SCAT (Advanced) Δείγματα Θεμάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "SCAT (Advanced) Δείγματα Θεμάτων"

Transcript

1 SCAT (Advanced) Δείγματα Θεμάτων Η μερική ή ολική ανατύπωση είτε η καθ' οιονδήποτε τρόπον αναπαραγωγή του διαγωνίσματος, καθώς και η φωτοτύπηση τμήματος ή ολόκληρου του διαγωνίσματος, χωρίς την έγγραφη άδεια του CTY, τιμωρείται από τον νόμο. Johns Hopkins University Center for Talented Youth 5801 Smith Avenue, Βαλτιμόρη, MD ΗΠΑ 2013 The Johns Hopkins University.

2 Μέρος Ι Γλώσσα Σ αυτή την ενότητα εξετάζεται η ικανότητά σας στη Γλώσσα. Κάθε θέμα περιλαμβάνει δύο λέξεις, οι οποίες συνδυάζονται με έναν συγκεκριμένο τρόπο. Κάτω από αυτές ακολουθούν τέσσερα ακόμη ζεύγη λέξεων (Α, Β, Γ, Δ). Να εντοπίσετε ποιο από τα τέσσερα ζεύγη λέξεων (Α, Β, Γ, Δ) συνδυάζεται με τον ίδιο τρόπο όπως και το πρώτο ζεύγος. Διαβάστε προσεκτικά τα παρακάτω παραδείγματα: 1. ακτή : θάλασσα :: A όχθη : ποτάμι B γιαλός : παραλία Γ κάβος : ακρωτήρι Δ όρμος : ξηρά 2. χάρακας : ευθεία :: A γνώμονας : καμπύλη B τετράγωνο : μοιρογνωμόνιο Γ διαβήτης : κύκλος Δ άξονας : υδρόγειος σφαίρα 3. σελήνη : φεγγάρι :: A ήλιος : γαλαξίας B άστρο : πλανήτης Γ δορυφόρος : διαστημόπλοιο Δ Αφροδίτη : Αυγερινός Οι σωστές απαντήσεις είναι: 1 Α, 2 Γ, 3 Δ. Στο κανονικό τεστ έχετε στη διάθεσή σας 20 λεπτά, για να ολοκληρώσετε τα 50 θέματα σε αυτή την ενότητα. Στο παρόν δείγμα έχετε μόνο 10 θέματα, τα οποία καλείστε να απαντήσετε σε 5 λεπτά. Αν έχετε ακόμη χρόνο, μπορείτε να ελέγξετε τα θέματα της Γλώσσας και τις απαντήσεις σας. Διαφορετικά μπορείτε να βάλετε στην άκρη το τεστ και να περιμένετε μέχρι να τελειώσει ο χρόνος εξέτασης της Γλώσσας.

3 SCAT (Advanced) Δείγματα Θεμάτων (5 λεπτά) Γλώσσα 1. αλφάβητο : γράμμα :: A μυθιστόρημα : μυστήριο B σύνθεση : γνώμη Γ ορχήστρα : όργανο Δ δεδομένα : ποσότητα 6. ψευδώνυμο : συγγραφέας :: A τίτλος : ευγενής B πτυχίο : υπότροφος Γ πλαστή ταυτότητα : παραβάτης Δ προσωπείο : ενδυματολόγος 2. μοσχάρι : αγελάδα :: A κουτάβι : σκύλος B φωλιά : πουλί Γ άλογο : ταύρος Δ καβούκι : χελώνα 7. μυωπία : μυωπική όραση :: A ίλιγγος : ζαλάδα B νεύρωση : ψύχωση Γ επιδημία : πυρετός Δ αποπληξία : θυμός 3. ακτινοβόλος : ζοφερός :: A νόστιμος : απολαυστικός B πανδαιμόνιο : οχλαγωγία Γ ατρόμητος : προφανής Δ επαρκής : ανεπαρκής 8. συμφωνία : νότα :: A γραφική παράσταση : άξονας B κώδικας : γλώσσα Γ μυθιστόρημα : διήγημα Δ ζωγραφική : πινελιά 4. εκτίμηση : αξιοθαύμαστος :: A απόρριψη : αντιγραμμένος B περιφρόνηση : απεχθής Γ φθόνος : απολυμένος Δ χάρη : αμφιλεγόμενος 9. ερημίτης : μοναχικός :: A δωρητής : θυσιαστικός B ιεροεξεταστής : κακεντρεχής Γ πεσιμιστής : αρνητικός Δ πολιτικός : εύγλωττος 5. ομοιότητα : καρικατούρα :: A ποίημα : τραγούδι B φωτογραφία : πορτρέτο Γ μυθοπλασία : αναφορικός λόγος Δ δράμα : παρωδία 10. διευθυντής : σχολείο :: A σύμβουλος : κυβέρνηση B εμπειρογνώμονας : δικαστήριο Γ γερουσιαστής : κογκρέσο Δ πρόεδρος: έθνος

4 Μέρος ΙΙ Μαθηματικά Σ αυτή την ενότητα εξετάζεται η ικανότητά σας στα Μαθηματικά. Σε κάθε θέμα δίνονται δύο ποσότητες, η μία στη Στήλη Α και η άλλη στη Στήλη Β. Να συγκρίνετε την ποσότητα της Στήλης Α με την ποσότητα της Στήλης Β και να καταλήξετε σε μία από τις παρακάτω απαντήσεις: A αν η ποσότητα της Στήλης Α είναι μεγαλύτερη B αν η ποσότητα της Στήλης Β είναι μεγαλύτερη Γ αν οι δύο ποσότητες είναι ίσες Δ αν οι πληροφορίες που δίνονται δεν είναι αρκετές ώστε να γίνει σύγκριση Διαβάστε προσεκτικά τα παρακάτω παραδείγματα: 1. 1 μέτρο 100 εκατοστά του μέτρου 12 εκ. 6 εκ. 10 εκ. 6 εκ. (Οι διαστάσεις των σχηµάτων µπορεί να µην αντιστοιχούν στις διαστάσεις που δίνονται ή που ζητούνται στο πρόβληµα) 2. Το εμβαδόν του Το εμβαδόν του παραπάνω ορθογώνιου παραπάνω ορθογώνιου παραλληλόγραμμου τριγώνου 3. 3x 2 + x Σημείωση: Τα γράμματα x, y και, z εκφράζουν πραγματικούς αριθμούς. Αν ένα συγκεκριμένο γράμμα εμφανίζεται και στις δύο στήλες μιας ερώτησης, τότε εκφράζει τον ίδιο αριθμό.

5 Οι σωστές απαντήσεις είναι: 1 Γ, 2 A, 3 Δ. Στο κανονικό τεστ έχετε στη διάθεσή σας 20 λεπτά, για να ολοκληρώσετε τα 50 θέματα σε αυτή την ενότητα. Στο παρόν δείγμα έχετε μόνο 10 θέματα, τα οποία καλείστε να απαντήσετε σε 5 λεπτά. Αν έχετε ακόμη χρόνο, μπορείτε να ελέγξετε τα θέματα των Μαθηματικών και τις απαντήσεις σας. Διαφορετικά μπορείτε να βάλετε στην άκρη το τεστ και να περιμένετε μέχρι να τελειώσει ο χρόνος εξέτασης των Μαθηματικών.

6 SCAT (Advanced) Δείγματα Θεμάτων (5 λεπτά) Μαθηματικά 1. 0, ,004 0, , ώρες και 40 λεπτά 7 ώρες και 20 λεπτά +2 ώρες και 40 λεπτά 40 λεπτά 2. Η τιμή του x Η τιμή του y αν 3x 1 = 14 αν 3y + 1 = % of x of x z < 8 3. z 6 4. Η τιμή ενός αριθμού Η τιμή ενός αριθμού αν το εξαπλάσιο αν το πενταπλάσιο του αριθμού είναι 6 του αριθμού είναι 5 8. Μία απόσταση Μία απόσταση 100 μέτρων του χιλιόμετρου ημέρες Ο αριθμός των ημερών του μήνα y 5. Ο μεγαλύτερος Ο μικρότερος περιττός αριθμός περιττός αριθμός που είναι που είναι μικρότερος του 29 μεγαλύτερος του (35 50) (35 5) + (35 10)

7 Απαντήσεις στα θέματα της Γλώσσας: Θέμα Απάντηση 1 Γ 2 A 3 Δ 4 B 5 Δ 6 Γ 7 A 8 Δ 9 Γ 10 Δ Απαντήσεις στα θέματα των Μαθηματικών: Θέμα Απάντηση 1 A 2 A 3 Δ 4 Γ 5 B 6 B 7 B 8 B 9 Δ 10 A

SCAT (Intermediate) Δείγματα Θεμάτων

SCAT (Intermediate) Δείγματα Θεμάτων SCAT (Intermediate) Δείγματα Θεμάτων Η μερική ή ολική ανατύπωση είτε η καθ' οιονδήποτε τρόπον αναπαραγωγή του διαγωνίσματος, καθώς και η φωτοτύπηση τμήματος ή ολόκληρου του διαγωνίσματος, χωρίς την έγγραφη

Διαβάστε περισσότερα

SCAT (Elementary) Δείγματα Θεμάτων

SCAT (Elementary) Δείγματα Θεμάτων SCAT (Elementary) Δείγματα Θεμάτων Η μερική ή ολική ανατύπωση είτε η καθ' οιονδήποτε τρόπον αναπαραγωγή του διαγωνίσματος, καθώς και η φωτοτύπηση τμήματος ή ολόκληρου του διαγωνίσματος, χωρίς την έγγραφη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ. Από τις 15 ασκήσεις να λύσετε μόνο τις 12. Κάθε άσκηση βαθμολογείται με πέντε μονάδες.

ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ. Από τις 15 ασκήσεις να λύσετε μόνο τις 12. Κάθε άσκηση βαθμολογείται με πέντε μονάδες. ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α : Από τις 15 ασκήσεις να λύσετε μόνο τις 1. Κάθε άσκηση βαθμολογείται με πέντε μονάδες. 1. Να κάνετε τις πράξεις: (α) 4αβ +10αβ αβ = (β) 3χψ4χ

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ

3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ 1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά Γ Δημοτικού Γ 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Γ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 01, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ.

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ 2.1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ. ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Στην πρώτη στήλη του παρακάτω πίνακα δίνονται κάποιες προτάσεις στην φυσική τους γλώσσα. Να συμπληρώσετε την δεύτερη στήλη

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1 Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3

Διαβάστε περισσότερα

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΘΕΜΑ Α Α1. Έστω μια συνάρτηση ff που έχει πεδίο ορισμού το ΔΔ. 1. Πότε η ffλέγεται συνεχής στο xx 0 ΔΔ ; 2. Πότε η ff λέγεται συνεχής; (Μονάδες

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις. ΚΕΦΑΛΑΙΟ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Σκοπός: Σκοπός του κεφαλαίου είναι αρχικά η υπενθύμιση βασικών εννοιών που αφορούν τον ορισμό, τις πράξεις και τη γραφική παράσταση της συνάρτησης αφ ενός και η μελέτη της

Διαβάστε περισσότερα

Το περιβάλλον προγραμματισμού MicroWorlds Pro

Το περιβάλλον προγραμματισμού MicroWorlds Pro Μενού επιλογών Το περιβάλλον προγραμματισμού MicroWorlds Pro Γραμμή εργαλείων Επιφάνεια εργασίας Περιοχή Καρτελών Κέντρο εντολών Εικόνα 2.1: Το περιβάλλον της MicroWorlds Pro. Καρτέλες Οι πρώτες εντολές

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι :

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι : ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 010 Χρόνος: 60 λεπτά Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Η τιμή της αριθμητικής παράστασης Α = 010 009 + 008 007 + 006 005 +...+ 4 3 + 1 είναι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ώρες (180 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Δρ. Απόστολος Ντάνης. Σχολικός Σύμβουλος Φυσικής Αγωγής

Δρ. Απόστολος Ντάνης. Σχολικός Σύμβουλος Φυσικής Αγωγής Δρ. Απόστολος Ντάνης Σχολικός Σύμβουλος Φυσικής Αγωγής *Βασικές μορφές προσανατολισμού *Προσανατολισμός με τα ορατά σημεία προορισμού στη φύση *Προσανατολισμός με τον ήλιο *Προσανατολισμός από τη σελήνη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

12ο Μάθημα ΣΧΕΣΗ ΒΑΡΟΥΣ ΚΑΙ ΜΑΖΑΣ

12ο Μάθημα ΣΧΕΣΗ ΒΑΡΟΥΣ ΚΑΙ ΜΑΖΑΣ 12ο Μάθημα ΣΧΕΣΗ ΒΑΡΟΥΣ ΚΑΙ ΜΑΖΑΣ Είναι διαφορετικά μεγέθη, αλλά σχετίζονται μεταξύ τους Στην καθημερινή ζωή, κάνουμε σύγχυση ανάμεσα στο βάρος και στη μάζα. Το βάρος όμως και η μάζα ενός σώματος είναι

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008 ΘΕΜΑΤΑ B Σεπτέμβριος 8. Να προσδιοριστούν με τη μέθοδο των ελαχίστων τετραγώνων οι συντελεστές a και b της εξίσωσης y = be a, ώστε να περιγράφει τα πειραματικά σημεία ( i, y i ), i =,,, N.. Να υπολογιστούν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

(f(x) + g(x)) = f (x) + g (x).

(f(x) + g(x)) = f (x) + g (x). ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1o ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 1 ΙΟΥΛΙΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΗΜΕΡΟΜΗΝΙΑ : 11 Ιουνίου 2007 (πρωί)

ΗΜΕΡΟΜΗΝΙΑ : 11 Ιουνίου 2007 (πρωί) ΕΥΡΩΠΑΪΚΟ ΑΠΟΛΥΤΗΡΙΟ 2007 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ : 11 Ιουνίου 2007 (πρωί) ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ : 4 ώρες (240 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΥΛΙΚΑ : Ευρωπαϊκό τυπολόγιο Υπολογιστής τσέπης απλός (χωρίς δυνατότητα

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

Υπολογισμός της σταθεράς του ελατηρίου

Υπολογισμός της σταθεράς του ελατηρίου Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 1. Σκοπός Το φωτοβολταϊκό στοιχείο είναι μία διάταξη ημιαγωγών η οποία μετατρέπει την φωτεινή ενέργεια που προσπίπτει σε αυτήν σε ηλεκτρική.. Όταν αυτή φωτιστεί με φωτόνια κατάλληλης συχνότητας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16-10- 2011. 1) α) Μονάδα μέτρησης ταχύτητας στο Διεθνές Σύστημα μονάδων (S.I.) είναι το 1Km/h.

ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16-10- 2011. 1) α) Μονάδα μέτρησης ταχύτητας στο Διεθνές Σύστημα μονάδων (S.I.) είναι το 1Km/h. ΔΙΑΓΏΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 16- - 2011 ΘΕΜΑ 1 0 Για τις ερωτήσεις 1-5, αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δεξιά από αυτόν, το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς:

Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς: Λύνω τις ασκήσεις 1. Γράφω δίπλα με ψηφία τους παρακάτω αριθμούς: Εκατόν ενενήντα εννέα:.. Τριακόσια ένα: Τετρακόσια πενήντα οκτώ:... Πεντακόσια εννέα:.. Οχτακόσια ογδόντα οκτώ:.... Εννιακόσια δύο: Εννιακόσια

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΥΜΝΑΣΙΟΥ 2. ΜΑΓΝΗΤΙΣΜΟΣ

ΦΥΣΙΚΗ ΓΥΜΝΑΣΙΟΥ 2. ΜΑΓΝΗΤΙΣΜΟΣ ΦΥΣΙΚΗ ΓΥΜΝΣΙΟΥ 1. ΟΠΤΙΚΗ νάκλαση Διάθλαση μονοχρωματικής ακτίνας Κυρτοί και κοίλοι καθρέπτες Συγκλίνοντες αποκλίνοντες φακοί Διάθλαση ολική ανάκλαση σε πρίσμα παιτούμενα υλικά: Φακός ακτίνων λέιζερ, επίπεδος

Διαβάστε περισσότερα

Βιτσέντζου Κορνάρου: Ερωτόκριτος β. [Ήρθεν η ώρα κι ο καιρός] (στίχοι 767-818) (Κ.Ν.Λ. Α Λυκείου, σσ. 80-82)

Βιτσέντζου Κορνάρου: Ερωτόκριτος β. [Ήρθεν η ώρα κι ο καιρός] (στίχοι 767-818) (Κ.Ν.Λ. Α Λυκείου, σσ. 80-82) 1. KEIMENO Βιτσέντζου Κορνάρου: Ερωτόκριτος β. [Ήρθεν η ώρα κι ο καιρός] (στίχοι 767-818) (Κ.Ν.Λ. Α Λυκείου, σσ. 80-82) 2. ΠΑΡΑ ΕΙΓΜΑΤΑ ΕΡΩΤΗΣΕΩΝ 2.1. Παραδείγµατα ερωτήσεων ελεύθερης ανάπτυξης 1. Σε ποιο

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΟ φροντιστήριο ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Θέµα ο κ ΙΑΓΩΝΙΣΜΑ Α Α. ώστε τον ορισµό της υπερβολής και γράψτε τις εξισώσεις των ασύµπτωτων της ( C ): (Μονάδες 9) α β Β. Να διατυπώσετε τέσσερις

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB

Διαβάστε περισσότερα

Όλες οι απαντήσεις. Μαθηματικά Γ Δημοτικού

Όλες οι απαντήσεις. Μαθηματικά Γ Δημοτικού Όλες οι απαντήσεις Μαθηματικά Γ Δημοτικού ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Γ Δημοτικού Σειρά: Τα εκπαιδευτικά μου βιβλία / Δημοτικό / Μαθηματικά Γιάννης Ζαχαρόπουλος, Όλες οι απαντήσεις:

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου) Kangourou Sans Frontières αγκουρό Ελλάς Επώνυµο:... Όνοµα:... Όνοµα πατέρα:... e-mail:... ιεύθυνση:... Τηλέφωνο:... Εξεταστικό έντρο:... Σχολείο προέλευσης:... Τάξη:... Θέµατα αγκουρό 007 Επίπεδο: 4 (για

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα