Principles of Mathematics 12 Answer Key, Contents 185

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Principles of Mathematics 12 Answer Key, Contents 185"

Transcript

1 Principles of Mathematics Answer Ke, Contents 85 Module : Section Trigonometr Trigonometric Functions Lesson The Trigonometric Values for θ, 0 θ Lesson Solving Trigonometric Equations for 0 θ 60 8 Lesson Special Trigonometric Values 85 Lesson The Unit Circle 87 Lesson 5 The Circular Functions 89 Lesson 6 Radian Measures 9 Review 0 Section : Graphs of Trigonometric Functions Lesson Sine and Cosine Graphs 05 Lesson Transformations of the Sine and Cosine Functions 07 Lesson Graphs of the Remaining Circular Functions 5 Review 9 Section : Trigonometric Identities Lesson Elementar Identities 5 Lesson Using Elementar Identities Lesson Sum and Difference Identities 7 Lesson Double Angle Identities Review 55 Section : Problem Solving Lesson Modelling with Trigonometric Functions 6 Lesson Lesson Solving Trigonometric Equations Using Your Graphing Calculator 65 Solving Trigonometric Equations With General Solution 65 Review 66 Module

2 86 Answer Ke, Contents Principles of Mathematics Notes Module

3 Principles of Mathematics Section, Answer Ke, Lesson 87 Lesson Answer Ke.. 0 P(,) Q( 6,8) 8 r 6 r 0 θ θ 5 sinθ cosθ tanθ 8 sinθ cosθ tanθ 6 Module

4 88 Section, Answer Ke, Lesson Principles of Mathematics.. θ 5 r 5 or 5 θ S( 6, ) r 5 0 R(5, ) sinθ 5 cosθ tanθ 5 sinθ cosθ 5 5 tanθ 6 Module

5 }r 5 Principles of Mathematics Section, Answer Ke, Lesson M(5,0) r { θ N(0,) 0 sinθ cosθ 5 0 tanθ 0 5 sinθ 0 cosθ 0 tan θ which is undefined r L(,0) θ θ } r K(0, ) 0 sinθ 0 cosθ 0 tanθ 0 sinθ 0 cosθ 0 tan θ which is undefined 0 Module

6 90 Section, Answer Ke, Lesson Principles of Mathematics Notes Module

7 Principles of Mathematics Section, Answer Ke, Lesson 9 Lesson Answer Ke. a) Find the reference angles for 6, 65, 89,. 6, 85, 7, 7 b) Evaluate the three trigonometric ratios for the angles above. b) sin cos tan c) Evaluate the three trigonometric ratios for the angles above. i) 76 or ii) 65 or 95 iii) 69 or 7 iv) 68 or 7.. sinθ sinθ θr θ θ sin, º, 8º 5tanθ + tanθ 5tanθ tanθ 7 θ R tan 0º 7 θ 50º, θ 0º Module

8 9 Section, Answer Ke, Lesson Principles of Mathematics. sinθ + 0 sinθ θ R sin 9º θ 99º, θ º cos θ + cosθ 5 0 ( θ )( θ ) Case() cosθ cos + 5 cos 0 () cosθ 5 θ cos R () Case cosθ 0 cosθ θ R θ 7º, θ 89º cos 7º 7cosθ 8 cosθ 7 θ R 7 5 No Solution cos No Solution [ Remember that cos θ ] 7. sin θ sinθ 0 ; 80 or. (60 is not valid because of the allowed interval for θ.) 8. tan tan 76,, 56, Module

9 Principles of Mathematics Section, Answer Ke, Lesson 9 Lesson Answer Ke sin θ 0 0 cos θ 0 tan θ 0 undefined sin θ 0 cos θ 0 tan θ undefined 0. a) b) + + c) + + d) e) f) + + g) Module

10 9 Section, Answer Ke, Lesson Principles of Mathematics. a) 5, 5 b) 60, 0 o o o o c) 0, 0 d) 0 o o o o e) 0 f) cos θ o o, since 0 and 60 are not allowed. ( θ ) g) sin θ sin + 0 sin θ 0 or sin θ o o o θ 80, 0, 0 h) cos θ cos θ ± θ 60, 0, 0, 00 o o o o ( ) i) tan θ+ 0 j) sin θ sin θ 0 ( θ ) ( )( ) tan θ sin θ+ sin θ 0 θ θ+ θ o o 0, 00 sin 0 or sin 0 k) cos θ cos 0 cos θ 0 or cos θ θ o o 90, 70 sin θ or sin θ o o o θ 0, 0, 90 (Note: cos θ produces no solutions since 0 < θ < 60.) Module

11 Principles of Mathematics Section, Answer Ke, Lesson 95 Lesson Answer Ke. a) E b) I c) H d) J e) Q f) S g) L h) H i) A j) M k) D l) H m) K n) L o) G p) N q) M r) S. a) S b) H c) S k is a multiple of. H k is an even, non-multiple of. D or L k is an odd integer.. a) B, F, J, or N. b) S, D, H, or L.. a) b) c) 5 d) e) f) 6 g) h) Careful: 0 is not positive. It is non-negative. 7 i) j) 6 Module

12 96 Section, Answer Ke, Lesson Principles of Mathematics 5. a) 7 b) c) d) e) f) 6 g) h) 5 i) 5 j) 6 Note: This eercise was prett straight forward. However, just because it is simple does not mean it is not important. In fact, it is a ver important assignment as it forms the basis for the rest of the module. You must know where ou have stopped for ever special value of θ. Conversel, if ou know where ou are on the unit circle, ou must know how to get there! Module

13 Principles of Mathematics Section, Answer Ke, Lesson 5 97 Lesson 5 Answer Ke. Question (a) (b) (c) θ P(θ) cos θ sin θ tan θ, 7, 6 7 (, 0) 0 0 (d) 5, (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) 6, (, 0) (0, ) 0 undefined 5 (, 0) 0 0, 6 7, (0, ) 0 undefined (, 0) 0 0, 5 6, 5, (0, ) 0 undefined 7, (, 0) 0 0 Module

14 98 Section, Answer Ke, Lesson 5 Principles of Mathematics. a) + + b) () c) () d) cos 0 + e) ( ) ( ) f) cos g) () ()( ) h). a), b), c), 6 6 d) e) f) cos θ θ 0 ( θ ) g) sin θ sin + 0 sin θ 0 or sin θ 7 θ 0,,, 6 6 h) cos 0 θ ( cosθ )( cosθ+ ) 0 cos θ ± 5 θ,,, Module

15 Principles of Mathematics Section, Answer Ke, Lesson 5 99 ( θ ) i) tan + 0 tan θ 5 θ, j) sin sin 0 θ θ ( sin θ+ )( sin θ ) 0 sin θ, or sin θ 7 θ,, 6 6 ( θ ) k) cos θ cos 0 cos θ 0 or cos θ θ,,0. a) 0 b) + () + 5 c) ( ) d) ( ) e) ( ) f) () 8 5. a) cos θ 5 θ, b) sin θ θ, c) tan θ and sin θ < 0 7 θ ( θ) d) cot θ sin 0 cot θ 0 or sin θ cot θ 0 or θ θ, Module

16 00 Section, Answer Ke, Lesson 5 Principles of Mathematics ( θ )( θ ) e) tan tan + 0 tan θ ± 5 7 θ,,, f) sin θ 0 sin θ sin θ 0 ( sin θ)( + sin θ) 0 sin θ ± θ, Module

17 Principles of Mathematics Section, Answer Ke, Lesson ; o o Since 90 and 80 : F H G I 80K J 8 The other base angle is also The third angle Lesson 6 Answer Ke F I HG K J F H G I K J F I HG K J F H G I K J 5 5 a) 5 b) c) 60 d) a) 0 b) 6 F H G I K J F80 H G I K J 65 F I HG K J F H G I K J c) d) F H G I K J Therefore, or Use the CAST rule. S A T C Cos is positive in Quadrant IV. All are positive in Quadrant I. Sine is positive in Quadrant II. Tan is positive in Quadrant III. a) IV b) I or III c) II d) II or III Module

18 0 Section, Answer Ke, Lesson 6 Principles of Mathematics 8. Since s θr, it follows that. θ(8.). F Hence, θ or H G I K J Using the Pthagorean Theorem: AB AC + BC AB AB 0 Circumference r (5) 0 cm. 0. Since C r 0 r 0 r 0 Since s θr, it follows that 5 θ ; therefore, θ or 60.. a) rev. ; therefore, setting up a ratio where measure in revolutions rev revolutions b) rev. 60 ; therefore, setting up a ratio where measure in revolutions rev o o revolutions 60 Module

19 Principles of Mathematics Section, Answer Ke, Lesson 6 0. a). 76 b) c) d) b cos 5. g. 68 e) b tan g f) 0. 6 g) h) i) k) sin 5 b b g tan j) g. 809 l) 0. m) n) d sin o i. 559 o) a) Reference arc sin (0.) 0. Therefore, 0. to two decimal places. sin is positive in Quadrants I and II. 0. is the measure of the angle in Quadrant I. In Quadrant II, ( 0.).0 0. or.0 b) Reference arc cos (0.).75 Therefore,.5 to two decimal places. cos is negative in Quadrants II and III. In Quadrant II, (.5).69 In Quadrant III, ( +.5) or.59 Module

20 0 Section, Answer Ke, Lesson 6 Principles of Mathematics c) Reference arc tan.07 Therefore,. to two decimal places. tan is positive in Quadrants I and III.. in Quadrant I. In Quadrant III, ( +.).5. or.5 d) Reference arc sin (rounded to two decimal places) sin is negative in Quadrants III and IV. In Quadrant III, ( + 0.5).9 In Quadrant IV, ( 0.5) or 6.0 e) Reference arc cos (0.675) cos is positive in Quadrants I and IV. In Quadrant I, 0.8 In Quadrant IV, ( 0.8) or 5.5 Module

21 Principles of Mathematics Section, Answer Ke, Lesson 6 05 f) sec.5.5 cos cos 0..5 Reference arc cos (0.).59.6 cos is positive in Quadrants I and IV. In Quadrant I,.6 In Quadrant IV, (.6) 5..6 or 5. g) cot tan tan 0.5 Reference arc tan (0.5) 0.5 tan is negative in Quadrants II and IV. In Quadrant II, ( 0.5).90 In Quadrant IV, ( 0.5) or 6.0 Module

22 06 Section, Answer Ke, Lesson 6 Principles of Mathematics h) csc 6 6 sin sin Reference arc sin (0.6667) sin is positive in Quadrants I and II. In Quadrant I, 0.7 In Quadrant II, ( 0.7) or.97. a) sin sin 0 ( ) sin sin 0 sin 0 or sin 0, 0, 50, 80 sin b), provided cos 0 cos tan o o 5, or 5 o o c) sin θ when θ 90 or ( ) or 50 5 or 5 Note: Since < 60 in solving the equation, ou use < 70 (twice around the unit circle). Module

23 Principles of Mathematics Section, Answer Ke, Lesson 6 07 d) cos cos when θ 60, 00, 0, 660 (twice around again) 60, 00, 0, 660 o o o o 0, 50, 0, 0 o o o o o o o o e) csc sin 0, 50 f) tan tan 0 ( )( ) tan + tan 0 tan or tan Related tan 6.57 o tan is negative in Quadrants II and IV. ( ), ( ), or 5, 5 5.,., 5, 5 o o o o o o o o 5. ( ) a) cos cos 0 cos 0 or cos, cos b) (twice around) 5 9,,, 5 9,,, Module

24 08 Section, Answer Ke, Lesson 6 Principles of Mathematics c) sin cos sin cos tan 5, d) sin ( ) 5, 6 6 7, (both within range) 6 6 e),, (not allowed) Use. 0, ( ) f) sin tan + 0 sin 0 or tan 7 0,,, Module

25 Principles of Mathematics Section, Answer Ke, Review 09. Review Answer Ke a) b) c) d) 0 e F I HG K J F H G I K J bg j e j b g b g e) f) + 0. a) 5 7 7, b), c) 5 7, d) 6 e) f) cos θ, θ, ( θ ) g) cos θ cos + 0 cos θ 0, cos θ θ,,, h) cos θ cos θ ± 5 θ,,, i) cot θ 5 θ, 6 6 ( θ ) k) tan θ tan 0 tan θ 0, 5 θ 0,,, j) cos cos 0 θ+ θ ( cos θ )( cos θ+ ) 0 cos θ, 5 θ,, Module

26 0 Section, Answer Ke, Review Principles of Mathematics.. F I HG K J F H G I K J F I HG K J F H G I K J 5 a) 5 b) c) 500 d) a) b) 65 6 c) d) a) sin sin 0 θ θ sin θ( sin θ ) 0 sin θ 0, 5 θ 0,,, 6 6 b) sin cos tan 5, 5 c) θ, θ, d) sin 0, 50, 90, 50 o o o o 5, 75, 95, 55 o o o o e) csc θ f) sin θ 7 θ, 6 6 tan tan 0 + ( )( ) tan tan + 0 tan, 6.565, , 5, 5 o o o o Module

27 Principles of Mathematics Section, Answer Ke, Review g) cos θ h) 5 θ...,,, 5 θ...,,, θ, θ +,,,... θ,,,... θ, i) ( ) cos tan + 0 cos 0, tan 90, 70, 5, 5 o o o o Module

28 Section, Answer Ke, Review Principles of Mathematics Notes Module

29 Principles of Mathematics Section, Answer Ke, Lesson Lesson Answer Ke θ. Domain is R.. -intercept. Zeros are the odd integral multiples of This is the same as the sequence Period [ ]{ R } Range is, 6. Cos () cos ( ); the transformation of cos () to cos ( ) is a reflection across the -ais, and ields the same graph. This kind of smmetr is called "even." Cos () cos ( ); when lines are drawn through the origin to the cosine graph, the origin is rarel the midpoint of those lines. Note that this is the opposite case from the sine curve. Thus, the cosine curve is not smmetric about the origin, but the sine curve is. We ll ask ou to distinguish "even" from "odd" smmetr several times in the course. How can ou remember that cos() has "even" and sin() has "odd" or ( k+ ) k Ι. 5,,,,... The graph of f() The graph of f() Module

30 Section, Answer Ke, Lesson Principles of Mathematics smmetr? One trick is to know where the even-odd terms come from. The parabola f() is familiar to ou, and ou can see right awa that f() f( ). Like the cosine graph, the parabola graph has even smmetr. And it just so happens that eponent in f() is an even number. Now consider the graph of f(). It has smmetr like the sine curve-through the origin, which we call odd smmetrjust as odd as the in its equation! In fact, the graphs of,, and 5 all displa "odd" smmetr like the sine curve, while the graphs of 0,, and all have "even" smmetr like the cosine curve. You ma use our graphing calculator to see this. B recalling the shapes of the and curves, ou can use the smmetr terms "even" and "odd" with confidence. 7. Amplitude. 8. In one revolution, cos θ > 0 in Quadrants I and IV; cos θ < 0 in Quadrants II and III. 9. In one revolution, the cosine curve is increasing in Quadrants III and IV and decreasing in Quadrants I and II. Module

31 Principles of Mathematics Section, Answer Ke, Lesson 5 Lesson Answer Ke. Question Domain Range Amplitude -intercept Period (a) R [, ] 0 (b) R [, ] 0 (c) R [, ] 0 (d) R [, ] (e) R [, ] (f) R [, 0] (g) R [0, ] not a wave 0 (h) R [, ] 0 (i) R [, ] (j) R [0, ] not a wave (k) R [, ] (l) R [, ] 0 / a) b) Module

32 6 Section, Answer Ke, Lesson Principles of Mathematics c) d) e) f) Module

33 Principles of Mathematics Section, Answer Ke, Lesson 7 g) makes all the values of < 0 behave as values of > 0. h) i) j) Module

34 8 Section, Answer Ke, Lesson Principles of Mathematics k) Cosine sine with period. l) Stretch b a factor of in -direction and -direction; followed b a reflection in the -ais.. Some possible answers. There are others. a) a b c 0 b) a b c. Some possible answers. There are others. a) a b c b) a b c 0 a b c Module

35 Principles of Mathematics Section, Answer Ke, Lesson 9. a) b) c) d) e) f) 5. Note: Be sure ou know how to denote various sets of integers. All integers are denoted b k I. Even integers are denoted b k. Odd integers are denoted b k + or k, since odd integers are one greater or one less than an even integer denoted b k. This question is equivalent to solving equations that ou are familiar with ecept that now the answers are not restricted to an interval. a) 0 sin...,,0,,,,......,, 0,,,... k k I b) 0 cos 5...,,,,, ,,,,,... ( k ) + k I Module

36 0 Section, Answer Ke, Lesson Principles of Mathematics c) 0 sin...,,0,,,,......, +,,,,......,,,,,... ( k ) + k I d) 0 sin...,,0,,,,......,,0,,,,... I e) 0 cos 5...,,,,,......,,,,... ( k ) + k I ( ) f) 0 sin...,,0,,,,......,,0,,,,... k k I Module

37 Principles of Mathematics Section, Answer Ke, Lesson Etra for Eperts 6. cos cos cos cos 7. sin sin Module

38 Section, Answer Ke, Lesson Principles of Mathematics Notes Module

39 Principles of Mathematics Section, Answer Ke, Lesson Lesson Answer Ke. csc sec Module

40 Section, Answer Ke, Lesson Principles of Mathematics cot Note: cot 0 where tan is undefined and tan 0 where cot is undefined.. Function Domain Range -intercept Zeros cot { k k I} R none k+ k I ( ) csc { k k I} (, ] [, ) none none sec ( k+ ), k I (, ] [, ) none Function Asmptotes Period Smmetr Quadrant Sign cot { k k I} odd csc { k k I} odd sec ( k+ ), k I even + in I & III in II & IV + in I & II in III & IV + in I & IV in II & III Increasing or Decreasing alwas decreasing inreasing: II & III decreasing: I & IV inreasing: I & II decreasing: III & IV Module

41 Principles of Mathematics Section, Answer Ke, Lesson 5. a) tan b) sec + c) csc d) cot Module

42 6 Section, Answer Ke, Lesson Principles of Mathematics e) tan f) sec Module

43 Principles of Mathematics Section, Answer Ke, Review 7 Review Answer Ke. a) b) c). a) b) c) Module

44 8 Section, Answer Ke, Review Principles of Mathematics d) e) f) g) Module

45 Principles of Mathematics Section, Answer Ke, Review 9 h) i) j) k) Module

46 0 Section, Answer Ke, Review Principles of Mathematics l) The sketches can be used to fill in man parts of the following table. Question Domain Range Amplitude -intercept Period (a) R [, ] 0 (b) R [, ] (c) R [, ] 0 (d) R [, ] 0 (e) R [, ] 0 (f) R [, ] (g) R [0, ] none 0 (h) R [, ] 0 none or (i) R [, ] (j) ( k + ) k I R none 0 (k) ( k + ) k I (, ] [0, ) none 0 (l) k k [, ) none none I In question (h): the period is mostl but has a break at the -intercept. So strictl speaking, there is not a pattern that repeats across the whole function. Consider either none or as correct. Module

47 Principles of Mathematics Section, Answer Ke, Review. ( ) a) sin ( ) b) 5cos sin ( ) + ( ) Range R R Domain [, ] [, 8] period amplitude 5 phase shift / -intercept 5cos + + Module

48 Section, Answer Ke, Review Principles of Mathematics. a) sin sin 5 b) cos cos 5 Compare our answers to question 5 with the graphs of sin and cos, ou should notice that: sin cos cos sin Module

49 Principles of Mathematics Section, Answer Ke, Lesson Lesson Answer Ke. Using the CAST rule: a) II b) IV c) III d) IV. a) The third side is a + 5 or a. Furthermore, since sin θ > 0 and tan θ < 0, it follows that θ II. Therefore, cos θ tan θ csc θ sec θ cot θ a θ b) The third side is a + 5 or a. Furthermore, since sin < 0 and cos < 0, it follows that III. Therefore, sin tan csc sec cot a, 5 5 Module

50 Section, Answer Ke, Lesson Principles of Mathematics c) The third side is 5 + a or a 6. Furthermore, since tan θ > 0 and cos θ < 0, it follows that θ III. Therefore, sin θ cos θ csc θ sec θ cot θ a 5, 5 θ 6 6 d) Since csc θ, it follows that sin θ The third side is. a + or a. Furthermore, since sin θ > 0, it follows that θ I or II. Therefore, sin θ cos θ tan θ sec θ cot θ ± ± ± ±,, θ a Module

51 Principles of Mathematics Section, Answer Ke, Lesson 5 e) 5 Since sec, it follows that cos. The thir d side 5 + > is a 5 or a. Furthermore, since cos 0 and tan > 0 then I. Therefore, sin cos tan csc cot , a 5 f) Since cot 8 it follows that tan 5 The third 5, 8. side is a or a 7. Furtherfore, since tan < 0, it follows that θ II or IV. Therefore, sin cos tan csc sec ± 5 7 ± ± 7 5 ± 7 8 8, a 5 8 8, Module

52 6 Section, Answer Ke, Lesson Principles of Mathematics. One solution is provided but there are other solutions. F a) LHS H G I cos K J RHS F cos b) LHS RHS H G I K J sin sin F c) LHS H G I tan K J RHS tan cos d) LHS sin cos RHS sin sin e) LHS cos sin RHS cos f) LHS cos sin sin cos sin cos tan RHS g) LHS ( sin ) sin h) LHS sin RHS (cos + sin )(cos sin ) (( sin ) sin ) sin RHS i) LHS ( + sin θ) + ( sin θ) ( + sin θ)( sin θ) sin θ cos θ sec θ RHS j) LHS (tan ) (cot ) θ + θ + tan cot θ + θ tan cot RHS θ θ Module

53 Principles of Mathematics Section, Answer Ke, Lesson 7 k) LHS sin θ sin θ sin θ sin θ sin θ sin θ sin θ sin θ sin θ cos θ RHS l) LHS sec θ( + tan θ) sec θ(sec θ) sec θ RHS m) RHS sin cos + cos sin sin + cos cos sin cos sin ( ) sin + cos cos sin cos sin LHS n) RHS sin sin sin sin ( cos ) sin + cos LHS sin Module

54 8 Section, Answer Ke, Lesson Principles of Mathematics. sin cos csc sin a) + + cos csc csc sin sin + + sin cos sin cos cos sin cos sin b) sin cos cos sin c) sin cos cos sin cos sin + d) csc sin sin e) cos (sin cos ) cos () cos + + cot f) + cot Module

55 Principles of Mathematics Section, Answer Ke, Lesson 9 Lesson Answer Ke. a) b) c). a) tan + ( + tan ) tan tan ± 5, 5, 5, 5 sin provided cos 0 cos tan o o o o 5, 5, 05, 585.5,.5, 0.5, 9.5 tan sin tan 0 tan ( sin ) 0 tan 0 or sin o o o 0, 80, 90 ( sin ) sin o o o o o o o o 0 sin sin 0 ( sin + )(sin ) sin or sin 7,, 6 6 b) cos ± 5 7,,, Module

56 0 Section, Answer Ke, Lesson Principles of Mathematics c) sin sin ± ,,,,,, ,,, (Note: 7 is out of range.). a) sin cos sin cos + cos ( cos ) cos + cos 0 cos cos 0 cos (cos ) cos 0 or cos (square both sides) Possible values of 0,,. Check: 0:sin 0 0 and cos0 0 : sin and cos 0 :sin and cos 0 Therefore, is not a root. Solution is: 0,. b) Be careful! Since the LHS is 0, this equation can be done quite easil. Module

57 Principles of Mathematics Section, Answer Ke, Lesson sin cos sin cos tan 7 Therefore,,. c) sin sin + cos sin sin ( sin ) + sin sin 0 + (square both sides) The discriminant (b ac) of the quadratic is ( ) () < 0. Hence, no solution! Observe the original equation as sin cos. It should be apparent that no solution eists since sin and cos, but the are never equal to at the same time.. a) cos(90 0 ) cos 90 cos 0 + sin 90 sin 0 o o o o o o 0 +. o o o But, cos(90 0 ) cos 60. The are equal! b) cos(50 0 ) cos 50 cos 0 + sin 50 sin 0 o o o o o o + o o o But, cos(50 0 ) cos 0. The are equal! c) cos cos cos sin sin But, cos cos. The are equal! The identit seems to be true since it was valid in all the above cases. Module

58 Section, Answer Ke, Lesson Principles of Mathematics 5. a) cos cos cos sin sin + 0(cos ) + sin sin b) Use part(a), replacing with. sin cos cos sin cos c) tan cot sin cos Note: 90. Therefore, the identities are valid with either measure 90. or cos(90 ) sin o d) sec(90 ) csc o sin(90 ) cos o e) csc(90 ) sec o tan(90 ) cot o f) cot(90 ) tan o 6. The form of the identities is A B( ) where A and B have names which differ b the prefi co. For eample, sine and cosine are two such functions. Module

59 Principles of Mathematics Section, Answer Ke, Lesson 7. a) sin ( ) cos( ) cos b) tan ( ) cot( ) cot c) cos + cos ( ) sin( ) sin cos d) sin( )( cot ) sin cot sin cos sin sin e) (sin ) ( csc ) (sin ) sin f) csc sin 8. a) cos ( ) sin co-function related arc: + ( k) k I b) sin cos (co-function) related arc: 0 { ( k) k I} Module

60 Section, Answer Ke, Lesson Principles of Mathematics c) sin 0 sin 0 cos 0 related arc:, + k k I There are other forms of these answers. This answer ma also be stated in degrees since there were no instructions on the values of. In degrees, the answers matching the above form are: { o + k o k I} { k o k I} { o + k o k I} a) 90 (60 ) b) (60 ) c) 90 (80 ) Module

61 Principles of Mathematics Section, Answer Ke, Lesson 5 Lesson Answer Ke... 5 a) sin + sin 9 6 b) sin + sin c) cos cos 5 d) cos + cos sin sin + sin cos + cos sin or 7 cos cos + cos cos sin sin 6 or Therefore, the coordinates are: P,. Module

62 6 Section, Answer Ke, Lesson Principles of Mathematics. a) cos 05 cos( ) cos 60 cos 5 sin 60 sin 5 o o o o o o o 6 Note: The answers appear to is the rationalized form of. be different. However, the are not; hence, ou can use either form. b) sin 05 sin( ) sin 60 cos 5 + cos 60 sin 5 o o o o o o o o sin c) tan 05 cos (This is the eas wa after (a) and (b). ) o o o tan 05 tan(60 5 ) The answers are equal! o o tan 60 + tan 5 + o o tan 60 tan Since sin α and P( α) QI, it follows that 5 P( α) QII, so cos α < 0. 7 Since sin α + cos α, + cos α. 5 Therefore, cos α. 5 9 Similarl, since cos β and P( β) QI, it foll ows that P( β) QIV, so sin β < 0. 9 Since sin β + cos β, sin β +. 0 Therefore, sin β. Module

63 Principles of Mathematics Section, Answer Ke, Lesson 7 a) sin( α + β) sinαcos β + cos αsin β b) cos( α + β) cosαcos β sin αsin β sin( α + β) c) tan( α + β) 05 0 cos( α + β) d) sec( α + β) cos( α + β) e) In Quadrant I, since both sin( α + β) > 0 and cos( α + β) > cos + θ cos cos θ sin sin θ cos θ sin θ tan θ tan tan θ 6 tanθ tan θ 6 + tanθ tan + tanθ + tan θ 6 a) sin( α + β) + sin( α β) sinαcos β + cosαsin β + sinαcos β cosαsin β sinαcosβ b) Etra for Eperts cos( + )cos( ) (cos cos sin sin )(cos cos + sin sin ) cos cos sin sin cos cos + 0 sin sin cos cos + (cos sin cos sin ) sin sin cos (cos sin ) sin (cos sin ) + + cos () sin cos sin () Module

64 8 Section, Answer Ke, Lesson Principles of Mathematics 9. a) sin(+ ) sin 5 b) tan( + ) tan c) sin( α + 6 α) sin 7α d) cos cos sin sin cos( + ) cos 6 e) sin 5α cos 5α + sin 5α cos 5α sin(5α + 5 α) sin0α f) cos(a a) cos( a) cos a, since cos is an even f unction Module

65 Principles of Mathematics Section, Answer Ke, Lesson 9 Lesson Answer Ke. sin A sin A cos A ( sin A cos A)(cos A sin A) The above is one possibilit.. cos θ cos (θ) sin (θ) ( 0.09) (0.95) sin θ sin θ cos θ (0.95)( 0.09) Therefore, P(θ) ( 0.809, 0.588).. Use the following two forms of cos θ, and replace θ b θ: θ cos θ becomes cos sin θ θ and now solve for cos and sin. θ θ cos θ cos cos θ sin θ θ cos sin.588 θ θ.588 cos sin θ θ cos 0.89 sin 0.5 cos cos θ θ sin θ θ (Note: Both positive since θ θ I, then I.). a) cos 8 (Using the identit cosα cos α sin α.) b) sin (Using the identit sinα sin α cos α.) c) sin d) cos 0α e) cos 0α sin α cosα sin α f) sin α cos α Module

66 50 Section, Answer Ke, Lesson Principles of Mathematics cos cos (0.95) Since 0 < θ < and sin θ, it follows that 5 cos +, so cos with θ θ θ I. 5 5 sin θ sin θ cos θ and cos θ sin θ. cos θ cos θ (cos θ ) ( p ) + ( p p ) + 8p 8p Since sin α > 0 and not in Quadrant I, it follows P(α) is in Quadrant II. Similarl, since cos β > 0 and not in Quadrant I, it follows that P(β) is in Quadrant IV. cos α. Hence, in II cos α and sin β. Hence, in IV sin β. + a) sin α sin α cos α b) cos( α β) cos α cos β + sin α sin β c) cos β cos β sin β Module

67 Principles of Mathematics Section, Answer Ke, Lesson 5 d) sin( α + β) sin α cos β + cos α sin β a) (sin + cos ) sin + sin cos + cos + sincos + sin b) sin cos sin cos cos sin 0. sin cos sin cos + a) LHS + cos sin cos sin cos sin csc cos sin sin b) LHS (cos sin )(cos sin ) + ()(cos sin ) cos sin c) LHS sec sin cos cos d) LHS cos cos cos cos cos cos sec cos e) sin( + ) sin cos + cos sin + ( sin cos ) cos ( sin )sin sin cos + sin sin sin ( sin ) + sin sin sin sin + sin sin sin sin Module

68 5 Section, Answer Ke, Lesson Principles of Mathematics f) cos( + ) cos cos sin sin ( cos ) cos sin cos sin cos cos cos sin cos cos cos ( cos ) cos cos cos + cos cos cos Module

69 Principles of Mathematics Section, Answer Ke, Review 5 Review Answer Ke. sin a) sin cos sin sin cos b) sin (sin + cos ) sin () sin c) sin cos sin cos d) cos cos ( sin ) sin cos + sin e) (sin cos ) sin8 f) sin(5 ) sin. a) LHS cos + sin + sin + sin RHS b) LHS (cos sin )(cos sin ) + (cos ) cos RHS c) LHS + sin θ + sin θ ( + sin θ)( sin θ) sin θ cos θ sec θ (tan θ + ) tan θ + RHS d) LHS θ + + θ (tan ) (csc ) θ + θ tan csc RHS Module

70 5 Section, Answer Ke, Lesson Principles of Mathematics e) LHS ( sin cos )sin cos sin sin cos sin sin ( cos ) sin cos RHS f) RHS sin ( sin ) + sin cos LHS. a) The third side is a + 5 or a. Furthermore, since sin θ < 0 and tan θ < 0, it follows that θ QIV. Therefore, cos θ tan θ csc θ sec θ cot θ b) The third side is a + 5 or a. Furthermore, since cos > 0 and csc < 0, it follows that QIV. Therefore, sin tan csc sec cot c) The third side is + a or a 5. Furthermore, since tan θ < 0 and cos θ < 0, it follows that θ QII. Therefore, cos θ sin θ csc θ sec θ cot θ d) The third side is a or a 7. Furthermore, since cot > 0, it follows that QI or QIII. Therefore, sin cos csc sec tan ± 5 7 ± 8 7 ± 7 5 ± Module

71 Principles of Mathematics Section, Answer Ke, Lesson 55. Since sin α and P( α) QI, it follows that P( α) QII, 5 so cos α < 0. Since sin α + cos α, + cos α. 5 Therefore, cos α. 5 5 Similarl, since cos β and P( β) QI, it foll ows that P( β) QIV, so sin β < 0. Since sin β + cos β, sin β +. Therefore, sin β. 5 5 a) sin( α + β) sin α cos β + cos α sin β b) cos( α + β) cos α cos β sin α sin β c) sin α sin α cos α d) Since both sin( α + β) and cos( α + β) are positive, it follows that ( α + β) terminates in Quadrant I. 5. a) sin cos sin 0 sin ( cos ) 0 sin 0, cos o o o o 0, 80, 60, 00 Module

72 56 Section, Answer Ke, Lesson Principles of Mathematics b) sin cos + cos 0 cos ( sin + ) 0 cos 0, sin 90, 70, 0, 0 o o o o 6. a) sin sin sin cos cos sin b) Use the identit cos cos where cos cos cos cos cos 8 cos + cos 8 + cos 8 (positive, since is in Quadrant I) 8 8 Module

73 Principles of Mathematics Section, Answer Ke, Review Etra for Eperts 5 9 The sketch can be used to fill in the following: Domain Range Amplitude -intercept Period R, cos + sin r + cos + sin cos Module

74 58 Section, Answer Ke, Review Principles of Mathematics Notes Module

75 Principles of Mathematics Section, Answer Ke, Lesson 59 Lesson Answer Ke. Question Period Frequenc Phase Shift (a) (b) (c) none none (d). a) 6 6 b) 5 5

76 60 Section, Answer Ke, Lesson Principles of Mathematics c) 6 5 d). a) d t b) Period is:.5 hours. 0.6 Module

77 Principles of Mathematics Section, Answer Ke, Lesson 6 c).5 cos(0.6 t) cos(0.6 t) cos(0.6 t) Related arc is: cos (0.7778).9. Therefore, (.9) 0.6 t ( +.9).8 t 9.0. Hence, the carrier can dock safel for (9. 0.8) 5.5 hours. d t t Module

78 6 Section, Answer Ke, Lesson Principles of Mathematics Lesson Answer Ke. 5 cos 6 cos 8, 0 < Y 5[cos()] 6 cos() 8 Y Y Y [ 0., 7] [, ] Solutions:.50,.79 X min X ma Y min Y ma. tan tan +, 0 < Y [tan()] tan() Y Y Y [ 0., 7] [ 0, 0] Solutions: 0.9,.6,.07, 5.50 X min X ma Y min Y ma. The sstem: sin tan and, 0 < Y [sin()] tan() Y Y Y Solutions: (0.7, ) (.5, ) [ 0., 7] [ 0, 0] The net solution (6.65, ) X min X ma Y min Y ma is out of the specified domain. Module

79 Principles of Mathematics Section, Answer Ke, Lesson 6 Lesson Answer Ke cos cos 0. Solving over the domain cos (cos ) 0 0 θ < cos 0, and cos 5, Then add multiples of the period until ou reach and Solve tan 0 over the domain 0 θ < tan tan, then add multiples of the period. + n + n where n integers. These two answers can be combined to one answer + n, where n integers. Module

80 6 Section, Answer Ke, Lesson Principles of Mathematics. Solve tan + tan 0 over the domain 0 θ < tan (tan + ) 0 tan 0 0 and tan 7, Add multiples of the period 0 + n n + n + n 7 + n. Solve cos sin 0 over the domain ( ) sin sin sin sin 0 sin 0 sin 0 ( sin + )( sin ) 0 0 θ < sin + 0 sin sin 7, 6 6 and sin 0 sin which has no solution Add multiples of the period where n integers. 7 + n 6 + n 6 Module

81 5. Solve a simpler version of the problem b solving over the domain Now replace so the solutions become and Lastl, add multiples of the period. Since the period of is, the final solutions are where n integers. 6. b n b n n n cos θ 5, cos cos 0 cos θ θ θ θ + 0 θ < 0 cos + θ Principles of Mathematics Section, Answer Ke, Lesson 65 Module

82 66 Section, Answer Ke, Review Principles of Mathematics. a) b) c) cos A csc A tan A 7 7 Review Answer Ke 7. a).6 80 b) 85 c).. a) ( ) b) or 90. θ a).87 b) 5 cos cot sin cos sin 5 5 ( + 6 ) ( + ) cos cos sin sin sin cos cos sin Module

83 Principles of Mathematics Section, Answer Ke, Review 67 c) 6. a) b) csc sin sin cos cos 0 ( ) cos cos 0 cos 0 or cos, cos is undefined. sin θ sinθ 0 ( θ )( θ ) sin + sin 0 sinθ or θ.8 or 8. or 90 θ nor n or n where n integer c) tan sin 0 sin sin 0 cos sin 0 cos sin 0 or 0 cos sin 0 or cos 0,,, or 6 6 Module

84 68 Section, Answer Ke, Review Principles of Mathematics 7. a) tan θ cos θ + sin θ sin θ cos θ + sin θ cos θ sin θ + sin sin θ b) sin θcos θ is a version of the double angle identit sin A cos A sin A so sinθcosθ ( ( θ) cos ( θ) ) ( θ ) sin sin θ sinθ csc θ sinθ c) cotθ sinθ cosθ sinθ sinθ Multipl numerator and denominator b si nθ sin θ cos θ cos θ cosθ cosθ cosθ sinθ d) + + tan θ cot θ sin θ cos θ cos θ + sin θ sinθcosθ sinθcosθ Note: It is possible to simplif further using a double angle identit. cscθ sinθ cosθ sin θ ( ) Module

85 Principles of Mathematics Section, Answer Ke, Review amplitude period phase shift vertical displacement 5 domain R [ ] range, period phase shift 5 cos has zeros at,,, etc sec has asmtotes at,,, etc ( k + ) domain, k 8 range (, ] [, ) 0. a) sin75 cos5 cos75 sin5 ( ) sin 75 5 sin50 Module

86 70 Section, Answer Ke, Review Principles of Mathematics b) sin cos cos 6. a) Prove RHS Factoring cos as a difference of squares. sec sec + cos sin + cos cos + cos cos cos + cos cos cos cos cos cos sec cos b) Prove + cot θ cosθ LHS + sin ( + )( ) ( ) ( Double angle identit ) θ + sin θ sin θ csc θ ( ) + cot θ Pthagorean Identit RHS Module

87 Principles of Mathematics Section, Answer Ke, Review 7.a) ma 7. m min.8 m ais occurs at m amplitude.8 m period (:5 5:0) (6:5) :0.5 hours b 0.6 period.5 5 Since the ma occurs at 5:0 a.m., we can use a cosine function to model the tide flow. phase shift 5.5 hours b) 0:0 p.m. is.5 hours from midnight h(.5).8 cos 0.6 (.5 5.5) m ( t ) ht ( ).8cos c) ( t ).8 cos cos 0.6 ( t 5.5).8 0. t cos hours or 8: a.m. h :0 :5 7:00 :00 a.m. t Module

88 7 Section, Answer Ke, Review Principles of Mathematics Using the graphing calculator Set Y.8 cos (0.6( 5.5)) Set Y 6.0 Solving we get 8.8 or 5. or 0.68 The net time after.5 a.m. is.9 p.m. (5 hours. 0. hours 9 min).set Y tan θ sin θ Set Y + tan θ.85, [ 0., 7] [, 0] Solutions: 0.89,.85, X min X ma Y min Y ma Another solution,using one graph: Set Y tan θ sin θ tan θ.85, [ 0., 7] [, 0] Solutions: 0.89,.85, X min X ma Y min Y ma Module

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2 SECTION. CURVE SKETCHING. CURVE SKETCHING A Click here for answers. S Click here for solutions. 9. Use the guidelines of this section to sketch the curve. cos sin. 5. 6 8 7 0. cot, 0.. 9. cos sin. sin

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Section 7.7 Product-to-Sum and Sum-to-Product Formulas Section 7.7 Product-to-Sum and Sum-to-Product Fmulas Objective 1: Express Products as Sums To derive the Product-to-Sum Fmulas will begin by writing down the difference and sum fmulas of the cosine function:

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Chapter 7 Analytic Trigonometry

Chapter 7 Analytic Trigonometry Chapter 7 Analytic Trigonometry Section 7.. Domain: { is any real number} ; Range: { y y }. { } or { }. [, ). True. ;. ; 7. sin y 8. 0 9. 0. False. The domain of. True. True.. y sin is. sin 0 We are finding

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Complete Solutions Manual for Calculus of a Single Variable, Volume 1. Calculus ELEVENTH EDITION

Complete Solutions Manual for Calculus of a Single Variable, Volume 1. Calculus ELEVENTH EDITION Complete Solutions Manual for Calculus of a Single Variable, Volume Calculus ELEVENTH EDITION Cengage Learning. All rights reserved. No distribution allowed without epress authorization. Ron Larson The

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop SECTIN 9. AREAS AND LENGTHS IN PLAR CRDINATES 9. AREAS AND LENGTHS IN PLAR CRDINATES A Click here for answers. S Click here for solutions. 8 Find the area of the region that is bounded by the given curve

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

MATH 150 Pre-Calculus

MATH 150 Pre-Calculus MATH 150 Pre-Calculus Fall, 014, WEEK 11 JoungDong Kim Week 11: 8A, 8B, 8C, 8D Chapter 8. Trigonometry Chapter 8A. Angles and Circles The size of an angle may be measured in revolutions (rev), in degree

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα