Θεωρητικές Κατανομές Πιθανότητας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρητικές Κατανομές Πιθανότητας"

Transcript

1 Θεωρητικές Κατανομές Πιθανότητας

2 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

3 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

4 Διακριτή Ομοιόμορφη κατανομή Αν Χ μια τυχαία μεταβλητή η οποία παίρνει τις τιμές x = 1,2 k με σταθερή πιθανότητα 1/k τότε λέμε ότι η Χ ακολουθεί την διακριτή ομοιόμορφη κατανομή Η συνάρτηση πιθανότητας της Χ είναι: 1, x= 1,2,... k f( x) = P( X = x) = k 0, άλλες τιμές

5 Διακριτή Ομοιόμορφη κατανομή Μέση τιμή και Διακύμανση Αν Χ ακολουθεί την διακριτή ομοιόμορφη κατανομή με πιθανότητα Ρ(Χ=x) = 1/k τότε E( X) = k Var( X ) = 2 k 1 12

6 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

7 Διωνυμική κατανομή Διωνυμικό πείραμα είναι το πείραμα που αποτελείται από n δοκιμές, η κάθε μια από τις οποίες έχει μόνο δυο δυνατά και αντίθετα αποτελέσματα (Ε και Α) και για το οποίο ισχύουν οι παρακάτω υποθέσεις: (i) Οι πιθανότητες των δυο αντίθετων αποτελεσμάτων παραμένουν σταθερές σε όλες τις δοκιμές του πειράματος (ii) Οι δοκιμές του πειράματος είναι στατιστικά ανεξάρτητες Κάθε επιμέρους δοκιμή του διωνυμικού πειράματος λέγεται δοκιμή του Bernoulli.

8 Διωνυμική κατανομή η πιθανότητα να εμφανιστούν x στο πλήθος E στις n δοκιμές Bernoulli του διωνυμικού πειράματος είναι: n x f( x) = P( X = x) = p (1 p) x n x με x 0,1, 2... n = (5.11) Όταν η συνάρτηση πιθανότητας της Χ είναι η (5.11), τότε η τυχαία μεταβλητή Χ λέγεται ότι ακολουθεί τη διωνυμική κατανομή (binomial distribution) με παραμέτρους n και p. Συμβολικά, αυτό γράφεται ως εξής: Χ Β(n, p). (5.12)

9 Διωνυμική κατανομή Μέση τιμή & Διακύμανση Αν Χ Β(n, p) τότε E( X) = np Var( X ) = np(1 p)

10 Διωνυμική κατανομή Μορφή της κατανομής

11 Διωνυμική κατανομή Παράδειγμα Παράδειγμα 2. Είναι γνωστό ότι κατά μέσο όρο 30% των προϊόντων που παράγει μια επιχείρηση είναι ελαττωματικά. Ποια η πιθανότητα σε μια δειγματοληψία 20 προϊόντων: (α) το πολύ τρία από αυτά να είναι ελαττωματικά (β) τουλάχιστον 8 από αυτά τα 20 να είναι ελαττωματικά (γ) περισσότερα από 3 και λιγότερα από 8 να είναι ελαττωματικά Πόσα ελαττωματικά προϊόντα αναμένονται να υπάρχουν στο δείγμα;

12 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

13 Υπεργεωμετρική κατανομή Στην περίπτωση δειγματοληψίας χωρίς επανάθεση από ένα «μικρό» πληθυσμό χρησιμοποιούμε την υπεργεωμετρική κατανομή

14 Υπεργεωμετρική κατανομή Περιγραφή της κατανομής Υποθέστε «μικρό» πληθυσμό με Ν στοιχεία Τα Ε από τα Ν στοιχεία είναι special στοιχεία (είναι Επιτυχίες) Τα υπόλοιπα Ν-Ε στοιχεία δεν είναι special (είναι Αποτυχίες) Επιλέγουμε τυχαία και χωρίς επανάθεση n στοιχεία. Έστω Χ = το πλήθος των special στοιχείων στο δείγμα των n. τότε X Hg( N, E, n)

15 Υπεργεωμετρική κατανομή Συνάρτηση πιθανότητας της κατανομής Αν X Hg( N, E, n) τότε f( x) = P( X = x) = E N E x n x N n

16 Υπεργεωμετρική κατανομή Μέση τιμή & Διακύμανση Αν X Hg( N, E, n) τότε όπου EX ( ) = np N n Var( X ) = np(1 p) N 1 p = E/ N

17 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

18 Κατανομή Poisson Γενικός ορισμός. Έστω μια ακολουθία τυχαίων ενδεχομένων για τα οποία: (α) τα ενδεχόμενα είναι ανεξάρτητα (β) τα ενδεχόμενα πραγματοποιούνται με ένα σταθερό μέσο ρυθμό λ ανά μονάδα χρόνου (γ) τα ενδεχόμενα δεν πραγματοποιούνται ταυτόχρονα. Πραγματοποιούνται σε διαφορετικά χρονικά διαστήματα και έστω Χ = ο αριθμός των ενδεχομένων που πραγματοποιούνται στη μονάδα του χρόνου τότε X P( λ) και x e λ λ f( x) = P( X = x) = x! x = 0,1, 2,...

19 Κατανομή Poisson Μέση τιμή και Διακύμανση Αν X P( λ) τότε E( X) = Var( X) = λ

20 Κατανομή Poisson Παράδειγμα Παράδειγμα 5. Ένας ερευνητής βρήκε ότι για ένα αντιπροσωπευτικό εργοστάσιο που απασχολεί 2000 εργαζόμενους στη Μ. Βρετανία, ο αριθμός των απεργιών που συμβαίνουν σ ένα χρόνο μπορεί να υποτεθεί ότι είναι μία τυχαία μεταβλητή, η οποία ακολουθεί την κατανομή Poisson με μέσο λ=0,4. (α) Ποιά είναι η πιθανότητα να μην υπάρξει ούτε μία απεργία σ ένα εργοστάσιο αυτής της κατηγορίας κατά το τρέχον έτος; (β) Ποιά είναι η πιθανότητα να υπάρξουν περισσότερες από μία απεργίες;

21 Κατανομή Poisson Μορφή της κατανομής

22 Κατανομή Poisson Παραδείγματα Παράδειγμα 7. Το τηλεφωνικό κέντρο ενός σταθμού Α Βοηθειών δέχεται τηλεφωνήματα εκτάκτου ανάγκης που ακολουθούν την κατανομή Poisson με ρυθμό αφίξεων 2 τηλεφωνήματα ανά 30 λεπτά κατά μέσο όρο. Να βρεθεί η πιθανότητα το τηλεφωνικό κέντρο να δεχτεί τουλάχιστον 3 τηλεφωνήματα από τις 12 το μεσημέρι μέχρι της 2 μ.μ. Παράδειγμα 8. Ο μέσος όρος των κηλίδων που εμφανίζονται σε κάποιο τύπο ταινίας είναι μια ανά 2000 μέτρα. Με την υπόθεση ότι ο αριθμός των κηλίδων ακολουθεί την κατανομή Poisson, να βρεθεί η πιθανότητα σε 5000 μέτρα ταινίας α) να μην υπάρχουν κηλίδες, β) να υπάρχουν το πολύ δυο κηλίδες.

23 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

24 Συνεχής Ομοιόμορφη Κατανομή γενικός ορισμός και συνάρτηση πυκνότητας πιθανότητας Η τ.μ. Χ λέμε ότι ακολουθεί την ομοιόμορφη κατανομή στο διάστημα [α, b] όταν το Χ είναι το ίδιο πιθανό να πάρει τιμές σε οποιαδήποτε υπο-διάστημα μεταξύ του α και του b. Γράφουμε X U[ a, b] με σ.π.π. 1, για α f( x) = b a 0, αλλού x b

25 Συνεχής Ομοιόμορφη Κατανομή Μέση τιμή και Διακύμανση Αν X U( a, b) τότε E( X) = a + 2 b Var( X ) = ( b a) 12 2

26 Συνεχής Ομοιόμορφη Κατανομή Παράδειγμα Παράδειγμα 9. Ένα συνεργείο συντηρήσεως του δημοσίου δρόμου είναι υπεύθυνο για ένα συγκεκριμένο τμήμα του δρόμου μήκους 10 χιλιομέτρων. Έστω ότι Χ=απόσταση (σε χιλιόμετρα) από την αρχή αυτού του τμήματος μέχρι το σημείο όπου υπάρχει ανάγκη για διόρθωση του δρόμου. Αν υποθέσουμε ότι η Χ κατανέμεται ομοιόμορφα στο διάστημα (0, 10), τότε η συνάρτηση πυκνότητας πιθανότητας της Χ είναι f(x)=1/10 για 0<x<10 και f(x)=0 οπουδήποτε αλλού. Ποιά είναι η πιθανότητα να υπάρξει ανάγκη για διόρθωση του δρόμου από την αρχή του δεκάτου χιλιομέτρου μέχρι το τέλος του;

27 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

28 Εκθετική Κατανομή γενικός ορισμός και συνάρτηση πυκνότητας πιθανότητας Έστω W = ο χρόνος που μεσολαβεί μεταξύ δυο διαδοχικών συμβάντων Τότε W exp( λ) και λw λe για w> 0 και λ > 0 f( w) = F ( W) = 0 αλλού

29 Εκθετική Κατανομή μέση τιμή και διακύμανση Αν W exp( λ) τότε EW ( ) = 1 λ Var( W ) = 1 λ 2

30 Εκθετική Κατανομή Παράδειγμα Παράδειγμα 10. Μετά την πρόσληψη ενός νέου υπαλλήλου η αύξηση των ημερήσιων πωλήσεων ενός καταστήματος ακολουθεί εκθετική κατανομή με λ = ½. Εάν οι ημερήσιες πωλήσεις είναι ανεξάρτητες μεταξύ τους και διαλέξουμε τρεις μέρες στην τύχη ποια η πιθανότητα (α) και τις τρεις μέρες η αύξηση να είναι μεγαλύτερη από 10 μονάδες και (β) η αύξηση να είναι μεγαλύτερη από 8 μονάδες τουλάχιστον σε δυο από τις τρεις μέρες.

31 Εκθετική Κατανομή Παραδείγματα Παράδειγμα 11. Έστω Χ = αριθμός απεργιών που γίνονται σ ένα αντιπροσωπευτικό εργοστάσιο που απασχολεί 2000 εργαζόμενους στη Μ. Βρετανία κατά τη διάρκεια ενός έτους, με Ε(Χ)=λ=0,4. Έστω ότι W είναι ο χρόνος που περνά μέχρι να γίνει η πρώτη απεργία. (α) Πώς κατανέμεται η τυχαία μεταβλητή W και ποιός είναι ο μέσος της; (β) Αν βρισκόμαστε στην αρχή ενός έτους, τί πιθανότητα υπάρχει να μη γίνει απεργία κατά τη διάρκεια του έτους; (γ) Αν περάσει το έτος χωρίς να γίνει απεργία, τί πιθανότητα υπάρχει να περάσουν ακόμη έξι μήνες χωρίς να γίνει απεργία;

32 Εκθετική Κατανομή Παραδείγματα Παράδειγμα 12. Έστω ότι ο χρόνος ζωής Χ μιας μηχανής ακολουθεί εκθετική κατανομή με παράμετρο λ = 7. Έστω ότι η μηχανή δουλεύει ήδη x 0 ώρες. Να βρεθεί η πιθανότητα η μηχανή να συνεχίσει να δουλεύει τουλάχιστον x επιπλέον ώρες. Παράδειγμα 13. Έστω ότι οι αφίξεις των λεωφορείων στη στάση ακολουθούν τη διαδικασία Poisson με λ = 0.1 αφίξεις ανά λεπτό. Να βρεθεί η πιθανότητα ο Θάνος να περιμένει στη στάση λιγότερο από 5 επιπλέον λεπτά, δοθέντος ότι έχει ήδη περιμένει 15 λεπτά.

33 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

34 Γάμμα Κατανομή γενικός ορισμός και συνάρτηση πυκνότητας πιθανότητας Αν Χ = χρόνος αναμονής μέχρι της εμφανίσεως του α στη σειρά τυχαίου ενδεχομένου σε μια διαδικασία Poisson με λ = 1/β τότε με συνάρτηση πυκνότητας πιθανότητας X G( a, β ) f( x) x 1 a 1 β x e, x> 0 a β Γ( a) = 0, x 0 όπου Γ ( a) = ( a 1)!

35 Γάμμα Κατανομή μέση τιμή και διακύμανση Αν X G( a, β ) τότε E( X) = aβ Var( X ) 2 = aβ

36 Γάμμα Κατανομή Παράδειγμα Παράδειγμα 14. Έστω ότι ο αριθμός τηλεφωνημάτων που καταφθάνουν στο τηλεφωνικό κέντρο μίας υπηρεσίας κάθε ώρα ακολουθεί την κατανομή Poisson με μέσο λ=5. Αν W = χρόνος (σε ώρες) που μεσολαβεί μέχρι το δεύτερο τηλεφώνημα, να υπολογίσετε την πιθανότητα Ρ(W<1/4).

37

38 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

39 Βήτα Κατανομή γενικός ορισμός και συνάρτηση πυκνότητας πιθανότητας Αν X Beta( a, β ) τότε 1 a 1 β 1 x (1 x) για 0< x< 1 f( x) = Ba (, β ) 0 αλλού 1 a 1 β 1 (, β) = (1 ), για α > 0, β > 0 ή Ba x x dx 0 Ba (, β ) Γ( a) Γ( β ) = Γ ( a + β ) E(X ) = α α + β αβ Var( X ) = 2 ( α + β ) ( α + β + 1)

40 Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ α) Συνεχής Ομοιόμορφη κατανομή β) Εκθετική κατανομή γ) Γάμμα και Βήτα κατανομές δ) Κανονική κατανομή

41 Κανονική Κατανομή μορφή της κατανομής

42 Κανονική Κατανομή μορφή της κατανομής

43 Κανονική Κατανομή συνάρτηση πυκνότητας πιθανότητας Γράφουμε X 2 N( μ, σ ) με σ.π.π. ( x μ) 2 1 σ f x = e < x< < μ< σ > σ 2π 2 2 ( ),,, 0 όπου EX ( ) = μ Var( X ) 2 = σ

44

45 Τυποποιημένη Κανονική Κατανομή συνάρτηση πυκνότητας πιθανότητας Γράφουμε Z X μ = σ N(0,1) με σ.π.π. 2 z 1 2 f() z = e, < z< 2π όπου E (Z) = 0 Var(Z) = 1

46 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

47 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

48

49 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

50 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

51 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

52 Τυποποιημένη Κανονική Κατανομή πως υπολογίζουμε πιθανότητες

53 Κανονική Κατανομή παραδείγματα Παράδειγμα 15. Έστω ότι η τυχαία μεταβλητή Χ = διάρκεια χρήσεως (σε χιλιάδες χιλιόμετρα) των ελαστικών αυτοκινήτων ακολουθεί την κανονική κατανομή με μέσο μ=50 και τυπική απόκλιση σ=5. Τί ποσοστό αυτών των ελαστικών διαρκεί: (α) από 40 μέχρι 60 χιλιάδες χιλιόμετρα και (β) λιγότερο από 39,2 χιλιάδες χιλιόμετρα; Κανονική Κατανομή χρησιμοποιώντας τους Πίνακες αντίστροφα Παράδειγμα 16. Έστω ότι η βαθμολογία 500 διαγωνιζομένων ακολουθεί την κανονική κατανομή με μέσο 45 και τυπική απόκλιση 20. Εάν το 20% των διαγωνιζομένων έχει πάρει άριστα, από ποια βαθμολογία και πάνω δόθηκε το άριστα;

54 Κανονική Κατανομή γραμμικός συνδυασμός τ.μ. που ακολουθούν κανονική κατανομή Εάν Χ και Υ είναι δυο ανεξάρτητες κανονικές τ.μ. τέτοιες ώστε X 2 N( μ1, σ1 ) και Y N( μ, σ ) τότε X Y N( μ μ, σ + σ ) Εάν X 2 N( μ1, σ1 ) και Y 2 N( μ2, σ 2 ) τότε: X + Y N( μ + μ, σ + σ ) ax N( aμ, a σ ) ax + by N( aμ + bμ, a σ + b σ )

55 Κατανομή Χ 2 Z N(0,1) Z X και πιο γενικά Z Z Z είναι ανεξάρτητες τ.μ. N(0,1) αν 1, 2,... v Z + Z + + Z X ν v Συμβολικά v 1 N(0,1) X v 2 2 E X 2 ( v ) Var X = v 2 ( v ) = 2 v

56 Κατανομή Χ 2 Πίνακας Π.3: χ 2 κατανομή Βαθ. ελ. v Πιθανότητα α 0,995 0,99 0,975 0,95 0,90 0,10 0,05 0,025 0,01 0, ,00 0,00 0,00 0,00 0,02 2,71 3,84 5,02 6,63 7,88 2 0,01 0,02 0,05 0,10 0,21 4,61 5,99 7,38 9,21 10,60 3 0,07 0,11 0,22 0,35 0,58 6,25 7,81 9,35 11,34 12,84 4 0,21 0,30 0,48 0,71 1,06 7,78 9,49 11,14 13,28 14,86 5 0,41 0,55 0,83 1,15 1,61 9,24 11,07 12,83 15,09 16,75 6 0,68 0,87 1,24 1,64 2,20 10,64 12,59 14,45 16,81 18,55 7 0,99 1,24 1,69 2,17 2,83 12,02 14,07 16,01 18,48 20,28 8 1,34 1,65 2,18 2,73 3,49 13,36 15,51 17,53 20,09 21,95 9 1,73 2,09 2,70 3,33 4,17 14,68 16,92 19,02 21,67 23, ,16 2,56 3,25 3,94 4,87 15,99 18,31 20,48 23,21 25, ,60 3,05 3,82 4,57 5,58 17,28 19,68 21,92 24,73 26, ,07 3,57 4,40 5,23 6,30 18,55 21,03 23,34 26,22 28, ,57 4,11 5,01 5,89 7,04 19,81 22,36 24,74 27,69 29,82

57 Κατανομή t ή κατανομή του Student Έστω ότι Ζ Ν(0, 1) ότι U 2 χ v και ότι Ζ και U είναι ανεξάρτητες. Τότε, η τυχαία μεταβλητή Z U / v λέγεται ότι έχει t κατανομή με v βαθμούς ελευθερίας (γνωστή και ως «κατανομή του Student») και συμβολίζεται με t v. Συμβολικά N(0,1) X v 2 v t v

58 Κατανομή t ή κατανομή του Student Ε(t v )=0, αν v 2 Var(t v ) = v/(v-2), αν v 3 Η κατανομή t είναι συμμετρική γύρω από το μέσο της, το μηδέν (υποθέτοντας ότι v 2). Καθώς το v (για πρακτικούς σκοπούς, αρκεί v 30), η κατανομή t προσεγγίζει την Ν(0, 1) κατανομή.

59 Πίνακας Π.4: Η κατανομή t Βαθμοί ελ. v α 0,1 0,05 0,025 0,01 0, ,078 6,314 12,706 31,821 63, ,886 2,920 4,303 6,965 9, ,638 2,353 3,182 4,541 5, ,533 2,132 2,776 3,747 4, ,476 2,015 2,571 3,365 4, ,440 1,943 2,447 3,143 3, ,415 1,895 2,365 2,998 3, ,397 1,860 2,306 2,896 3, ,383 1,833 2,262 2,821 3, ,372 1,812 2,228 2,764 3, ,363 1,796 2,201 2,718 3, ,356 1,782 2,179 2,681 3, ,350 1,771 2,160 2,650 3, ,345 1,761 2,145 2,624 2, ,341 1,753 2,131 2,602 2, ,337 1,746 2,120 2,583 2, ,333 1,740 2,110 2,567 2, ,330 1,734 2,101 2,552 2, ,328 1,729 2,093 2,539 2, ,325 1,725 2,086 2,528 2,845

60 Κατανομή F 2 2 Έστω ότι U X v 1 και W X v 2 και ότι U και W είναι ανεξάρτητες. Τότε, η τυχαία μεταβλητή U / v W / v 1 2 λέγεται ότι έχει F κατανομή με v 1 και v 2 βαθμούς ελευθερίας Συμβολικά X v X v 2 v v 2 2 F v, v 1 2

61 Πίνακας Π.5: Συνάρτηση κατανομής της F κατανομής v 1 =βαθμοί ελευθερίας του αριθμητή v 2 =βαθμοί ελευθερίας του παρονομαστή 1-α v 2 v ,90 1 0,95 1 0,99 1 0,90 2 0,95 2 0,99 2 0,90 3 0,95 3 0,99 3 0,90 4 0,95 4 0, ,53 9,00 9,16 9,24 9,29 9,33 9,35 9,37 9,38 9,39 9,41 9,42 9,44 9,46 9,47 9,48 9,49 18,51 19,00 19,16 19,25 19,30 19,33 19,35 19,37 19,38 19,40 19,41 19,43 19,45 19,46 19,48 19,49 19,50 98,50 99,00 99,16 99,25 99,30 99,33 99,36 99,38 99,39 99,40 99,42 99,43 99,45 99,47 99,48 99,49 99,50 5,54 5,46 5,39 5,34 5,31 5,28 5,27 5,25 5,24 5,23 5,22 5,20 5,18 5,17 5,15 5,14 5,13 10,13 9,55 9,28 9,12 9,01 8,94 8,89 8,85 8,81 8,79 8,74 8,70 8,66 8,62 8,57 8,55 8,53 34,12 30,82 29,46 28,71 28,24 27,91 27,67 27,49 27,34 27,23 27,05 26,87 26,69 26,50 26,32 26,22 26,13 4,54 4,32 4,19 4,11 4,05 4,01 3,98 3,95 3,94 3,92 3,90 3,87 3,84 3,82 3,79 3,78 3,76 7,71 6,94 6,59 6,39 6,26 6,16 6,09 6,04 6,00 5,96 5,91 5,86 5,80 5,75 5,69 5,66 5,63 21,20 18,00 16,69 15,98 15,52 15,21 14,98 14,80 14,66 14,55 14,37 14,20 14,02 13,84 13,65 13,56 13,46

62 Πίνακας Π.5 (συνέχεια) 1-α v 2 v ,90 5 4,06 3,78 3,62 3,52 3,45 3,40 3,37 3,34 3,32 3,30 3,27 3,24 3,21 3,17 3,14 3,12 3,11 0,95 5 6,61 5,79 5,41 5,19 5,05 4,95 4,88 4,82 4,77 4,74 4,68 4,62 4,56 4,50 4,43 4,40 4,37 0, ,26 13,27 12,06 11,39 10,97 10,67 10,46 10,29 10,16 10,05 9,89 9,72 9,55 9,38 9,20 9,11 9,02 0,90 6 3,78 3,46 3,29 3,18 3,11 3,05 3,01 2,98 2,96 2,94 2,90 2,87 2,84 2,80 2,76 2,74 2,72 0,95 6 5,99 5,14 4,76 4,53 4,39 4,28 4,21 4,15 4,10 4,06 4,00 3,94 3,87 3,81 3,74 3,70 3,67 0, ,75 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7,87 7,72 7,56 7,40 7,23 7,06 6,97 6,88 0,90 7 3,59 3,26 3,07 2,96 2,88 2,83 2,78 2,75 2,72 2,70 2,67 2,63 2,59 2,56 2,51 2,49 2,47 0,95 7 5,59 4,74 4,35 4,12 3,97 3,87 3,79 3,73 3,68 3,64 3,57 3,51 3,44 3,38 3,30 3,27 3,23 0, ,25 9,55 8,45 7,85 7,46 7,19 6,99 6,84 6,72 6,62 6,47 6,31 6,16 5,99 5,82 5,74 5,65 0,90 8 3,46 3,11 2,92 2,81 2,73 2,67 2,62 2,59 2,56 2,54 2,50 2,46 2,42 2,38 2,34 2,32 2,29 0,95 8 5,32 4,46 4,07 3,84 3,69 3,58 3,50 3,44 3,39 3,35 3,28 3,22 3,15 3,08 3,01 2,97 2,93 0, ,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 5,81 5,67 5,52 5,36 5,20 5,03 4,95 4,86 0,90 9 3,36 3,01 2,81 2,69 2,61 2,55 2,51 2,47 2,44 2,42 2,38 2,34 2,30 2,25 2,21 2,18 2,16 0,95 9 5,12 4,26 3,86 3,63 3,48 3,37 3,29 3,23 3,18 3,14 3,07 3,01 2,94 2,86 2,79 2,75 2,71 0, ,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,35 5,26 5,11 4,96 4,81 4,65 4,48 4,40 4,31 0, ,29 2,92 2,73 2,61 2,52 2,46 2,41 2,38 2,35 2,32 2,28 2,24 2,20 2,16 2,11 2,08 2,06 0, ,96 4,10 3,71 3,48 3,33 3,22 3,14 3,07 3,02 2,98 2,91 2,85 2,77 2,70 2,62 2,58 2,54 0, ,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 4,85 4,71 4,56 4,41 4,25 4,08 4,00 3,91 0, ,18 2,81 2,61 2,48 2,39 2,33 2,28 2,24 2,21 2,19 2,15 2,10 2,06 2,01 1,96 1,93 1,90 0, ,75 3,89 3,49 3,26 3,11 3,00 2,91 2,85 2,80 2,75 2,69 2,62 2,54 2,47 2,38 2,34 2,30 0, ,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 4,30 4,16 4,01 3,86 3,70 3,54 3,45 3,36

63 Πίνακας Π.5 (συνέχεια) 1-α v 2 v , ,07 2,70 2,49 2,36 2,27 2,21 2,16 2,12 2,09 2,06 2,02 1,97 1,92 1,87 1,82 1,79 1,76 0, ,54 3,68 3,29 3,06 2,90 2,79 2,71 2,64 2,59 2,54 2,48 2,40 2,33 2,25 2,16 2,11 2,07 0, ,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 3,80 3,67 3,52 3,37 3,21 3,05 2,96 2,87 0, ,97 2,59 2,38 2,25 2,16 2,09 2,04 2,00 1,96 1,94 1,89 1,84 1,79 1,74 1,68 1,64 1,61 0, ,35 3,49 3,10 2,87 2,71 2,60 2,51 2,45 2,39 2,35 2,28 2,20 2,12 2,04 1,95 1,90 1,84 0, ,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 3,37 3,23 3,09 2,94 2,78 2,61 2,52 2,42 0, ,88 2,49 2,28 2,14 2,05 1,98 1,93 1,88 1,85 1,82 1,77 1,72 1,67 1,61 1,54 1,50 1,46 0, ,17 3,32 2,92 2,69 2,53 2,42 2,33 2,27 2,21 2,16 2,09 2,01 1,93 1,84 1,74 1,68 1,62 0, ,56 5,39 4,51 4,02 3,70 3,47 3,30 3,17 3,07 2,98 2,84 2,70 2,55 2,39 2,21 2,11 2,01 0, ,79 2,39 2,18 2,04 1,95 1,87 1,82 1,77 1,74 1,71 1,66 1,60 1,54 1,48 1,40 1,35 1,29 0, ,00 3,15 2,76 2,53 2,37 2,25 2,17 2,10 2,04 1,99 1,92 1,84 1,75 1,65 1,53 1,47 1,39 0, ,08 4,98 4,13 3,65 3,34 3,12 2,95 2,82 2,72 2,63 2,50 2,35 2,20 2,03 1,84 1,73 1,60 0, ,75 2,35 2,13 1,99 1,90 1,82 1,77 1,72 1,68 1,65 1,60 1,55 1,48 1,41 1,32 1,26 1,19 0, ,92 3,07 2,68 2,45 2,29 2,18 2,09 2,02 1,96 1,91 1,83 1,75 1,66 1,55 1,43 1,35 1,25 0, ,85 4,79 3,95 3,48 3,17 2,96 2,79 2,66 2,56 2,47 2,34 2,19 2,03 1,86 1,66 1,53 1,38 0,90 2,71 2,30 2,08 1,94 1,85 1,77 1,72 1,67 1,63 1,60 1,55 1,49 1,42 1,34 1,24 1,17 1,01 0,95 3,84 3,00 2,60 2,37 2,21 2,10 2,01 1,94 1,88 1,83 1,75 1,67 1,57 1,46 1,32 1,22 1,01 0,99 6,63 4,61 3,78 3,32 3,02 2,80 2,64 2,51 2,41 2,32 2,18 2,04 1,88 1,70 1,47 1,32 1,01

ιωνυµική Κατανοµή(Binomial)

ιωνυµική Κατανοµή(Binomial) ιωνυµική Κατανοµή(Binomial) ~B(n,p) n N και 0

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή

Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Γνωστές κατανομές συνεχών μεταβλητών (συν.) (Δ). Γάμμα κατανομή Συνάρτηση Γάμμα: Ιδιότητες o d Γ(α+)=αΓ(α) - αναδρομική συνάρτηση Γ(α+) = α! αν α ακέραιος. Πιθανότητες & Στατιστική 5 Τμήμα Μηχανικών Η/Υ

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 8 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΣΥΝΕΧΕΙΣ ΚΑΤΑΝΟΜΕΣ Στις ενότητες που ακολουθούν εξετάζουμε συνεχείς κατανομές με ευρεία χρήση στις εφαρμογές. Σε αυτές περιλαμβάνονται η ομοιόμορφη, η εκθετική, η Γάμμα και η

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Δοκιμές Bernoulli Ας θεωρήσουμε μία ακολουθία (σειρά) πειραμάτων στην οποία ισχύουν τα επόμενα

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 4 Κανονική Κατανομή. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 4 Κανονική Κατανομή Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 4-4-1 Εισαγωγή Όσο το n αυξάνει, η διωνυμική κατανομή προσεγγίζει... n = 6 n = 1 n = 14 Binomial Distribution:

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου

Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Διάλεξη 1: Στατιστική Συμπερασματολογία - Εκτίμηση Σημείου Στατιστική Συμπερασματολογία Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων εκτιμήτρια συνάρτηση, ˆ θ σημειακή εκτίμηση εκτίμηση με διάστημα εμπιστοσύνης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1

ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ 1 Συστήµατα αναµονής Οι ουρές αναµονής αποτελούν καθηµερινό και συνηθισµένο φαινόµενο και εµφανίζονται σε συστήµατα εξυπηρέτησης, στα οποία η ζήτηση για κάποια υπηρεσία δεν µπορεί να

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ

Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Στατιστική Ι-Θεωρητικές Κατανομές ΙΙ Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές ΙΙ Περιγραφή 1 Θεωρητικές

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΘΕΩΡΙΑ ΟΥΡΩΝ Ακαδ. Έτος 2011-2012 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Διδάσκων επί Συμβάσει Π.Δ 407/80 v.koutras@fme.aegean.gr

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Πρόλογος 13 Κατάλογος συμβολών και συντμήσεων 15 1 ΓΙΑΤΙ ΝΑ ΑΣΧΟΛΗΘΟΥΜΕ ΜΕ ΤΗ ΣΤΑΤΙΣΤΙΚΗ; 21

Πρόλογος 13 Κατάλογος συμβολών και συντμήσεων 15 1 ΓΙΑΤΙ ΝΑ ΑΣΧΟΛΗΘΟΥΜΕ ΜΕ ΤΗ ΣΤΑΤΙΣΤΙΚΗ; 21 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 13 Κατάλογος συμβολών και συντμήσεων 15 1 ΓΙΑΤΙ ΝΑ ΑΣΧΟΛΗΘΟΥΜΕ ΜΕ ΤΗ ΣΤΑΤΙΣΤΙΚΗ; 21 Χρήση στατιστικών τεχνικών στις επιχειρήσεις 21 Οι δυο έννοιες της λέξης στατιστική 22 Πληθυσμοί

Διαβάστε περισσότερα

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς

4 Πιθανότητες και Στοιχεία Στατιστικής για Μηχανικούς Πρόλογος Ο μηχανικός πρέπει να συνεχίσει να βελτιώνει την ποιότητα της δουλειάς του εάν επιθυμεί να είναι ανταγωνιστικός στην αγορά της χώρας του και γενικότερα της Ευρώπης. Μία σημαντική αναλογία σε αυτήν

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I

Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I Εξέταση στις ΠΙΘΑΝΟΤΗΤΕΣ I ΟΔΗΓΙΕΣ Να μην αντιγράψετε τα θέματα στην κόλα σας. Να γράψετε το ονοματεπώνυμό σας και τον αριθμό μητρώου σας (ΑΜ) στα θέματα και σε κάθε κόλα που θα χρησιμοποιήσετε. Τα θέματα

Διαβάστε περισσότερα

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής

cv = κατάλληλη κριτική (κρίσιμη) τιμή από τους πίνακες της Ζ ή t κατανομής ΕΚΤΙΜΗΣΗ ΔΙΑΣΤΗΜΑΤΟΣ Δ.Ε. της παραμέτρου θ: ˆ θ cv σ < θ < ˆ θ + cv σ ˆ θ ˆ θ θ = η παράμετρος που θέλουμε να εκτιμήσουμε, ˆ θ = η εκτίμηση της θ που προκύπτει από το τ.δ. cv = κατάλληλη κριτική (κρίσιμη)

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 6: Kατανομή Poisson Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 006 ΕΚΦΩΝΗΣΕΙΣ A. Η συνάρτηση f είναι παραγωγίσιµη στο ΙR. και c πραγµατική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR. Μονάδες

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr

Ποσοτικές Μέθοδοι., Εισηγητής: Ν.Κυρίτσης, MBA, Ph.D. Candidate,, e-mail: kyritsis@ist.edu.gr Ποσοτικές Μέθοδοι Εισηγητής: Ν.Κυρίτσης MBA Ph.D. Candidate e-mail: kyritsis@ist.edu.gr Εισαγωγή στη Στατιστική Διδακτικοί Στόχοι Μέτρα Σχετικής Διασποράς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή Η Τυποποιημένες

Διαβάστε περισσότερα

Μέθοδος μέγιστης πιθανοφάνειας

Μέθοδος μέγιστης πιθανοφάνειας Μέθοδος μέγιστης πιθανοφάνειας Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σ.κ. της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών

ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών ΤΕΧΝΙΚΗ ΥΔΡΟΛΟΓΙΑ Πιθανοτική προσέγγιση των υδρολογικών μεταβλητών Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Εργαστήριο Υδρολογίας και Αξιοποίησης Υδατικών Πόρων ΣΥΛΛΟΓΙΣΜΟΣ-ΕΠΑΓΩΓΗ (DEDUCTION

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Το Κεντρικό Οριακό Θεώρημα

Το Κεντρικό Οριακό Θεώρημα Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που

Διαβάστε περισσότερα

Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ

Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 249-258 Q- ΔΙΑΓΡΑΜΜΑΤΑ ΓΙΑ ΤΗΝ ΠΑΡΑΜΕΤΡΟ p ΤΗΣ ΔΙΩΝΥΜΙΚΗΣ ΚΑΤΑΝΟΜΗΣ Μανώλης Μανατάκης Τμήμα Μηχανολόγων και Αεροναυπηγών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 8: Επαγωγική Στατιστική. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

n i P(x i ) P(X = x i ) = lim

n i P(x i ) P(X = x i ) = lim Κεϕάλαιο 2 Πιθανότητες και Τυχαίες Μεταβλητές Μπορούµε να καταλάβουµε την έννοια της πιθανότητας από τη σχετική συχνότητα εµϕάνισης n i κάποιας τιµής x i µιας διακριτής τ.µ. X. Αν είχαµε τη δυνατότητα

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 4 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) o ΘΕΜΑ A. Aν n

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ Ι. ΠΑΝΑΡΕΤΟΥ & Ε. ΞΕΚΑΛΑΚΗ Καθηγητών του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΣΚΕΨΗ ΤΟΜΟΣ ΙΙ (Εισαγωγή στις Πιθανότητες και την Στατιστική Συμπερασματολογία)

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς ΙΙ Πειραιάς 2007 1 2 Από κοινού συνάρτηση πυκνότητας μιας δισδιάστατης συνεχούς τυχαίας μεταβλητής Μία διδιάστατη συνεχής τυχαία μεταβλητή

Διαβάστε περισσότερα

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling)

3. ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratified Random Sampling) 3 ΣΤΡΩΜΑΤΟΠΟΙΗΜΕΝΗ ΤΥΧΑΙΑ ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Stratfed Radom Samplg) Είναι προφανές από τα τυπικά σφάλματα των εκτιμητριών των προηγούμενων παραγράφων, ότι ένας τρόπος να αυξηθεί η ακρίβεια τους είναι να αυξηθεί

Διαβάστε περισσότερα

4. Ειδικές Διακριτές, Συνεχείς Κατανομές

4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4. Ειδικές Διακριτές, Συνεχείς Κατανομές 4.. Η ομοιόμορφη διακριτή κατανομή. Εμφανίζεται τις περιπτώεις όπου η υπό εξέταη τ.μ. Χ παίρνει πεπεραμένο πήθος τιμών π.χ. Χ {,,...,} και όες οι πιθανότητες P

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

x π 1 i n Το παραμετρικό μοντέλο πιθανότητας (η

x π 1 i n Το παραμετρικό μοντέλο πιθανότητας (η Η Στατιστική συμπερασματολογία (statstcal ferece είναι η επιστήμη που σκοπό έχει την εξαγωγή συμπερασμάτων για τις παραμέτρους ενός πληθυσμού, δηλαδή την εκτίμηση των παραμέτρων του, μελετώντας δείγμα

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις

Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις Κατανομές Τυχαίων Μεταβλητών Προβλήματα και Ασκήσεις 1. Μια διακριτή τυχαία μεταβλητή Χ έχει συνάρτηση πιθανότητας 0 1 2 3 4 f () 1/16 4/16 6/16 c 1/16 Να βρεθούν α) η τιμή της σταθεράς c β) η πιθανότητα

Διαβάστε περισσότερα

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ

CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ CRAMER-RAO ΚΑΤΩ ΦΡΑΓΜΑ - ΑΠΟ ΟΤΙΚΟΙ ΕΚΤΙΜΗΤΕΣ Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Θεώρηµα Cramer-Rao Θεώρηµα Cramer-Rao Εστω X = (X 1, X,...,X n ) ένα δείγµα µε από κοινού πυκνότητα πιθανότητας f X

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΠΕΡΙΕΧΟΜΕΝΑ. Πιθανότητες. Τυχαίες μεταβλητές - Κατανομές ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΠΕΡΙΕΧΟΜΕΝΑ ΙΑΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 Πιθανότητες 1.1 Πιθανότητες και Στατιστική... 5 1.2 ειγματικός χώρος Ενδεχόμενα... 7 1.3 Ορισμοί και νόμοι των πιθανοτήτων... 10 1.4 εσμευμένη πιθανότητα Ολική

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας.

Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Κεφάλαιο 3: Τυχαίες µεταβλητές και κατανοµές πιθανότητας. Περιεχόµενα ιακριτές τυχαίες µεταβλητές Συνεχείς τυχαίες µεταβλητές Μέση τιµή τυχαίων µεταβλητών Ροπές, διασπορά, και τυπική απόκλιση τυχαίων µεταβλητών

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ

1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ ΠΡΟΒΛΗΜΑ 1ο ΣΤΑΔΙΟ ΓΕΝΕΣΗ ΜΕΤΑΚΙΝΗΣΕΩΝ πόσες μετακινήσεις δημιουργούνται σε και για κάθε κυκλοφοριακή ζώνη; ΟΡΙΣΜΟΙ μετακίνηση μετακίνηση με βάση την κατοικία μετακίνηση με βάση άλλη πέρα της κατοικίας

Διαβάστε περισσότερα

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α1 Αν οι συναρτήσεις f,g

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1o ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f()) =c f (), ΙR. B.α. Πότε δύο ενδεχόμενα

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ & ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ. Διδάσκων: Γεώργιος Γιαγλής. Παράδειγμα Μπαρ

ΠΡΟΣΟΜΟΙΩΣΗ & ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ. Διδάσκων: Γεώργιος Γιαγλής. Παράδειγμα Μπαρ ΠΡΟΣΟΜΟΙΩΣΗ & ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ ΑΠΟΦΑΣΕΩΝ Διδάσκων: Γεώργιος Γιαγλής Παράδειγμα Μπαρ Σκοπός της παρούσας άσκησης είναι να προσομοιωθεί η λειτουργία ενός υποθετικού μπαρ ώστε να υπολογίσουμε το μέσο χρόνο

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Ολοκλήρωση - Μέθοδος Monte Carlo

Ολοκλήρωση - Μέθοδος Monte Carlo ΦΥΣ 145 - Διαλ.09 Ολοκλήρωση - Μέθοδος Monte Carlo Χρησιμοποίηση τυχαίων αριθμών για επίλυση ολοκληρωμάτων Η μέθοδος Monte Carlo δίνει μια διαφορετική προσέγγιση για την επίλυση ενός ολοκληρώμτατος Τυχαίοι

Διαβάστε περισσότερα

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ

ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΚΕΦΑΛΑΙΟ 7 ΜΕΡΙΚΕΣ ΕΙΔΙΚΕΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ Στο κεφάλαιο αυτό, θα μελετήσουμε μερικές ειδικές διακριτές κατανομές που παρουσιάζουν ιδιαίτερο ενδιαφέρον λόγω, κυρίως των πολλών εφαρμογών τους. Πριν όμως

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

Εισαγωγή. Αντικείμενο της Στατιστικής

Εισαγωγή. Αντικείμενο της Στατιστικής Εισαγωγή Οι κυνικοί λένε σαρκαστικά πως μπορείς να αποδείξεις οτιδήποτε με τη Στατιστική. Άλλοι πάλι υποστηρίζουν πως δεν μπορείς να κάνεις τίποτα με τη Στατιστική. Κάποιοι θυμίζουν ότι η Στατιστική είναι

Διαβάστε περισσότερα

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0

ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής. Pr T T0 ΑΞΙΟΠΙΣΤΙΑ ΚΑΙ ΣΥΝΤΗΡΗΣΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής Δεσμευμένη αξιοπιστία Η δεσμευμένη αξιοπιστία R t είναι η πιθανότητα το σύστημα να λειτουργήσει για χρονικό

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Πολλαπλή Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ (5-9-2005) ΟΜΑΔΑ Α ( 40% ) ΛΥΣΗ: ( 2 ) μόνο για αυτή την τιμή ισχύει

ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ (5-9-2005) ΟΜΑΔΑ Α ( 40% ) ΛΥΣΗ: ( 2 ) μόνο για αυτή την τιμή ισχύει ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΠΙΘΑΝΟΤΗΤΕΣ ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΤΑΣΤΙΚΗ ΣΕΠΤΕΜΒΡΙΟΥ 5-9-5 ΟΜΑΔΑ Α 4% Αν τα ενδεχόμενα Α, Β, Γ ενός δειγματικού χώρου Ω είναι ανεξάρτητα μπορούμε να πούμε το ίδιο για τα α A B, Γ β Α,Β Γ

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις

Έλεγχος Χ 2 (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις Έλεγχος Χ -Προβλήματα και Ασκήσεις Έλεγχος Χ (καλής προσαρμογής, ανεξαρτησίας και ομογένειας) Προβλήματα και Ασκήσεις 1. Στη βιβλιογραφία αναφέρεται ότι τα ποσοστά των ομάδων αίματος Α, Β, ΑΒ και Ο σε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ. 1. 0 F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3. ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ Έστω Χ = (Χ 1,,Χ ) T τυχαίο διάνυσμα (τ.δ). Ονομάζουμε συνάρτηση κατανομής πιθανότητας (σ.κ.π.) του τ.δ. Χ την: F(x) = P(X 1 x 1,, X x ), x = (x 1,,x ) T 1. 0 F(x) 1, x.. Η F είναι μη

Διαβάστε περισσότερα

!n k. Ιστογράμματα. n k. x = N = x k

!n k. Ιστογράμματα. n k. x = N = x k Ιστογράμματα Τα ιστογράμματα αποτελούν ένα εύχρηστο οπτικό τρόπο για να εξάγουμε την κατανομή που ακολουθούν μια σειρά μετρήσεων ενός μεγέθους αλλά και παράλληλα δίνουν τη δυνατότητα για εύκολη στατιστική

Διαβάστε περισσότερα

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE)

ΟΚΙΜΑΣΙΕΣ χ 2 (CHI-SQUARE) ΔΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE) ΟΚΙΜΑΣΙΕΣ χ (CI-SQUARE). Εισαγωγή Οι στατιστικές δοκιμασίες που μελετήσαμε μέχρι τώρα ονομάζονται παραμετρικές (paramtrc) διότι χαρακτηρίζονται από υποθέσεις σχετικές είτε για

Διαβάστε περισσότερα