The behavior of solutions of second order delay differential equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "The behavior of solutions of second order delay differential equations"

Transcript

1 J. Math. Anal. Appl ) The behavior of solutions of second order delay differential equations Ali Fuat Yeniçerioğlu Department of Mathematics, The Faculty of Education, Kocaeli University, 4138 Kocaeli, Turkey Received 28 September 26 Available online 8 December 26 Submitted by J. Henderson Abstract In this paper, we study the behavior of solutions of second order delay differential equation y t) = p 1 y t) + p 2 y t τ)+ q 1 yt) + q 2 yt τ), where p 1, p 2, q 1, q 2 are real numbers, τ is positive real number. A basic theorem on the behavior of solutions is established. As a consequence of this theorem, a stability criterion is obtained. 26 Elsevier Inc. All rights reserved. Keywords: Delay differential equation; Characteristic equation; Stability; Trivial solution 1. Introduction and preliminaries Let us consider initial value problem for second order delay differential equation y t) = p 1 y t) + p 2 y t τ)+ q 1 yt) + q 2 yt τ), t, 1) yt) = φt), t, 2) where p 1, p 2, q 1, q 2 are real numbers, τ is positive real number and φt) is a given continuously differentiable initial function on the interval [,]. In many fields of the contemporary science and technology systems with delaying links are often met and the dynamical processes in these are described by systems of delay differential equations [1,4,5]. The delay appears in complicated systems with logical and computing devices, address: fuatyenicerioglu@kou.edu.tr X/$ see front matter 26 Elsevier Inc. All rights reserved. doi:1.116/j.jmaa

2 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) where certain time for information processing is needed. The theory of linear delay differential equations has been developed in the fundamental monographs [1,4 6,8]. The equation of form of 1) is of interest in biology in explaining self-balancing of the human body and in robotics in constructing biped robots see [1,12]). These are illustrations of inverted pendulum problems. A typical example is the balancing of a stick see [13]). Equation of form of 1) can be used as test of equations for numerical methods see [7,14]). In [3], it has been established the boundedness under the conditions b>, k>, p> k and q +r p <b,on[, ) of the solution of the second order equation y t) + by t) + qy t r)+ kyt) + pyt r) =, for t, where r>, together with a given continuously differentiable initial function yt) = φt) on [ r, ]. Recently, Cahlon and Schmidt et al. [2] have established the stability criteria for a second order delay differential equation of form 1) with p 1 p 2 and q 1 q 2 <. This paper deals with the stability of the trivial solution for a second order linear delay differential equation with constant delay. An estimate of the solutions is established. The sufficient conditions for the stability, the asymptotic stability and instability of the trivial solution are given. Our results are derived by the use of real roots with an appropriate property) of the corresponding in a sense) characteristic equations. The techniques applied in obtaining our results are originated in a combination of the methods used in [9] and [11]. As usual, a twice continuously differentiable real-valued function y defined on the interval [, ) is said to be a solution of the initial value problem 1) and 2) if y satisfies 1) for all t and 2) for all t. It is known that see, for example, [4]), for any given initial function φ, there exists a unique solution of the initial problem 1) 2) or, more briefly, the solution of 1) 2). If we look for a solution of 1) of the form yt) = e λt for t IR, we see that λ is a root of the characteristic equation λ 2 = p 1 λ + p 2 λe λτ + q 1 + q 2 e λτ. 3) Before closing this section, we will give two well-known definitions see, for example, [5]). The trivial solution of 1) is said to be stable at ) if for every ε>, there exists a number l = lε) > such that, for any initial function φ with φ max φt) <l, t the solution y of 1) 2) satisfies yt) <ε, for all t [, ). Otherwise, the trivial solution of 1) is said to be unstable at ). Moreover, the trivial solution of 1) is called asymptotically stable at ) if it is stable in the above sense and in addition there exists a number l > such that, for any initial function φ with φ <l, the solution y of 1) 2) satisfies lim yt) =.

3 128 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) Statement of the main results and comments Let now y be the solution of 1) 2). Define xt) = e λ t yt), for t [, ), where λ is a real root of the characteristic equation 3). Then, for every t, we have x t) + 2λ x t) + λ 2 xt) = p 1x t) + p 1 λ xt) + p 2 e λτ x t τ) + p 2 λ e λτ xt τ)+ q 1 xt) + q 2 e λτ xt τ) or [ x t) + 2λ p 1 )xt) p 2 e λ τ xt τ) ] = p 1 λ + q 1 λ 2 ) xt) + p2 λ + q 2 )e λ τ xt τ). 4) Moreover, the initial condition 2) can be equivalently written xt) = e λ t φt), for t [,]. 5) Furthermore, by using the fact that λ is a root of 3) and taking into account 5), we can verify that 4) is equivalent to x t) + 2λ p 1 )xt) p 2 e λτ xt τ) = x ) + 2λ p 1 )x) p 2 e λτ x) + p 1 λ + q 1 λ 2 ) t xs)ds + p 2 λ + q 2 )e λ τ t xs τ)ds, x t) = p 1 2λ )xt) + p 2 e λτ xt τ)+ p 1 λ + q 1 λ 2 ) t xs)ds + p 2 λ + q 2 )e λ τ xs)ds + φ ) + 2λ p 1 )φ) p 2 φ), x t) = p 1 2λ )xt) + p 2 e λτ xt τ)+ p 1 λ + q 1 λ 2 ) t xs)ds + p 2 λ + q 2 )e λ τ xs)ds + Lλ ; φ), t x t) = p 1 2λ )xt) + p 2 e λτ xt τ) p 2 λ + q 2 )e λ τ xs)ds + p 2 λ + q 2 )e λ τ xs)ds + Lλ ; φ),

4 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) where Let x t) = p 1 2λ )xt) + p 2 e λ τ xt τ) p 2 λ + q 2 )e λ τ Lλ ; φ) = φ ) + 2λ p 1 )φ) p 2 φ)+ p 2 λ + q 2 )e λ τ β λ p 2 λ + q 2 )τe λ τ + 2λ p 1 p 2 e λ τ and we define zt) = xt) Lλ ; φ), for t. β λ Then we can see that 6) reduces to the following equivalent equation z t) = p 1 2λ )zt) + p 2 e λ τ zt τ) p 2 λ + q 2 )e λ τ t t xs)ds + Lλ ; φ), 6) e λ s φs)ds. 7) zs) ds. 8) If we look for a solution of 8) of the form zt) = e δt for t IR, we see that δ is a root of the second characteristic equation δ = p 1 2λ + p 2 e λ τ e δτ δ 1 1 e δτ) p 2 λ + q 2 )e λ τ. 9) On the other hand, the initial condition 5) can be equivalently written zt) = φt)e λt Lλ ; φ), t [,]. 1) β λ Let Fδ)denote the characteristic function of 9), i.e., Fδ)= δ p 1 + 2λ p 2 e λ τ e δτ + δ 1 1 e δτ) p 2 λ + q 2 )e λ τ. Since δ = is a removable singularity of Fδ), we can regard Fδ)as an entire function with F) = p 2 λ + q 2 )τe λ τ + 2λ p 1 p 2 e λ τ β λ. But, by the definition of β λ, a root of the characteristic equation 9) must become δ. Let now z be the solution of 8) 1) and δ be a real root of the characteristic equation 9). Define for δ vt) = e δ t zt), Then, for every t, we have for all t [, ). v t) = p 1 2λ δ )vt) + p 2 e λ +δ )τ vt τ) p 2 λ + q 2 )e λ τ τ e δ s vt s)ds. 11)

5 1282 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) Moreover, the initial condition 1) can be equivalently written vt) = φt)e λ +δ )t e δ t Lλ ; φ), for t [,]. 12) β λ Furthermore, by using the fact that δ is a real root of 9) and taking into account 12), we can verify that 11) is equivalent to t vt) = v) + p 1 2λ δ ) p 2 λ + q 2 )e λ τ τ e δ s vs)ds + p 2 e λ +δ )τ t vt) = φ) Lλ ; φ) β λ + p 1 2λ δ ) p 2 λ + q 2 )e λ τ t vt) = p 1 2λ δ ) + p 2 e λ +δ )τ τ vs)ds e δ s t s s t vu s)du ds, t vs τ)ds vs)ds + p 2 e λ +δ )τ vu)du ds, e δ s e λs φs) Lλ ) ; φ) ds + β λ + φ) Lλ ; φ) p 2 λ + q 2 )e λ τ τ e δ s β λ s e δ u e λu φu) Lλ ) t s ; φ) du+ β λ vs)ds vs)ds vu)du ds, vt) = Rλ,δ ; φ) + δ 1 1 e δ τ ) p 2 λ + q 2 )e λτ p 2 e λ +δ )τ ) t vs)ds + p 2 e λ +δ )τ vs)ds p 2 λ + q 2 )e λ τ vt) = Rλ,δ ; φ) + p 2 λ + q 2 )e λ τ + p 2 e λ +δ )τ τ vs)ds p 2 λ + q 2 )e λ τ τ e δ s t s e δ s ds p 2 e λ +δ )τ τ e δ s t s vu)du ds, ) t vs)ds vu)du ds,

6 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) where vt) = Rλ,δ ; φ) p 2 e λ +δ )τ + p 2 λ + q 2 )e λ τ τ e δ s t t vs)ds t s Rλ,δ ; φ) = φ) Lλ ; φ) β λ + p 2 e λ +δ )τ Next, we define p 2 λ + q 2 )e λ τ τ vu)du ds, 13) e δ s s e δ s e λs φs) Lλ ) ; φ) ds β λ e δ u e λu φu) Lλ ) ; φ) du ds. β λ 14) wt) = vt) Rλ,δ ; φ), η λ,δ for t, 15) where η λ,δ 1 + p 2 e λ +δ )τ τ δ 2 1 e δ τ δ τe δ τ ) p 2 λ + q 2 )e λτ. 16) Then we can see that 13) reduces to the following equivalent equation t τ t wt) = p 2 e λ +δ )τ ws)ds + p 2 λ + q 2 )e λ τ e δ s wu)du ds. 17) On the other hand, the initial condition 12) can be equivalently written wt) = φt)e λ +δ )t Lλ ; φ) e δt Rλ,δ ; φ) β λ η λ,δ for t [,]. 18) We have the following basic theorem. Theorem 1. Let λ and δ δ ) be real roots of the characteristic equations 3) and 9). Assume that the roots λ and δ have the following property μ λ,δ p 2 e λ +δ )τ τ + δ 2 1 e δ τ δ τe δ τ ) p 2 λ + q 2 e λτ < 1 19) and β λ p 2 λ + q 2 )τe λ τ + 2λ p 1 p 2 e λ τ. Then, for any φ C[,], IR), the solution y of 1) 2) satisfies e λ +δ )t yt) Lλ ; φ) e δt Rλ,δ ; φ) β λ η Mλ,δ ; φ)μ λ,δ, for all t, λ,δ 2) t s

7 1284 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) where Lλ ; φ), Rλ,δ ; φ) and η λ,δ were given in 7), 14) and 16), respectively and Mλ,δ ; φ) = max t e λ +δ )t φt) Lλ ; φ) e δt Rλ,δ ; φ) β. 21) λ η λ,δ Proof. It is easy to see that property 19) guarantees that η λ,δ >. Applying the definitions of x, z, v and w we can obtain that 2) is equivalent to wt) Mλ,δ ; φ)μ λ,δ t. 22) So, we will prove 22). From 18) and 21) it follows that wt) Mλ,δ ; φ), for t [,]. 23) We will show that Mλ,δ ; φ) is a bound of w on the whole interval [, ). Namely wt) Mλ,δ ; φ), for all t [, ). 24) To this end, let us consider an arbitrary number ε>. We claim that wt) <Mλ,δ ; φ) + ε, for every t [, ). 25) Otherwise, by 23), there exists a t > such that wt) <Mλ,δ ; φ) + ε, for t<t and w t ) = Mλ,δ ; φ) + ε. Then using 17), we obtain Mλ,δ ; φ) + ε = w t ) p 2 e λ +δ )τ t t ws) τ ds + p 2 λ + q 2 e λ τ e δ s t t s wu) du ds p 2 e λ +δ )τ τ + δ 2 1 e δ τ δ τe δ τ ) p 2 λ + q 2 e λ τ [ Mλ,δ ; φ) + ε ] < [ Mλ,δ ; φ) + ε ], which, in view of 19), leads to a contradiction. So, our claim is true. Since 25) holds for every ε>, it follows that 24) is always satisfied. By using 24) and 17), we derive wt) t p 2 e λ +δ )τ ws) τ ds + p 2 λ + q 2 e λ τ e δ s t t s wu) du ds p 2 e λ +δ )τ τ + δ 2 1 e δ τ δ τe δ τ ) p 2 λ + q 2 e λ τ Mλ,δ ; φ) = Mλ,δ ; φ)μ λ,δ, for all t. That means 22) holds. Theorem 2. Let λ and δ δ ) be real roots of the characteristic equations 3) and 9). Consider β λ as in Theorem 1. Then, for any φ C[,], IR), the solution y of 1) 2) satisfies lim e λ +δ )t yt) Lλ ; φ) e δ t = Rλ,δ ; φ), β λ η λ,δ where Lλ ; φ), Rλ,δ ; φ) and η λ,δ were given in 7), 14) and 16), respectively.

8 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) Proof. By the definitions of x, z, v and w,wehavetoprovethat lim wt) =. 26) In the end of the proof we will establish 26). By using 17) and taking into account 22) and 24), one can show, by an easy induction, that w satisfies wt) μ λ,δ ) n Mλ,δ ; φ), for all t nτ τn=, 1,...). 27) But, 19) guarantees that <μ λ,δ < 1. Thus, from 27) it follows immediately that w tends to zero as t, i.e. 26) holds. The proof of Theorem 2 is completed. Theorem 3. Let λ and δ δ ) be real roots of the characteristic equations 3) and 9) and also the conditions in Theorem 1 β λ and μ λ,δ be provided. Then, for any φ C[,], IR), the solution y of 1) 2) satisfies for all t yt) k λ β λ Nλ,δ ; φ)e λ t [ hλ,δ k λ e δ η λ,δ β λ + h ] λ,δ )μ λ,δ Nλ,δ ; φ)e λ +δ )t, 28) η λ,δ where and η λ,δ was given in 16), k λ = 1 + 2λ p 1 + p 2 e λτ + p 2 λ + q 2 e λτ τ, 29) h λ,δ = 1 + k λ β λ + δ 1 1 e δ τ ) p 2 e λ +δ )τ 1 + k ) λ β λ + δ 2 δ τ + e δτ 1 ) p 2 λ + q 2 e λ τ 1 + k ) λ, 3) β λ e δ = max e δ t 31) t Nλ,δ ; φ) = max max t e λt φt), max t e λ +δ )t φt), max t φ t), max t φt). 32) Moreover, the trivial solution of 1) is stable if λ, λ + δ, it is asymptotically stable if λ <, λ + δ < and it is unstable if δ >, λ + δ >. Proof. By Theorem 1, 2) is satisfied, where Lλ ; φ) and Mλ,δ ; φ) are defined by 7) and 21), respectively. From 2) it follows that e λ +δ )t yt) Lλ ; φ) e δt + Rλ,δ ; φ) + Mλ,δ ; φ)μ λ,δ β λ η. 33) λ,δ Furthermore, by using 29) 32), from 7), 14) and 21), we obtain

9 1286 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) Lλ ; φ) φ ) + 2λ p 1 φ) + p2 φ) + p 2 λ + q 2 e λ τ e λ s φs) ds 1 + 2λ p 1 + p 2 e λτ + p 2 λ + q 2 e λτ τ ) Nλ,δ ; φ) = k λ Nλ,δ ; φ), Rλ,δ ; φ) φ) + Lλ ; φ) β λ + p 2 e λ +δ )τ + p 2 λ + q 2 e λ τ τ e δ s s [ 1 + k λ β λ + δ 1 + δ 2 e δ s e λ s φs) + Lλ ) ; φ) ds β λ e δ u e λ u ) φu) Lλ ; φ) + du ds β λ 1 e δ τ ) p 2 e λ +δ )τ δ τ + e δ τ 1 ) p 2 λ + q 2 e λ τ 1 + k ) λ β λ 1 + k λ β λ )] Nλ,δ ; φ) = h λ,δ Nλ,δ ; φ), Mλ,δ ; φ) max e λ +δ )t φt) Lλ ; φ) + max e δ t + Rλ,δ ; φ) t β λ t η λ,δ 1 + k λ e δ β λ + h λ,δ Nλ,δ ; φ). η λ,δ Hence, from 33), we conclude that for all t, e λ +δ )t yt) k λ β λ Nλ,δ ; φ)e δt + h λ,δ Nλ,δ ; φ) η λ,δ k λ e δ β λ + h ) λ,δ Nλ,δ ; φ)μ λ,δ η, 34) λ,δ and consequently, 28) holds. Now, let us assume that λ and λ + δ. Define φ max t φt). It follows that φ Nλ,δ ; φ). From 34), it follows that yt) kλ β λ k λ e δ β λ for every t. Since k λ β λ > 1, by taking into account the fact that k λ β λ + ) μ λ,δ μ λ,δ ) h λ,δ η λ,δ 1 + k ) λ e δ μ λ,δ β λ μ λ,δ ) h λ,δ > 1, η λ,δ Nλ,δ ; φ),

10 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) we have yt) kλ β λ k ) λ e δ μ λ,δ β λ μ λ,δ ) h λ,δ Nλ,δ ; φ), η λ,δ for every t [, ), which means that the trivial solution of 1) is stable at ). Next, if λ < and λ + δ <, then 28) guarantees that lim yt) = and so the trivial solution of 1) is asymptotically stable at ). Finally, if δ >, λ +δ >, then the trivial solution of 1) is unstable at ). Otherwise, there exists a number l l1)> such that, for any φ C[,], IR) with φ <l, the solution y of problem 1) 2) satisfies yt) < 1 for all t. 35) Define φ t) = e λ +δ )t e λ t for t [,]. Furthermore, by the definition of Lλ ; φ) and Rλ,δ ; φ), by using 9), we have Lλ ; φ ) = δ p 2 e λ +δ )τ + p 2 e λ τ + p 2 λ + q 2 )e λ τ e δ s ds p 2 λ + q 2 )e λ τ τ = δ + p 1 2λ δ + p 2 e λ τ p 2 λ + q 2 )e λ τ τ β λ, Rλ,δ ; φ ) = 1 + p 2 e λ +δ )τ p 2 λ + q 2 )e λ τ τ e δ s s Let φ C[,], IR) be defined by φ = l 1 φ φ, e δ s e λ s e λ +δ )s e λ s ) + 1 ) ds e δ u e λ u e λ +δ )u e λ u ) + 1 ) du ds = 1 + p 2 e λ +δ )τ τ p 2 λ + q 2 )e λ τ τ e δ s sds η λ,δ >. where l 1 is a number with <l 1 <l. Moreover, let y be the solution of 1) 2). From Theorem 2 it follows that y satisfies

11 1288 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) lim e λ +δ )t yt) Lλ ; φ) e δ t β λ = lim e λ +δ )t yt) + l 1 φ e δ t = Rλ,δ ; φ) η λ,δ = l 1/ φ )Rλ,δ ; φ ) = l 1 η λ,δ φ >. But, we have φ =l 1 <land hence from 35) and conditions δ >, λ + δ > it follows that lim e λ +δ )t yt) Lλ ; φ) e δ t β λ This is a contradiction. The proof of Theorem 3 is completed. 3. Examples =. Example 1. Consider y t) = 4y t) + 1 e y t 1 ) 3yt) + 1e 2 y t 1 ), t, 2 yt) = φt), 1 t, 36) 2 where φt) is an arbitrary continuously differentiable initial function on the interval [ 1 2, ]. In this example we apply the characteristic equations 3) and 9). That is, the characteristic equation 3) is λ 2 = 4λ + 1 e λe λ e e λ 1 2, 37) and we see that λ = 1 is a root of 37). Then, for λ = 1 the characteristic equation 9) is δ = 2 + e δ). Therefore, δ = δ = 1 is a root, and the conditions of Theorem 3 are satisfied. That is, μ λ,δ = μ 1, 1 = 1 2 < 1 and β λ = β 1 = 2 1 e. Since λ = 1 < and λ + δ = 2 <, the zero solution of 36) is asymptotically stable. Example 2. Consider y t) = e 2 y t) 1 2 y t 1) + yt) yt 1), t, yt) = φt), 1 t, 38) where φt) is an arbitrary continuously differentiable initial function on [ 1, ]. The characteristic equation 3) is λ 2 = e 2 λ 1 2 λe λ + 1 e λ, 39)

12 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) and we see easily that λ = is a root of 39). Taking λ =, the characteristic equation 9) is δ 2 = e 2 δ 1 2 e δ δ + 1 e δ. Therefore, we find that δ = δ = 1 is a root. The condition of Theorem 3 is μ λ,δ = μ, 1 > 1. Thus, Theorem 3 is not applicable. But, λ = 1 is another root of 39). Then, for λ = 1we have that δ 2 = e2 ) + 2 δ 1 2 e1 δ δ e 1 2 e1 δ, and we find δ = δ = 1. Corresponding to the roots λ = 1 and δ = 1, the conditions of Theorem 3 are satisfied. Since λ = 1 < and λ + δ =, the zero solution of 38) is stable. Example 3. Consider y t) = 3y t) y t π 2 ) 2yt) + y t π ), t, 2 yt) = φt), π 2 t, 4) where φt) is an arbitrary continuously differentiable initial function on [ π 2, ]. The characteristic equation 3) is λ 2 = 3λ λe λπ e λπ 2, 41) and we see easily that λ = 1 is a root of 41). Taking λ = 1, the characteristic equation 9) is δ = 1 e π 2 δ+1). Therefore, we find that δ = δ = is a root. Corresponding to the roots λ = 1 and δ =.95351, the conditions of Theorem 3 are satisfied. Since δ > and λ + δ >, the zero solution of 4) is unstable. Acknowledgment The author is grateful to Allaberen Ashyralyev because of his important comments and useful improvements. References [1] R. Bellman, K. Cooke, Differential-Difference Equations, Academic Press, New York, [2] B. Cahlon, D. Schmidt, Stability criteria for certain second-order delay differential equations with mixed coefficients, J. Comput. Appl. Math ) [3] R.D. Driver, Exponential decay in some linear delay differential equations, Amer. Math. Monthly 85 9) 1978) [4] R.D. Driver, Ordinary and Delay Differential Equations, Appl. Math. Sci., vol. 2, Springer, Berlin, [5] L.E. El sgol ts, S.B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, New York, [6] J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer, Berlin, [7] G.D. Hu, T. Mitsui, Stability of numerical methods for system of neutral delay differential equations, BIT ) [8] V. Kolmanovski, A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic, Dordrecht, 1992.

13 129 A.F. Yeniçerioğlu / J. Math. Anal. Appl ) [9] I.-G.E. Kordonis, Ch.G. Philos, The behavior of solutions of linear integro-differential equations with unbounded delay, Comput. Math. Appl ) [1] N. Macdonald, Biological Delay Systems: Linear Stability Theory, Cambridge Univ. Press, Cambridge, [11] Ch.G. Philos, I.K. Purnaras, Periodic first order linear neutral delay differential equations, Appl. Math. Comput ) [12] C.R. Steele, Studies of the Ear, in: Lectures in Appl. Math., vol. 17, Amer. Math. Soc., Providence, RI, 1979, pp [13] S.A. Tobias, Machine Tool Vibrations, Blackie, London, [14] S. Yalçınbaş, F. Yeniçerioğlu, Exact and approximate solutions of second order including function delay differential equations with variable coefficients, Appl. Math. Comput )

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

Appendix S1 1. ( z) α βc. dβ β δ β

Appendix S1 1. ( z) α βc. dβ β δ β Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα