Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 6. Ικανοποίηση Περιορισµών. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η."

Transcript

1 Κεφάλαιο 6 Ικανοποίηση Περιορισµών Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

2 Ικανοποίηση Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint satisfaction problem αποτελείται από: Ένα σύνολο n µεταβλητών V 1, V 2,...,V n, Ένα σύνολο n πεδίων τιµών D 1,...D n, που αντιστοιχούν σε κάθε µεταβλητή έτσι ώστε V i D i, και Ένα σύνολο σχέσεων (περιορισµών) C 1, C 2,...C m όπου C i (V k,...,v m ) µια σχέση µεταξύ των µεταβλητών του προβλήµατος. Ανάλογα µε το πόσες µεταβλητές περιλαµβάνει ένας περιορισµός χαρακτηρίζεται ως: µοναδιαίος (unary) δυαδικός (binary) ανώτερης τάξης (higher order) Τεχνητή Νοηµοσύνη, B' Έκδοση 2

3 Λύση Προβλήµατος Περιορισµών Λύση αποτελεί µια ανάθεση τιµών στις µεταβλητές του προβλήµατος, τέτοια ώστε να ικανοποιούνται οι περιορισµοί, δηλαδή: Περιορισµοί που αφορούν τα πεδία των µεταβλητών Περιορισµοί του προβλήµατος V 1 = d 1, V 2 = d 2,... V n = d n d D 1 d 2 D 2... d i D n C 1 C 2... C m Τα προβλήµατα ικανοποίησης περιορισµών χαρακτηρίζονται από µεγάλο αριθµό µεταβλητών και πιθανών τιµών (πεδίων) Φαινόµενο της συνδυαστικής έκρηξης (combinatorial explosion). Απαιτείται µείωση του χώρου αναζήτησης. Τεχνητή Νοηµοσύνη, B' Έκδοση 3

4 Παράδειγµα Προβλήµατος Ικανοποίησης Περιορισµών Σειρά µε την οποία θα εισαχθούν τα προϊόντα Α, Β, Γ, µέσα σε ένα βιοµηχανικό µύλο. Το προϊόν Α πρέπει να εισαχθεί στο µύλο µετά από το, το Γ πριν από το Β, και το Β πριν από το Α. V Α V Β και V Α V Γ και V Α V έτσι ώστε να µην πάρουν V Β V Γ και V Β V και V Γ V δύο προϊόντα την ίδια σειρά V Α > V το προϊόν Α µετά από το V Γ < V Β το προϊόν Γ πριν από το Β V Β < V Α το προϊόν Β πριν από το Α Τρεις δυνατές λύσεις: V Α = 4, V Β = 2, V Γ, = 1, V = 3 ηλαδή η σειρά είναι: Γ, Β,, Α V Α = 4, V Β = 3, V Γ, = 1, V = 2 ηλαδή η σειρά είναι: Γ,, Β, Α V Α = 4, V Β = 3, V Γ, = 2, V = 1 ηλαδή η σειρά είναι:, Γ, Β, Α Τεχνητή Νοηµοσύνη, B' Έκδοση 4

5 Γεννήτρια λύσεων και ελεγκτής. Η γεννήτρια λύσεων παράγει λύσεις: V Α = 1, V Β = 1, V Γ, = 1, V = 1 V Α = 1, V Β = 1, V Γ, = 1, V = 2 Παραγωγή και οκιµή... V Α = 4, V Β = 4, V Γ, = 4, V = 4 Ο ελεγκτής ελέγχει τις παραγόµενες λύσεις. Αν η γεννήτρια χρησιµοποιεί ως πληροφορία ότι το προϊόν Α παρασκευάζεται πάντα τελευταίο, παράγει µόνο τις λύσεις: V Α = 4, V Β = 1, V Γ, = 1, V = 1 V Α = 4, V Β = 2, V Γ, = 1, V = 1... V Α = 4, V Β = 4, V Γ, = 4, V = 4 Μείωση πιθανών λύσεων από 4 4 = 256 αντί 4 3 = 64. Τεχνητή Νοηµοσύνη, B' Έκδοση 5

6 Αλγόριθµοι Επιδιόρθωσης Στον κλασικό αλγόριθµο παραγωγής και δοκιµής εξετάζεται ένας µεγάλος χώρος αναζήτησης. Πρόταση νέων αλγορίθµων οι οποίοι προσπαθούν να βελτιώσουν µια προτεινόµενη λύση σταδιακά. Αλγόριθµοι επιδιόρθωσης (repair algorithms). Αναρρίχηση λόφου (hill-climbing) Ευριστικός αλγόριθµος των ελαχίστων συγκρούσεων (min conflicts heuristic) Οι αλγόριθµοι επιδιόρθωσης έχουν εφαρµοστεί µε µεγάλη επιτυχία. Τεχνητή Νοηµοσύνη, B' Έκδοση 6

7 Αναρρίχηση Λόφου (Hill-Climbing) Αλγόριθµος επιδιόρθωσης HC: 1. Ανέθεσε στις µεταβλητές τυχαίες τιµές από τα πεδία τιµών τους. 2. Αν οι τιµές των µεταβλητών δεν παραβιάζουν τους περιορισµούς του προβλήµατος τότε επέστρεψε τις τιµές αυτές ως λύση. 3. Εξέτασε για κάθε µεταβλητή όλες τις δυνατές τιµές που µπορεί να πάρει. i. Αν κάποια από τις τιµές που εξετάστηκαν ελαχιστοποιεί το πλήθος των περιορισµών που παραβιάζονται, ανέθεσε την τιµή της στην αντίστοιχη µεταβλητή και επέστρεψε στο βήµα 2. ii. Αν δε υπάρχει τιµή που να ελαχιστοποιεί το πλήθος των περιορισµών, τότε επέστρεψε στο βήµα 1 (τοπικό ελάχιστο ο αλγόριθµος ξεκινά από µια νέα τυχαία ανάθεση τιµών). Εξετάζει ένα µεγάλο πλήθος "γειτονικών" καταστάσεων. Μπορεί να "πέσει" σε τοπικό ελάχιστο. Τεχνητή Νοηµοσύνη, B' Έκδοση 7

8 Ευριστικός αλγόριθµος των ελαχίστων συγκρούσεων Min conflicts heuristic Ο αλγόριθµος ξεκινά από µια τυχαία ανάθεση τιµών και µεταβάλλει την τιµή µιας µεταβλητής έτσι ώστε η νέα τιµή να παραβιάζει λιγότερους περιορισµούς. 1. Ανέθεσε στις µεταβλητές τυχαίες τιµές από τα πεδία τιµών τους. 2. Αν οι τιµές των µεταβλητών δεν παραβιάζουν τους περιορισµούς του προβλήµατος τότε επέστρεψε τις τιµές αυτές ως λύση. 3. Εξέτασε για µια τυχαία µεταβλητή όλες τις δυνατές τιµές που µπορεί να πάρει. i. Αν κάποια από τις τιµές για τη µεταβλητή που εξετάστηκαν µειώνει το πλήθος των περιορισµών που παραβιάζονται, ανέθεσε την τιµή της στη µεταβλητή. ii. Αν δεν υπάρχει τιµή που να µειώνει το πλήθος των περιορισµών που παραβιάζονται, τότε επέλεξε µια τιµή που να διατηρεί τον ίδιο αριθµό περιορισµών. iii. Αν δεν υπάρχει ούτε τέτοια τιµή, τότε άφησε την τιµή της εξεταζόµενης µεταβλητής. 4. Επέστρεψε στο βήµα 2. Ο αλγόριθµος δεν εξετάζει µεγάλο πλήθος γειτονικών κόµβων. ιατηρεί το πρόβληµα του εγκλωβισµού σε κάποιο τοπικό ελάχιστο. Τεχνητή Νοηµοσύνη, B' Έκδοση 8

9 Κλασικοί Αλγόριθµοι Αναζήτησης Οι κλασικοί αλγόριθµοι αναζήτησης είναι δυνατό να χρησιµοποιηθούν και για την επίλυση των προβληµάτων ικανοποίησης περιορισµών. Αναπαράσταση Μια κατάσταση αποτελείται από τις µεταβλητές του προβλήµατος. Υπάρχει ένας µόνο τελεστής, ο οποίος αντιστοιχεί στην ανάθεση µιας τιµής σε µια µηδεσµευµένη µεταβλητή (µεταβλητή στην οποία δεν έχει ανατεθεί τιµή). Αρχική κατάσταση: όλες οι µεταβλητές είναι µη-δεσµευµένες. Τελική κατάσταση: ελέγχεται αν έχει γίνει ανάθεση τιµών σε όλες τις µεταβλητές, καθώς επίσης και αν ικανοποιούνται όλοι οι περιορισµοί του προβλήµατος. Επίλυση µε: Κλασικούς αλγορίθµους αναζήτησης. Κλασικούς ευριστικούς αλγορίθµους αναζήτησης Τεχνητή Νοηµοσύνη, B' Έκδοση 9

10 Ευριστικοί Αλγόριθµοι στο Πρόβληµα Ικανοποίησης Περιορισµών Εφαρµόζονται οι κλασικοί ευριστικοί αλγόριθµοι αναζήτησης Αλγόριθµος αναζήτησης πρώτα στο καλύτερο (Best First) Αρχή της συντοµότερης αποτυχίας (first fail principle). Σε περίπτωση ισοπαλίας επιλέγεται η µεταβλητή που συµµετέχει σε περισσότερους περιορισµούς (most constraint principle). Βελτίωση έναντι των τυφλών αλγορίθµων αναζήτησης. εν επιλύουν σε ικανοποιητικό χρόνο προβλήµατα µεγάλου µεγέθους. Μη-εκµετάλλευση της πληροφορίας των περιορισµών. (a posteriori έλεγχος) A posteriori έλεγχος + συνδυαστική έκρηξη = εξαιρετικά χρονοβόρα επίλυση προβληµάτων. Τεχνητή Νοηµοσύνη, B' Έκδοση 10

11 Αλγόριθµοι Ελέγχου Συνέπειας Εκµετάλλευση πληροφορίας που υπάρχει στους περιορισµούς για µείωση του χώρου αναζήτησης. Α priori έλεγχος συνέπειας τιµών. Βασική ιδέα των αλγορίθµων της κατηγορίας: Απαλοιφή από τα αρχικά πεδία των µεταβλητών εκείνων των τιµών οι οποίες δεν µπορούν να συµµετέχουν στην τελική λύση. Έλεγχος συνέπειας (consistency check) ιαγραφή από το πεδίο κάθε µεταβλητής εκείνων των τιµών οι οποίες είναι ασυνεπείς ως προς κάποιο περιορισµό. Αναφέρονται και ως αλγόριθµοι διήθησης τιµών (filtering algorithms). Τεχνητή Νοηµοσύνη, B' Έκδοση 11

12 Παράδειγµα Απαλοιφής τιµών από τα πεδία των Μεταβλητών (1/2) Πρόβληµα σειράς παρασκευής των προϊόντων για ένα βιοµηχανικό µύλο. Οι περιορισµοί είναι: V Α V Β (C1) V Β V Γ (C4) V Α > V (C7) V Α V Γ (C2) V Β V (C5) V Γ < V Β (C8) V Α V (C3) V Γ V (C6) V Β < V Α (C9) Τα πεδία τιµών των µεταβλητών: V Α {1,2,3,4} V Β {1,2,3,4} V Γ {1,2,3,4} V {1,2,3,4} Λόγω C9 (V Β < V Α ): V Α {2,3,4} V Β {1,2,3} V Γ {1,2,3,4} V {1,2,3,4} Τεχνητή Νοηµοσύνη, B' Έκδοση 12

13 Παράδειγµα Απαλοιφής τιµών από τα πεδία των Μεταβλητών (2/2) Λόγω V Γ < V Β (C8): V Α {2,3,4} V Β {2,3} V Γ {1,2} V {1,2,3,4} Λόγω V Α > V (C7): V Α {2,3,4} V Β {2,3} V Γ {1,2} V {1,2,3} Λόγω του V Β < V Α (C9): V Α {3,4} V Β {2,3} V Γ {1,2} V {1,2,3} Οι πιθανοί συνδυασµοί γίνονται =24, από 256 που υπήρχαν αρχικά. Τεχνητή Νοηµοσύνη, B' Έκδοση 13

14 Γράφος Περιορισµών Το πρόβληµα αναπαρίσταται ως γράφος (γράφος περιορισµών - constraint graph). τα τόξα (arcs) αναπαριστούν περιορισµούς οι κόµβοι (nodes) που αναπαριστούν τις µεταβλητές. Περιορισµοί: V Α > V V Γ < V Β V Β < V Α Τεχνητή Νοηµοσύνη, B' Έκδοση 14

15 Αλγόριθµοι συνέπειας/διήθησης τιµών Βαθµός συνέπειας (degree of consistency). Πόσες ασυνεπείς τιµές αφαιρούν από τα πεδία Βαθµός συνέπειας είναι αντιστρόφως ανάλογος µε τον απαιτούµενο χρόνο εκτέλεσης. Αλγόριθµος συνέπειας κόµβου (Node Consistency). Μοναδιαίοι περιορισµοί. Αλγόριθµοι συνέπειας τόξου (Arc Consistency-AC), υαδικοί περιορισµοί ιάφοροι αλγόριθµοι συνέπειας τόξου, όπως οι AC-3, AC-4, AC-5, AC-6, κλπ, Η δυσκολία που παρουσιάζουν οι αλγόριθµοι της κατηγορίας: ιαγραφή µιας τιµής οδηγεί σε αλλαγές στα πεδία άλλων µεταβλητών. Μετά από κάθε διαγραφή ασυνεπούς τιµής πρέπει να επανεξεταστούν τα πεδία των "άµεσα" συνδεδεµένων µεταβλητών Αλγόριθµοι συνέπειας µονοπατιού (path consistency algorithms). Υψηλό υπολογιστικό κόστος. Υπάρχουν και άλλες κατηγορίες αλγορίθµων συνέπειας, ιάδοση περιορισµών (constraint propagation). Τεχνητή Νοηµοσύνη, B' Έκδοση 15

16 Ο Αλγόριθµος AC3 Ο απλούστερος αλγόριθµος συνέπειας τόξου είναι ο AC3. Έστω οι µεταβλητές V 1, V 2,..V n µε τιµές d 1, d 2,,d n από τα πεδία τιµών των µεταβλητών D 1, D 2,,D n (d 1 D 1, d 2 D 2, d n D n) και ένα σύνολο περιορισµών C(V i,v j ) για τις µεταβλητές αυτές, οι οποίοι αναπαριστώνται ως τόξα (V i,v j ). Για συντοµία, κάθε τόξο (V i,v j ) αναφέρεται ως (i,j). Επανέλαβε τα ακόλουθα βήµατα µέχρι το Q να γίνει κενό: 1. Επέλεξε ένα τόξο (i,j) και διέγραψε το από το Q 2. Για κάθε τιµή d i του πεδίου της µεταβλητής V i έλεγξε αν υπάρχει τουλάχιστον µία τιµή d j του πεδίου της µεταβλητής V j τέτοια ώστε να ικανοποιεί το περιορισµό C(V i,v j ) που αντιστοιχεί στο τοξο (i, j). 3. Αν δεν υπάρχει τέτοια τιµή d j τότε αφαίρεσε την τιµή d i από το πεδίο τιµών της V i. Αν το πεδίο τιµών της V i είναι κενό τότε τερµάτισε µε αποτυχία. 4. Αν έχει µεταβληθεί το πεδίο τιµών της V i τότε πρόσθεσε στο σύνολο Q όλα τα τόξα (k,i), που αντιστοιχούν στους περιορισµούς C(V k,v i ), για k i. Τεχνητή Νοηµοσύνη, B' Έκδοση 16

17 Χαρακτηριστικά του αλγορίθµου AC-3 Προϋποθέτει δυαδικούς περιορισµούς. Μετασχηµατισµός σε πρόβληµα δυαδικών περιορισµών (binarization). Μη-πληρότητα Στο προηγούµενο παράδειγµα στο πεδίο τιµών της µεταβλητής V Α παρέµεινε η τιµή 3: VΑ {3,4} VΒ {2,3} VΓ {1,2} V {1,2,3} Οι αλγόριθµοι συνέπειας τόξου δεν απαλείφουν όλες τις ασυνεπείς τιµές. Επίλυση προβλήµατος περιορισµών = αλγόριθµοι ελέγχου συνέπειας τόξου σε συνδυασµό µε αλγόριθµο αναζήτησης. Τεχνητή Νοηµοσύνη, B' Έκδοση 17

18 Εξασφάλιση Λύσης Χωρίς Αναζήτηση Είναι δυνατό να βρεθεί λύση µε χρήση µόνο αλγορίθµων ελέγχου συνέπειας; Κ-συνέπεια Ένας γράφος περιορισµών είναι Κ-συνεπής (K-consistent) εάν για κάθε Κ-1 µεταβλητές που ικανοποιούν τους περιορισµούς υπάρχει µια µεταβλητή Κ µε τέτοιο πεδίο ώστε να ικανοποιούνται ταυτόχρονα όλοι τους οι περιορισµοί που συνδέουν τις Κ µεταβλητές. Ένας γράφος είναι ισχυρά Κ-συνεπής (strongly K- consistent) εάν για κάθε L K, είναι L-συνεπής. Ο αλγόριθµος συνέπειας κόµβου εξασφαλίζει ότι ο γράφος είναι ισχυρά 1-συνεπής. Οι αλγόριθµοι συνέπειας τόξου εξασφαλίζουν ισχυρή 2-συνεπεία. Προφανώς σε ένα γράφο µε Ν κόµβους, εάν εξασφαλισθεί ότι ο γράφος είναι ισχυρά Ν-συνεπής: Λύση χωρίς αναζήτηση. Υψηλό υπολογιστικό κόστος εφαρµογής για Κ>2. Τεχνητή Νοηµοσύνη, B' Έκδοση 18

19 Συνδυάζοντας Αναζήτηση και Αλγορίθµους ιήθησης Τιµών Συνδυασµός αλγορίθµων διήθησης και αναζήτησης καθώς: Αλγόριθµοι συνέπειας: µη-πλήρεις αλλά αποδοτικοί. Κλασικοί αλγόριθµοι αναζήτησης: πλήρεις/µη-αποδοτικοί. Βασική ιδέα των αλγορίθµων της κατηγορίας: Μείωση του χώρου αναζήτησης µε την χρήση ενός αλγορίθµου συνέπειας πριν από κάθε βήµα ανάθεσης τιµών (a priori pruning). Έτσι η λύση µπορεί να βρεθεί σε σηµαντικά µικρότερο χρόνο µε κάποιον κλασικό αλγόριθµο αναζήτησης. Υπάρχουν τρεις βασικοί τρόποι. ιαφέρουν στο βαθµό ελέγχου των πεδίων των µεταβλητών σε κάθε βήµα. Πριν την εκκίνηση της διαδικασίας αναζήτησης εφαρµόζεται ένας αλγόριθµος συνέπειας. Τεχνητή Νοηµοσύνη, B' Έκδοση 19

20 Συνδυασµοί ιήθησης και Αναζήτησης Λύσης Ο προοπτικός έλεγχος (forward checking) Απαλείφει τιµές από τα πεδία των µη-δεσµευµένων µεταβλητών που συνδέονται άµεσα µε περιορισµούς µε την µεταβλητή στην οποία µόλις ανατέθηκε τιµή. Παραµένει µεγάλος αριθµός ασυνεπών τιµών στα πεδία, Χαµηλό υπολογιστικό κόστος κάθε βήµατος. Ο αλγόριθµος έγκαιρης µερικής εξέτασης (Partial Look Αhead) Κατευθυντική συνέπεια (directional consistency) σε κάθε βήµα. Παραµένουν στα πεδία των µεταβλητών µη συνεπείς τιµές. Ο αλγόριθµος έγκαιρης πλήρους εξέτασης (Full Look Ahead) ή διατήρησης συνέπειας τόξου (Maintaining Arc Consistency - MAC). Πλήρης συνέπεια τόξου σε κάθε βήµα. Αφαιρεί το µεγαλύτερο αριθµό ασυνεπών τιµών από τους τρεις. Υψηλό υπολογιστικό κόστος Τεχνητή Νοηµοσύνη, B' Έκδοση 20

21 Αλγόριθµος ιατήρησης Συνέπειας Τόξου Ο ολοκληρωµένος αλγόριθµος διατήρησης συνέπειας τόξου για την επίλυση προβληµάτων περιορισµών είναι: 1. Για κάθε περιορισµό αφαίρεσε από τα πεδία τιµών των µεταβλητών τις τιµές εκείνες που δεν µπορούν να συµµετέχουν στην τελική λύση µε ένα αλγόριθµο ελέγχου συνέπειας. 2. Στο µειωµένο χώρο αναζήτησης που προκύπτει από το προηγούµενο βήµα εφάρµοσε έναν κλασικό αλγόριθµο αναζήτησης για να βρεθεί η λύση. Σε κάθε βήµα (ανάθεση τιµής) αυτής της αναζήτησης εφάρµοσε ξανά τον αλγόριθµο ελέγχου συνέπειας έτσι ώστε να αφαιρεθούν τυχόν τιµές από τα πεδία των µεταβλητών οι οποίες δεν µπορούν να συµµετέχουν στην λύση. Τεχνητή Νοηµοσύνη, B' Έκδοση 21

22 Πρόβληµα Βιοµηχανικού Μύλου Μετά την εφαρµογή των περιορισµών αποµένουν οι ακόλουθες τιµές στα πεδία των µεταβλητών: V Α {3,4},V Β {2,3},V Γ {1,2},V {1,2,3} Σε κάθε βήµα εφαρµόζεται έλεγχος συνέπειας. ένδρο αναζήτησης. V Α {3,4} V Β {2,3} V Γ {1,2} V {1,2,3} V Α = 3 V Α = 4 Περιορισµοί V Γ V V Β V V Γ <V Β V Α >V V Α =3 V Β {2,3} V Γ {1,2} V {1,2,3} V Α = 4 V Β {2,3} V Γ {1,2} V {1,2,3} Αποτυχία V Β = 2 V Β = 3 Περιορισµοί V Γ V V Β V V Γ < V Β V Α = 4 V Β = 2 V Γ {1,2} V {1,2,3} V Α = 4 V Β = 3 V Γ {1,2} V {1,2,3} Περιορισµοί V Β V Λύση V Α = 4 V Β = 2 V Γ = 1 V = 3 V Γ = 1 V Γ = 2 Περιορισµοί V Γ V V Β V V Α = 4 V Β = 3 V Γ = 1 V {1,2,3} V Α = 4 V Β = 3 V Γ = 2 V {1,2,3} Περιορισµοί V Γ V V Β V Λύση V Α = 4 V Β = 3 V Γ = 1 V = 2 Λύση V Α = 4 V Β = 3 V Γ = 2 V = 1 Τεχνητή Νοηµοσύνη, B' Έκδοση 22

23 Το Πρόβληµα των Ν-Βασιλισσών (1/3) Κλασικό παράδειγµα προβλήµατος περιορισµών. Το πρόβληµα απαιτεί να τοποθετηθούν 8 βασίλισσες σε µια σκακιέρα 8x8 χωρίς να απειλούν η µια την άλλη. Το πρόβληµα ορίζεται και για περισσότερες των 8 βασιλισσών Η δυσκολία στην επίλυσή του αυξάνει εκθετικά. Χρησιµοποιείται για την µέτρηση της απόδοσης αλγορίθµων ικανοποίησης περιορισµών. Συνθήκη µη απειλής µεταξύ των βασιλισσών: Όλες οι βασίλισσες πρέπει να είναι σε διαφορετική γραµµή: i, j: Q j Q i. Ισχύουν οι περιορισµοί: Q j Q j+n + n για n>1 και n+j 8 Q j Q j+n - n για n>1 και n+j 8 Σχηµατική αναπαράσταση περιορισµών µε δύο βασίλισσες στην σκακιέρα Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q Τεχνητή Νοηµοσύνη, B' Έκδοση 23

24 Το Πρόβληµα των Ν-Βασιλισσών (2/3) Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q Ανάθεση τιµής στην πρώτη βασίλισσα Ανάθεση τιµών στις δύο πρώτες βασίλισσες Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Τεχνητή Νοηµοσύνη, B' Έκδοση 24

25 Το Πρόβληµα των Ν-Βασιλισσών (3/3) Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q Ανάθεση τιµών που δεν οδηγεί σε λύση Λύση στο πρόβληµα των 8 βασιλισσών Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Τεχνητή Νοηµοσύνη, B' Έκδοση 25

26 Λογικός Προγραµµατισµός µε Περιορισµούς ηµιουργία µιας νέας "σχολής" προγραµµατισµού, του προγραµµατισµού µε περιορισµούς (constraint programming). Λογικός Προγραµµατισµός µε Περιορισµούς (Constraint Logic Programming - CLP), Επέκταση των γλωσσών λογικού προγραµµατισµού (π.χ. PROLOG). Παράδειγµα τέτοιου συστήµατος είναι το CHIP µε πλήθος βιοµηχανικών εφαρµογών: σύνταξη ωρολογίου προγράµµατος για την κατανοµή ωρών εργασίας σε νοσοκοµείo (GYMNASTE, στο νοσοκοµείο BLINGY), σχεδιασµό ενεργειών (planning) για την οργάνωση γραµµών παραγωγής στην αεροπορική βιοµηχανία (PLANE στη DASSAULT), κτλ. Άλλες ιδιαίτερα διαδεδοµένες γλώσσες που υποστηρίζουν προγραµµατισµό µε περιορισµούς είναι η SICSTUS, ECLIPSE PROLOG, η ΟZ και η gnu-prolog, κλπ Πλέον οι περισσότερες εκδόσεις της γλώσσας PROLOG υποστηρίζουν σε µεγαλύτερο ή µικρότερο βαθµό την νέα αυτή σχολή προγραµµατισµού. Τεχνητή Νοηµοσύνη, B' Έκδοση 26

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ

ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ ΙΚΑΝΟΠΟΙΗΣΗ ΠΕΡΙΟΡΙΣΜΩΝ (ΜΕ ΒΑΣΗ ΤΟ ΚΕΦ. 6 ΤΟΥ ΒΙΒΛΙΟΥ «ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ» ΤΩΝ ΒΛΑΧΑΒΑ, ΚΕΦΑΛΑ, ΒΑΣΙΛΕΙΑ Η, ΚΟΚΚΟΡΑ & ΣΑΚΕΛΛΑΡΙΟΥ) Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΠΡΟΒΛΗΜΑΤΑ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Είναι γνωστές µερικές

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction)

Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction) Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Διαχείριση Έργων Πληροφορικής Ικανοποίηση Περιορισμών (Constraint Satisfaction) Ηλίας Σακελλαρίου Δομή Περιορισμοί Προβλήματα ικανοποίησης περιορισμών

Διαβάστε περισσότερα

Αλγόριθµοι Ευριστικής Αναζήτησης

Αλγόριθµοι Ευριστικής Αναζήτησης Αλγόριθµοι Ευριστικής Αναζήτησης Ευριστικός µηχανισµός (heuristic) είναι µία στρατηγική, βασισµένη στη γνώση για το συγκεκριµένο πρόβληµα, ηοποίαχρησιµοποιείται σα βοήθηµα στη γρήγορη επίλυσή του.! Ο ευριστικόςµηχανισµός

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 6: Προβλήματα ικανοποίησης περιορισμών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Πρόβληµα ικανοποίησης περιορισµών

Πρόβληµα ικανοποίησης περιορισµών Προβλήµατα ικανοποίησης περιορισµών Constraint Satisfaction Problems Πρόβληµα ικανοποίησης περιορισµών Μεταβλητές: X 1, X 2,, X n, Πεδία ορισµού: D 1, D 2, D n Περιορισµοί: C 1, C 2,, C m Ανάθεση τιµών:

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΥΡΙΣΤΙΚΩΝ ΜΕΘΟ ΩΝ ΜΕ ΤΗ ΜΟΝΑ ΙΑΙΑ ΣΥΝΕΠΕΙΑ ΤΟΞΟΥ

ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΥΡΙΣΤΙΚΩΝ ΜΕΘΟ ΩΝ ΜΕ ΤΗ ΜΟΝΑ ΙΑΙΑ ΣΥΝΕΠΕΙΑ ΤΟΞΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΕΙΡΑΜΑΤΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΕΥΡΙΣΤΙΚΩΝ ΜΕΘΟ ΩΝ ΜΕ ΤΗ ΜΟΝΑ ΙΑΙΑ ΣΥΝΕΠΕΙΑ ΤΟΞΟΥ ιπλωµατική Εργασία του Καριπίδη Κωνσταντίνου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12: Λογικός Προγραμματισμός με Περιορισμούς

ΚΕΦΑΛΑΙΟ 12: Λογικός Προγραμματισμός με Περιορισμούς ΚΕΦΑΛΑΙΟ 12: Λογικός Προγραμματισμός με Περιορισμούς Λέξεις Κλειδιά: Προβλήματα ικανοποίησης περιορισμών. Η έννοια του περιορισμού σε μεταβλητές. Πεδία μεταβλητών. Επίλυση προβλημάτων περιορισμών. Αλγόριθμοι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 17 Φεβρουαρίου 2004 ιάρκεια: 2 ώρες (15:00-17:00)

Διαβάστε περισσότερα

Προβλήµατα ικανοποίησης περιορισµών

Προβλήµατα ικανοποίησης περιορισµών Προβλήµατα Ικανοποίησης Περιορισµών Προβλήµατα ικανοποίησης περιορισµών Λογικός προγραµµατισµός µε περιορισµούς Προβλήµατα Ικανοποίησης Περιορισµών Ένα πρόβληµα ικανοποίησης περιορισµών (constraint satisfaction

Διαβάστε περισσότερα

ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΚΑΤΑΡΤΙΣΗΣ ΩΡΟΛΟΓΙΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΣΤΟ ΣΥΣΤΗΜΑ ECL i PS e

ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΚΑΤΑΡΤΙΣΗΣ ΩΡΟΛΟΓΙΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΣΤΟ ΣΥΣΤΗΜΑ ECL i PS e ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΚΑΤΑΡΤΙΣΗΣ ΩΡΟΛΟΓΙΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ: ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΣΤΟ ΣΥΣΤΗΜΑ ECL i PS e Από την Ελένη Ψαρά Πολυτεχνείο Κρήτης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών

Διαβάστε περισσότερα

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 2. Περιγραφή Προβληµάτων και Αναζήτηση Λύσης. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 2 Περιγραφή Προβληµάτων και Αναζήτηση Λύσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Περιγραφή Προβληµάτων ιαισθητικά: υπάρχει µία δεδοµένη

Διαβάστε περισσότερα

Εξελιγµένες Τεχνικές Σχεδιασµού

Εξελιγµένες Τεχνικές Σχεδιασµού Κεφάλαιο 16 Εξελιγµένες Τεχνικές Σχεδιασµού Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Σχεδιασµός Βασισµένος σε Γράφους Γράφος σχεδιασµού (1/2) Ο

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1

Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1 Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 7. Γενετικοί Αλγόριθµοι. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 7 Γενετικοί Αλγόριθµοι Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Εισαγωγή Σε αρκετές περιπτώσεις το µέγεθος ενός προβλήµατος καθιστά απαγορευτική

Διαβάστε περισσότερα

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 5. Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 5 Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Αναζήτησης σε Παίγνια ύο Αντιπάλων

Διαβάστε περισσότερα

Αναστασία Παπαρρίζου. Επιβλέπων Καθηγητής: Κώστας Στεργίου Τριμελής Επιτροπή: Κώστας Στεργίου, Νικόλαος Σαμαράς, Μανώλης Κουμπαράκης

Αναστασία Παπαρρίζου. Επιβλέπων Καθηγητής: Κώστας Στεργίου Τριμελής Επιτροπή: Κώστας Στεργίου, Νικόλαος Σαμαράς, Μανώλης Κουμπαράκης Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Δυτικής Μακεδονίας Αναστασία Παπαρρίζου Επιβλέπων Καθηγητής: Κώστας Στεργίου Τριμελής Επιτροπή: Κώστας Στεργίου, Νικόλαος Σαμαράς, Μανώλης

Διαβάστε περισσότερα

Αναπαράσταση Γνώσης και Συλλογιστικές

Αναπαράσταση Γνώσης και Συλλογιστικές ναπαράσταση Γνώσης και Συλλογιστικές! Γενικά Προτασιακή λογική Λογική πρώτης τάξης Λογικός προγραµµατισµός Επεκτάσεις της Λογικής Πρώτης Τάξης Συστήµατα Κανόνων Επίλογος ναπαράσταση γνώσης " ναπαράσταση

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 23: Κλασική Ανάλυση Ευαισθησίας, Βασικές Έννοιες Γραφημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.

Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης. Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Ικανο οίηση Περιορισµών Constraint Satisfaction Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Το ική αναζήτηση αναρρίχηση λόφων προσοµοιωµένη

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

ΠΛΗ 405 Τεχνητή Νοηµοσύνη

ΠΛΗ 405 Τεχνητή Νοηµοσύνη ΠΛΗ 405 Τεχνητή Νοηµοσύνη Α οδοτικός Προτασιακός Συµ ερασµός Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Λογικές τυπικές γλώσσες λογική κάλυψη Προτασιακή λογική

Διαβάστε περισσότερα

Αλγόριθμοι Τυφλής Αναζήτησης

Αλγόριθμοι Τυφλής Αναζήτησης Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.

Διαβάστε περισσότερα

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 20 Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Τεχνητή Νοηµοσύνη, B' Έκδοση - 1 - Ανακάλυψη Γνώσης σε

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1)

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1) ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΜΑΘΗΜΑ 2 ΑΝΑΠΑΡΑΣΤΑΣΗ - ΤΕΧΝΙΚΕΣ ΤΝ (1) 2. ΑΝΑΠΑΡΑΣΤΑΣΗ ΠΡΟΒΛΗΜΑΤΟΣ H υλοποίηση ενός προβλήµατος σε σύστηµα Η/Υ που επιδεικνύει ΤΝ 1 απαιτεί: Την κατάλληλη περιγραφή του προβλήµατος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Ιανουαρίου 2005 ιάρκεια: 3 ώρες (15:00-18:00)

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΤΕΧΝΙΚΩΝ ΤΟΠΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ

ΜΕΛΕΤΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΤΕΧΝΙΚΩΝ ΤΟΠΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ ΜΕΛΕΤΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΤΕΧΝΙΚΩΝ ΤΟΠΙΚΗΣ ΑΝΑΖΗΤΗΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΚΑΤΑΝΕΜΗΜΕΝΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΙΚΑΝΟΠΟΙΗΣΗΣ ΠΕΡΙΟΡΙΣΜΩΝ Η διπλωματική εργασία παρουσιάστηκε ενώπιον του Διδακτικού προσωπικού του Πανεπιστημίου

Διαβάστε περισσότερα

Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης.

Επίλυση Προβληµάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Επίλυση Προβληµάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσµατα της νοηµοσύνης. Χαρακτηριστικά αλγορίθµων: Αποδοτικότητα (efficiency) σε µνήµη και χρόνο, Πολυπλοκότητα (complexity), Πληρότητα

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης

Επίλυση προβληµάτων. Αλγόριθµοι Αναζήτησης Επίλυση προβληµάτων! Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Γενικά " Τεχνητή

Διαβάστε περισσότερα

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.

Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 4: Προβλήματα Ικανοποίησης Περιορισμών Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης

Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Καθηγητής : Κουμπαράκης Μανόλης Ημ/νία παράδοσης: 11/01/2011 Ονομ/μο φοιτητή : Μπεγέτης Νικόλαος Α.Μ.:

Διαβάστε περισσότερα

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m

max c 1 x 1 + c 2 x c n x n υπό a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2 a m1 x 1 + a m2 x a mn x n b m Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 10 Εισαγωγή στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 29 Φεβρουαρίου 2016 Προβλήματα

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας

Διαβάστε περισσότερα

Περιεχόµενα. ΜΕΡΟΣ Α: Επίλυση Προβληµάτων... 17

Περιεχόµενα. ΜΕΡΟΣ Α: Επίλυση Προβληµάτων... 17 ΠΡΟΛΟΓΟΣ... I ΠΡΟΛΟΓΟΣ ΤΩΝ ΣΥΓΓΡΑΦΕΩΝ...III ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΩΝ... IX ΠΕΡΙΕΧΟΜΕΝΑ... XI 1 ΕΙΣΑΓΩΓΗ... 1 1.1 ΤΙ ΕΙΝΑΙ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ... 1 1.1.1 Ορισµός της Νοηµοσύνης... 2 1.1.2 Ορισµός

Διαβάστε περισσότερα

Περιγραφή Προβλημάτων

Περιγραφή Προβλημάτων Τεχνητή Νοημοσύνη 02 Περιγραφή Προβλημάτων Φώτης Κόκκορας Τμ.Τεχν/γίας Πληροφορικής & Τηλ/νιών - ΤΕΙ Λάρισας Παραδείγματα Προβλημάτων κύβοι (blocks) Τρεις κύβοι βρίσκονται σε τυχαία διάταξη πάνω στο τραπέζι

Διαβάστε περισσότερα

Χαρακτηριστικά, οµή και Λειτουργία Συστηµάτων Γνώσης

Χαρακτηριστικά, οµή και Λειτουργία Συστηµάτων Γνώσης Κεφάλαιο 21 Χαρακτηριστικά, οµή και Λειτουργία Συστηµάτων Γνώσης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Συστήµατα Γνώσης Επιδεικνύουν νοήµονα

Διαβάστε περισσότερα

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 11/26/2007. Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος Δικτυωτή Ανάλυση ΤΣΑΝΤΑΣ ΝΙΚΟΣ // Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση Νίκος Τσάντας Τμήμα Μαθηματικών Πανεπιστημίου Πατρών, Ακαδημαϊκό έτος - Δικτυωτή Ανάλυση Δίκτυο είναι ένα διάγραμμα το οποίο το οποίο αναπαριστά τη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΙΟΙΚΗΣΗ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ: ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΛΕΙΑ ΙΟΙΚΗΣΗΣ ιδάσκων:

Διαβάστε περισσότερα

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση

Κεφάλαιο 4ο: Δικτυωτή Ανάλυση Κεφάλαιο ο: Δικτυωτή Ανάλυση. Εισαγωγή Η δικτυωτή ανάλυση έχει παίξει σημαντικό ρόλο στην Ηλεκτρολογία. Όμως, ορισμένες έννοιες και τεχνικές της δικτυωτής ανάλυσης είναι πολύ χρήσιμες και σε άλλες επιστήμες.

Διαβάστε περισσότερα

Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση

Κεφάλαιο 8. Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής. Τεχνητή Νοηµοσύνη - Β' Έκδοση Κεφάλαιο 8 Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αναπαράσταση Γνώσης Σύνολο συντακτικών

Διαβάστε περισσότερα

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ

ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s

Διαβάστε περισσότερα

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση

Λογικοί πράκτορες. Πράκτορες βασισµένοι στη γνώση Λογικοί πράκτορες Πράκτορες βασισµένοι στη γνώση Βάση γνώσης (knowledge base: Σύνολο προτάσεων (sentences Γλώσσα αναπαράστασης της γνώσης Γνωστικό υπόβαθρο: «Αµετάβλητο» µέρος της ΒΓ Βασικές εργασίες:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων

ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές

Διαβάστε περισσότερα

Ο Αλγόριθµος της Simplex

Ο Αλγόριθµος της Simplex Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Βήµατα Αλγορίθµου Τα ϐήµατα του αλγορίθµου συνοψίζονται σε ϐήµατα. Αρχικοποίηση : Επέλεξε έναν αντιστρέψιµο πίνακα B (m m) έτσι ώστε x

Διαβάστε περισσότερα

Ζητήματα ηήμ με τα δεδομένα

Ζητήματα ηήμ με τα δεδομένα Ζητήματα ηήμ με τα δεδομένα Ποιότητα Απαλοιφή θορύβου Εντοπισμός ανωμαλιών λώ Ελλιπείς τιμές Μετασχηματισμός Κβάντωση Μείωση μεγέθους Γραμμών: ειγματοληψία Στηλών: Ιδιοδιανύσματα, Επιλογή χαρακτηριστικών

Διαβάστε περισσότερα

ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood Search - VNS) VNS) (Variable Neighborhood Search -

ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood Search - VNS) VNS) (Variable Neighborhood Search - ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood Search - VNS) ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood Search - VNS) Department of & Technology, 1 ΈΡΕΥΝΑ ΜΕΤΑΒΛΗΤΗΣ ΓΕΙΤΟΝΙΑΣ (Variable Neighborhood

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 1 Εισαγωγή 1 / 14 Δομές Δεδομένων και Αλγόριθμοι Δομή Δεδομένων Δομή δεδομένων είναι ένα σύνολο αποθηκευμένων

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH

ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH ΣΥΣΤHΜΑΤΑ ΑΠΟΦAΣΕΩΝ ΣΤΗΝ ΠΑΡΑΓΩΓH Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Περιεχόμενα

Διαβάστε περισσότερα

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης.

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) είναι καθολικοί στοχαστικοί αλγόριθμοι βελτιστοποίησης, εμπνευσμένοι από τις βασικές αρχές της φυσικής εξέλιξης. Ένα από τα γνωστότερα παραδείγματα των ΕΑ είναι ο Γενετικός

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί

2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες. Βασικοί Ορισµοί 2 η Θεµατική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες Βασικοί Ορισµοί υαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το S αντιστοιχίζει ένα στοιχείο του S = set, σύνολο Συνηθισµένα Αξιώµατα (α,

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1 Σωροί Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθµος ταξινόµησης HeapSort Παραλλαγές Σωρών ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Μηχανική Μάθηση Μερωνυµιών για Αναγνώριση Γεγονότων

Μηχανική Μάθηση Μερωνυµιών για Αναγνώριση Γεγονότων Μηχανική Μάθηση Μερωνυµιών για Αναγνώριση Γεγονότων Αναστάσιος Σκαρλατίδης 1,2 anskarl@iit.demokritos.gr επιβλέπων: Καθ. Βούρος Γ. 1 1 Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Πανεπιστήµιο

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Επαναληπτικό: 1 2 κεφάλαιο ΗΜ/ΝΙΑ :.. ΟΝΟΜΑΤΕΠΩΝΥΜΟ :.. ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-10 και δίπλα τη λέξη

Διαβάστε περισσότερα

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 4/29/2009

ΤΣΑΝΤΑΣ ΝΙΚΟΣ 4/29/2009 ΤΣΑΝΤΑΣ ΝΙΚΟΣ /9/9 Επιχειρησιακή Έρευνα ικτυωτή Ανάλυση. Μέρος ΙI Νίκος Τσάντας ιατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά των Υπολογιστών και των Αποφάσεων Ακαδημαϊκό έτος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι 5.1 Η έννοια του αλγορίθµου 5.2 Αναπαράσταση αλγορίθµων 5.3 Επινόηση αλγορίθµων 5.4 Δοµές επανάληψης 5.5 Αναδροµικές δοµές 1 Αλγόριθµος: Ορισµός Ένας αλγόριθµος είναι ένα διατεταγµένο

Διαβάστε περισσότερα

3.7 Παραδείγματα Μεθόδου Simplex

3.7 Παραδείγματα Μεθόδου Simplex 3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x

Διαβάστε περισσότερα

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας

Τα µπιτ και η σηµασία τους. Σχήµα bit. ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) 1.7 Αποθήκευση κλασµάτων 1.8 Συµπίεση δεδοµένων 1.9 Σφάλµατα επικοινωνίας ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (1/2) ΚΕΦΑΛΑΙΟ 1: Αποθήκευση εδοµένων (2/2) 1.1 Τα bits και ο τρόπος που αποθηκεύονται 1.2 Κύρια µνήµη 1.3 Αποθηκευτικά µέσα 1.4 Αναπαράσταση πληροφοριών ως σχηµάτων bits

Διαβάστε περισσότερα

Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων

Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων 3. Δυναμικός Προγραμματισμός Ζαγορίσιος Παναγώτης Παπαοικονόμου Χριστίνα Δυναμικός Προγραμματισμός Μέθοδος επίλυσης σύνθετων προβλημάτων. Όπως

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 1 1 Βελτιστοποίηση Στην προσπάθεια αντιμετώπισης και επίλυσης των προβλημάτων που προκύπτουν στην πράξη, αναπτύσσουμε μαθηματικά μοντέλα,

Διαβάστε περισσότερα

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού

Κεφάλαιο 6. Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού Κεφάλαιο 6 Μέθοδοι επίλυσης προβλημάτων ακέραιου προγραμματισμού 1 Γραφική επίλυση Η γραφική μέθοδος επίλυσης μπορεί να χρησιμοποιηθεί μόνο για πολύ μικρά προβλήματα με δύο ή το πολύ τρεις μεταβλητές απόφασης.

Διαβάστε περισσότερα

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής

Ε ανάληψη. Ε αναλαµβανόµενες καταστάσεις. Αναζήτηση µε µερική ληροφόρηση. Πληροφορηµένη αναζήτηση. µέθοδοι αποφυγής ΠΛΗ 405 Τεχνητή Νοηµοσύνη Πληροφορηµένη Αναζήτηση II Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ε αναλαµβανόµενες καταστάσεις µέθοδοι αποφυγής Αναζήτηση µε µερική

Διαβάστε περισσότερα

Search and Replication in Unstructured Peer-to-Peer Networks

Search and Replication in Unstructured Peer-to-Peer Networks Search and Replication in Unstructured Peer-to-Peer Networks Presented in P2P Reading Group in 11/10/2004 Abstract: Τα µη-κεντρικοποιηµένα και µη-δοµηµένα Peer-to-Peer δίκτυα όπως το Gnutella είναι ελκυστικά

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER

ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER ΚΕΦΑΛΑΙΟ 4 ΤΟ ΕΡΓΑΛΕΙΟ SOLVER 4.1. ΕΙΣΑΓΩΓΗ Με την "Επίλυση", µπορείτε να βρείτε τη βέλτιστη τιµή για τον τύπο ενός κελιού το οποίο ονοµάζεται κελί προορισµού σε ένα φύλλο εργασίας. Η "Επίλυση" λειτουργεί

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Λύσεις Παλιών Θεµάτων Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Θέµα Φεβρουάριος 2003 1) Έστω ένας υπερκύβος n-διαστάσεων. i. Να βρεθεί ο αριθµός των διαφορετικών τρόπων

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Bellman Ford Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Bellman

Διαβάστε περισσότερα

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Παρασκευή 25 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων

Δομές Δεδομένων. Ενότητα 13: B-Δέντρα/AVL-Δέντρα. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων Ενότητα 13: B-Δέντρα/AVL-Δέντρα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Ε ανάληψη. Α ληροφόρητη αναζήτηση

Ε ανάληψη. Α ληροφόρητη αναζήτηση ΠΛΗ 405 Τεχνητή Νοηµοσύνη Το ική Αναζήτηση Local Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Α ληροφόρητη αναζήτηση σε πλάτος, οµοιόµορφου κόστους, σε βάθος,

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία

Διαβάστε περισσότερα

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ

ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΑΝΩ ΕΡΙΦΥΛΗ ΜΟΣΧΟΝΑ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ Πρόβληµα µεταφοράς Η ανάπτυξη και διαµόρφωση του προβλήµατος µεταφοράς αναπτύσσεται στις σελίδες 40-45 του βιβλίου των

Διαβάστε περισσότερα

Προηγμένα Ευρετικά Διαχώρισης Πεδίων Τιμών Προβλημάτων Ικανοποίησης Περιορισμών

Προηγμένα Ευρετικά Διαχώρισης Πεδίων Τιμών Προβλημάτων Ικανοποίησης Περιορισμών Προηγμένα Ευρετικά Διαχώρισης Πεδίων Τιμών Προβλημάτων Ικανοποίησης Περιορισμών Μαρία Άννα Γ. Περιδέλη * Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστημιούπολη,

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

Πρόβλημα συντομότερης διαδρομής - Shortest path problem. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ

Πρόβλημα συντομότερης διαδρομής - Shortest path problem. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Πρόβλημα συντομότερης διαδρομής - Shortest path problem Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e

Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες

Διαβάστε περισσότερα

Chapter 6. Problem Solving and Algorithm Design. Στόχοι Ενότητας. Επίλυση προβληµάτων. Εισαγωγή. Nell Dale John Lewis

Chapter 6. Problem Solving and Algorithm Design. Στόχοι Ενότητας. Επίλυση προβληµάτων. Εισαγωγή. Nell Dale John Lewis Στόχοι Ενότητας Chapter 6 Problem Solving and Algorithm Design Nell Dale John Lewis Αναγνώριση αν ένα πρόβληµα µπορεί να επιλυθεί µε τη χρήση υπολογιστή Περιγραφή της διαδικασίας επίλυσης προβληµάτων και

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού

ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ. Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού ΑΚΕΡΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ & ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Κεφάλαιο 3 Μορφοποίηση Προβλημάτων Ακέραιου Προγραμματισμού 1 Σχέση γραμμικού και ακέραιου προγραμματισμού Ενα πρόβλημα ακέραιου προγραμματισμού είναι

Διαβάστε περισσότερα

Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής

Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Κεφάλαιο 14: Διαστασιολόγηση αγωγών και έλεγχος πιέσεων δικτύων διανομής Έλεγχος λειτουργίας δικτύων διανομής με χρήση μοντέλων υδραυλικής ανάλυσης Βασικό ζητούμενο της υδραυλικής ανάλυσης είναι ο έλεγχος

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός

Διαβάστε περισσότερα

Πρόλογος των Συγγραφέων

Πρόλογος των Συγγραφέων Πρόλογος των Συγγραφέων Τεχνητή Νοηµοσύνη (ΤΝ) είναι ο τοµέας της επιστήµης των υπολογιστών, που ασχολείται µε τη σχεδίαση ευφυών (νοηµόνων) υπολογιστικών συστηµάτων, δηλαδή συστηµάτων που επιδεικνύουν

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

ιδάσκων: ηµήτρης Ζεϊναλιπούρ

ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 1.3-1.4: Εισαγωγή Στον Προγραµµατισµό ( ιάλεξη 2) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Περιεχόµενα Εισαγωγικές Έννοιες - Ορισµοί Ο κύκλος ανάπτυξης προγράµµατος Παραδείγµατα Πότε χρησιµοποιούµε υπολογιστή?

Διαβάστε περισσότερα

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης

Ε ανάληψη. Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) Καταβολές. Ιστορική αναδροµή. Πράκτορες. Περιβάλλοντα. κριτήρια νοηµοσύνης ΠΛΗ 405 Τεχνητή Νοηµοσύνη Αναζήτηση Search Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Ορισµοί της Τεχνητής Νοηµοσύνης (ΤΝ) κριτήρια νοηµοσύνης Καταβολές συνεισφορά

Διαβάστε περισσότερα