ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations"

Transcript

1 ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t + 3). x[n] = δ[n + ] + δ[n] δ[n ] + δ[n 3] 3. Memoryless Linear Causal Time-invariant System YES NO YES NO System NO YES NO YES 5. (a) y[n] = y(t) =, n = 0 4, n = 6, n =, 3, 4, 5 4, n = 6, n = 7 0, otherwise ( e t ) u(t) One way to express the answer is y(t) = ( ) e (t+) u(t + ) ( ) e (t 3) u(t 3) and another is y(t) = 0, t < e e t ), t < 3 (e6 e ) e t, t 3

2 Answers to problems on Midterm Examination #, Spring 009. (a) X(ω) = x(t)e jω t dt x(t) = π X(ω)ejω t dω. x(t) = + 6 k= sin ( π k) cos ( k πt) π k V (Ω) = 6 ω sin ( 3 ω) e j(9/)ω (a) x(t) = 3 cos ( 6t + π 4 5. (a) V (ω) = (jω+3)(jω+) v(t) = [ e 3t + e t ] u(t) )

3 Answers to problems on Midterm Examination #3, Spring 009. W (Ω) = ( e jωn ) e jω ( e jω ). 3. H(ω) is given by y(t) = 3 + cos (3t) H(ω) 3 ( sin π ) 3t ω 5. y[n] = 3 ( )n

4 Answers to problems on the Final Examination, Spring 009. x(t) = u(t + ) r(t + ) + r(t ) r(t 3) u(t 3) r(t 4) + r(t 5). 3. (a) X k = { 0, k = 0,, 4, 6, k =, 3, 5, 7 x[n] = ( π ) cos 4 n + ( ) 3π cos 4 n y(t) = 3 cos(t) 5. y(t) = (e t e t )u(t) + (e (t ) e (t ) )u(t ) 6. y(t) = (( t 3 ) e t + 7 ) e 3t u(t)

5 Answers to problems on Midterm Examination #, Fall 009. (a) x[n] = u[n] + 4 u[n ] 3 u[n 5] 3 u[n 6] x[n] = δ[n] + 6 (δ[n ] + δ[n ] + δ[n 3] + δ[n 4]) + 3 δ[n 5]. (a) IS MEMORYLESS HAS MEMORY (c) LINEAR (d) LINEAR (e) NONCAUSAL (f) CAUSAL (g) TIME-INVARIANT (h) TIME-VARYING 3. y(t) y[n] =, n = 3, n = 6, n = 3 4, n = 4 0, n = 5 6, n = 6 5, n = 7 3, n = 8 0, otherwise t 5. (a) y(t) = e t ( e t ) u(t) y(t) = e (t ) ( e (t )) u(t )

6 Answers to problems on Midterm Examination #, Fall 009. Sum / Sinusoids / Periodic / Finite. x(t) = π + k= 4 π( 4k ) cos(kt) 3. x(t) = 3 π cos ( 5t + 3π 4 ) x(t) = 3 e t u(t) 3 e t u( t) 5. α = /, =

7 Answers to problems on Midterm Examination #3, Fall 009. or v[n] = v[n] = ( ) n u[n] + ( ) n u[ n] ( ) n u[n] + n u[ n]. (a) X 0 = 4, X =, X = 0, X 3 = x[n] = + cos ( π n) 3. (a) X(Ω) = + e jωn + e j3ωn (c) or v[n] = x[n] + x[n 4] + x[n 8] + + x[n 76] 9 v[n] = x[n 4k] k=0 j38ω sin(40ω) V (Ω) = X(Ω)e sin(ω) ( y(t) = 8 4 cos 3t π ) + 4 cos(000t π) 5. Set H(ω) to be H(ω) 0 ω

8 Answers to problems on the Final Examination, Fall 009 n y[n] n y[n] n y[n] (a) y (t) y (t) Y (ω) = e j(ω+) X(ω + ) + e j(ω ) X(ω ) Y (ω) = e jω [X(ω + ) + X(ω )] (c) Both systems are linear. (d) Both systems are time-varying. 3. y[n] = cos(π n) 3 y(t) = [ e 5(t ) + e 3(t )] u(t ) 5. y(t) = + e t sin(t), t 0

9 Answers to problems on the Midterm Examination #, Spring 0. x(t) = r(t + ) + r(t ) + r(t ) r(t 4) + u(t 4) u(t 6). 3. (a) (c) (d) 5. y[n] = 0, n 0, n = 4, n = 3, n = 3, n = 4, n = 5 0, n = 6, n = 7, n = 8 0, n = 9 y(t) = e t u(t) y(t) = e (t ) u(t ) y(t) = ( e t ) u(t) ) y(t) = 3 ( e (t ) u(t ) y(t) = ( e 6(t 3)) u(t 3) ( e 6(t 6)) u(t 6) y[n] = ( ) n u[n] 3

10 Answers to problems on the Midterm Examination #, Spring 0. x (t) = + ( ) ( ) ( ) k cos(kπt) (kπ) k= ( x (t) = ) ( ) k sin(kπt) kπ k=. (a) 3. sgn(t) = u(t) u( t) ( ) SGN(ω) = jω + πδ(ω) = jω t jπsgn( ω) ( ) jω + πδ( ω) Y (ω) = jaπδ(ω ω 0 ) + jaπδ(ω + ω 0 ) y(t) = A sin(ω 0 t) 5. X(4π) = X(Ω) = e jω ( e jω) 6. Even

11 Answers to problems on the Final Examination, Spring 0. (a) y(t) = (e t e t )u(t) y(t) = (e (t ) e (t ) )u(t ) (c) y(t) = (e t e t )u(t) e 4 (e (t ) e (t ) )u(t ). y[n] = + cos ( π n ) π 4 3. (a) y(t) = a 0 + ( a cos ( ) 4t π 4 + b sin ( )) 4t π 4 y(t) = cos ( ) 4t π π 4 Y (ω) = 5. y(t) = e t + e 4t for t 0 3e j4 (ω ) e j4 (ω + ) + 9

12 Answers to problems on the Midterm Examination #, Fall 0. (a) TRUE TRUE (c) TRUE (d) TRUE (e) TRUE (f) TRUE. x[n] n x(t) = r(t + 3) u(t + ) r(t + ) + u(t + ) + r(t ) r(t 3) u(t 4) y[n] = ( ( ) n ) u[n] 5. (a) y(t) = ( e t )u(t) ( e (t 3) )u(t 3) y(t) = 3( e (t ) )u(t ) (c) y(t) = ( e t )u(t)

13 Answers to problems on the Midterm Examination #, Fall 0. x(t) = k= ( cos(kπ )) sin(kπt) kπ. (a) X(ω) = /( + ω ) 3. y(t) = /( + t ) Y (ω) π - - π ω x(t) = π cos(ω 0t + θ) 5. (a) y(t + ) = x(t + ) cos(π(t + )) = x(t) cos(πt + 4π) = x(t) cos(πt) = y(t) d k = (c k + c k+ )

14 Answers to problems on the Midterm Examination #3, Fall 0. (a) y[n] = ( ) n cos ( π n) u[n]. (a) X 5 = Y (Ω) = e jω ( e jω) For k = 0,,..., 4 and for k = 6, 7,...,, X k = 0 3. (a) H(Ω) = 4 e jω 5. y[n] = cos ( π n) y[n] = ( 5 ( ) n 4 4 ( ) n ) u[n] 5 y(t) = (t 4 cos π ) 4

15 Answers to problems on the Final Examination, Fall 0. (a) H(Ω) = + cos(ω) y[n] =. Y (ω) = jω+3 3. y(t) = + 4 π cos(πt) (a) ω 0 = y(t) = 6 cos(t) 5. (a) y(t) = ( + e t e 3t ) u(t) y(t) = u(t)

16 Answers to problems on the Midterm Examination #, Fall 0. (a) TRUE TRUE (c) TRUE (d) TRUE (e) FALSE (f) TRUE. (a) x[n] n The plot for part is the same as for part (a). 3. x(t) = u(t + 3) r(t + 3) + 4r(t + ) u(t + ) r(t + ) + u(t ) u(t ) + 3r(t ) 3r(t 3) u(t 4) y[n] = 50 3 ((.06)n+ ) u[n] 5. (a) y(t) = (e t e t )u(t) y(t) = (e t e t )u(t) e 4 (e (t ) e (t ) )u(t )

17 Answers to problems on the Midterm Examination #, Fall 0. (a) x(t) = k= k 0 j ( cos kπ ( )) kπ e jkπt 3. (a) y(t) = k= ( ( ) ) kπ cos sin(kπt) kπ 3 e / e jω jω + (/4) e / π(jt (/4)) 3. (a) In this problem you derive that x(t) =. x(t) = 3 cos(6t + (π/4)) (a) v(t) = jtx(t) y(t) = jte jt x(t) 5. (a) We have Z(ω) = X L (ω) + X R (ω) + X L (ω ω ) + X L (ω + ω ) X R (ω ω ) X R (ω + ω ) where ω = 76000π. Z(ω) 3 30, 000π 30, 000π ω (c) y (t)

18 Answers to problems on the Midterm Examination #3, Fall 0. (a) Y (Ω) = X(Ω) + X( Ω)ejΩ Y (Ω) is even and purely real. Y (Ω) = 3/4 (5/4) cos(ω). (a) x[n] is periodic with period N = 4c (c) X = 4c and X 3 = 4c ( ) n u[n] y A (t) = 5 ( cos t + π ) 4 y B (t) = cos(3t π) 6 y(t) = cos(6t) cos(0t) + 35 cos(4t)

19 Answers to problems on the Final Examination, Fall 0. (a) y(t) = y 0 (t) y 0 (t ) = u(t) u(t ) u(t 4) + u(t 5) x (t) = x 0 (t+) x 0 (t ) so that y(t) = u(t+) u(t ) u(t 3)+u(t 5). y[n] = 4A cos ( π n) if x[n] = x [n], and y[n] = 0 if x[n] = x [n], so that we differentiate between the two possibilities based on whether or not y[n] = 0 or a multiple of cos ( π n). 3. y(t) = π cos(πt) y(t) = 4 ( e t e 4t) u(t) 4e ( e (t 3) e 4(t 3)) u(t 3) 5. y(t) = ( 5 e 3t + 3 e 5t ) u(t)

20 Answers to problems on Midterm Examination #, Spring 03. x(t) = r(t + ) + r(t) r(t ) + r(t ) + u(t ) r(t 3) + r(t 4) + u(t 4) u(t 6). x[n] n 3. (a) Causal, time-invariant Noncausal, time-invariant (c) Causal, time-invariant (d) Causal, time-varying 5. (a) 6. (a) y[n] = 9, n = 3, n = 7, n = 3 3, n = 4, n = 5 0, otherwise y(t) = 6 ( e t e 3t) u(t) y(t) = ( e (t ) e 3(t )) u(t ) ( e (t ) e 3(t )) u(t ) t, 0 t < y(t) = 4 t, t < 4 0, t < 0 or t 4 x(t) = p(t ) p(t 4) p(t 7)

21 Answers to problems on Midterm Examination #, Spring (a) TRUE x(t) = 6 + x e (t) = 3 + x o (t) = k= l= k= k 0 8 kπ sin ( 3kπ 4 ) e j kπ 4 t 4 cos ((l )πt) (l ) π ( ) k kπ sin(kπt) Y (ω) = ω (9 + ω ) The sketches for (a) and are as follows. (The curved portion of the plot in has formula + cos(πω/4).) 5. The sketch of Y (ω) is as follows.

22 Y (ω) 4π ω

23 Answers to problems on Midterm Examination #3, Spring 03. Y (Ω) =. (a) {X 0, X, X, X 3 } = {4, j, 0, j} c 0 =, c = j/, c = 0, c 3 = j/ (c) x[n] = sin(πn/) /8 ( + 4 e jω) ( y(t) = 8 4 cos 0.5t π ) ( ) sin t π 3 y(t) = 4 cos(5t) + cos(0t) cos(5t) y[n] = 3 4 ( )n

24 Answers to problems on the Final Examination, Spring 03. (a) y(t) = e t u(t) y(t) = e (t ) u(t ) e (t 4) u(t 4). y(t) = 3 cos(t) 3. X(ω) is purely real and with phase equal to 0 for all ω. The magnitude X(ω) is the same as X(ω), shown in the plot below. The output that results when p[n] is the input is shown below. 4 6y[n] n 8 Therefore, the smallest n0 with no overlap of pulse responses is (a) X(0) = 4, X(π/) =, X(π) = 0, X(3π/) = X0 = 4, X =, X = 0, X3 =

25 Answers to problems on Midterm Examination #, Fall 04. x(t) = r(t + ) r(t) u(t ) + r(t 4) r(t 5). 4 x(t) t 3. (a) y(t) = r(t) 4r(t ) + r(t 4) 4 y(t) 3 5 t 5. (a) { 4 ( ( y(t) = π + sin π t)), < t < 3 0, otherwise Ĥ(ω) = + jω y(t) = 3 ( + cos t 3π 4 ) 6. y(t) = u(t ) u(t 4)

26 Answers to problems on Midterm Examination #, Fall 04. (a) y(t) = 3 3t 3 5t 4t u(t) e 3e + e y(t) = 3 3(t ) 3 5(t ) 4(t ) u(t ) e 3e + e. y(t) = e t + e 4t, 3. t t y(t) = 3t + e u(t) 4 4 A sketch of the block diagram is as follows. 5. (a) No. There is a pole at s = 0. y(t) = tu(t)

27 Answers to problems on Midterm Examination #3, Fall 04.. (a) 3. x(t) = n= ( ( nπ cos nπ 3 X(ω) = ω y(t) = t )) sin(nπt) 4(ω + 3) ( (ω + 3) ), ω + 3 Y (ω) = 4(ω 3) ( (ω 3) ), ω 3 0, otherwise y(t) = (t 4 cos π ) 4

28 Answers to problems on the Final Examination, Fall 04. y(t) = ( e t )u(t) + ( e (t ) )u(t ) ( e (t ) )u(t ) ( e (t 3) )u(t 3). y(t) = ( 7 e t 3 ) e t u(t) 3. (a) 0 Ĥ(ω) = h(t)e jωt dt = e jωt dt = [ e j0ω ] 0 jω = jω ( e j0ω ) = jω (ej5ω e j5ω )e j5ω = j sin(5ω) jω e j5ω = sin(5ω) e j5ω ω y(t) = 0 ln() y[n] = 3 cos ( π 5 n )

29 Answers to problems on Midterm Examination #, Fall 05. x(t) = r(t + ) + r(t) + u(t ) r(t 4) + r(t 5). x(t) t 3. (a) Linear, time-invariant, causal, has memory Linear, time-invarient, non-causal, has memory y[n] n y(t) = 0, t < 0 t, 0 t < t + t, t <, t < 4 5 t, 4 t < 5 0, 5 t 0, t < ( y(t) = ) e (t ), t < 6 ( e 8 ), 6 t y(t) = [ e (t ) u(t ) e (t 3) u(t 3) ]

30 Answers to problems on Midterm Examination #, Fall 05. (a) T = (c) Even symmetry. (a) 3. x(t) = + X(ω) = y(t) = k= ( ) kπ kπ sin cos(kπt) ( + jω) e ( +jω) jω ω ( jt) e ( jt) 37 4 jt t ( x(t) = 8 cos 4t + π ) 6 (a) v(t) = x(t ) y(t) = x(t) (e t u(t)) 5. X(Ω) = 3/4 (5/4) cos(ω)

31 Answers to problems on Midterm Examination #, Fall 06. (a) TRUE FALSE (c) TRUE (d) TRUE (e) TRUE (f) TRUE. (a) x[n] n x[n] n 3. x(t) = u(t + 3) r(t + ) + 4r(t ) 3r(t 3) u(t 4) (a) 5. (a) y[n] = ( y[n] = ( ( ) n ) u[n ] ( ) n ) ( u[n ] y(t) = ( e t e 3t) u(t) y(t) = ( e t e 3t) u(t) ( ) ) n u[n 3]

32 Answers to problems on the Final Examination, Fall y(t) = + 9 ( 4 cos 4t π ) y(t) = 3 ( π cos n π ) 6 y(t) = π cos ( π t ) y(t) = 6(e t e t )u(t) 6(e (t 3) e (t 3) )u(t 3) y(t) = ( e t + e 4t) u(t)

33 Answers to problems on Midterm Examination #, Fall 06. (a) (c) c k is given by where ω 0 = π/t (d) x(t) is given by where ω 0 = π/t.. 3. (a) v(t) = t x(t) x(t) = 3 sin(5t) 5. (a) X(ω) = x(t)e jωt dt x(t) = X(ω)e jωt dω π c k = T x(t) = x(t) = k= T 0 x(t)e jkω 0t dt k= c k e jkω 0t ( ) ( ) 8 kπ kπ kπ sin cos 3 3 t V (ω) = j ω cos ( ) ( ω sin ω ) ω Y (ω) = 6 (jω + 4)(jω + ) y(t) = (e t e 4t )u(t)

34 Answers to problems on Midterm Examination #3, Fall Y (Ω) = e j4ω ( 3 e jω) x[n] = 3 4 cos ( π n ) ( y(t) = 6 + cos t 7π ) ( ) 3 6 sin t π y(t) = cos(πt) y[n] = ( π cos n 5π ) 6

35 Answers to problems on the Final Examination, Fall 06. (a) (c). 3. y(t) = 3 ( e 3t )u(t) y(t) = ( e 3(t ) )u(t ) ( e 3(t ) )u(t ) ( e 3(t 6) )u(t 6) y(t) = 3 y(t) = π sin(πt) (a) X(0) = 6, X(π/) = 0, X(π) =, X(3π/) = 0 X 0 = 6, X = 0, X =, X 3 = 0

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

Assignment 1 Solutions Complex Sinusoids

Assignment 1 Solutions Complex Sinusoids Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 2011-12 Εαρινό Εξάµηνο Ενδιάµεση Εξέταση 1 Παρασκευή 17 Φεβρουαρίου

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

= 0.927rad, t = 1.16ms

= 0.927rad, t = 1.16ms P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye ME 374, System Dynamics Analysis and Design Homewk 9: Solution June 9, 8 by Jason Frye Problem a he frequency response function G and the impulse response function ht are Fourier transfm pairs herefe,

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time

Διαβάστε περισσότερα

6.003: Signals and Systems. Modulation

6.003: Signals and Systems. Modulation 6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Tables in Signals and Systems

Tables in Signals and Systems ables in Signals and Systems Magnus Lundberg Revised October 999 Contents I Continuous-time Fourier series I-A Properties of Fourier series........................... I-B Fourier series table................................

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 8: Ιδιότητες του Μετασχηματισμού Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 8: Ιδιότητες του Μετασχηματισμού ourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού ourier 1. Ιδιότητες του Μετασχηματισμού ourier 2. Θεώρημα

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

y[n] ay[n 1] = x[n] + βx[n 1] (6)

y[n] ay[n 1] = x[n] + βx[n 1] (6) Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

{ } x[n]e jωn (1.3) x[n] x [ n ]... x[n] e jk 2π N n

{ } x[n]e jωn (1.3) x[n] x [ n ]... x[n] e jk 2π N n Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ : Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 5: Μετασχηματισμοί Fourier σε διακριτά σήματα!"#!"#! "#$% Σημειώσεις

Διαβάστε περισσότερα

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI Outline Analog Communications Lecture 05 Angle Modulation 1 PM and FM Pierluigi SALVO ROSSI Department of Industrial and Information Engineering Second University of Naples Via Roma 9, 81031 Aversa (CE),

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

CT Correlation (2B) Young Won Lim 8/15/14

CT Correlation (2B) Young Won Lim 8/15/14 CT Correlation (2B) 8/5/4 Copyright (c) 2-24 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Sampling Basics (1B) Young Won Lim 9/21/13

Sampling Basics (1B) Young Won Lim 9/21/13 Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

Spectrum Representation (5A) Young Won Lim 11/3/16

Spectrum Representation (5A) Young Won Lim 11/3/16 Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

Διαβάστε περισσότερα

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)

Διαβάστε περισσότερα

. Σήματα και Συστήματα

. Σήματα και Συστήματα Σήματα και Συστήματα Βασίλειος Δαλάκας & Παναγιώτης Ριζομυλιώτης Τμήμα Πληροφορικής & Τηλεματικής Χαροκόπειο Πανεπιστήμιο Σήματα και Συστήματα 1/17 Πρόβλημα 1 (βιβλίο σελίδα 93) Να αποδειχθεί ότι: α) Κάθε

Διαβάστε περισσότερα

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials Linear Time Invariant Systems x(t) Linear Time Invariant System y(t) Linearity input output Ax (t)+bx (t) Ay (t)+by (t) scaling & superposition Time invariance x(t-τ) y(t-τ) Characteristic Functions e

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section SECTION 5. THE NATURAL LOGARITHMIC FUNCTION 5. THE NATURAL LOGARITHMIC FUNCTION A Click here for answers. S Click here for solutions. 4 Use the Laws of Logarithms to epand the quantit.. ln ab. ln c. ln

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα