ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ
|
|
- Ἰφιγένεια Κοντολέων
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άσκηση 1 Από τους µαθητές ενός Λυκείου, το 25% συµµετέχει στη οµάδα, το 30% συµµετέχει στη θεατρική οµάδα ποδοσφαίρου και το 15% των µαθητών συµµετέχει και στις δύο οµάδες. Επιλέγουµε τυχαία ένα µαθητή. Αν ονοµάσουµε τα ενδεχόµενα: Α: «ο µαθητής να συµµετέχει στη θεατρική οµάδα» και Β: «ο µαθητής να συµµετέχει στην οµάδα ποδοσφαίρου» α) να εκφράσετε λεκτικά τα ενδεχόµενα : i) Α Β ii) A B iii) B-A iv) A (Μονάδες 12) β) να υπολογίσετε τις πιθανότητες πραγµατοποίησης των ενδεχόµενων i) o µαθητής που επιλέχτηκε να συµµετέχει µόνο στην οµάδα ποδοσφαίρου ii) ο µαθητής που επιλέχθηκε να µη συµµετέχει σε καµία οµάδα. (Μονάδες 13) α) i) Α Β = «ο µαθητής να συµµετέχει σε µία τουλάχιστον από τη θεατρική οµάδα ή στην οµάδα ποδοσφαίρου» ii) A B = «o µαθητής να συµµετέχει και στη θεατρική οµάδα και στην οµάδα ποδοσφαίρου» iii) B-A = «o µαθητής να συµµετέχει µόνο στην οµάδα ποδοσφαίρου» iv) A = «ο µαθητής να µην συµµετέχει στην θεατρική οµάδα» β) Ισχύει Ρ (Α) = 25%, Ρ (Β) = 30% και Ρ (Α Β) = 15% i) Ρ (Β-Α) = Ρ (Β)-Ρ (Α Β) = 30%-15% = 15% ii) P(Α Β) = 1-Ρ(Α Β)= 1-(Ρ(Α)+Ρ(Β)-Ρ(Α Β))= 1-(25%+30%-15%)=1-40%=60% [1]
2 Άσκηση 4 Από τους 180 µαθητές ενός λυκείου, 20 συµµετέχουν στη θεατρική οµάδα, 30 µαθητές στην οµάδα στίβου, ενώ 10 µαθητές συµµετέχουν και στις δύο οµάδες. Επιλέγουµε τυχαία έναν µαθητή του λυκείου. Ορίζουµε τα ενδεχόµενα: Α: ο µαθητής συµµετέχει στη θεατρική οµάδα Β: ο µαθητής συµµετέχει στην οµάδα στίβου α) να εκφράσετε λεκτικά τα ενδεχόµενα: i) A Β ii) ΒΑ iii) Α (Μονάδες 9) β) Να βρείτε την πιθανότητα ο µαθητής που επιλέχθηκε: i) Να µη συµµετέχει σε καµία οµάδα (Μονάδες 9) ii) Να συµµετέχει µόνο στην οµάδα στίβου (Μονάδες 7) Ισχύει Ρ (Α) =, Ρ (Β) = και Ρ (Α Β) = α) i) A B = «ο µαθητής να συµµετέχει σε µία τουλάχιστον από τη θεατρική οµάδα ή την οµάδα στίβου» Β-Α = «ο µαθητής συµµετέχει µόνο στην οµάδα στίβου» Α = «ο µαθητής δεν συµµετέχει στην θεατρική οµάδα» β) i) Ρ (Α Β) = 1 Ρ (Α Β) = 1 (Ρ (Α)+ Ρ (Β)Ρ (Α Β) ) Ρ (Α Β) = 1( ) = ii) Ρ (ΒΑ) = Ρ (Β)Ρ (Α Β) = = [2]
3 Άσκηση 9 ίνεται ο πίνακας: Επιλέγουµε τυχαία έναν από τους εννέα διψήφιους αριθµούς του παρακάτω πίνακα. Να βρείτε την πιθανότητα πραγµατοποίησης των παρακάτω ενδεχοµένων: Α: ο διψήφιος να είναι άρτιος (Μονάδες 7) Β: ο διψήφιος να είναι άρτιος και πολλαπλάσιο του 3 (Μονάδες 9) Γ: ο διψήφιος να είναι άρτιος ή πολλαπλάσιος του 3 (Μονάδες 9) Α = {12, 22, 32} Άρα Ρ (Α) = Ω = Β= {12} άρα Ρ (Β) = Ω = Γ = {12,21,22,31,33} άρα Ρ (Γ) = Ω = Άσκηση 2 Οι δράστες µιας κλοπής διέφυγαν µ ένα αυτοκίνητο και µετά από την διαφόρων µαρτύρων έγινε γνωστό ότι ο τετραψήφιος αριθµός της πινακίδας του αυτοκινήτου είχε πρώτο και τέταρτο ψηφίο το 2. Το δεύτερο ψηφίο ήταν 6 ή 8 ή 9 και το τρίτο ψηφίο ήταν 4 ή 7. α) Με χρήση δενδροδιαγράµµατος, να προσδιορίσετε το σύνολο των δυνατών αριθµών της πινακίδας του αυτοκινήτου. (Μονάδες 13) β) Να υπολογίσετε τις πιθανότητες των παρακάτω ενδεχοµένων Α: Το τρίτο ψηφίο του αριθµού της πινακίδας είναι το 7. Β: Το δεύτερο ψηφίο του αριθµού της πινακίδας είναι το 6 ή 8. Γ: Το δεύτερο ψηφίο του αριθµού της πινακίδας δεν είναι ούτε το 8 ούτε το 9. [3] (Μονάδες 12)
4 ενδοδιάγραµµα 1 Ο ψηφίο 2 Ο ψηφίο 3 Ο ψηφίο 4 Ο ψηφίο Ω = { 2642, 2672, 2842, 2872, 2942, 2972 } β) Α = { 2672, 2872, 2972 } Ρ (Α) = = = Β = {2642, 2672, 2842, 2872 } Γ = { 2642, 2672 } Ρ (Β) = = = Ρ (Γ) = = = [4]
5 ΚΕΦΑΛΑΙΟ 2 ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Άσκηση 1 ίνονται οι παρακάτω παραστάσεις: ΤΟ 2 Ο ΘΕΜΑ Α = 2x 4 και Β = x3, όπου o x είναι πραγµατικός αριθµός. α) Για κάθε 2 x 3 να αποδείξετε ότι Α+Β = x 1 (Μονάδες 16) β) Υπάρχει x [ 2,3) ώστε να ισχύει Α+Β = 2; Να αιτιολογήσετε την απάντηση σας. α) 2 x 3 4 2x 6 0 2x 4 2 Άρα Α = 2x4 = 2x4 Επίσης 2 x 3 1 x 3 0 Άρα Β= x3 x 3 Oπότε Α+Β = (2x4 x 3 x 1 β) Έστω ότι υπάρχει x 2,3 ώστε Α+Β =2 Οπότε x1 2 x 3 Aδύνατον αφού 2 x 3 Άρα δεν υπάρχει x 2,3 ώστε Α+Β =2 Άσκηση 3 (Μονάδες 9) Αν 2 x 3 και 1 2, να βρείτε µεταξυ ποιών ορίων βρίσκεται η τιµή καθεµιάς από τις παρακάτω παραστάσεις: α) x+y (Μονάδες 5) β) 2x3 (Moναδες 10) γ) (Μονάδες 10) [5]
6 α) 2 x 3 (1) β) 2 1 (2) Προσθέτω κατά µέλη σχέσεις (1), (2) οπότε έχουµε 3 x+y 5 β) 2 x 4 2x 6 (3) (4) Προσθέτω κατά µέλη τις σχέσεις (3),(4) οπότε έχουµε: 4+ (6 2x 3y x 3y 3 γ) Είναι 2 x 3 1 και (5) Πολλαπλασιάζουµε κατά µέλη τις σχέσεις (1), (5) οπότε έχουµε: x Άσκηση 7 ίνεται η παράσταση : Α = x 1 + y 3, µε x, y πραγµατικούς αριθµούς, για τους οποίους ισχύει : 1 4 και 2 3 Να αποδείξετε ότι : α) Α = x 2. (Μονάδες 12) β) 0 4. (Μονάδες 13) α) Ισχύει 1 x 4 άρα x1 0 οπότε x 1 = x1 και 2 3 άρα y3 0 οπότε 3 = 3 Άρα έχουµε Α= x 1 y 3 = x1 3 x y 2 [6]
7 β) Άρα 1 x 4 (1) και 3 2 (2) Προσθέτω κατά µέλη τις σχέσεις 1 και 2 οπότε έχουµε 13 x x x Άσκηση 12 α) Να αποδείξετε ότι x 2 +4x +5 0, για κάθε πραγµατικό αριθµό x. β) Να γράψετε χωρίς απόλυτες τιµές την παράσταση: (Μονάδες 10) Β = x 4x 5 x 4x 4 (Moνάδες 15) α) Έχουµε: x + 4x +5 = x + 4x = (x +2) β) Ισχύει x +4x +5 0 άρα x 4 5 = x +4x +5 Επίσης x + 4x+ 4 = (x +2) 2 0 άρα x 4 4 = x +4x +4 οπότε η παράσταση Β γράφεται: B x 4 5 x 4x 4 = (x +4x +5) x 4 4 = = x +4x +5x 4x 4 1 Άσκηση 14 Αν είναι Α= 2 3, Β= 2+ 3, τότε α) Να αποδείξετε ότι Α 1. (Μονάδες 12) β) Να υπολογίσετε την τιµή της παράστασης Π= Α 2 +Β 2 (Μονάδες 13) α) Έχουµε Α Β = = = 43 1 [7]
8 β) α) τρόπος Π = Α + Β = = = = =14 β) τρόπος Π = Α + Β = (Α+Β) 2 2ΑΒ = Άσκηση 16 ίνονται πραγµατικοί αριθµοί α, β µε α 0 και β 0. Να αποδείξετε ότι: α) α + 4 (Μονάδες 12) β) (Μονάδες 13) α) Έστω ότι ισχύει : α + 4 (α το οποίο ισχύει β) Από (α) ερώτηµα αποδείχθηκε ότι: α και οµοίως β + 4 Πολλαπλασιάζουµε κατά µέλη τις παραπάνω ανισώσεις οπότε έχουµε Άσκηση 20 Αν 0 1, τότε α) να αποδείξετε ότι: α 3 (Μονάδες 13) β) να διατάξετε από το µικρότερο στο µεγαλύτερο τους αριθµούς: 0, α 3, 1, α, (Μονάδες 12) [8]
9 α) Έστω ότι ισχύει: α α α 0 α 1 0 α(α1 1 0 το οποίο ισχύει αφού α>0, α1 0 και 1 0 β) Ισχύει: Επίσης Άρα η διάταξη από το µικρότερο στο µεγαλύτερο αριθµείται: 0 1 Άσκηση 23 Ορθογώνιο παραλληλόγραµµο έχει µήκος x εκατοστά και πλάτος y εκατοστά αντίστοιχα. Αν για τα µήκη x και y ισχύει: 4 x 7 και 2 y 3 τότε: α) Να βρείτε τα όρια µεταξύ των οποίων περιέχεται η τιµή της περιµέτρου του ορθογωνίου παραλληλογράµµου. β) Αν το x µειωθεί κατά 1 και το y τριπλασιαστεί, να βρείτε τα όρια µεταξύ των οποίων περιέχεται η τιµή της περιµέτρου του νέου ορθογωνίου παραλληλογράµµου. α) Η περίµετρος του ορθογωνίου είναι Π 2x 2 Ισχύει : 4 x 7 8 2x 14 (1) 2 y 3 4 y 6 (2) Προσθέτουµε κατά µέλη τις σχέσεις (1) και (2) οπότε έχουµε 12 2x 2y Π 20 β) Η περίµετρος του νέου ορθογωνίου παραλληλόγραµµου είναι Π 1 2x 1 2 3y 2x 6y 2 Οπότε έχουµε : 4 x 7 8 2x 14 2 y 3 12 y 18 Προσθέτουµε κατά µέλη τις παραπάνω σχέσεις έχουµε 20 2x 6y x 6y Π 30 [9]
10 ΚΕΦΑΛΑΙΟ 3 ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 ίνεται η εξίσωση : x λx λ +λ1 0, µε παράµετρο λ. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η εξίσωση (1) να έχει ρίζες πραγµατικές. (Μονάδες 12) β) Να λύσετε την ανίσωση :S 2 0, όπου S και P είναι αντίστοιχα το άθροισµα και το γινόµενο των ριζών της (1) (Μονάδες 13) α) Για να έχει πραγµατικές ρίζες η εξίσωση (1) πρέπει 0 Έχουµε = β 4αγ λ 4 λ +λ1 λ 4λ 4λ 4 = 3λ 4λ 4 Πρέπει 0 3λ 4λ 4 0 (2) Άρα = β 4αγ = (4) Οπότε λ 1,2 = = = λ 1 = 2 λ 2 = λ 2 3λ 4λ 4 ο ο Οπότε η 2 ισχύει αν λ 2, 3 3 β Από τύπους vietta έχουµε S β λ και Ρ λ λ1 [10]
11 ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ [ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] οπότε η ανίσωση γράφεται ισοδύναµα S P 2 0 λ λ λ1 2 0 λ λ 1 Άσκηση 2 α) Να λύσετε την εξίσωση 2x 1 = 3 (Mονάδες 12) β) Αν α, β µε α β είναι οι ρίζες της εξίσωσης του ερωτήµατος (α), τότε να λύσετε την εξίσωση α x β x 3 0 (Moνάδες 13) 2x 1 3 2x 4 x 2 α) Έχουµε: 2x 1 = 3 ή 2x 1 3 2x 2 x 1 β) Ισχύει : α=1 και β=2 οπότε η εξίσωση γράφεται ισοδύναµα: x +2x+3=0 Δ β 4αγ Οπότε η εξίσωση έχει 2 ρίζες πραγµατικές και άνισες : x, x 1 1 x 3 Άσκηση 3 ίνονται οι αριθµοί : Α = α) Να δείξετε ότι :, Β = i) Α+Β = (Μονάδες 8) ii) A B = (Moνάδες 8) β) Να κατασκευάσετε µια εξίσωση 2 ου βαθµού µε ρίζες τους αριθµούς Α και Β. (Μονάδες 9) [11]
12 α) i) Έχουµε Α+Β = + = = = ii) A B 1 55 = = 1 20 β) Η εξίσωση 2 ου βαθµού µε ρίζες τους αριθµούς Α και Β είναι της µορφής: x A Bx A B 0 x x = 0 20x 10x 1 0 Άσκηση 4 ίνεται το τριώνυµο 2x +5x1 α) Να δείξετε ότι το τριώνυµο έχει δύο άνισες πραγµατικές ρίζες, x και x (Moνάδες 6) β) Να βρείτε την τιµή των παραστάσεων : x +x, x x και + (Μονάδες 9) γ) Να προσδιορίσετε µια εξίσωση 2 ου βαθµού που έχει ρίζες τους αριθµούς και 1. (Μονάδες 10) x 2 α) Για να έχει δύο ρίζες πραγµατικές και άνισες ένα τριώνυµο πρέπει 0 Οπότε = β 4αγ β) Αν x και x είναι οι ρίζες του τριωνύµου τότε από τύπους Vietta έχουµε S = x +x = = Ρ = x x = = = Επίσης + = x 1 x 2 x 1 x 2 = = 5 [12]
13 γ) Το τριώνυµο που έχει ρίζες τους αριθµούς και 1 είναι της µορφής : x 2 x 1 x 1 1 x 2 x + 1 = 0 x x 5x + 2 = 0 x 5x 2 0 Άσκηση 5 Θεωρούµε την εξίσωση x 2x λ 2 0, µε παράµετρο λ. α) Να βρείτε για ποιες τιµές του λ η εξίσωση έχει πραγµατικές ρίζες. (Μονάδες 10) β) Στην περίπτωση που η εξίσωση έχει δύο ρίζες x, x, να προσδιορίσετε το λ ώστε να ισχύει: x x 2 x x 1 (Moνάδες 15) α) Για να έχει πραγµατικές ρίζες ένα τριώνυµο πρέπει 0 Οπότε = β 4αγ 2 4 1λ 2 4 4λ λ Οπότε λ λ λ 3 β) Από τύπους Vietta έχουµε: S = x x = = 2 Ρ = x x = = = λ2 Οπότε έχουµε: x x 2x x 1 λ λ λ= 1 Η τιµή λ = 1 είναι δεκτή αφού πρέπει λ 3 Άσκηση 6 ίνεται η εξίσωση (λ + 2)x 2λx λ 1 0, µε παράµετρο λ 2 Να βρείτε τις τιµές του λ για τις οποίες: α) η εξίσωση έχει δυο ρίζες πραγµατικές και άνισες. (Μονάδες 13) β) Το άθροισµα των ριζών της εξίσωσης είναι ίσο µε το 2. (Μονάδες 12) [13]
14 α) Η παραπάνω εξίσωση 2 ου βαθµού έχει δύο ρίζες πραγµατικές και άνισες αν 0 Οπότε = β 4αγ = (2λ)²4λ 2λ 1 Δ 4λ 4λ λ 2λ 2 Δ 4λ 4λ 4λ 8λ 8 Δ 4λ 8 Οπότε Δ 0 4λ µε λ 2 Άρα λ, 2 2, 2 β) Αν x, x είναι οι ρίζες της εξίσωσης τότε x x 2 Από τύπους Vietta S = x x = Άρα = 2 2λ 2λ 4 4λ 4 λ 1 Η τιµή λ 1 είναι δεκτή αφού λ, 2 2, 2 Άσκηση 7 ίνεται το τριώνυµο : x κx 2, µε κ. α) Να αποδείξετε ότι 0 για κάθε κ, όπου η διακρίνουσα του τριωνύµου. β) Αν x, x είναι ρίζες της εξίσωσης x 3x 2 0 (1). (Μονάδες 13) i) Nα βρείτε το άθροισµα S = x x και το γινόµενο Ρ = x x των ριζών της (1) ii) Να κατασκευάσετε εξίσωση 2 ου βαθµού που να έχει ρίζες ρ, ρ, όπου (Mονάδες 13) ρ = 2x και ρ = 2x. (Μονάδες 12) α) Έχουµε = β 4αγ = (κ² 4 12 Δ κ 8 0 για κάθε κ β) i) Aπό τύπους Vietta έχουµε S = x x = = = 3 [14]
15 και Ρ x x = = = 2 ii) Η εξίσωση 2 ου βαθµού που έχει ρίζες ρ και ρ είναι της µορφής : x ρ ρ ) x + ρ ρ = 0 (1) Οπότε ρ ρ 2x 2x 2 x x και ρ ρ 2x 2x 4 x x 42 8 Τελικά η σχέση (1) γράφεται : βαθµού. x 6x 8 0 που είναι και η ζητούµενη εξίσωση 2 ου ΤΟ 4 Ο ΘΕΜΑ Άσκηση 1 ίνεται η εξίσωση : x x λ λ 0, µε παράµετρο λ. (1) α) Να βρείτε τη διακρίνουσα της εξίσωσης και να αποδείξετε ότι η εξίσωση έχει ρίζες πραγµατικές για κάθε λ. (Μονάδες 10) β) Για ποια τιµή του λ η εξίσωση (1) έχει δύο ρίζες ίσες; (Μονάδες 6) γ) Αν λ και x, x είναι ρίζες της παραπάνω εξίσωσης (1), τότε να βρείτε για ποιες τιµές του λ ισχύει : d (x, x (Moνάδες 9), α) Είναι = 14λ λ 4λ 4λ 1 2λ 1 0 για κάθε λ. β) Πρέπει = 0 2λ 1 = 0 2λ1 0 λ γ) Για κάθε λ είναι 0 και η εξίσωση έχει δύο ρίζες πραγµατικές και άνισες : τις x και x Έχουµε d ( x, x =, x x = x x 1 ( x x ² = 1 x ² 2x x x ² 1 [15]
16 ( x x ² 4x, x = 1 S 4P 1 1 4λ λ 1 4λ λ 0 λ λ 0 λ 0 ή λ 1 Άσκηση 2 ίνεται η εξίσωση x 5λx1=0 µε παράµετρο λ α) Να αποδείξετε ότι για κάθε λ η εξίσωση έχει δύο ρίζες πραγµατικές και άνισες. (Μονάδες 7) β) Αν x, x είναι οι ρίζες της παραπάνω εξίσωσης τότε: i) Να προσδιορίσετε τις τιµές του λ, για τις οποίες ισχύει: (x x )² 18 7x x ) 24 = 0. (Μονάδες 9) ii) Για λ = 1, να βρείτε την τιµή της παράστασης : x x 3x 4 3x x x.. α) Είναι Δ = β 4αγ = (5λ² λ για κάθε λ. Άρα η εξίσωση έχει δύο ρίζες πραγµατικές και άνισες. (Mονάδες 9) β) i) Είναι (x x )² 18 7x x ) 24 = 0 ² 18 7 ² = 0 (5λ² = 0 25λ 25 0 λ 1 λ 1 ή λ 1 ii) Για λ = 1 η εξίσωση γίνεται x 5x 1 0 Άρα x x 3x 4 3x x x. = x x (x x )3 (x x ) +4 = = ( Άσκηση 3 ίνεται η εξίσωση : x 2x λ 0, µε παράµετρο λ 1. α) Να αποδείξετε ότι η εξίσωση έχει δύο ρίζες x, x διαφορετικές µεταξύ τους. (Μονάδες 6) [16]
17 β) Να δείξετε ότι : x x 2 (Μονάδες 4) γ) Αν για τις ρίζες x, x ισχύει επιπλέον : x 2 = x 2, τότε : i) Να δείξετε ότι : x x 4. (Μονάδες 7) ii) Να προσδιορίσετε τις ρίζες x, x και η τιµή του λ. (Μονάδες 8) α) Είναι = β 4αγ = 44λ. Όµως λ 1 4λ Άρα 0. β) Είναι x x = = 2 γ) i) Είναι x 2 = x 2 x 2 = x +2 x x 4 ή x 2 = x 2 x = x x x 0 (απορρίπτεται) ii) Είναι : x x 2 x = 3 x x 4 x 1 Άρα x x = 3(1 λ λ 3 Άσκηση 4 ίνεται η εξίσωση : (λ λ x λ 1 x λ 1 0, (1) µε παράµετρο λ. α) Να βρεθούν οι τιµές του λ, για τις οποίες η (1) είναι εξίσωση 2 ου βαθµού. [17] (Μονάδες 6) β) Να αποδείξετε ότι για τις τιµές του λ που βρήκατε στο ερώτηµα (α) η (1) παίρνει τη µορφή : λx λ 1x 1 0 (Moνάδες 6) γ) Να αποδείξετε ότι για τις τιµές του λ που βρήκατε στο ερώτηµα (α) η (1) έχει δύο ρίζες πραγµατικές και άνισες. (Μονάδες 7) δ) Να προσδιορίσετε τις ρίζες της (1), αν αυτή είναι 2 ου βαθµού. (Μονάδες 6)
18 α) Πρέπει να ισχύει ότι : λ λ 0 λλ 1 0 λ 0 και λ 1 β) Για λ 0 και λ 1 είναι λ (λ1x λ 1λ 1x λ 1 0 λx λ 1x 1 0 διαιρώντας κατά µέλη µε λ 1 0 γ) Η εξίσωση (1) έχει τη µορφή λx λ 1x 1 0 µε = λ 1² 4 λ= λ 2λ 1 4λ λ δ) Για λ 0 και λ 1 η εξίσωση λx λ 1x 1 0 έχει = λ 1 )² 0 και ρίζες: x 1 x, x Άσκηση 5 ίνεται το τριώνυµο λx λ 1x λ, λ 0 α) Να βρείτε τη διακρίνουσα του τριωνύµου και να αποδείξετε ότι το τριώνυµο έχει ρίζες πραγµατικές για κάθε, λ 0 (Μονάδες 8) β) Αν x και x είναι οι ρίζες του τριωνύµου να εκφράσετε το άθροισµα S= x + x συναρτήσει του λ 0 και να βρείτε την τιµή του γινοµένου P= x x (Μονάδες 5) γ) Αν λ0 τότε: i) το παραπάνω τριώνυµο έχει ρίζες θετικές ή αρνητικές; Να αιτιολογήσετε την απάντηση σας. ii) να αποδείξετε ότι x x 2x x, όπου x, x είναι οι ρίζες του παραπάνω τριωνύµου. α) Είναι = λ 1 2 4λ = λ 2λ 1 4λ = λ 2λ 1 = λ για κάθε, λ 0 β) Είναι S= x + x = = 2 1 και P= x x = = = 1 γ) i) Για λ 0 είναι 0 S 0 και επειδή P=1 0 το τριώνυµο έχει ρίζες αρνητικές. [18]
19 ii) είναι x x 2x x x x 2 λ2 1 λ 2 2 επειδή όµως λ 0 η παραπάνω σχέση γράφεται 1 0 το οποίο ισχύει. 2 λ 1 2λ λ 1 2λ 0 Άσκηση 6 Τα σπίτια τεσσάρων µαθητών, της Άννας, του Βαγγέλη, του Γιώργου και της ήµητρας βρίσκονται πάνω σε έναν ευθύγραµµο δρόµο, ο οποίος ξεκινάει από το σχολείο τους. Οι αποσπάσεις των τεσσάρων σπιτιών από το σχολείο,,,, και αντίστοιχα ικανοποιούν τις σχέσεις : = και = Στον παρακάτω άξονα, το σχολείο βρίσκεται στο σηµείο Ο και τα σηµεία Α,Β παριστάνουν τις θέσεις των σπιτιών της Άννας και του Βαγγέλη αντίστοιχα. Ο Α Β α) Να τοποθετήσετε πάνω στον άξονα τα σηµεία Γ και, που παριστάνουν τις θέσεις των σπιτιών του Γιώργου και της ήµητρας. Να αιτιολογήσετε την απάντησή σας. (Μονάδες 12) β) Αν επιπλέον, οι τιµές των αποστάσεων, σε km ικανοποιούν τις σχέσεις = 1,4 και =0,45 τότε: i) Να κατασκευάσετε µία εξίσωση 2 ου βαθµού που να έχει ρίζες τους αριθµούς, (Μονάδες 6) ii) Να υπολογίσετε τις αποστάσεις,,, (Μονάδες 7) [19]
20 α) Από τη σχέση = = (απορρίπτεται) ή = = Έστω ότι το οποίο ισχύει. Άρα (1) Επίσης από τη σχέση = προκύπτει ότι το σπίτι της ήµητρας ισαπέχει από τα σπίτια του Βαγγέλη και της Άννας. Τέλος από τη σχέση = 4 = 3 3. Άρα 4 4 (2) Όποτε από τις σχέσεις (1) και (2) έχουµε Ο Α Γ Β β) i) Είναι S= = 1,4 και P = =0,45 άρα οι, είναι ρίζες της εξίσωσης x 1,4x 0,45 0 ii) Λύνουµε την εξίσωση x 1,4x 0,45 0 και έχουµε =0,16 0 άρα οι ρίζες είναι x =0,5 ή x =0,9 και επειδή έχουµε = 0,5km και = 0,9 km Επίσης = =,, = 0,8 km και = 0,5 = 0,9 0,5 0,9 0,5 0,9 αδύνατη ή 0,5 0,9 = 0,7 [20]
[ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΤΟ 2 ο ΘΕΜΑ
[ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΠΙΘΑΝΟΤΗΤΕΣ ΤΟ ο ΘΕΜΑ Άσκηση 1 Από τους μαθητές ενός Λυκείου, το 5% συμμετέχει στη ομάδα, το 30% συμμετέχει στη θεατρική ομάδα ποδοσφαίρου και το 15%
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα
Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα Ιούνιος 04 . Έννοια της πιθανότητας GI_A_ALG 497 Ένα τηλεοπτικό παιχνίδι παίζεται µε ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό
ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Σε μια ομάδα που αποτελείται από 7 άνδρες και 3 γυναίκες, 4 από τους άνδρες και από τις γυναίκες παίζουν σκάκι. Επιλέγουμε τυχαία ένα από τα άτομα αυτά.
ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ
3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε
3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. α) Να βρείτε τις ρίζες της εξίσωσης x +0x=. x + 0x β) Να λύσετε την εξίσωση x. ίνεται η εξίσωση: x λx+(λ +λ )=0 (), λ R. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η
ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο
ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον
ΘΕΜΑ 2. Δίνονται οι συναρτήσεις
ΘΕΜΑ 2 Δίνονται οι συναρτήσεις (, x R 3 f ( x) = x και g x) = x α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f, g τέμνονται σε τρία σημεία τα οποία και να βρείτε. (Μονάδες 13) β) Αν Α, Ο,
β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).
1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο
ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου
ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ 4ο Λύκειο Περιστερίου Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν ααννάά εεννόόττηητταα ΑΛΓΕΒΡΑ
1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ
Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ τράπεζαθεμάτων θέμαδεύτεροκαιτέταρτο Επιμέλεια: ΕμμανουήλΚ.Σκαλίδης ΑντώνηςΚ.Αποστόλου ΚόμβοςΑτσιποπούλου014-15 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΙΘΑΝΟΤΗΤΕΣ 1. Ένα κουτί περιέχει 5 άσπρες,
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:
ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +
Εξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Εξισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 0 / 0 6 εκδόσεις Ασκήσεις Πιθανότητες Τράπεζα θεμάτων. Δίνεται η
6. α) Να λύσετε την εξίσωση 2x 1 =3. β) Αν α, β με α< β είναι οι ρίζες της εξίσωσης του ερωτήματος (α), τότε να λύσετε την εξίσωση αx 2 +βx+3=0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. Δίνεται η εξίσωση λx=x+λ, με λr. α) Να αποδείξετε ότι η παραπάνω εξίσωση γράφεται ισοδύναμα (λ )x=(λ )(λ+), λr. β) Να βρείτε τις τιμές του λ για τις οποίες η παραπάνω εξίσωση
Εκφωνήσεις θεμάτων Άλγεβρας Τράπεζας θεμάτων ανά ενότητα. 2ο θέμα
.497 Πιιθαννότητεεςς ο θέμα Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες: η Ειρήνη (Ε)
β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Άσκηση 1102 Δίνονται δύο ενδεχόμενα ενός δειγματικού χώρου Ω και οι πιθανότητες α) Να υπολογίσετε την (Μονάδες 9) β) i) Να υπολογίσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το ενδεχόμενο:
Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:
1 Παρατηρήσεις Προβλήματα είχαν οι ασκήσεις: Απόλυτες τιμές:.504(δεν χρειάζεται το α
Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-
3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη
ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:
ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν
ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
Τ ρ α π ε ζ α Θ ε μ α τ ω ν
Τ ρ α π ε ζ α Θ ε μ α τ ω ν Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Α Λ υ κ ε ι ο υ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π ι θ α ν ο τ η τ ε ς 868 936 064 073 080
Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ
Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.
Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σταύρος Κόλλιας
Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Επιμέλεια Σταύρος Κόλλιας Έκδοση. Θέμα 7958: Το τελευταίο κλάσμα (στην ανισότητα) από 3 έγινε 3. ΘΕΜΑ - 474 Κόλλιας Σταύρος - Κόρινθος Θεωρούμε την ακολουθία ( α ν ) των
B =, όπου ο x είναι πραγματικός αριθμός. x x α) Να αποδείξετε ότι για να ορίζονται ταυτόχρονα οι παραστάσεις Α, Β πρέπει: x 1 και x 0.
1 Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 16. Επιλέγουμε μια μπάλα στην τύχη. Δίνονται τα παρακάτω
f (x) = x2 5x + 6 x 3 S 2 P 2 0
Η ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΟ ΘΕΜΑ Β 1. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,... (αʹ) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να
Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σταύρος Κόλλιας
Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Επιμέλεια Σταύρος Κόλλιας ΘΕΜΑ 474 Θεωρούμε την ακολουθία των θετικών περιττών αριθμών:, 3, 5, 7, α) Να αιτιολογήσετε γιατί η είναι αριθμητική πρόοδος και να βρείτε τον
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
ΘΕΜΑ 2. 1 x < 4. (Μονάδες 9) 2. α) Να λύσετε την ανίσωση: β) Να λύσετε την ανίσωση: x (Μονάδες 9)
α) Να λύσετε την ανίσωση: 1 x < 4. (Μονάδες 9) 2 β) Να λύσετε την ανίσωση: x+ 5 3. (Μονάδες 9) γ) Να βρείτε τις κοινές λύσεις των ανισώσεων των ερωτημάτων (α) και (β) με χρήση του άξονα των πραγματικών
ΠΡΟΛΟΓΟΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ.
ΠΡΟΛΟΓΟΣ Το παρόν τεύχος δημιουργήθηκε για να διευκολύνει τους μαθητές στην ΆΜΕΣΗ κατανόηση των απαιτήσεων των ΠΡΟΑΓΩΓΙΚΏΝ ΕΞΕΤΑΣΕΩΝ της Α Λυκείου δίνοντας τους τις εκφωνήσεις μαζί με τις λύσεις (ΘΕΜΑΤΑ
Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88
Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου
Άλγεβρα Α Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Άλγεβρα Α Λυκείου Οι πράξεις των πραγματικών αριθμών και οι ιδιότητες τους Αν οι αριθμοί α,β είναι αντίστροφοι, να αποδείξετε ότι: 7 4 : 8 0 7 Να
7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 4 ο (141)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα 4 ο (141) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών
Άλγεβρα Α Λυκείου, Κεφάλαιο ο ΘΕΩΡΙΑ-ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΠΟΔΕΙΞΕΙΣ ΠΡΟΤΑΣΕΩΝ-ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΥΠΟΥΡΓΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. Οι Πράξεις και οι Ιδιότητές
-1- ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
. GI_A_ALG 474 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Θεωρούμε την ακολουθία α των θετικών περιττών αριθμών:,3,5,7,... ν --. Να αιτιολογήσετε
β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε R. Μονάδες 8 γ) Αν x
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ ΕΤΟΣ 06-7 Εξισώσεις Β βαθμού Α Λυκείου Τριών Ιεραρχών την Δευτέρα κι ευκαιρία να τους τιμήσουμε λύνοντας μερικές ασκησούλες άλγεβρας Αρχίστε από τις,,3,4,5,6,8,3,4,5,6,7,8,9,0,
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 4.1 Ασκήσεις: 1-12 Θεωρία ως και την 4.2 Ασκήσεις: 13-25 Άσκηση 1 α) Να λύσετε την ανίσωση
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Άλγεβρα Α Λυκείου
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Άλγεβρα Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση
B= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii)
Πιθανότητες.3096. α) Αν Α,Β,Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης που αποτελείται από απλά ισοπίθανα ενδεχόμενα, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα: i) A B ii)
α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα:
ΘΕΜΑ 2 (479) α) Αν Α, Β, Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα: i) A B ii) B Γ iii) (A B) Γ iv) A (Μονάδες 12) β) Στο παρακάτω
Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους
οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει
Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β
Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ Απόλυτες τιμές Α Λυκείου. 1. α) Αν, να αποδειχθεί ότι: Μονάδες 15
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ 016-17 Απόλυτες τιμές Α Λυκείου 1. α) Αν, να αποδειχθεί ότι: Μονάδες 15 β) Αν α
Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου
Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Θέμα Α. Αν x, x οι ρίζες της δευτεροβάθμιας εξίσωσης αx +βx+γ=, α να αποδείξετε ότι S P. (6 μονάδες) Β. Ελέγξατε αν κάθε μία από τις παρακάτω σχέσεις είναι σωστή
Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β
ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn και να γράψετε
Αριθμοί. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Αριθμοί Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7 0 0 8 8 8 8 Kgllykosgr 5 / 0 / 0 6 εκδόσεις τηλ Οικίας : 0-6078 κινητό : 697-008888 Ασκήσεις Πιθανότητες
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
3 η δεκάδα θεµάτων επανάληψης
η δεκάδα θεµάτων επανάληψης. Έστω η συνάρτηση f() = 80 αν < < 0 αν 0 αν i ) Να υπολογιστεί η τιµή της παράστασης Α = f( ) + f(0) 5f() f + f( ) Αν Μ(, ) και Ν(, 0) να βρείτε την εξίσωση της ευθείας ΜΝ i
4 η δεκάδα θεµάτων επανάληψης
1 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Α Β δεν είναι το κενό. Έχουµε Ρ( Α
ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Αν έχω τριώνυμο της μορφής :,. Υπολογίζω την Διακρίνουσα 4 Αν Δ> τότε η εξίσωση έχει άνισες ρίζες έστω Ομόσημο του α Ετερόσημο του α, τότε: Ομόσημο του α Αν Δ= τότε η εξίσωση έχει διπλή
2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1
ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας
. Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο
1. Να λυθεί και να διερευνηθεί η εξίσωση: ( 2x 1 ) µ 2 = 5( 10x µ
1. Να λυθεί και να διερευνηθεί η εξίσωση: ( x 1 ) µ = 5( 10x µ ) Μετασχηµατίζουµε την εξίσωση στη µορφή αx = β. ( x 1 ) µ 5( 10x µ ) ( µ 50) x = µ 5µ () 1 = µ x µ = 50x 5µ µ x 50x = µ 5µ Λύνουµε την εξίσωση:
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης
ΘΕΜΑ 4. . Αν για την τετμημένη x του σημείου M ισχύει:, τότε να δείξετε ότι το σημείο αυτό βρίσκεται κάτω από την. , με παράμετρο α 0.
ΘΕΜΑ 4 ΘΕΜΑ Δίνονται η συνάρτηση f x x x, x α) Να αποδείξετε ότι η γραφική παράσταση της συνάρτησης f δεν τέμνει τον άξονα xx. β) Να βρείτε τις τετμημένες των σημείων της ευθεία ψ x 3. (Μονάδες 0) γ) Έστω
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου
2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ
Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς
Μεθοδική Επανάληψη www.askisopolis.gr Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Ε. Σύνολα i. Τι είναι το σύνολο; ii. Ποιοι είναι οι βασικοί τρόποι παράστασης συνόλων και τι γνωρίζετε γι αυτούς; iii. Πότε
1η έκδοση Αύγουστος2014
mat hemat i c a. gr η έκδοση Αύγουστος04 Μία παρέα διαδικτυακών μαθηματικών φίλων, μελών του http://www.mathematica.gr, μοιράστηκε την ευθύνη, να παρουσιάσει στην κοινότητα τις λύσεις των Μαθηματικών,
( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x
ΜΟΡΦΕΣ ΤΡΙΩΝΥΜΟΥ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Τριώνυµο λέγεται ένα πολυώνυµο της µορφής : f x = αx + βx+ γ, όπου α, β, γ R µε α. ( ) ιακρίνουσα και ρίζες του τριωνύµου f( x) = αx + βx+ γ λέγεται η διακρίνουσα και
[TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 6 Ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνεται η συνάρτηση α) Να υπολογίσετε το άθροισμα (Μονάδες 10) β) Να βρείτε τα κοινά σημεία της γραφικής της παράστασης της f με τους άξονες.
Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί
wwwaskisopolisgr Άλγεβρα Α Λυκείου Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ 006-08 Δίνεται ότι και y Πραγματικοί αριθμοί α) i Να βρεθούν τα όρια μεταξύ των οποίων περιέχεται το ii Να βρεθούν τα όρια μεταξύ
ΘΕΜΑ 2 (996) A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους. Δίνεται η παράσταση:
ΘΕΜΑ 2 (996) Δίνεται η παράσταση: A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους ισχύει: 1 < x < 4 και 2 < y < 3. Να αποδείξετε ότι: α) A = x y +2. (Μονάδες 12) β) 0 < A < 4. (Μονάδες 13)
AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
http://1lyk-ag-dimitr.att.sch.gr/ AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΙΑΤΑΞΗ: 1. Έστω ότι α < β και γ < δ. Να αποδείξετε ότι: αγ αδ βγ + βδ > 0 2. Αν α -1, δείξτε ότι α 3 + 1 α 2 + α 3. Αν x>1 δείξτε ότι: 2x 3
( f( )) ( f( )) 0. f( ) f( ) 0 θέτουμε αντίστοιχα. ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ. 2. Μορφή 0 με 0. Λύση: Λύση: 3. Μορφή Λύση: Βρίσκουμε,,
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ. Μορφή 0 με 0. Λύση: 0 ( ) 0 0 ή 0... Μορφή 0 με 0 Λύση: 0.. Μορφή 0 με 0 Λύση: Βρίσκουμε,, και τη διακρίνουσα 4 Αν 0 (ή, ετερόσημοι) η εξίσωση έχει δύο ρίζες πραγματικές και άνισες
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -
(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1,
Σε ένα τμήμα της Α Λυκείου κάποιοι μαθητές παρακολουθούν μαθήματα Αγγλικών και κάποιοι Γαλλικών. Η πιθανότητα ένας μαθητής να μην παρακολουθεί Γαλλικά είναι 0,8. Η πιθανότητα ένας μαθητής να παρακολουθεί
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
a = f( x ) =. (Μονάδες 8) 2 = =,από όπου προκύπτει ( υψώνοντας στο τετράγωνο ), x =, επομένως x = 0 x = ή Άσκηση 4679 Δίνεται η συνάρτηση:
Άσκηση 4679 Δίνεται η συνάρτηση: a = + 4 f( x) x x α) Να βρείτε τις τιμές του πραγματικού αριθμού α, ώστε το πεδίο ορισμού της συνάρτησης f να είναι το σύνολο. (Μονάδες 0) β) Αν είναι γνωστό ότι η γραφική
ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός
014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής
= και g ( x) = x +, x R. Δίνονται η συνάρτηση ( ) α) Να αποδείξετε ότι η γραφική παράσταση C
ΘΕΜΑ Δίνονται η συνάρτηση ( ) ΘΕΜΑ 4 f x = x + x +, x R. α) Να αποδείξετε ότι η γραφική παράσταση C f της συνάρτησης f δεν τέμνει τον άξονα xx. (Μονάδες 5) β) Να βρείτε τις τετμημένες των σημείων της Cfπου
Άλγεβρα Α Λυκείου Επαναληπτικές ασκήσεις
Άλγεβρα Α Λυκείου Επαναληπτικές ασκήσεις Δημήτρης Πατσιμάς Στέλιος Μιχαήλογλου ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {,,, 4, 5, 6,7,8,9, 0} και τα υποσύνολα του Ω, Α = {,,4,6},
ΑΣΚΗΣΕΙΣ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ
ΑΣΚΗΣΕΙΣ Α ΛΥΚΕΙΟΥ Άσκηση 1 η -- Πιθανότητες ΠΙΘΑΝΟΤΗΤΕΣ Μία τάξη έχει 16 αγόρια και 14 κορίτσια. Τα 4 των αγοριών και τα των κοριτσιών συμμετέχουν σε κάποια αθλητική 7 δραστηριότητα. Επιλέγουμε τυχαία
4 η δεκάδα θεµάτων επανάληψης
4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Έχουµε Α Βδεν είναι το κενό. Ρ( Α Β)
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 17 Απριλίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 016 ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 016 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι για οποιουσδήποτε πραγµατικούς αριθµούς
) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις
4. Εξισώσεις 2ου βαθμού αx 2 + βx + γ = 0, α 0 α, β, γ παράμετροι και x η μεταβλητή Αν ρ ρίζα/λύση της εξίσωσης, τότε αρ 2 + βρ + γ = 0 Αν ρ 1, ρ 2 ρίζες/λύσεις της εξίσωσης, τότε το τριώνυμο γράφεται
ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.
ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του
ΘΕΜΑ ΘΕΜΑ ΘΕΜΑ 4
7.0 ΘΕΜΑ 4 Δίνονται τα σημεία Α, Β και Μ που παριστάνουν στον άξονα των πραγματικών αριθμών τους αριθμούς -, 7 και x αντίστοιχα, με - < x < 7. α) Να διατυπώσετε τη γεωμετρική ερμηνεία των παραστάσεων.
ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
4.2 Η ΣΥΝΑΡΤΗΣΗ y = αx 2 + βx + γ µε α 0
1. Η ΣΥΝΑΡΤΗΣΗ y = α + + γ µε α 0 ΘΕΩΡΙΑ 1. Τετραγωνική συνάρτηση : Ονοµάζεται κάθε συνάρτηση της µορφής y = α + + γ, α 0. Γραφική παράσταση της συνάρτησης y = α + + γ, α 0 Η γραφική παράσταση της συνάρτησης
ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
1.2: Έννοια της Πιθανότητας
.: Έννοια της Πιθανότητας Κεφάλαιο ο: Πιθανότητες ΑΣΚΗΣΗ (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης
Σας εύχομαι καλή μελέτη και επιτυχία.
ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό αποτελεί συνέχεια του Α τεύχους και απευθύνεται κυρίως στους μαθητές της Α Λυκείου, αλλά και στους καθηγητές που διδάσκουν το μάθημα «Άλγεβρα και στοιχεία πιθανοτήτων» της Α Λυκείου.
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις ευτέρου Βαθµού 108 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθµό, να υπολογιστεί
4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114
1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89 Ον/μο:.. Α Λυκείου Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις 6-0- Θέμα ο : Α.. Να δώσετε τον ορισμό της εξίσωσης ου βαθμού (μον.) Α.. Αν, ρίζες της εξίσωσης 0, να αποδείξετε ότι