Απαραίτητη προϋπόθεση για κρυπτογραφία ιδιωτικού κλειδιού Γεννήτριες ψευδοτυχαιότητας βασίζονται στην υπόθεση ύπαρξης μονόδρομων συναρτήσεων Με αμελητέα πιθανότητα μπορώ να αντιστρέψω μια μονόδρομη συνάρτηση Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 31

7 Συναρτήσεις μονόδρομες ή μονής-κατεύθυνσης (one-way functions) Συνάρτηση που είναι εύκολο να υπολογιστεί, αλλά δύσκολο να αντιστραφεί Απαραίτητη προϋπόθεση για κρυπτογραφία ιδιωτικού κλειδιού Γεννήτριες ψευδοτυχαιότητας βασίζονται στην υπόθεση ύπαρξης μονόδρομων συναρτήσεων Με αμελητέα πιθανότητα μπορώ να αντιστρέψω μια μονόδρομη συνάρτηση Με εξαντλητική αναζήτηση (εκθετικό χρόνο) μπορώ να αντιστρέψω μια μονόδρομη συνάρτηση Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 3 / 31

8 Μονόδρομες Συναρτήσεις Έστω συνάρτηση f : {0, 1} {0, 1} Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 4 / 31

9 Μονόδρομες Συναρτήσεις Έστω συνάρτηση f : {0, 1} {0, 1} Ορίζουμε για κάθε αλγόριθμο A και κάθε παράμετρο ασφαλείας n το Πείραμα αντιστρεψιμότητας Invert A,f (n) 1 Διάλεξε x {0, 1} n Υπολόγισε y = f(x) 2 Ο A με είσοδο το 1 n και το y επιστρέφει το x 3 Η έξοδος είναι 1, αν f(x ) = y, αλλιώς 0 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 4 / 31

10 Μονόδρομες Συναρτήσεις Έστω συνάρτηση f : {0, 1} {0, 1} Ορίζουμε για κάθε αλγόριθμο A και κάθε παράμετρο ασφαλείας n το Πείραμα αντιστρεψιμότητας Invert A,f (n) 1 Διάλεξε x {0, 1} n Υπολόγισε y = f(x) 2 Ο A με είσοδο το 1 n και το y επιστρέφει το x 3 Η έξοδος είναι 1, αν f(x ) = y, αλλιώς 0 Παρατήρηση: Δε χρειάζεται να βρούμε το ίδιο το x, αλλά οποιαδήποτε x, τώ f(x ) = y = f(x) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 4 / 31

11 Μονόδρομες Συναρτήσεις Ορισμός Μία συνάρτηση f : {0, 1} {0, 1} είναι μονόδρομη συνάρτηση αν είναι: 1 (Εύκολα υπολογίσιμη) Υπάρχει πολυωνυμικού χρόνου αλγόριθμος M f που την υπολογίζει, δηλ M f (x) = f(x), x 2 (Δύσκολα αντιστρέψιμη) Για κάθε PPT αλγόριθμο A υπάρχει αμελητέα συνάρτηση ϵ έτσι ώστε: Pr[Invert A,f (n) = 1] ϵ(n) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 5 / 31

12 Μονόδρομες Συναρτήσεις Ορισμός Μία συνάρτηση f : {0, 1} {0, 1} είναι μονόδρομη συνάρτηση αν είναι: 1 (Εύκολα υπολογίσιμη) Υπάρχει πολυωνυμικού χρόνου αλγόριθμος M f που την υπολογίζει, δηλ M f (x) = f(x), x 2 (Δύσκολα αντιστρέψιμη) Για κάθε PPT αλγόριθμο A υπάρχει αμελητέα συνάρτηση ϵ έτσι ώστε: Pr[Invert A,f (n) = 1] ϵ(n) Πιο αναλυτικά, Pr x {0,1} n[a(1 n, f(x)) f 1 (f(x))] ϵ(n) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 5 / 31

13 Μονόδρομες Συναρτήσεις Παρατηρήσεις: 1 Μια συνάρτηση που δεν είναι μονόδρομη δεν είναι απαραίτητο να αντιστρέφεται πάντα εύκολα (ή συχνά ) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 6 / 31

14 Μονόδρομες Συναρτήσεις Παρατηρήσεις: 1 Μια συνάρτηση που δεν είναι μονόδρομη δεν είναι απαραίτητο να αντιστρέφεται πάντα εύκολα (ή συχνά ) Πχ αν υπάρχει αντίπαλος που αντιστρέφει μια συνάρτηση με πιθανότητα n 10 για όλους άρτιους n (αλλά αποτυγχάνει για τους μονούς), τότε δεν είναι μονόδρομη Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 6 / 31

15 Μονόδρομες Συναρτήσεις Παρατηρήσεις: 1 Μια συνάρτηση που δεν είναι μονόδρομη δεν είναι απαραίτητο να αντιστρέφεται πάντα εύκολα (ή συχνά ) Πχ αν υπάρχει αντίπαλος που αντιστρέφει μια συνάρτηση με πιθανότητα n 10 για όλους άρτιους n (αλλά αποτυγχάνει για τους μονούς), τότε δεν είναι μονόδρομη 2 Αν έχουμε εκθετικό χρόνο, τότε αν μας δίνεται ένα y και η παράμετρος ασφαλείας 1 n, τότε μπορούμε να δοκιμάσουμε όλα τα x {0, 1} n, μέχρι να βρούμε ένα x, τέτοιο ώστε f(x) = y Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 6 / 31

16 Μονόδρομες Μεταθέσεις Μια συνάρτηση λέμε ότι διατηρεί το μήκος αν f(x) = x, x Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 7 / 31

17 Μονόδρομες Μεταθέσεις Μια συνάρτηση λέμε ότι διατηρεί το μήκος αν f(x) = x, x Ορισμός Μια μονόδρομη συνάρτηση που διατηρεί το μήκος και είναι 1-1, είναι μια μονόδρομη μετάθεση Η τιμή y καθορίζει μοναδικά το x από το οποίο προήλθε Παρόλα αυτά είναι δύσκολο να βρούμε το x σε πολυωνυμικό χρόνο Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 7 / 31

18 Υποψήφιες μονόδρομες συναρτήσεις Υπάρχουν μονόδρομες συναρτήσεις με την προϋπόθεση πως κάποια προβλήματα είναι δύσκολα, πχ παραγοντοποίηση ακεραίων Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 31

19 Υποψήφιες μονόδρομες συναρτήσεις Υπάρχουν μονόδρομες συναρτήσεις με την προϋπόθεση πως κάποια προβλήματα είναι δύσκολα, πχ παραγοντοποίηση ακεραίων Παράδειγμα 1 f mult (x, y) = xy, Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 31

20 Υποψήφιες μονόδρομες συναρτήσεις Υπάρχουν μονόδρομες συναρτήσεις με την προϋπόθεση πως κάποια προβλήματα είναι δύσκολα, πχ παραγοντοποίηση ακεραίων Παράδειγμα 1 f mult (x, y) = xy, όμως με μεγάλη πιθανότητα, το αποτέλεσμα άρτιος, οπότε (2, xy/2) είναι ο αντίστροφος Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 31

21 Υποψήφιες μονόδρομες συναρτήσεις Υπάρχουν μονόδρομες συναρτήσεις με την προϋπόθεση πως κάποια προβλήματα είναι δύσκολα, πχ παραγοντοποίηση ακεραίων Παράδειγμα 1 f mult (x, y) = xy, όμως με μεγάλη πιθανότητα, το αποτέλεσμα άρτιος, οπότε (2, xy/2) είναι ο αντίστροφος Με περιορισμό, είναι μονόδρομη: Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 31

22 Υποψήφιες μονόδρομες συναρτήσεις Υπάρχουν μονόδρομες συναρτήσεις με την προϋπόθεση πως κάποια προβλήματα είναι δύσκολα, πχ παραγοντοποίηση ακεραίων Παράδειγμα 1 f mult (x, y) = xy, όμως με μεγάλη πιθανότητα, το αποτέλεσμα άρτιος, οπότε (2, xy/2) είναι ο αντίστροφος Με περιορισμό, είναι μονόδρομη: 1 f mult (x, y) = (xy, x, y ), (εναλλακτικά, x, y έχουν ίδιο μήκος) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 31

23 Υποψήφιες μονόδρομες συναρτήσεις Υπάρχουν μονόδρομες συναρτήσεις με την προϋπόθεση πως κάποια προβλήματα είναι δύσκολα, πχ παραγοντοποίηση ακεραίων Παράδειγμα 1 f mult (x, y) = xy, όμως με μεγάλη πιθανότητα, το αποτέλεσμα άρτιος, οπότε (2, xy/2) είναι ο αντίστροφος Με περιορισμό, είναι μονόδρομη: 1 f mult (x, y) = (xy, x, y ), (εναλλακτικά, x, y έχουν ίδιο μήκος) 2 x, y πρώτοι αριθμοί ίσου μήκους Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 31

24 Υποψήφιες μονόδρομες συναρτήσεις Υπάρχουν μονόδρομες συναρτήσεις με την προϋπόθεση πως κάποια προβλήματα είναι δύσκολα, πχ παραγοντοποίηση ακεραίων Παράδειγμα 1 f mult (x, y) = xy, όμως με μεγάλη πιθανότητα, το αποτέλεσμα άρτιος, οπότε (2, xy/2) είναι ο αντίστροφος Με περιορισμό, είναι μονόδρομη: 1 f mult (x, y) = (xy, x, y ), (εναλλακτικά, x, y έχουν ίδιο μήκος) 2 x, y πρώτοι αριθμοί ίσου μήκους Παράδειγμα 2 Η συνάρτηση f(x 1,, x n, J) = (x 1,, x n, j J x j), όπου κάθε x i είναι ένα ακέραιος και J {1, 2,, n} Εύρεση αντιστρόφου είναι το γνωστό N P-πλήρες πρόβλημα Subset Sum Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 8 / 31

25 Υποψήφιες μονόδρομες μεταθέσεις Παράδειγμα 3 Έστω ένας πρώτος αριθμός p μήκους n-bits και ένας γεννήτορας g Z p Έστω ένα στοιχείο x Z p Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 9 / 31

26 Υποψήφιες μονόδρομες μεταθέσεις Παράδειγμα 3 Έστω ένας πρώτος αριθμός p μήκους n-bits και ένας γεννήτορας g Z p Έστω ένα στοιχείο x Z p Ορίζουμε f p,g (x) = g x mod p Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 9 / 31

27 Υποψήφιες μονόδρομες μεταθέσεις Παράδειγμα 3 Έστω ένας πρώτος αριθμός p μήκους n-bits και ένας γεννήτορας g Z p Έστω ένα στοιχείο x Z p Ορίζουμε f p,g (x) = g x mod p Η συνάρτηση αυτή διατηρεί το μήκος και είναι 1-1, άρα μετάθεση Η δυσκολία αντιστροφής της βασίζεται στη δυσκολία του προβλήματος διακριτού λογάριθμου Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 9 / 31

28 Υποψήφιες μονόδρομες μεταθέσεις Παράδειγμα 3 Έστω ένας πρώτος αριθμός p μήκους n-bits και ένας γεννήτορας g Z p Έστω ένα στοιχείο x Z p Ορίζουμε f p,g (x) = g x mod p Η συνάρτηση αυτή διατηρεί το μήκος και είναι 1-1, άρα μετάθεση Η δυσκολία αντιστροφής της βασίζεται στη δυσκολία του προβλήματος διακριτού λογάριθμου Τα SHA-1 ή AES δίνουν μονόδρομες συναρτήσεις, με την υπόθεση ότι είναι ελεύθερες συγκρούσεων ή ψευδοτυχαίες μεταθέσεις Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 9 / 31

29 Μονόδρομες συναρτήσεις καταπακτής (Trapdoor one-way functions) Μονόδρομες συναρτήσεις που είναι δύσκολο να αντιστραφούν, εκτός και αν ξέρουμε κάποιο μυστικό, την καταπακτή (trapdoor) Παράδειγμα Έστω N = pq, όπου p, q μεγάλοι πρώτοι αριθμοί Η συνάρτηση f N (x) = x 2 mod N είναι μια μονόδρομη μετάθεση με καταπακτή Βασίζεται στην δυσκολία εύρεσης τετραγωνικών ριζών mod N, για σύνθετο N, εκτός και αν ξέρουμε την παραγοντοποίηση του Γνωστή ως μονόδρομη μετάθεση Rabin (κρυπτοσύστημα) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 10 / 31

30 Συναρτήσεις σύνοψης (hash functions) Γνωστές και ως συναρτήσεις κατακερματισμού Σημαντικές ιδιότητες: Συμπίεση h : X Y, Y < X Συνήθως X = Σ, Y = Σ n, δηλαδή η h(x) έχει συγκεκριμένο μήκος για οποιαδήποτε είσοδο x Ευκολία Υπολογισμού Ο υπολογισμός της τιμής h(x) για κάποιο x γίνεται εύκολα Δηλαδή υπάρχει αλγόριθμος A πολυωνυμικού χρόνου, έτσι ώστε για κάθε x να ισχύει h(x) = A(x) Μια συνάρτηση σύνοψης ορίζει σχέση ισοδυναμίας: x x : h(x) = h(x ) Δύο στοιχεία στην ίδια κλάση ισοδυναμίας λέμε ότι προκαλούν σύγκρουση (collision) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 11 / 31

31 Συναρτήσεις σύνοψης (hash functions): επιθυμητές ιδιότητες Έστω hash function h : X Y Η h έχει: 1 Αντίσταση πρώτου ορίσματος (preimage resistance), αν για y Y είναι υπολογιστικά δύσκολο να βρεθεί x X τώ h(x) = y 2 Αντίσταση δεύτερου ορίσματος (2nd preimage resistance), αν για x X είναι υπολογιστικά δύσκολο να βρεθεί x X τώ x x και h(x) = h(x ) 3 Δυσκολία εύρεσης συγκρούσεων (collision resistance / freeness), αν είναι υπολογιστικά δύσκολο να βρεθούν x, x X έτσι ώστε h(x) = h(x ) Άλλα ονόματα: για το (2) weak collision freeness, για το (1) non-invertibility Σειρά ισχύος: (3) (2) (1) (υπό προϋποθέσεις) One-way hash functions (OWHFs): (1) & (2) Collision-resistant hash functions (CRHFs): (1) & (2) & (3) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 12 / 31

32 Συναρτήσεις σύνοψης (hash functions): παραδείγματα 1 f(x) = (x 2 c) mod p: δεν είναι μονής κατεύθυνσης αφού η εύρεση τετραγωνικών ριζών στο Z p είναι δυνατή σε πολυωνυμικό χρόνο 2 g(x) = x 2 mod n, n = pq, p, q κρυφοί: αντίσταση πρώτου ορίσματος, αλλά όχι αντίσταση δεύτερου ορίσματος (γιατί;), επομένως δεν είναι CRHF 3 h : Z 2 q Z p, h(x 1, x 2 ) = α x 1 β x 2 mod p, p, q πρώτοι, p = 2q + 1, α, β γεννήτορες του Z p Είναι γνωστή ως συνάρτηση σύνοψης Chaum-van Heijst-Pfitzman και είναι CRHF αν ισχύει η Υπόθεση Διακριτού Λογαρίθμου στη Z p Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 13 / 31

33 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) Θεώρημα Έστω συνάρτηση σύνοψης h : X Y και η h(x) Y ακολουθεί ομοιόμορφη κατανομή πιθανότητας όταν η x X ακολουθεί ομοιόμορφη κατανομή Η πιθανότητα να βρεθεί σύγκρουση μετά από τυχαία επιλογή x 1, x 2,, x k είναι περίπου 1 2 όταν k = 117 n, όπου n = Y Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 14 / 31

34 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) Θεώρημα Έστω συνάρτηση σύνοψης h : X Y και η h(x) Y ακολουθεί ομοιόμορφη κατανομή πιθανότητας όταν η x X ακολουθεί ομοιόμορφη κατανομή Η πιθανότητα να βρεθεί σύγκρουση μετά από τυχαία επιλογή x 1, x 2,, x k είναι περίπου 1 2 όταν k = 117 n, όπου n = Y Απόδειξη NoColl i : δεν έχουμε σύγκρουση στα {y 1, y 2,, y i } Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 14 / 31

35 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) Θεώρημα Έστω συνάρτηση σύνοψης h : X Y και η h(x) Y ακολουθεί ομοιόμορφη κατανομή πιθανότητας όταν η x X ακολουθεί ομοιόμορφη κατανομή Η πιθανότητα να βρεθεί σύγκρουση μετά από τυχαία επιλογή x 1, x 2,, x k είναι περίπου 1 2 όταν k = 117 n, όπου n = Y Απόδειξη NoColl i : δεν έχουμε σύγκρουση στα {y 1, y 2,, y i } Έχουμε NoColl k αν NoColl i για όλα τα i k, δηλαδή Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 14 / 31

36 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) Θεώρημα Έστω συνάρτηση σύνοψης h : X Y και η h(x) Y ακολουθεί ομοιόμορφη κατανομή πιθανότητας όταν η x X ακολουθεί ομοιόμορφη κατανομή Η πιθανότητα να βρεθεί σύγκρουση μετά από τυχαία επιλογή x 1, x 2,, x k είναι περίπου 1 2 όταν k = 117 n, όπου n = Y Απόδειξη NoColl i : δεν έχουμε σύγκρουση στα {y 1, y 2,, y i } Έχουμε NoColl k αν NoColl i για όλα τα i k, δηλαδή Pr[NoColl k ] = Pr[NoColl 1 ]Pr[NoColl 2 NoColl 1 ] Pr[NoColl k NoColl k 1 ] Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 14 / 31

37 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) Θεώρημα Έστω συνάρτηση σύνοψης h : X Y και η h(x) Y ακολουθεί ομοιόμορφη κατανομή πιθανότητας όταν η x X ακολουθεί ομοιόμορφη κατανομή Η πιθανότητα να βρεθεί σύγκρουση μετά από τυχαία επιλογή x 1, x 2,, x k είναι περίπου 1 2 όταν k = 117 n, όπου n = Y Απόδειξη NoColl i : δεν έχουμε σύγκρουση στα {y 1, y 2,, y i } Έχουμε NoColl k αν NoColl i για όλα τα i k, δηλαδή Pr[NoColl k ] = Pr[NoColl 1 ]Pr[NoColl 2 NoColl 1 ] Pr[NoColl k NoColl k 1 ] Pr[NoColl 1 ] = 1 Αν συμβαίνει το NoColl i, τότε η πιθανότητα να συγκρουστεί το y i+1 με τα προηγούμενα είναι i n Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 14 / 31

38 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) απόδειξη συν Pr[NoColl k ] = k 1 n(n 1) (n k + 1) n k = (1 i n ) i=1 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 15 / 31

39 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) απόδειξη συν Pr[NoColl k ] = k 1 n(n 1) (n k + 1) n k = (1 i n ) i=1 Ισχύει x R, 1 + x e x, οπότε: Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 15 / 31

40 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) απόδειξη συν Pr[NoColl k ] = k 1 n(n 1) (n k + 1) n k = (1 i n ) i=1 Ισχύει x R, 1 + x e x, οπότε: k 1 i=1 (1 i n ) k 1 i=1 e i n = e k 1 i=1 i n = e k(k 1) 2n Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 15 / 31

41 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) απόδειξη συν Pr[NoColl k ] = k 1 n(n 1) (n k + 1) n k = (1 i n ) i=1 Ισχύει x R, 1 + x e x, οπότε: k 1 i=1 (1 i n ) k 1 i=1 e i n = e k 1 i=1 i n Pr[Coll k ] 1 e k(k 1) 2n = e k(k 1) 2n Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 15 / 31

42 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) απόδειξη συν Pr[Coll k ] 1 e k(k 1) 2n Για να είναι επομένως η πιθανότητα σύγκρουσης τουλάχιστον p αρκεί: Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 16 / 31

43 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) απόδειξη συν Pr[Coll k ] 1 e k(k 1) 2n Για να είναι επομένως η πιθανότητα σύγκρουσης τουλάχιστον p αρκεί: 1 e k(k 1) 2n p ln(1 p) k(k 1) 2n k 2 k 2n ln 1 1 p 0 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 16 / 31

44 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) απόδειξη συν Pr[Coll k ] 1 e k(k 1) 2n Για να είναι επομένως η πιθανότητα σύγκρουσης τουλάχιστον p αρκεί: 1 e k(k 1) 2n p ln(1 p) k(k 1) 2n k 2 k 2n ln 1 1 p 0 Λύνοντας ως προς k: k 1 + 2n ln 1 1 p Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 16 / 31

45 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) απόδειξη συν Pr[Coll k ] 1 e k(k 1) 2n Για να είναι επομένως η πιθανότητα σύγκρουσης τουλάχιστον p αρκεί: 1 e k(k 1) 2n p ln(1 p) k(k 1) 2n k 2 k 2n ln 1 1 p 0 Λύνοντας ως προς k: k 1 + 2n ln 1 1 p Για p = 1 2 προκύπτει k 117 n + 1 Για n = 365, k 23 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 16 / 31

46 Επίθεση τετραγωνικής ρίζας (Παράδοξο Γενεθλίων) απόδειξη συν Pr[Coll k ] 1 e k(k 1) 2n Για να είναι επομένως η πιθανότητα σύγκρουσης τουλάχιστον p αρκεί: 1 e k(k 1) 2n p ln(1 p) k(k 1) 2n k 2 k 2n ln 1 1 p 0 Λύνοντας ως προς k: k 1 + 2n ln 1 1 p Για p = 1 2 προκύπτει k 117 n + 1 Για n = 365, k 23 Σημαντική εφαρμογή (μεταξύ άλλων): μέθοδος παραγοντοποίησης ρ Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 16 / 31

47 Επιθέσεις γενεθλίων Συμπέρασμα, αν h : {0, 1} {0, 1} l, τότε αν πάρω k = O(2 l/2 ) τυχαία στοιχεία από το {0, 1}, η πιθανότητα να έχω σύγκρουση είναι 1/2 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 17 / 31

48 Επιθέσεις γενεθλίων Συμπέρασμα, αν h : {0, 1} {0, 1} l, τότε αν πάρω k = O(2 l/2 ) τυχαία στοιχεία από το {0, 1}, η πιθανότητα να έχω σύγκρουση είναι 1/2 Ως προς ασυμπτωτική πολυπλοκότητα, 2 l, 2 l/2 το ίδιο, όχι όμως στην πράξη (αν θέλω ασφάλεια 128 bits, πρέπει η συνάρτηση hash να δίνει έξοδο 256 bits) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 17 / 31

49 Επιθέσεις γενεθλίων Συμπέρασμα, αν h : {0, 1} {0, 1} l, τότε αν πάρω k = O(2 l/2 ) τυχαία στοιχεία από το {0, 1}, η πιθανότητα να έχω σύγκρουση είναι 1/2 Ως προς ασυμπτωτική πολυπλοκότητα, 2 l, 2 l/2 το ίδιο, όχι όμως στην πράξη (αν θέλω ασφάλεια 128 bits, πρέπει η συνάρτηση hash να δίνει έξοδο 256 bits) Η προσέγγιση αυτή έχει δύο αδυναμίες: 1 τυχαίες τιμές εισόδου 2 μεγάλος χώρος Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 17 / 31

50 Επιθέσεις γενεθλίων με επιλεγμένα μηνύματα Επιλογή των μηνυμάτων: Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 18 / 31

51 Επιθέσεις γενεθλίων με επιλεγμένα μηνύματα Επιλογή των μηνυμάτων: Οι τιμές που δίνουμε για να πετύχουμε σύγκρουση, μπορούν να έχουν σχέση μεταξύ τους πχ η Alice απολύεται και θέλει να βρει δύο μηνύματα x και x έτσι ώστε H(x) = H(x ), όπου το πρώτο λέει τους λόγους της απόλυσής της, ενώ το δεύτερο κολακευτικά λόγια Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 18 / 31

52 Επιθέσεις γενεθλίων με επιλεγμένα μηνύματα Επιλογή των μηνυμάτων: Οι τιμές που δίνουμε για να πετύχουμε σύγκρουση, μπορούν να έχουν σχέση μεταξύ τους πχ η Alice απολύεται και θέλει να βρει δύο μηνύματα x και x έτσι ώστε H(x) = H(x ), όπου το πρώτο λέει τους λόγους της απόλυσής της, ενώ το δεύτερο κολακευτικά λόγια Φτιάχνουμε k = Θ(2 l/2 ) μηνύματα από τον πρώτο τύπο και άλλα τόσα από το δεύτερο και τις εικόνες τους Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 18 / 31

53 Επιθέσεις γενεθλίων με επιλεγμένα μηνύματα Επιλογή των μηνυμάτων: Οι τιμές που δίνουμε για να πετύχουμε σύγκρουση, μπορούν να έχουν σχέση μεταξύ τους πχ η Alice απολύεται και θέλει να βρει δύο μηνύματα x και x έτσι ώστε H(x) = H(x ), όπου το πρώτο λέει τους λόγους της απόλυσής της, ενώ το δεύτερο κολακευτικά λόγια Φτιάχνουμε k = Θ(2 l/2 ) μηνύματα από τον πρώτο τύπο και άλλα τόσα από το δεύτερο και τις εικόνες τους Είναι δύσκολο/απίθανο να βρεις μια τόσο καλή/εργατική/φιλότιμη υπάλληλο σαν την Alice Η δουλειά της είναι καταπληκτική/ασύγκριτη Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 18 / 31

54 Επιθέσεις γενεθλίων με επιλεγμένα μηνύματα Επιλογή των μηνυμάτων: Οι τιμές που δίνουμε για να πετύχουμε σύγκρουση, μπορούν να έχουν σχέση μεταξύ τους πχ η Alice απολύεται και θέλει να βρει δύο μηνύματα x και x έτσι ώστε H(x) = H(x ), όπου το πρώτο λέει τους λόγους της απόλυσής της, ενώ το δεύτερο κολακευτικά λόγια Φτιάχνουμε k = Θ(2 l/2 ) μηνύματα από τον πρώτο τύπο και άλλα τόσα από το δεύτερο και τις εικόνες τους Είναι δύσκολο/απίθανο να βρεις μια τόσο καλή/εργατική/φιλότιμη υπάλληλο σαν την Alice Η δουλειά της είναι καταπληκτική/ασύγκριτη Από παράδοξο γενεθλίων έχουμε καλή πιθανότητα να πετύχουμε σύγκρουση μεταξύ μηνυμάτων των δύο τύπων Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 18 / 31

55 Επιθέσεις γενεθλίων με επιλεγμένα μηνύματα Επιλογή των μηνυμάτων: Οι τιμές που δίνουμε για να πετύχουμε σύγκρουση, μπορούν να έχουν σχέση μεταξύ τους πχ η Alice απολύεται και θέλει να βρει δύο μηνύματα x και x έτσι ώστε H(x) = H(x ), όπου το πρώτο λέει τους λόγους της απόλυσής της, ενώ το δεύτερο κολακευτικά λόγια Φτιάχνουμε k = Θ(2 l/2 ) μηνύματα από τον πρώτο τύπο και άλλα τόσα από το δεύτερο και τις εικόνες τους Είναι δύσκολο/απίθανο να βρεις μια τόσο καλή/εργατική/φιλότιμη υπάλληλο σαν την Alice Η δουλειά της είναι καταπληκτική/ασύγκριτη Από παράδοξο γενεθλίων έχουμε καλή πιθανότητα να πετύχουμε σύγκρουση μεταξύ μηνυμάτων των δύο τύπων Μειονέκτημα: Θέλει πολύ χώρο Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 18 / 31

56 Βελτιωμένες επιθέσεις γενεθλίων 1 Πάρε τυχαία αρχική τιμή x 0 και για i > 0 υπολόγισε x i = H(x i 1 ) και x 2i = H(H(x 2(i 1) )) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 19 / 31

57 Βελτιωμένες επιθέσεις γενεθλίων 1 Πάρε τυχαία αρχική τιμή x 0 και για i > 0 υπολόγισε x i = H(x i 1 ) και x 2i = H(H(x 2(i 1) )) 2 Σε κάθε επανάληψη x i? = x2i Εάν ίσα, τότε ψάξε από το x 0 έως το x 2i 1 για σύγκρουση Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 19 / 31

58 Βελτιωμένες επιθέσεις γενεθλίων 1 Πάρε τυχαία αρχική τιμή x 0 και για i > 0 υπολόγισε x i = H(x i 1 ) και x 2i = H(H(x 2(i 1) )) 2 Σε κάθε επανάληψη x i? = x2i Εάν ίσα, τότε ψάξε από το x 0 έως το x 2i 1 για σύγκρουση 3 Βρίσκει το μικρότερο j ώστε x j = x j+i και τυπώνει τα x j 1, x j+i 1 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 19 / 31

59 Βελτιωμένες επιθέσεις γενεθλίων Αλγόριθμος Επίθεσης Γενεθλίων Μικρού Χώρου Είσοδος: Συνάρτηση σύνοψης H : {0, 1} {0, 1} l Έξοδος: x x, με H(x) = H(x ) x 0 {0, 1} l+1, x = x = x 0 for i = 1, 2, do : x = H(x) x = H(H(x )) // τώρα x = H (i) (x 0 ) και x = H (2i) (x 0 ) if x = x break x = x, x = x 0 for j = 1 i do : if H(x) == H(x ) return x, x else x = H(x ), x = H(x ) // τώρα x = H (j) (x 0 ) και x = H (i+j) (x 0 ) Σταθερός χώρος: δύο στοιχεία x i, x 2i Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 20 / 31

60 Βελτιωμένες επιθέσεις γενεθλίων Αλγόριθμος Επίθεσης Γενεθλίων Μικρού Χώρου Είσοδος: Συνάρτηση σύνοψης H : {0, 1} {0, 1} l Έξοδος: x x, με H(x) = H(x ) x 0 {0, 1} l+1, x = x = x 0 for i = 1, 2, do : x = H(x) x = H(H(x )) // τώρα x = H (i) (x 0 ) και x = H (2i) (x 0 ) if x = x break x = x, x = x 0 for j = 1 i do : if H(x) == H(x ) return x, x else x = H(x ), x = H(x ) // τώρα x = H (j) (x 0 ) και x = H (i+j) (x 0 ) Σταθερός χώρος: δύο στοιχεία x i, x 2i Επιτυχία 1/2 σε Θ(2 l/2 ) βήματα Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 20 / 31

61 Βελτιωμένες επιθέσεις γενεθλίων Λήμμα Έστω x 1,, x q η ακολουθία τιμών με x m = H(x m 1 ) Αν x I = x J, με 1 I < J q, τότε υπάρχει ένα i < J τέτοιο ώστε x i = x 2i Απόδειξη Η ακολουθία x I, x I+1, επαναλαμβάνεται με περίοδο = J I Δηλ για κάθε i I και k = 0, 1,, έχουμε x i = x i+k Έστω i το μικρότερο πολλαπλάσιο του που είναι μεγαλύτερο ή ίσο του I Έχουμε i < J (γιατί;) Επειδή i I, το 2i είναι πολλαπλάσιο του, έχουμε x i = x 2i Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 21 / 31

62 Βελτιωμένες επιθέσεις γενεθλίων με επιλεγμένα μηνύματα Όρισε g: {0, 1} l {0, 1}, όπου το τελευταίο bit δείχνει ποιά πρόταση θα επιλεγεί και τα υπόλοιπα ποιά λέξη Παράδειγμα 0: Bob is a good/hardworking and honest/trustworthy worker/employee 1: Bob is a difficult/problematic and taxing/irritating worker/employee g(0000) = Bob is a good and honest worker g(1011) = Bob is a problematic and taxing employee Ορίζουμε f(x) = H(g(x)) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 22 / 31

63 Βελτιωμένες επιθέσεις γενεθλίων με επιλεγμένα μηνύματα Όρισε g: {0, 1} l {0, 1}, όπου το τελευταίο bit δείχνει ποιά πρόταση θα επιλεγεί και τα υπόλοιπα ποιά λέξη Παράδειγμα 0: Bob is a good/hardworking and honest/trustworthy worker/employee 1: Bob is a difficult/problematic and taxing/irritating worker/employee g(0000) = Bob is a good and honest worker g(1011) = Bob is a problematic and taxing employee Ορίζουμε f(x) = H(g(x)) Οποιαδήποτε σύγκρουση x, x στην f δίνει δύο μηνύματα g(x), g(x ) που συγκρούονται Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 22 / 31

64 Βελτιωμένες επιθέσεις γενεθλίων με επιλεγμένα μηνύματα Όρισε g: {0, 1} l {0, 1}, όπου το τελευταίο bit δείχνει ποιά πρόταση θα επιλεγεί και τα υπόλοιπα ποιά λέξη Παράδειγμα 0: Bob is a good/hardworking and honest/trustworthy worker/employee 1: Bob is a difficult/problematic and taxing/irritating worker/employee g(0000) = Bob is a good and honest worker g(1011) = Bob is a problematic and taxing employee Ορίζουμε f(x) = H(g(x)) Οποιαδήποτε σύγκρουση x, x στην f δίνει δύο μηνύματα g(x), g(x ) που συγκρούονται Η πιθανότητα να είναι μηνύματα διαφορετικού τύπου είναι 1/2 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 22 / 31

65 Βελτιωμένες επιθέσεις γενεθλίων με επιλεγμένα μηνύματα Όρισε g: {0, 1} l {0, 1}, όπου το τελευταίο bit δείχνει ποιά πρόταση θα επιλεγεί και τα υπόλοιπα ποιά λέξη Παράδειγμα 0: Bob is a good/hardworking and honest/trustworthy worker/employee 1: Bob is a difficult/problematic and taxing/irritating worker/employee g(0000) = Bob is a good and honest worker g(1011) = Bob is a problematic and taxing employee Ορίζουμε f(x) = H(g(x)) Οποιαδήποτε σύγκρουση x, x στην f δίνει δύο μηνύματα g(x), g(x ) που συγκρούονται Η πιθανότητα να είναι μηνύματα διαφορετικού τύπου είναι 1/2 Αν είναι ίδιου τύπου, επαναλαμβάνουμε Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 22 / 31

66 Επέκταση συναρτήσεων σύνοψης Merkle-Damgård Hash Function Extension Έστω h μια συνάρτηση σύνοψης που απεικονίζει είσοδο μήκους 2n σε έξοδο μήκους n Κατασκευάζουμε μια συνάρτηση σύνοψης H μεταβλητού μήκους ως εξής: H: με είσοδο ένα string x {0, 1} μήκους L 2 n : 1 Θέσε B = L n (πλήθος block του x) Πρόσθεσε μηδενικά στο x ώστε το μήκος να είναι πολλαπλάσιο του n (x = x 1,, x B ) Θέσε x B+1 = L (το L κωδικοποιημένο δυαδικά) 2 Θέσε z 0 = 0 n (Initialization vector) 3 Για i = 1,, B + 1, υπολόγισε το z i = h(z i 1 x i ) 4 Έξοδος: z B+1 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 23 / 31

67 Κατασκευή Merkle-Damgård x 1 x 2 x B x B+1 = L z 0 = IV z 1 h s z 2 h s z B h s H s h s (x) Σχήμα : Merkle-Damgård Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 24 / 31

68 Επέκταση συναρτήσεων σύνοψης Θεώρημα Αν η συνάρτηση σύνοψης h είναι collision resistant, τότε και η H που κατασκευάζεται με τη μέθοδο Merkle-Damgård είναι επίσης collision resistant Απόδειξη Έστω x = x 1 x B x = x 1 x B : x B +1 = L, x B+1 = L, με H(x) = H(x ) Τότε έχουμε δύο περιπτώσεις: 1 L L, οπότε στο τελευταίο βήμα είναι z B+1 = h(z B L) και z B +1 = h(z B L ), άρα σύγκρουση στην h, αφού τα strings z B L και z B L είναι διαφορετικά 2 L = L, οπότε B = B Έστω z 0,, z B+1 οι τιμές που παράγονται από την H(x), και I i = z i 1 x i, I B+2 = z B+1 Έστω N ο μεγαλύτερος δείκτης, ώστε I N I N (υπάρχει;) Αφού ο N μέγιστος, έχουμε I N+1 = I N+1 (ειδικά z N = z N ) Αλλά τότε τα I N, I N είναι σύγκρουση στην h Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 25 / 31

69 Συναρτήσεις σύνοψης: μερικές ακόμη παρατηρήσεις Οι πιο διάσημες συναρτήσεις, MD5 και SHA-1 στηρίζονται σε πράξεις που θυμίζουν συμμετρική κρυπτογραφία (rotation, XOR, πρόσθεση mod2 32, δυαδικές πράξεις) και στην κατασκευή Merkle-Damgård Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 26 / 31

70 Συναρτήσεις σύνοψης: μερικές ακόμη παρατηρήσεις Οι πιο διάσημες συναρτήσεις, MD5 και SHA-1 στηρίζονται σε πράξεις που θυμίζουν συμμετρική κρυπτογραφία (rotation, XOR, πρόσθεση mod2 32, δυαδικές πράξεις) και στην κατασκευή Merkle-Damgård Υπέστησαν εντατικές επιθέσεις (επίθεση γενεθλίων κά) Η MD5 δεν θεωρείται πλέον ασφαλής, η SHA-1 αντικαταστάθηκε από την (οικογένεια) SHA-2, ενώ έχει αναπτυχθεί και η SHA-3 (Keccak) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 26 / 31

71 Δένδρα Merkle Ένας χρήστης θέλει να ανεβάσει αρχείο x σε έναν server Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 27 / 31

72 Δένδρα Merkle Ένας χρήστης θέλει να ανεβάσει αρχείο x σε έναν server Όταν το κατεβάσει, θέλει να ελέγξει αν είναι το ίδιο Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 27 / 31

73 Δένδρα Merkle Ένας χρήστης θέλει να ανεβάσει αρχείο x σε έναν server Όταν το κατεβάσει, θέλει να ελέγξει αν είναι το ίδιο Λύση: αποθηκεύει τοπικά το h = H(x), και όταν καταβάζει το ζητούμενο αρχείο x ελέγχει H(x ) =? h Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 27 / 31

74 Δένδρα Merkle Ένας χρήστης θέλει να ανεβάσει αρχείο x σε έναν server Όταν το κατεβάσει, θέλει να ελέγξει αν είναι το ίδιο Λύση: αποθηκεύει τοπικά το h = H(x), και όταν καταβάζει το ζητούμενο αρχείο x ελέγχει H(x ) =? h Αν έχει πολλά αρχεία; Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 27 / 31

75 Δένδρα Merkle Ένας χρήστης θέλει να ανεβάσει αρχείο x σε έναν server Όταν το κατεβάσει, θέλει να ελέγξει αν είναι το ίδιο Λύση: αποθηκεύει τοπικά το h = H(x), και όταν καταβάζει το ζητούμενο αρχείο x ελέγχει H(x ) =? h Αν έχει πολλά αρχεία; Υπάρχουν διάφορες λύσεις Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 27 / 31

76 Δένδρα Merkle Δένδρο Merkle με είσοδο x 1, x 2,, x t : Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 28 / 31

77 Δένδρα Merkle Δένδρο Merkle με είσοδο x 1, x 2,, x t : ένα δυαδικό δένδρο με φύλλα τα x 1,, x t και εσωτερικούς κόμβους τις τιμές σύνοψης των παιδιών του Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 28 / 31

78 Δένδρα Merkle Δένδρο Merkle με είσοδο x 1, x 2,, x t : ένα δυαδικό δένδρο με φύλλα τα x 1,, x t και εσωτερικούς κόμβους τις τιμές σύνοψης των παιδιών του Σχήμα : Δένδρο Merkle Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 28 / 31

79 Δένδρα Merkle Δένδρο Merkle με είσοδο x 1, x 2,, x t : ένα δυαδικό δένδρο με φύλλα τα x 1,, x t και εσωτερικούς κόμβους τις τιμές σύνοψης των παιδιών του Σχήμα : Δένδρο Merkle Για δοσμένη συνάρτηση σύνοψης H, συμβολίζουμε με MT t τη συνάρτηση που με είσοδο τα x 1,, x t, υπολογίζει το δένδρο Merkle και τη ρίζα του δένδρου Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 28 / 31

80 Δένδρα Merkle Δένδρο Merkle με είσοδο x 1, x 2,, x t : ένα δυαδικό δένδρο με φύλλα τα x 1,, x t και εσωτερικούς κόμβους τις τιμές σύνοψης των παιδιών του Σχήμα : Δένδρο Merkle Για δοσμένη συνάρτηση σύνοψης H, συμβολίζουμε με MT t τη συνάρτηση που με είσοδο τα x 1,, x t, υπολογίζει το δένδρο Merkle και τη ρίζα του δένδρου Θεώρημα Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 28 / 31

81 Δένδρα Merkle Ο χρήστης υπολογίζει το h = MT t (x 1,, x t ), ανεβάζει τα x 1,, x t στον server και φυλάει το h (και το t) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 29 / 31

82 Δένδρα Merkle Ο χρήστης υπολογίζει το h = MT t (x 1,, x t ), ανεβάζει τα x 1,, x t στον server και φυλάει το h (και το t) Όταν ο χρήστης θέλει το i-οστό αρχείο, ο server του στέλνει το x i μαζί με μια απόδειξη π i ότι είναι το σωστό αρχείο Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 29 / 31

83 Δένδρα Merkle Ο χρήστης υπολογίζει το h = MT t (x 1,, x t ), ανεβάζει τα x 1,, x t στον server και φυλάει το h (και το t) Όταν ο χρήστης θέλει το i-οστό αρχείο, ο server του στέλνει το x i μαζί με μια απόδειξη π i ότι είναι το σωστό αρχείο Η απόδειξη αποτελείται από τις τιμές που είναι γειτονικές στο μονοπάτι από το x i προς τη ρίζα Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 29 / 31

84 Δένδρα Merkle Ο χρήστης υπολογίζει το h = MT t (x 1,, x t ), ανεβάζει τα x 1,, x t στον server και φυλάει το h (και το t) Όταν ο χρήστης θέλει το i-οστό αρχείο, ο server του στέλνει το x i μαζί με μια απόδειξη π i ότι είναι το σωστό αρχείο Η απόδειξη αποτελείται από τις τιμές που είναι γειτονικές στο μονοπάτι από το x i προς τη ρίζα Παράδειγμα Έστω ότι ζητάει το x 3 Τότε ο server του στέλνει το x 3 μαζί και τα x 4, h 12, h 58 Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 29 / 31

85 Δένδρα Merkle Αν η H είναι ελεύθερη συγκρούσεων, τότε είναι αδύνατο ο server να στείλει ψεύτικο αρχείο (και απόδειξη) που να επαληθεύεται Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 30 / 31

86 Δένδρα Merkle Αν η H είναι ελεύθερη συγκρούσεων, τότε είναι αδύνατο ο server να στείλει ψεύτικο αρχείο (και απόδειξη) που να επαληθεύεται Ο χρήστης χρειάζεται σταθερό χώρο και O(log t) επικοινωνία με τον server για να πάρει το αρχείο Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 30 / 31

87 Χρήσεις συναρτήσεων σύνοψης Ψηφιακές υπογραφές Σε συνδυασμό με αλγόριθμο υπογραφής, για επιτάχυνση της διαδικασίας Παραδείγματα: MD5, που χρησιμοποιείται με RSA στο PGP, SHA-1 (τώρα SHA-2), που χρησιμοποιείται στο DSS (Digital Signature Standard), κά Έλεγχος γνησιότητας μηνύματος αυθεντικοποίηση (με συμμετρικό κλειδί): keyed hash functions, πχ HMAC Ακεραιότητα δεδομένων (με ή χωρίς κλειδί) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 31 / 31

88 Χρήσεις συναρτήσεων σύνοψης Ψηφιακές υπογραφές Σε συνδυασμό με αλγόριθμο υπογραφής, για επιτάχυνση της διαδικασίας Παραδείγματα: MD5, που χρησιμοποιείται με RSA στο PGP, SHA-1 (τώρα SHA-2), που χρησιμοποιείται στο DSS (Digital Signature Standard), κά Έλεγχος γνησιότητας μηνύματος αυθεντικοποίηση (με συμμετρικό κλειδί): keyed hash functions, πχ HMAC Ακεραιότητα δεδομένων (με ή χωρίς κλειδί) Bitcoin: blockchain, proof of work, Merkle trees Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 31 / 31

89 Χρήσεις συναρτήσεων σύνοψης Ψηφιακές υπογραφές Σε συνδυασμό με αλγόριθμο υπογραφής, για επιτάχυνση της διαδικασίας Παραδείγματα: MD5, που χρησιμοποιείται με RSA στο PGP, SHA-1 (τώρα SHA-2), που χρησιμοποιείται στο DSS (Digital Signature Standard), κά Έλεγχος γνησιότητας μηνύματος αυθεντικοποίηση (με συμμετρικό κλειδί): keyed hash functions, πχ HMAC Ακεραιότητα δεδομένων (με ή χωρίς κλειδί) Bitcoin: blockchain, proof of work, Merkle trees Γεννήτριες ψευδοτυχαίων αριθμών (με random seed + counter) Stream ciphers, αλλά και block ciphers (SHACAL) Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 31 / 31

Κρυπτογραφία. Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Συναρτήσεις μονής κατεύθυνσης - Συναρτήσεις κατακερματισμού Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ

Διαβάστε περισσότερα

Κρυπτογραφία. Hash functions. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Hash functions. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Hash functions Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 34 Περιεχόμενα 1 Συναρτήσεις μονής-κατεύθυνσης

Διαβάστε περισσότερα

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Κρυπτογραφία Έλεγχος πρώτων αριθών-παραγοντοποίηση Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 49 Ψηφιακές

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού

Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων. Συναρτήσεις Κατακερματισμού ΤΕΙ ΚΡΗΤΗΣ ΤΜΉΜΑ ΜΗΧΑΝΙΚΏΝ ΠΛΗΡΟΦΟΡΙΚΉΣ Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Συναρτήσεις Κατακερματισμού Ο όρος συνάρτηση κατακερματισμού (hash function) υποδηλώνει ένα μετασχηματισμό που παίρνει

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 32 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτογραφικές Συναρτήσεις Χρήστος Ξενάκης Ψευδοτυχαίες ακολουθίες Η επιλογή τυχαίων αριθμών είναι ένα βασικό σημείο στην ασφάλεια των κρυπτοσυστημάτων

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9

Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9 Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις

Διαβάστε περισσότερα

Ψηφιακές Υπογραφές. Άρης Παγουρτζής Στάθης Ζάχος. Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Ψηφιακές Υπογραφές. Άρης Παγουρτζής Στάθης Ζάχος. Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ψηφιακές Υπογραφές Απαιτήσεις

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ζωή Παρασκευοπούλου Νίκος

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

Κεφάλαιο 21. Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων

Κεφάλαιο 21. Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων Κεφάλαιο 21 Κρυπτογραφία δημόσιου κλειδιού και πιστοποίηση ταυτότητας μηνυμάτων Κρυπτογράφηση δημόσιου κλειδιού RSA Αναπτύχθηκε το 1977 από τους Rivest, Shamir και Adleman στο MIT Ο πιο γνωστός και ευρέως

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007

ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007 Ψηφιακές υπογραφές Ψηφιακές υπογραφές Υπάρχει ανάγκη αντικατάστασης των χειρόγραφων υπογραφών µε ψηφιακές (ΨΥ) Αυτές πρέπει να διαθέτουν τα εξής χαρακτηριστικά: Ο παραλήπτης πρέπει να είναι σε θέση να

Διαβάστε περισσότερα

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών;

1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; 1. Τι είναι ακεραιότητα δεδομένων, με ποιους μηχανισμούς επιτυγχάνετε κ πότε θα χρησιμοποιούσατε τον καθένα εξ αυτών; Η ακεραιότητα δεδομένων(data integrity) Είναι η ιδιότητα που μας εξασφαλίζει ότι δεδομένα

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 θα εξετάσουμε τα ακόλουθα εργαλεία κρυπτογραφίας: ψηφιακές υπογραφές κατακερματισμός (hashing) συνόψεις μηνυμάτων μ (message digests) ψευδοτυχαίοι

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 35 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

UP class. & DES και AES

UP class. & DES και AES Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων UP class & DES και AES Επιμέλεια σημειώσεων: Ιωάννης Νέμπαρης Μάριος Κουβαράς Διδάσκοντες: Στάθης Ζάχος

Διαβάστε περισσότερα

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας

Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38 Περιεχόμενα 1 Message

Διαβάστε περισσότερα

Κεφάλαιο 8. Συναρτήσεις Σύνοψης. 8.1 Εισαγωγή

Κεφάλαιο 8. Συναρτήσεις Σύνοψης. 8.1 Εισαγωγή Κεφάλαιο 8 Συναρτήσεις Σύνοψης 8.1 Εισαγωγή Οι Κρυπτογραφικές Συναρτήσεις Σύνοψης (ή Κατακερματισμού) (σμβ. ΣΣ) παίζουν σημαντικό και θεμελιακό ρόλο στη σύγχρονη κρυπτογραφία. Όπως και οι ΣΣ που χρησιμοποιούνται

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 34

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 6: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας (2017-18) Βοηθοί διδασκαλίας Παναγιώτης Γροντάς

Διαβάστε περισσότερα

Hash Functions. μεγεθος h = H(M) ολους. στο μηνυμα. στο συγκεκριμενο hash (one-way property)

Hash Functions. μεγεθος h = H(M) ολους. στο μηνυμα. στο συγκεκριμενο hash (one-way property) Hash Functions Συρρικνωνει μηνυμα οποιουδηποτε μηκους σε σταθερο μεγεθος h = H(M) Συνηθως θεωρουμε οτι η hash function ειναι γνωστη σε ολους Το hash χρησιμοποιειται για να ανιχνευσει τυχον αλλαγες στο

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Υπογραφές Επιπρόσθετης Λειτουργικότητας Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού

Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού Μ. Αναγνώστου 13 Νοεμβρίου 2018 Συναρτήσεις κατακερματισμού Απλές συναρτήσεις κατακερματισμού Κρυπτογραφικές συναρτήσεις κατακερματισμού Secure

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 26

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com 1 Περίληψη Ηash functions (συναρτήσεις σύνοψης) Assurance

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

Αλγόριθµοι δηµόσιου κλειδιού

Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Ηδιανοµή του κλειδιού είναι ο πιο αδύναµος κρίκος στα περισσότερα κρυπτογραφικά συστήµατα Diffie και Hellman, 1976 (Stanford Un.) πρότειναν ένα

Διαβάστε περισσότερα

Συμμετρικά κρυπτοσυστήματα

Συμμετρικά κρυπτοσυστήματα Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Δίκτυα Feistel Σημαντικές

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων

Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Κ Σ Ι Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Παναγιώτα Παναγοπούλου Άσκηση 1. Υποθέστε ότι οι διεργασίες ενός σύγχρονου κατανεμημένου συστήματος έχουν μοναδικές ταυτότητες (UIDs), γνωρίζουν ότι είναι συνδεδεμένες

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας

Κρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

* * * ( ) mod p = (a p 1. 2 ) mod p.

* * * ( ) mod p = (a p 1. 2 ) mod p. Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι

Διαβάστε περισσότερα

Βασικές Έννοιες Κρυπτογραφίας

Βασικές Έννοιες Κρυπτογραφίας Βασικές Έννοιες Κρυπτογραφίας Παύλος Εφραιμίδης Κρυπτογραφία Βασικές Έννοιες 1 Τι θα μάθουμε Obscurity vs. Security Βασικές υπηρεσίες κρυπτογραφίας: Confidentiality, Authentication, Integrity, Non- Repudiation

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο

Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία PROJECT Συνοπτική Παρουσίαση του Κβαντικού Αλγόριθμου Παραγοντοποίησης

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers (κρυπτοσυστήματα

Διαβάστε περισσότερα

Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC

Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Αυθεντικότητα Μηνυμάτων 1 Αυθεντικότητα Μηνύματος Εφαρμογές Προστασία ακεραιότητας Εξακρίβωση ταυτότητας αποστολέα Μη άρνηση

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Blum Blum Shub Generator

Blum Blum Shub Generator Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Αριθμών : Blum Blum Shub Generator Διονύσης Μανούσακας 31-01-2012 Εισαγωγή Πού χρειαζόμαστε τυχαίους αριθμούς; Σε κρυπτογραφικές εφαρμογές κλειδιά κρυπτογράφησης

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Υπογραφές Επιπρόσθετης Λειτουργικότητας Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα [1, n] που

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Κεφάλαια 2&21. Συναρτήσεις κατακερματισμού Πιστοποίηση ταυτότητας μηνυμάτων

Κεφάλαια 2&21. Συναρτήσεις κατακερματισμού Πιστοποίηση ταυτότητας μηνυμάτων Κεφάλαια 2&21 Συναρτήσεις κατακερματισμού Πιστοποίηση ταυτότητας μηνυμάτων Ενεργητικές επιθέσεις Η κρυπτογράφηση παρέχει προστασία από παθητικές επιθέσεις (υποκλοπή). Μια διαφορετική απαίτηση είναι η προστασία

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας

Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Κρυπτογραφία Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Κεφάλαιο 8. Ακεραιότητα και Αυθεντικότητα Μηνυμάτων

Κεφάλαιο 8. Ακεραιότητα και Αυθεντικότητα Μηνυμάτων Κεφάλαιο 8. Ακεραιότητα και Αυθεντικότητα Μηνυμάτων Σύνοψη Κατά τη μεταφορά δεδομένων με τη μορφή μηνυμάτων στο Διαδίκτυο, κρίσιμο ζητούμενο αποτελεί η ύπαρξη μηχανισμών για την επιβεβαίωση της ακεραιότητας

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr

Διαβάστε περισσότερα

W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων:

W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων: 6/4/2017 Μετά την πρόταση των ασύρματων πρωτοκόλλων από τους Diffie-Hellman το 1976, το 1978 προτάθηκε ένα πρωτόκολλο από τους Merkle-Hellman το οποίο βασίστηκε στο ότι δεν μπορούμε να λύσουμε γρήγορα

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας

Διαβάστε περισσότερα

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α. 1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά

Διαβάστε περισσότερα

project RSA και Rabin-Williams

project RSA και Rabin-Williams Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών project RSA και Rabin-Williams Στοιχεία Θεωρίας Αριθμών& Εφαρμογές στην Κρυπτογραφία Ονοματεπώνυμο Σπουδαστών: Θανάσης Ανδρέου

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2017-2018 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

Ο Ρ Ι Ο & Σ Υ Ν Ε Χ Ε Ι Α Σ Υ Ν Α Ρ Τ Η Σ Η Σ Όριο Συνάρτησης

Ο Ρ Ι Ο & Σ Υ Ν Ε Χ Ε Ι Α Σ Υ Ν Α Ρ Τ Η Σ Η Σ Όριο Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Ο Ρ Ι Ο & Σ Υ Ν Ε Χ Ε Ι Α Σ Υ Ν Α Ρ Τ Η Σ Η Σ Όριο Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω; Πότε θα λέμε ότι μια συνάρτηση f: (α x0) (x0 β) έχει όριο τον πραγματικό αριθμό

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα