ΑΣΚΗΣΗ 1 η. Μέτρηση ταχύτητας επιτάχυνσης σώματος κινούμενου σε ευθύγραμμη τροχιά 1 ος 2 ος νόμος του Νεύτωνα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΗ 1 η. Μέτρηση ταχύτητας επιτάχυνσης σώματος κινούμενου σε ευθύγραμμη τροχιά 1 ος 2 ος νόμος του Νεύτωνα"

Transcript

1 ΑΣΚΗΣΗ 1 η Μέτρηση ταχύτητας επιτάχυνσης σώματος κινούμενου σε ευθύγραμμη τροχιά 1 ος 2 ος νόμος του Νεύτωνα Μελέτη ανάπτυξη: Ο. Βαλασιάδης,. Ευαγγελινός,. Ψύλλος Αρχική ανάπτυξη λογισμικού:. Ευαγγελινός Προσαρμογή λογισμικού σε PC: Α. Μπότσαρης, Ε. Χατζηκρανιώτης

2

3 75 ΜΕΤΡΗΣΗ ΤΑΧΥΤΗΤΑΣ ΕΠΙΤΑΧΥΝΣΗΣ ΣΩΜΑΤΟΣ ΚΙΝΟΥΜΕΝΟΥ ΣΕ ΕΥΘΥΓΡΑΜΜΗ ΤΡΟΧΙΑ 1 ος, 2 ος ΝΟΜΟΣ ΤΟΥ ΝΕΥΤΩΝΑ 1. Σκοπιμότητα της άσκησης Με την άσκηση αυτή στο εργαστήριο, παρέχεται η δυνατότητα να παρατηρήσουμε συστηματικά τα χαρακτηριστικά μεγέθη της κίνησης ενός σώματος, του οποίου μπορούμε να ελέγχουμε τις δυνάμεις που ενεργούν επάνω του. Με την καταγραφή των παρατηρήσεων και την κατάλληλη επεξεργασία των τιμών ως προς τη διασπορά τους, μπορούμε να συμπεράνουμε εάν επιβεβαιώνονται οι προβλέψεις μας σύμφωνα με τους νόμους που περιγράφουν το φαινόμενο και σχετίζονται με τις δυνάμεις που γνωρίζουμε ότι ενεργούν στο κινητό. Στην περίπτωση που διαπιστώνουμε συστηματικές αποκλίσεις από τις προβλεπόμενες τιμές, η μελέτη των χαρακτηριστικών μεγεθών και η εξέλιξη τους κατά μήκος της τροχιάς, παρέχει τη δυνατότητα να διαπιστώσουμε την ύπαρξη δυνάμεων που δεν είχαμε προβλέψει και να προσδιορίσουμε τα μεγέθη τους. Επίσης με την παραπάνω διαδικασία μπορούμε να ερμηνεύσουμε τη συμπεριφορά του κινητού υπό την επίδραση τοπικών δυνάμεων (διαταραχές σε τμήμα της τροχιάς). Η αναγκαία εξοικείωση με το σύστημα ελεγχόμενης κίνησης συντελεί στην ανάπτυξη δεξιότητας χρήσης μικροσυσκευών σε σχέση με το βαθμό αποτελεσματικού ελέγχου της κίνησης. Η χρήση του συστήματος καταγραφής-προβολής των δεδομένων κίνησης με τρόπους που προβλέπει η θεωρία της κινηματικής συμβάλλει στην ικανότητα συσχέτισης πειράματος- θεωρίας ή με άλλη λόγια παρατήρησης-πρόβλεψης. 2. Συμβάσεις και στοιχεία θεωρίας 2.1 Συμβάσεις Όλα τα πειράματα τα οποία θα εκτελέσουμε αφορούν την κινηματική μελέτη ενός στερεού σώματος που εκτελεί ευθύγραμμη μεταφορική κίνηση. Επομένως, είναι δυνατόν να ανάγουμε τα μεγέθη της κίνησής του σε μια μόνο διάσταση. Τα διανυσματικά μεγέθη τα οποία υπεισέρχονται στη μελέτη των πειραμάτων αντικαθίστανται ισοδύναμα από τις αλγεβρικές τιμές τους και οι πράξεις που απαιτούνται έχουν τη μορφή απλών αλγεβρικών πράξεων. Επίσης, η κατασκευή και στήριξη του ιππέα πάνω στον αεροδιάδρομο επιτρέπουν μόνο την ευθύγραμμη μεταφορική κίνησή του, επομένως η επίδραση δυνάμεων πάνω σ' αυτό ανάγεται στη δυναμική υλικού σημείου. Σύμφωνα με τα παραπάνω, έπεται ότι είναι αρκετό για το κινούμενο σώμα να προσδιοριστεί η μάζα του. Οι δύο συνθήκες που αναφέραμε προηγουμένως απλοποιούν κατά πολύ την παρατήρηση και έλεγχο της κίνησης του σώματος, καθώς και την επεξεργασία των μεγεθών που υπεισέρχονται. Περιορίζουν όμως ταυτόχρονα και τη μελέτη των φαινομένων της κίνησης.

4 76 Τα θεμελιώδη φυσικά μεγέθη που περιγράφουν την κίνηση του σώματος κάτω από τις συνθήκες που περιγράψαμε παραπάνω είναι οι συντεταγμένες του σε χώρο και χρόνο καθώς και η μάζα. Τα βασικά φυσικά μεγέθη με τα οποία μπορούμε να περιγράψουμε την κίνηση του σώματος και να προβλέψουμε την εξέλιξή της κάτω από δεδομένες συνθήκες είναι η ταχύτητα και η επιτάχυνσή του. Οι θεμελιώδεις αργές οι οποίες συσχετίζουν την κινητική συμπεριφορά και τις αλλαγές της, με τις δυνάμεις οι οποίες επιδρούν επί του σώματος αποδίδονται από τους νόμους του Νεύτωνα. Στη συνέχεια αναφέρονται οι ορισμοί και μαθηματικές εκφράσεις των βασικών μεγεθών και νομοτελειών. Σε κάθε περίπτωση παρατίθενται σχόλια που συσχετίζουν την εκάστοτε έκφραση των φυσικών μεγεθών με τις τιμές που προκύπτουν από τη διάταξη κατά την εκτέλεση του αντίστοιχου πειράματος και τις αναγκαίες προϋποθέσεις ισχύος του συσχετισμού τους. 2.2 Ταχύτητα κινουμένου σώματος Ως ταχύτητα ενός κινητού ορίζουμε το ρυθμό με τον οποίο η θέση του μεταβάλλεται ως προς τον χρόνο. Αριθμητικά, η ταχύτητα ισούται με το διάστημα που καλύπτει το κινητό στη μονάδα του χρόνου. Διακρίνουμε δύο είδη: τη μέση ταχύτητα και τη στιγμιαία. Μέση ταχύτητα (υ μ ) Για να βρούμε τη μέση ταχύτητα (υ μ ενός σώματος απαιτείται να γνωρίζουμε τη θέση του σε δύο διαφορετικά σημεία της τροχιάς του x 1, x 2 και το χρονικό διάστημα που χρειάσθηκε για να μετακινηθεί από το ένα σημείο στο άλλο. Τότε u m x - x Dx t -t Dt 2 1 = = 2 1 (1) Η τιμή την οποία βρίσκουμε είναι αντιπροσωπευτική για το τμήμα της τροχιάς (x 1, x 2 ) του κινητού αλλά διαφέρει από την πραγματική για (σχεδόν) κάθε χρονική στιγμή, εάν το σώμα δεν ακολουθεί την ομαλή κίνηση (υ = σταθ.). Στιγμιαία ταχύτητα (υ σ ) Εάν το σώμα ακολουθεί μη ομαλή κίνηση, η ταχύτητά του μεταβάλλεται. Η τιμή της εξαρτάται από το ζεύγος των σημείων της τροχιάς που θα θεωρήσουμε (Εξ. 1). Τότε, αυτό που χαρακτηρίζει την κίνηση είναι η ταχύτητα του σώματος σε κάθε σημείο της τροχιάς του, την οποία αποκαλούμε στιγμιαία ταχύτητα (υ σ ). Την υ σ προσδιορίζουμε εφαρμόζοντας την Εξ. (1) εφόσον το δεύτερο επιλεγόμενο σημείο x 2 τείνει να συμπέσει με το πρώτο, το x 1. Σ' αυτή την περίπτωση η προδιάθεση σύμπτωσης των δύο σημείων x 2 και x 1 συνεπάγεται τον οριακό μηδενισμό του χρονικού διαστήματος Δt, διότι τείνουμε να περιγράψουμε το αυτό σημείο της τροχιάς το οποίο χαρακτηρίζεται από μια χρονική στιγμή και μόνον. Η μαθηματική έκφραση που αποδίδει τον παραπάνω συλλογισμό είναι η ακόλουθη, προερχόμενη από την Εξ. (1) όταν το Δt τείνει στο μηδέν Dx dx u s = lim = (2) D t 0 Dt dt

5 77 Στην πραγματικότητα, αλλά και σε κάθε πείραμα μετρήσεων κινηματικής σαν και αυτά που θα εκτελέσουμε, η στιγμιαία ταχύτητα μπορεί να αποδοθεί στο μικρότερο εκείνο διάστημα για το οποίο είναι δυνατόν να προσδιορισθεί πειραματικά ο χρόνος τον οποίο χρειάσθηκε το κινητό για να το καλύψει. Επειδή το μικρότερο διάστημα εφικτής μέτρησης είναι το βήμα Δs μιας σπείρας του σπειράματος, η στιγμιαία ταχύτητα του κινητού θα αντιστοιχεί σε κάθε μια σπείρα (ί) και θα ισούται με i Ds u s = (3) ( D t) i Φυσικά, η παραπάνω αναγκαιότητα οδηγεί σε προσέγγιση της πραγματικής κατάστασης του κινητού και εξαρτάται από τα κριτήρια και τις προσδοκίες μας εάν θα την θεωρήσουμε ικανοποιητική ή θα περιορισθούμε μόνο σε συμπεράσματα της δεδομένης προσέγγισης. i Το κύριο συμπέρασμα από τις μετρήσεις της u, σύμφωνα με την Εξ. (3.3), αφορά το ερώτημα s αν το σύνολο των δυνάμεων που ενεργούν πάνω στο σώμα έχουν άθροισμα μηδέν ή καμιά δύναμη δεν δρα επί του σώματος. 2.3 Επιτάχυνση (α) Με όμοιο τρόπο ορίζουμε ως επιτάχυνση ενός κινητού το ρυθμό με τον οποίο μεταβάλλεται η ταχύτητά του με το χρόνο. Αριθμητικά η επιτάχυνση ισούται με τη μεταβολή της ταχύτητας στη μονάδα του χρόνου. Διακρίνουμε και πάλι δύο είδη, τη μέση επιτάχυνση και τη στιγμιαία τα οποία ορίζονται με όμοιο τρόπο όπως και τα είδη ταχύτητας, εάν αντί της θέσης του κινητού θεωρήσουμε τη στιγμιαία ταχύτητα που το χαρακτηρίζει στη θέση αυτή. Μέση επιτάχυνση (α μ ) Εάν γνωρίζουμε τις στιγμιαίες ταχύτητες του σώματος υ 2, υ 1 στις αντίστοιχες θέσεις του x 2, x 1 και το χρονικό διάστημα t 2 t 1 που χρειάσθηκε για να μετακινηθεί από το ένα σημείο χ, στο χ 2, τότε: a m u - u Du t -t Dt 2 1 = = 2 1 (4) Η τιμή την οποία βρίσκουμε είναι αντιπροσωπευτική για το διάστημα x 2, x 1 και είναι δυνατόν να διαφέρει της πραγματικής για ορισμένη χρονική στιγμή, εάν το κινητό δεν ακολουθεί ομαλά επιταχυνόμενη ή ομαλά επιβραδυνόμενη κίνηση (α = σταθ.). Στιγμιαία επιτάχυνση (α σ ) Στην περίπτωση που το σώμα ακολουθεί κίνηση μη ομαλά επιταχυνόμενη, ή επιβραδυνόμενη, η μεταβαλλόμενη επιτάχυνση του απαιτείται να προσδιορισθεί σε κάθε σημείο της τροχιάς του, οπότε οδηγούμαστε στον προσδιορισμό της στιγμιαίας επιτάχυνσης (α σ ). Η α σ προσδιορίζεται με τον ίδιο ακριβώς συλλογισμό με τον οποίο προσδιορίσαμε τη στιγμιαία ταχύτητα και έχει παρόμοια μαθηματική έκφραση: Du du a = lim = (5) s D t 0 Dt dt

6 78 Στην πραγματικότητα και πάλι, όπως και στα πειράματα, η στιγμιαία επιτάχυνση αποδίδεται στο μικρότερο εκείνο διάστημα για το οποίο είναι δυνατόν να διαπιστωθεί πειραματικά εάν η ταχύτητα του κινητού έχει αλλάξει ή παρέμεινε σταθερή. Είναι φανερό ότι το ελάχιστο αυτό απαιτούμενο διάστημα, στην προκειμένη πειραματική διάταξη, είναι ίσο με αυτό δύο διαδοχικών σπειρών στις οποίες μπορούμε να μετρήσουμε την ενδεχόμενη αλλαγή της υ σ (Εξ. 3). Η αντίστοιχη έκφραση της α σ συναρτήσει των πρωτογενών μεγεθών για δύο διαδοχικές σπείρες (i 1) (i), είναι: Ds Ds - Du u -u Dt Dt 2 1 i i-1 a = = = (6) s Dt t -t D t +Dt 2 1 i i-1 Από την έκφραση αυτή, και λαμβάνοντας υπόψη τους τύπους διάδοσης των σφαλμάτων, συμπεραίνεται ότι η ακρίβεια στον προσδιορισμός της α σ, σε σύγκριση με τον προσδιορισμό της υ σ (Εξ. 3) οδηγεί σε μεγαλύτερη διασπορά των τιμών της επιτάχυνσης. Με άλλα λόγια, οι μετρήσεις της α σ απαιτούν μεγαλύτερη προσοχή από ότι αυτές που αφορούν την υ σ. Οι παραπάνω παρατηρήσεις χρησιμεύουν να συγκρίνουμε μεγέθη και καταστάσεις ώστε να μπορούμε να ελέγξουμε ενδεχόμενα συμπεράσματα, αν και κατά πόσο οι δυνάμεις που δρουν πάνω στο κινητό (τις οποίες συμπεραίνουμε από τις πειραματικές μετρήσεις της επιτάχυνσης) είναι οι αναμενόμενες και έχουν σταθερή τιμή, ή παρεμβαίνουν άλλες δυνάμεις τις οποίες δεν είχαμε προβλέψει. 3. Πειραματική διάταξη 3.1 Συνοπτική περιγραφή της διάταξης Η πειραματική διάταξη αποτελείται από τις ακόλουθες μονάδες (Σχ.1): α) Τον αεροδιάδρομο πάνω στον οποίο το κινούμενο σώμα (ιππέας), διαγράφει την τροχιά του. β) Το σύστημα αισθητήρα με το οποίο καταγράφονται στοιχεία της πορείας του κινητού. γ) Τον μετατροπέα (αναλογικό/ψηφιακό) μέσω του οποίου μεταβιβάζονται με κατάλληλη μορφή προς επεξεργασία, τα καταγραφόμενα στοιχεία (δεδομένα τροχιάς) δ) Τον ηλεκτρονικό υπολογιστή (Η/Υ) με τον οποίο τα δεδομένα παρατήρησης καταχωρούνται, επεξεργάζονται, αποθηκεύονται και προβάλλονται στο χρήστη με επιλεγμένο τρόπο ε) Τη μονάδα συγχρονισμού η οποία ενεργοποιείται από το χρήστη και επιβάλλει ταυτόχρονη εκκίνηση του κινητού και της καταγραφής της τροχιάς του.

7 79 Χρήστης Συγχρονισμός εκκίνησης Αεροδιάδρομος Η/Υ Αισθητήρας Γραφική επεξεργασία Αριθμητική επεξεργασία Interface Μετατροπέας αναλογικού σε ψηφιακό Αποθήκευση Ψηφιακή είσοδος Σχήμα 1. Λειτουργικό διάγραμμα της διάταξης του αεροδιαδρόμου 3.2 Περιγραφή ρύθμιση αεροδιάδρομου (Σχήμα 2) Σχήμα 2. Διάταξη αεροδιάδρομου με τους κοχλίες ρύθμισης α, β, γ. Ο αεροδιάδρομος αποτελείται από ευθύγραμμο μεταλλικό σωλήνα ορθογώνιας διατομής, ο οποίος έχει δυνατότητα οριζοντιώσεως με σύστημα τριών μικρομετρικών κοχλιών (α), (β), (γ). Οι κοχλίες αυτοί αντιστοιχούν στα μόνα σημεία στήριξης του αεροδιαδρόμου με τον πάγκο εργασίας. Ο ορθογώνιος σωλήνας μήκους περίπου 2.5 m στηρίζεται με τρόπο ώστε η μια του ακμή (δ ε) να αποτελεί το ανώτατο άκρο του, οι δύο δε εκατέρωθεν διαδοχικές πλευρές του να έχουν την αυτή πλευρική κλίση (φ = 45 ) ως προς το οριζόντιο επίπεδο. Η κλίση αυτή επιτυγχάνεται με τους δύο μικρότερους κοχλίες (α) και (β). Ο τρίτος και μεγαλύτερος κοχλίας (γ) που ρυθμίζει το ύψος του αναβατόριου, χρησιμεύει στην οριζοντίωση του αεροδιάδρομου αλλά και στην επίτευξη επιθυμητής κλίσης της ακμής (δ ε) ως προς το οριζόντιο επίπεδο, δηλαδή την κατασκευή ενός κεκλιμένου επιπέδου προκαθορισμένης κλίσης.

8 80 Η κατασκευή του αεροδιάδρομου είναι τέτοια ώστε η ρύθμιση πλευρικής κλίσης 45 (κοχλίες α, β) να μην επηρεάζει και να μην επηρεάζεται από τη ρύθμιση οριζοντιώσεως ή επιθυμητής κλίσης του κεκλιμένου επιπέδου (κοχλίας γ). Ο ορθογώνιος μεταλλικός σωλήνας φέρει στις δύο πάνω διαδοχικές πλευρές του, δίκτυο από τρύπες σε κανονικά διαστήματα ώστε να επιτρέπεται η ομοιόμορφη εκροή αέρος υπό πίεση καθ' όλο το μήκος του. Ο υπό πίεση αέρας παράγεται από κατάλληλο αεροσυμπιεστή (ζ) σταθερής παροχής και πίεσης αέρος, ο οποίος συνδέεται με εύκαμπτο αγωγό (η) με το ορθογώνιο μεταλλικό σωλήνα χωρίς να διαταράσσει τις ρυθμίσεις πλευρικής κλίσης ή οριζοντίωσης. Στην επάνω ακμή (δ ε) του ορθογώνιου σωλήνα τοποθετείται το κινητό που στις διατάξεις αεροδιαδρόμου ονομάζεται ιππέας (θ), το οποίο αποτελείται από δύο μεταλλικές επιφάνειες σε ορθογώνιο σχηματισμό. Το πλάτος των δύο επιφανειών του ιππέα είναι αρκετό ώστε να υπερκαλύπτει το δίκτυο με τις τρύπες εκροής αέρα. Ο ιππέας έχει μάζα περίπου 150 g, μήκος περίπου ίσο με 18 cm, φέρει κατάλληλες υποδοχές στήριξης εξαρτημάτων και έναν μικρό φυσικό μαγνήτη κατάλληλα διαμορφωμένο. Λόγω της κατασκευής και στήριξης του ιππέα με τον τρόπο που αναφέρθηκε, ο υπό πίεση αέρας που εκρέει από τις τρύπες εγκλωβίζεται στιγμιαία μεταξύ των μεταλλικών επιφανειών του ιππέα και των επιφανειών του αεροδιάδρομου, δημιουργώντας δύο ανυψωτικές δυνάμεις κάθετα στις αντίστοιχες επιφάνειες του ιππέα. Η συνισταμένη των δύο αυτών δυνάμεων οφείλει να έχει φορέα την κατακόρυφο διεύθυνση της βαρύτητας και φορά αντίθετη προς αυτή ώστε να μπορεί να την εξουδετερώνει. Η σκοπιμότητα αυτή δικαιολογεί και την ανάγκη ρύθμισης της πλευρικής κλίσης του αεροδιάδρομου. Με τις παραπάνω απαιτούμενες ρυθμίσεις επιτυγχάνεται η συνεχής παρεμβολή λεπτού στρώματος αέρα ανάμεσα στον ιππέα και τον αεροδιάδρομο, οπότε εκμηδενίζονται σχεδόν οι τριβές κατά τη μεταξύ τους σχετική κίνηση. Το στρώμα αυτό αέρα, πάχους περίπου mm, οφείλει να είναι ισοπαχές και το αυτό στις δύο επιφάνειες του ιππέα. Το γεγονός αυτό αποτελεί το κριτήριο καλής ρύθμισης του αεροδιάδρομου (σωστή πλευρική κλίση), ανεξάρτητα εάν βρίσκεται στην οριζόντια θέση ή βρίσκεται σε επιθυμητή κλίση ως προς το οριζόντιο επίπεδο. Τυχόν αποκλίσεις από τα παραπάνω αναφερόμενα εισάγουν φαινόμενα τριβής τυχαίου ή συστηματικού χαρακτήρα, τα οποία παρεμβαίνουν έντονα στις μετρήσεις. Όρια ρυθμίσεων: Ως προς την σωστή πλευρική κλίση, οι επιβαλλόμενες ρυθμίσεις είναι μικρές διορθωτικές κινήσεις των κοχλιών (α) και (β), οι οποίοι πρέπει να ασφαλίζονται ξανά με τη σύσφιξη των κατάλληλων κοχλιών και να μη γίνονται άλλες επεμβάσεις μετά από μια ικανοποιητικής ρύθμιση, εκτός εάν προκύψει ανάγκη μετά από ελεγμένες μετρήσεις. Οι ρυθμίσεις αυτές ελέγχονται τακτικά από το προσωπικό του εργαστηρίου και δεν χρειάζεται να επέμβετε σε αυτές. Ως προς την οριζόντια ρύθμιση, κριτήριο αποτελεί η ικανοποιητική ακινητοποίηση του ιππέα στο μέσον περίπου του αεροδιάδρομου, όταν αυτός αφήνεται ελεύθερος να κινηθεί, όπως περιγράφεται σε επόμενη παράγραφο. Τέλος,, ως προς τον καθορισμό μιας επιθυμητής κλίσης ως προς το οριζόντιο επίπεδο (κίνηση σε κεκλιμένο επίπεδο), αυτή εξαρτάται από την υψομετρική θέση του αναβατόριου, η οποία μπορεί να μετρηθεί με την βοήθεια της κατακόρυφης κλίμακας (I), πάνω στην οποία έχει προηγουμένως ορισθεί η σχετική θέση μηδενός που αντιστοιχεί στη ρύθμιση οριζοντιώσεως του αεροδιάδρομου.

9 81 Η μέγιστη κατακόρυφη μετατόπιση του αεροδιαδρόμου δεν πρέπει να είναι μεγαλύτερη από ± 6 cm για την καλή λειτουργία της διάταξης. 3.3 Περιγραφή-λειτουργία αισθητήρα (Σχ. 3) Κατά μήκος του αεροδιαδρόμου είναι προσαρτημένο ένα χάλκινο μονωμένο σπείραμα μορφής μαιάνδρου, το οποίο ανιχνεύει τη διέλευση ενός μικρού φυσικού μαγνήτη (Μ) πάνω από τις σπείρες του. Ο μαγνήτης, ο οποίος είναι προσαρτημένος σταθερά επάνω στον ιππέα, επάγει στο σπείραμα παλμούς ηλεκτρεγερτικής δύναμης, λόγω μεταβολής της μαγνητικής ροής κάθε φορά που αυτός εισέρχεται ή εξέρχεται από μια σπείρα. Οι παλμοί αυτοί, αφού ενισχυθούν και σχηματοποιηθούν κατάλληλα από τον Μετατροπέα, οδηγούνται στον Η/Υ. Ο υπολογιστής διαθέτει ένα εσωτερικό χρονομετρητή, διακριτικής ικανότητας 10 microsecond και επομένως είναι σε θέση να χρονομετρεί τις διαδοχικές διελεύσεις του μαγνήτη πάνω από τις σπείρες του μαιάνδρου καθώς ο ιππέας κινείται. Σχήμα 3. Αρχή λειτουργίας του αισθητήρα. Το πρόγραμμα του υπολογιστή στη συνέχεια καταχωρεί τα μετρούμενα χρονικά διαστήματα (Δt i ) σύμφωνα με τον αύξοντα αριθμό (i) της αντίστοιχης σπείρας, τις αποθηκεύει, τις επεξεργάζεται και τις προβάλλει στην οθόνη σύμφωνα με τις εντολές που δέχεται από το χρήστη της διάταξης. Τα όρια της εύρυθμης λειτουργίας του μετατροπέα ο οποίος κωδικοποιεί και στέλνει την πληροφορία στον Η/Υ αντιστοιχούν σε μέγιστο χρόνο διέλευσης από μια σπείρα Δt max.5 sec και ελάχιστο χρόνο Δt min 0.01 sec. 3.4 Πρωτογενή πειραματικά μεγέθη Σύμφωνα με τα χαρακτηριστικά του αισθητήρα καταγραφής (Παρ. 3.3) το φυσικό μέγεθος το οποίο άμεσα καταγράφεται από τη διάταξη είναι οι χρόνοι διέλευσης (Δt i ) του φυσικού μαγνήτη (επομένως και του ιππέα) από την αντίστοιχη σπείρα (i) του σπειράματος. Ο αύξων αριθμός (i) της σπείρας μπορεί να προσδιοριστεί εφόσον γνωρίζουμε τη θέση της αντίστοιχης σπείρας που βρισκόταν ο φυσικός μαγνήτης κατά την εκκίνηση των μετρήσεων. Επομένως, τα ζεύγη τιμών Δt i και i (για κάθε σπείρα) αποτελούν τα πρωτογενή πειραματικά μεγέθη που προκύπτουν από την συγκεκριμένη πειραματική διάταξη και τεχνική ανίχνευσης της

10 82 κίνησης. Αυτά είναι και τα μεγέθη τα οποία αντιλαμβάνεται ο Η/Υ, μέσω της ψηφιακής του εισόδου, η οποία είναι η παράλληλη θύρα εκτυπωτή που διαθέτει. Επομένως, εάν ορίσουμε τη στιγμή εκκίνησης των μετρήσεων ως αρχή των χρόνων t 0 = 0 και την αντίστοιχη αρίθμηση σπείρας ως μηδενική (i = 0), τότε σε τυχαία θέση (i) του αεροδιαδρόμου κατά την κίνηση του ιππέα, αυτός θα έχει προσπεράσει Ν αριθμό σπειρών και θα έχει παρέλθει αντίστοιχα χρονικό διάστημα t t i N = å ( Dt) (5) i i= 0 Tο διάστημα x i το οποίο διένυσε ο ιππέας από την εκκίνησή του έως ότου φθάσει στην θέση (i) μπορούμε να το προσδιορίσουμε εάν γνωρίζοντας ότι Δs είναι γνωστό και ότι οι σπείρες είναι πανομοιότυπες, οπότε x = N D s (6) i Οι παραπάνω δύο σχέσεις (5) και (6) δίνουν τις συντεταγμένες του ιππέα σε χώρο και χρόνο και θεωρούνται ως τα πρωτογενή πειραματικά μεγέθη που προκύπτουν από τη διάταξη. 3.5 Σφάλματα στα πρωτογενή μεγέθη Η έναρξη των μετρήσεων στη διάταξη γίνεται από τη στιγμή που θα σημειωθεί διέλευση του μαγνήτη του ιππέα από το πρώτο άκρο της σπείρας, από το οποιοδήποτε σημείο εκκίνησής του πάνω στον αεροδιάδρομο. Ομοίως, κάθε μέτρηση χρονικού διαστήματος (Δt) i ολοκληρώνεται όταν ο μαγνήτης του ιππέα προσπεράσει την εκάστοτε σπείρα (i) του σπειράματος. Σύμφωνα με τα παραπάνω, έπεται ότι στην προκείμενη διάταξη πρώτα ορίζονται τα σημεία έναρξης και λήξης στον χώρο (αρχική και τελική σπείρα) στα οποία θα γίνουν μετρήσεις και στη συνέχεια καταμετράται ο χρόνος που απαιτείται ο ιππέας να καλύψει την απόσταση αυτή. Άρα, με τη μέθοδο καταγραφής που χρησιμοποιούμε, ανεξάρτητη μεταβλητή είναι η θέση του κινητού (αύξων αριθμός σπείρας) και εξηρτημένη μεταβλητή είναι ο χρόνος. Σε πρώτη ματιά, ο αύξων αριθμός σπείρας έχει διακριτές ακέραιες τιμές και δεν επιδέχεται την εισαγωγή σφάλματος. Δηλαδή ο μαγνήτης του ιππέα ή θα έχει προσπεράσει μια σπείρα ή όχι, όπως κάθε ψηφιακός μετατροπέας. Αν θεωρήσουμε ότι όλες οι σπείρες έχουν το ίδιο βήμα το οποίο είναι γνωστό με ακρίβεια της τάξης του δεκάτου του mm ή και μεγαλύτερη, μπορούμε αρχικά να θεωρήσουμε ότι στον προσδιορισμό του μήκους έχουμε ακρίβεια της τάξης του ±0.05 cm ή m. Υποθέτουμε βέβαια ότι το βήμα της κάθε σπείρας είναι πανομοιότυπο και σταθεράς τιμής Δs, πράγμα όμως το οποίο δεν αληθεύει, λόγω κατασκευαστικών δυσκολιών του σπειράματος. Όσον αφορά την μέτρηση του χρόνου διέλευσης του μαγνήτη από μια σπείρα ή μεταξύ δύο σπειρών, επίσης σε μια πρώτη ματιά θα μπορούσαμε να θεωρήσουμε ότι επειδή ο χρονομετρητής του Η/Υ έχει μεγάλη διακριτική ικανότητα (~10 microsecond) η μέτρηση των χρονικών διαστημάτων (Δt) i, σαν εναλλαγές σήματος της ψηφιακής εισόδου, είναι εξαιρετικά ακριβής. Στην πράξη όμως, υπάρχουν διάφορες πηγές σφάλματος στον καθορισμό της χρονικής στιγμής κατά την οποία συμβαίνει μια διέλευση. Η πρώτη πηγή σφάλματος είναι η κατασκευαστική ανομοιομορφία του σπειράματος που περιγράψαμε παραπάνω. Η επίδραση όμως αυτού του σφάλματος σε διάστημα πολλών σπειρών

11 83 τείνει να εξουδετερώνεται. Πράγματι, αν μια σπείρα είναι κατά τι μικρότερη από το κανονικό, η επόμενη θα είναι κατά τι μεγαλύτερη, με συνέπεια ο αντίστοιχος χρόνος διέλευσης στην περίπτωση ομαλής κίνησης του ιππέα να είναι αντίστοιχα λίγο μικρότερος και λίγο μεγαλύτερος από τον πραγματικό. Σε ένα διάγραμμα υ t μιας απόλυτα ομαλής κίνησης και με έναν ιδανικής κατασκευής μετατροπέα, θα διαπιστώναμε ότι οι αποκλίσεις των πειραματικών σημείων από μια οριζόντια ευθεία που αναπαριστά την θέση του μέσου όρου των μετρήσεων είναι εναλλάξ θετικές και αρνητικές, δηλαδή έχουν τον χαρακτήρα τυχαίων σφαλμάτων. Επίσης, ο Μετατροπέας αναλογικού σε ψηφιακό σήμα εισάγει δύο είδη σφάλματος. Το πρώτο οφείλεται στον ηλεκτρονικό θόρυβο του εσωτερικού ενισχυτή των πολύ μικρού πλάτους παλμών επαγωγικής τάσης (~50 μv) που παράγει ο μαγνήτης κατά την διέλευσή του από τις σπείρες. Πράγματι, στην επαγωγική τάση που παράγεται από το σπείραμα προστίθεται ο ηλεκτρονικός θόρυβος και ενισχύεται και αυτός, με αποτέλεσμα η χρονική στιγμή διέλευσης του μαγνήτη από κάθε σπείρα όταν ο ιππέας κινείται με απόλυτα σταθερή ταχύτητα να παρουσιάζει μια αβεβαιότητα στον προσδιορισμό της. Επειδή ο ηλεκτρονικός θόρυβος είναι τυχαίας φύσης, η επίδρασή του σε διάστημα πολλών σπειρών τείνει να εξουδετερώνεται, έχει δηλαδή τον χαρακτήρα τυχαίου σφάλματος. Το δεύτερο είδος σφάλματος που προέρχεται από τον Μετατροπέα οφείλεται στο κατώφλι ανίχνευσης της κίνησης του κινητού από τον μετατροπέα. Όταν η ταχύτητα του ιππέα είναι μικρή, οι παλμοί επαγωγικής τάσης έχουν μεγάλο χρονικό εύρος και μικρό πλάτος, διότι το φαινόμενο της επαγωγής εξαρτάται από την ταχύτητα μεταβολής της μαγνητικής ροής. Οριακά, όταν η ταχύτητα του ιππέα είναι μικρότερη από ένα κατώτατο όριο, ο μετατροπέας αναλογικού σε ψηφιακό δεν ανιχνεύει καθόλου την κίνηση του κινητού, ενδέχεται δηλαδή ο μαγνήτης να διέλθει από μια σπείρα με τόσο χαμηλή ταχύτητα, ώστε να μην διεγερθεί ο μετατροπέας. Αυτό προφανώς συνιστά αδυναμία της πειραματικής διάταξης, και οδηγεί σε συστηματικό σφάλμα που επηρεάζει την μέτρηση και του ολικού διαστήματος και του ολικού χρόνου της κίνησης και είναι ο λόγος για τον οποίο η διάταξη έχει ένα κάτω όριο ταχύτητας ιππέα για την εύρυθμη λειτουργία της. Αντίθετα τώρα, όταν η ταχύτητα του ιππέα είναι μεγάλη, τα χρονικά διαστήματα διέλευσης από τις σπείρες μικραίνουν σημαντικά, με αποτέλεσμα η διασπορά των Δt i να οδηγεί σε σημαντική αύξηση των τυχαίων σφαλμάτων. Οριακά, λόγω της κατασκευής του μετατροπέα ψηφιακού σε αναλογικό, σε πολύ μεγάλες ταχύτητες του ιππέα, ο μετατροπέας αρχίζει να πηδάει σπείρες, με αποτέλεσμα να προκύπτουν μετρήσεις με σημεία ασυνέχειας που δεν έχουν φυσική σημασία. Για το λόγο αυτό, η πειραματική διάταξη έχει ένα άνω όριο εύρυθμης λειτουργίας όσον αφορά την ταχύτητα του ιππέα. Τέλος, ένας άλλος λόγος ο οποίος επηρεάζει την διασπορά των πειραματικών αποτελεσμάτων οφείλεται στον υπολογισμό της ταχύτητας του ιππέα και των παραγομένων μεγεθών από αυτήν (βλ. τύπους 1 και 6 της Παραγρ. 2). Αυτό συμβαίνει λόγω του μηχανισμού διάδοσης των σφαλμάτων στα παράγωγα μεγέθη της κίνησης, δηλ. την ταχύτητα και την επιτάχυνση, με αποτέλεσμα όσο μικραίνουν τα χρονικά διαστήματα Δt i, δηλαδή όσο μεγαλώνει η ταχύτητα του κινητού, τόσο μεγαλώνει και η διασπορά των πειραματικών σημείων. Το φαινόμενο γίνεται ιδιαίτερα εμφανές στην περίπτωση μετρήσεων επιταχυνόμενης κίνησης σε κεκλιμένο επίπεδο, όπου στο διάγραμμα υ t και στην αρχή των μετρήσεων (μικρές ταχύτητες) η διασπορά των σημείων είναι μικρή, και όσο μεγαλώνει η ταχύτητα, η διασπορά μεγαλώνει. Σε σχέση με την αντίστοιχη ευθεία ελαχίστων τετραγώνων όμως, θα παρατηρήσουμε ότι τα πειραματικά σημεία βρίσκονται εναλλάξ πάνω και κάτω από αυτήν, τα σφάλματα δηλαδή έχουν τυχαίο χαρακτήρα.

12 84 Αντίστοιχα, οι πειραματικές μετρήσεις της επιτάχυνσης έχουν μεγαλύτερη διασπορά από αυτές της ταχύτητας, και όσο μεγαλώνει η επιτάχυνση, τόσο μεγαλώνει και η διασπορά των σημείων πάνω και κάτω από την αντίστοιχη ευθεία ελαχίστων τετραγώνων. 3.6 Έλεγχος ρυθμίσεων-χαρακτηριστικών της διάταξης Όπως αναφέρθηκε στην παράγραφο 3.2 απαιτούνται δύο είδη ρύθμισης της "ορθής κλίσης" και της οριζοντιώσεως του αεροδιάδρομου. Η πλευρική κλίση ελέγχεται από το προσωπικό του εργαστηρίου, οπότε στα επόμενα αναφερόμαστε μόνο στην ρύθμιση της οριζοντίωσης. Βάζουμε σε λειτουργία τον αεροσυμπιεστή (διακόπτης (Δ) Σχ. 4) και τοποθετούμε τον ιππέα (Α) περίπου στο μέσον του αεροδιάδρομου (ο ιππέας δεν φέρει πρόσθετα βάρη). Σχήμα 4. Πάγκος εργασίας αεροδιαδρόμου. Εάν έχουμε οριζοντιώσει ικανοποιητικά τον αεροδιάδρομο ο ιππέας θα παραμείνει στη θέση που τον τοποθετήσαμε τουλάχιστον για 20 sec, εκτελώντας ενδεχόμενα μικρές τοπικές ταλαντώσεις πλάτους μερικών mm (λόγω της εκροής του πεπιεσμένου αέρα). Με τη βοήθεια του ανακλαστήρα έναρξης της κίνησης (τον αριστερό όπως βλέπετε τον αεροδιάδρομο) προσδίδουμε αρχική ταχύτητα στον ιππέα, περίπου υ 0 = 50 cm/sec. Για να πετύχουμε την επιθυμητή αυτή ταχύτητα, συγκρατούμε τον ιππέα ώστε το λαστιχάκι του ανακλαστήρα έναρξης να ακουμπήσει στο πίσω μέρος του ανακλαστήρα, όπως στο Σχήμα 5 (Σημείο Δ). Σχήμα 5. Διάταξη εκτόξευσης ιππέα με ανακλαστήρα. Ένας χονδρικός έλεγχος της ταχύτητας είναι να εκτιμήσουμε με οπτική προσημασμένη παρατήρηση το μήκος που καλύπτει ο ιππέας σε ένα δευτερόλεπτο. Τη χρονική διάρκεια 1 sec τη δίδει ο δεύτερος φοιτητής της ομάδας με ρολόι χεριού (ή ακόμα και μετρώντας νοητά με σταθερό φυσιολογικό ρυθμό εκατόν ένα, εκατόν δύο, ένα τέχνασμα που μετά από εξάσκηση μπορεί να προσδιορίσει την διάρκεια ενός δευτερολέπτου με ακρίβεια περίπου 20%) Μετά την εκτόξευση, ο ιππέας ανακλώμενος διαδοχικά στα δύο άκρα του αεροδιάδρομου θα διαγράφει περιοδική κίνηση. Εάν ο ιππέας διαγράψει 5 περιόδους χωρίς ιδιαίτερη μείωση της

13 85 ταχύτητάς του τότε οι ρυθμίσεις του αεροδιαδρόμου θεωρούνται ικανοποιητικές. Αντίθετα, αν στον ίδιο αριθμό περιόδων η ταχύτητα μειωθεί π.χ. στο μισό της αρχικής, ελέγχουμε η διάταξη για τριβές (κακή ρύθμιση πλευρικής κλίσης, επαφή του μαγνήτη με τον αεροδιάδρομο, σκόνη κλπ). Η λεπτομέρεια κατά την ρύθμιση οριζοντίωσης εξαρτάται από το είδος του πειράματος που πραγματοποιείται. Χρήσιμο είναι πάντως να σημειώνεται το σχετικό ύψος του αναβατήρα στην κλίμακα (I) (βλ. Σχ. 2) μετά την οριζοντίωση, ώστε να διευκολύνεται η προσπάθεια επαναοριζοντιώσεώς του. 4. Εκτελεστικό μέρος Σκοπός της άσκησης είναι η πειραματική μελέτη της ευθύγραμμης κίνησης. Η άσκηση καλύπτει τις εξής θεματικές ενότητες: Αρχικές ρυθμίσεις της πειραματικής διάταξης. Μελέτη ευθύγραμμης ομαλής κίνησης. Μελέτη ομαλά μεταβαλλόμενης κίνησης. Μέτρηση της απώλειας κινητικής ενέργειας κατά την ανάκρουση κινητού Εκκίνηση της άσκησης Η άσκηση αποτελεί εφαρμογή των Windows. Όπως όλες οι εφαρμογές στα Windows, η εκκίνηση της άσκησης γίνεται με διπλό κλικ στο αντίστοιχο εικονίδιο που βρίσκεται στην επιφάνεια εργασίας. Σχήμα 4.1: Οι διαδοχικές οθόνες του προγράμματος

14 86 Η άσκηση εκτελείται σε 4 επάλληλες οθόνες όπως φαίνεται στο Σχήμα 4.1. Η πρώτη είναι η Εισαγωγική Οθόνη, και οι υπόλοιπες με τη σειρά είναι οι οθόνες Λήψη μετρήσεων, Ποιοτική μελέτης και Επεξεργασία Δεδομένων. Η μετάβαση από οθόνη σε οθόνη γίνεται με τα βέλη πλοήγησης και, που βρίσκονται στο κάτω δεξί μέρος της κάθε οθόνης. Ανάμεσα στα βέλη πλοήγησης υπάρχει το πλήκτρο βοήθειας [?] Αρχικές ρυθμίσεις της πειραματικής διάταξης Ο αεροδιάδρομος αρχικά πρέπει να είναι σε οριζόντια θέση. Για την οριζοντίωση του διαδρόμου βασιζόμαστε την φυσική αρχή "όταν σ' ένα σώμα δεν ασκείται καμία δύναμη, το σώμα ηρεμεί ή εκτελεί ευθύγραμμη ομαλή κίνηση". Η οριζοντίωση του διαδρόμου γίνεται σε δύο στάδια: 1. Αρχική οριζοντίωση: Φέρετε τον ιππέα στο κέντρο του αεροδιαδρόμου, τροφοδοτήστε με αέρα και διορθώστε την κλίση ώστε ο ιππέας να ισορροπεί. 2. Λεπτομερής οριζοντίωση : Βασίζεται στη μέτρηση της ταχύτητας του ιππέα. Εκκινήστε το πρόγραμμα στον υπολογιστή. Δώστε μια αρχική ταχύτητα στον ιππέα και εκτελέστε καταγραφή των μετρήσεων (50 σημεία). Στην οθόνη "ποιοτικής μελέτης" παρατηρήστε το διάγραμμα της ταχύτητας του κινητού. Διορθώστε την οριζοντίωση έως ότου η ταχύτητα του ιππέα να είναι σταθερή ΠΡΟΣΟΧΗ: Κατά τη διάρκεια των μετρήσεων να μην έχετε ανάκρουση του ιππέα Ανάκρουση του κινητού Στόχος: Να προσδιοριστεί αν η ανάκρουση του κινητού στο λάστιχο είναι ελαστική κρούση ή όχι. Εκτέλεση: Ο αεροδιάδρομος πρέπει να είναι σε οριζόντια θέση. Θέτετε σε κίνηση τον ιππέα επιλέγετε διάστημα καταγραφής 100 σπειρών. Ξεκινάτε τη μέτρηση ώστε σαφώς να έχετε ανάκρουση κατά τη διάρκεια της καταγραφής. Από τη γραφική παράσταση της ταχύτητας (ν t) προσδιορίστε το σημείο της ανάκρουσης. Προσδιορίστε την ταχύτητα του ιππέα πριν και μετά την ανάκρουση. Είναι η ανάκρουση ελαστική; Επαναλάβετε άλλη μια φορά το πείραμα δίνοντας στον ιππέα μεγαλύτερη ταχύτητα. Επεξεργασία: Καταγράψτε τις παρατηρήσεις σας στον παρακάτω πίνακα. Πίνακας Ι: Μετρήσεις ανάκρουσης α/α υ πριν υ μετά % απώλεια ενέργειας 1 η παρατήρηση 2 η παρατήρηση Ερώτηση: Είναι η ανάκρουση ελαστική; Εξαρτάται η απώλεια της κινητικής ενέργειας από την ταχύτητα πρόσκρουσης; Υπόδειξη: Για τους υπολογισμούς σας μπορείτε να χρησιμοποιήσετε τον "υπολογιστή" (calculator) των Windows.

15 Μελέτη της ευθύγραμμης ομαλής κίνησης Στόχος : Να προσδιοριστεί πειραματικά η εξίσωση κίνησης για ευθύγραμμη ομαλή κίνηση. Εκτέλεση: Όπως και στο μέρος 2, εκτελέστε το πείραμα καταγραφής της κίνησης επιλέγοντας τον αριθμό των μετρήσεων ώστε κατά τη διάρκεια της καταγραφής να μην έχετε ανάκρουση του ιππέα. Παρατηρήστε τη μεταβολή της ταχύτητας με το χρόνο. Είναι η κίνηση ευθύγραμμη και ομαλή; Παρατηρήστε τη μεταβολή του διαστήματος με το χρόνο. Ποια σχέση περιγράφει την κίνηση; Μετρήσεις: Σημειώστε 10 ζεύγη θέσης (s) και χρόνου (t) σε πίνακα τιμών. Πίνακας II: Μετρήσεις για την ευθύγραμμη ομαλή κίνηση α/α t (s) s (m) Επεξεργασία μετρήσεων: Σχεδιάστε σε χαρτί μιλλιμετρέ τα πειραματικά δεδομένα s t. Εφαρμόστε Θ.Ε.Τ. και υπολογίστε την αρχική θέση s ο και την ταχύτητα υ της κίνησης. Σχολιάστε την τιμή του s ο που προσδιορίσατε Μελέτη της επιταχυνόμενης κίνησης Στόχος: Να προσδιοριστεί πειραματικά η εξίσωση κίνησης για ευθύγραμμη ομαλά επιταχυνόμενη κίνηση. Σχήμα 4.2: Εφαρμογή σταθερής δύναμης στον ιππέα μέσω τροχαλίας. Εκτέλεση: Εξαρτήστε στον ιππέα ένα βάρος μέσω της τροχαλίας. Έτσι, στον ιππέα ασκείται μια σταθερή δύναμη (Σχήμα 2). Όπως και στο μέρος 4, εκτελέστε το πείραμα καταγραφής της κίνησης

16 88 επιλέγοντας τον αριθμό των μετρήσεων ώστε κατά τη διάρκεια της καταγραφής να μην έχετε ανάκρουση του ιππέα. Παρατηρήστε τη μεταβολή της ταχύτητας με το χρόνο. Είναι η κίνηση ευθύγραμμη και ομαλή; Παρατηρήστε τη μεταβολή του διαστήματος με το χρόνο. Ποια σχέση περιγράφει την κίνηση; Μετρήσεις: Σημειώστε 10 ζεύγη ταχύτητας (υ) και χρόνου (t) σε πίνακα τιμών. Πίνακας III: Μετρήσεις για την ευθύγραμμη ομαλά επιταχυνόμενη κίνηση α/α t (s) υ (m/s) Επεξεργασία μετρήσεων: Σχεδιάστε σε χαρτί μιλλιμετρέ τα πειραματικά δεδομένα υ t. Εφαρμόστε Θ.Ε.Τ. και υπολογίστε την αρχική ταχύτητα υ ο και την επιτάχυνση α της κίνησης. Συνέχεια της μελέτης Από την οθόνη "Επεξεργασίας Μετρήσεων" επιλέξτε: α. τη γραφική παράσταση υ t, και την ευθεία ελαχίστων τετραγώνων. Σημειώστε τις τιμές υ o και α. β. τη γραφική παράσταση s t, και την παραβολή ελαχίστων τετραγώνων. Σημειώστε τις τιμές s o, υ o και α. Συγκρίνατε τις τιμές υ o και α με εκείνες που υπολογίσατε εφαρμόζοντας τη Θ.Ε.Τ Μελέτη του 2 ου Νόμου του Νεύτωνα Στόχος : Να προσδιοριστεί πειραματικά ο 2ος Νόμος του Νεύτωνα. Εκτέλεση: Έχετε στη διάθεση σας τρία βαρίδια που αποτελούνται από μία, δύο και τρεις ίδιες μάζες αντίστοιχα, και συνεπώς έχουν μάζες m, 2m και 3m. Επαναλάβετε το πείραμα του μέρους 5, ασκώντας στον ιππέα δύναμη F, 2F και 3F. Εκτελέστε για κάθε φορά το πείραμα καταγραφής της κίνησης επιλέγοντας τον αριθμό των μετρήσεων ώστε κατά τη διάρκεια της καταγραφής να μην

17 89 έχετε ανάκρουση του ιππέα. Παρατηρήστε τη μεταβολή της ταχύτητας με το χρόνο. Προσδιορίστε την επιτάχυνση από την οθόνη "Επεξεργασίας Μετρήσεων". Μετρήσεις: Σημειώστε την επιτάχυνση σε κάθε πείραμα. Μετρήστε το βάρος που εφαρμόζετε και συμπληρώστε τον παρακάτω πίνακα: Πίνακας IV: Μετρήσεις για τον 2 ο Νόμο του Νεύτωνα α/α Δύναμη (Ν) α (m/s 2 ) 1F 2F 3F Επεξεργασία μετρήσεων: Μετρήστε τη μάζα του ιππέα: m = gr Σχεδιάστε σε χαρτί μιλλιμετρέ τα πειραματικά δεδομένα F α. Υπολογίστε τη μάζα του ιππέα εφαρμόζοντας τη Θ.Ε.Τ. και συγκρίνετε την τιμή που υπολογίσατε με εκείνη που μετρήσατε Κίνηση σε κεκλιμένο επίπεδο Στόχος Να προσδιοριστεί πειραματικά η εξίσωση κίνησης σε κεκλιμένο επίπεδο. Εκτέλεση πειράματος: Ανυψώστε τον διάδρομο κατά 3 cm. Αφήστε τον ιππέα χωρίς αρχική ταχύτητα από το άνω άκρο του διαδρόμου. Αρχίστε την καταγραφή της κίνησης αφού ο ιππέας έχει ήδη ξεκινήσει προσέχοντας όμως κατά τη διάρκεια της καταγραφής να μην έχετε ανάκρουση του ιππέα. Παρατηρήστε τις γραφικές παραστάσεις s t και υ t. Τι κίνηση έχουμε; Ποια σχέση περιγράφει την κίνηση; Ποιες είναι παράμετροι της κίνησης που πρέπει να προσδιορίσουμε; Μέτρηση: Μετρήστε την ταχύτητα του ιππέα. Καταγράψετε 10 ζεύγη τιμών υ t. Πίνακας V: Μετρήσεις της κίνησης σε κεκλιμένο επίπεδο α/α t (s) υ (m/s)

18 90 Επεξεργασία μετρήσεων: Σημειώστε το μήκος του αεροδιαδρόμου που βρίσκεται ανάμεσα στα δύο σημεία στήριξης (S = m) και υπολογίστε τη γωνία του κεκλιμένου επιπέδου (θ = ). Σχεδιάστε σε χαρτί μιλλιμετρέ τα πειραματικά σημεία ν t. Εφαρμόζοντας τη Θ.Ε.Τ. υπολογίστε όπως και στο μέρος 5 την επιτάχυνση (α) της κίνησης. Μπορείτε να υπολογίσετε την επιτάχυνση της βαρύτητας; Εφαρμόζοντας το 2 Νόμο του Νεύτωνα, υπολογίστε από τα πειραματικά σας αποτελέσματα (μάζα, επιτάχυνση) την κινούσα δύναμη. Από την γωνία του κεκλιμένου επιπέδου που έχετε προσδιορίσει, υπολογίστε την συνιστώσα του βάρους που προκαλεί την επιταχυνόμενη κίνηση, και συγκρίνατε τις δυο τιμές Κίνηση σε κεκλιμένο επίπεδο με ανάκρουση Στόχος: Να προσδιοριστεί πειραματικά η απώλεια κινητικής ενέργειας (ΚΕ) κατά την ανάκρουση. Εκτέλεση πειράματος: Επαναλάβετε το πείραμα όπως στο μέρος 7, προσέχοντας όμως κατά τη διάρκεια της καταγραφής να έχετε ανάκρουση του ιππέα. Παρατηρήστε τη γραφική παράσταση υ t. Προσδιορίστε το σημείο της ανάκρουσης Μέτρηση: Μετρήστε την ταχύτητα του ιππέα πριν και μετά την ανάκρουση. Επαναλάβετε το πείραμα 2 φορές και καταγράψτε τις μετρήσεις σας Πίνακας VΙ: Μετρήσεις ανάκρουσης σε κεκλιμένο επίπεδο α/α ανάκρουσης υ πριν υ μετά Απώλεια ΚΕ (J) 1 η 2 η Επεξεργασία μετρήσεων: Υπολογίστε την απώλεια κινητικής ενέργειας κατά την ανάκρουση. Τι κίνηση κάνει ο ιππέας μετά την ανάκρουση; Γράψτε την εξίσωση της κίνησης. Υπολογίστε το μέγιστο διάστημα που θα διανύσει ο ιππέας μετά την ανάκρουση, και το κατακόρυφο ύψος στο οποίο θα ανέλθει Κίνηση σε κεκλιμένο επίπεδο με 2 ανακρούσεις Στόχος: Να προσδιοριστεί πειραματικά η Α.Δ.Ε. Εκτέλεση πειράματος: Επαναλάβετε το πείραμα του μέρους 8, καταγράφοντας 2 ανακρούσεις. Παρατηρήστε τη γραφική παράσταση υ t και προσδιορίστε τα σημεία ανάκρουσης Μέτρηση: Μετρήστε την ταχύτητα του ιππέα πριν και μετά την ανάκρουση.

19 91 Πίνακας VII: Μετρήσεις δύο ανακρούσεων σε κεκλιμένο επίπεδο α/α ανάκρουσης υ πριν υ μετά Απώλεια ΚΕ (J) 1 η 2 η Επεξεργασία μετρήσεων: Από τα αποτελέσματα του πειράματος μπορείτε να επιβεβαιώσετε την αρχή διατήρησης της κινητικής ενέργειας; Πολλαπλές ανακρούσεις Στόχος: Να προσδιοριστεί πειραματικά η απώλεια κινητικής ενέργειας. Εκτέλεση πειράματος: Επαναλάβετε το πείραμα του μέρους 8, καταγράφοντας πολλαπλές ανακρούσεις. Παρατηρήστε τη γραφική παράσταση υ t και προσδιορίστε τα σημεία ανάκρουσης. Μέτρηση: Μετρήστε την ταχύτητα του ιππέα πριν και μετά την ανάκρουση. Πίνακας VIII: Μετρήσεις πολλαπλών ανακρούσεων σε κεκλιμένο επίπεδο α/α ανάκρουσης υ πριν υ μετά Απώλεια ΚΕ (J) 1 η 2 η 3 η 4 η 5 η 6 η Επεξεργασία μετρήσεων: Σχεδιάστε σε χαρτί μιλλιμετρέ την απώλεια Κ.Ε. ως συνάρτηση της ταχύτητας πρόσκρουσης. Μπορείτε να προσδιορίσετε μετά από πόσες ανακρούσεις ο ιππέας θα έχει χάσει τουλάχιστον το 25% της αρχικής του Κ.Ε.;

20 92

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ. Μελέτη ευθύγραμμων κινήσεων

ΓΕΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ. Μελέτη ευθύγραμμων κινήσεων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Εργαστηριακή αναφορά Μελέτη ευθύγραμμων κινήσεων του Ανδριόπουλου Ανδρέα ΑΕΜ: 19232 ΠΕΡΙΛΗΨΗ ΑΣΚΗΣΗΣ: Η εργαστηριακή άσκηση

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

Τοπικός Μαθητικός Διαγωνισμός EUSO

Τοπικός Μαθητικός Διαγωνισμός EUSO Τοπικός Μαθητικός Διαγωνισμός EUSO 2014-2015 ΟΜΑΔΑ : 1] 2] 3] Γενικό Λύκειο Άργους Ορεστικού. 6 - Δεκ. - 1014 Φυσική Θέμα: Μέτρηση επιτάχυνσης. 1] Θεωρητική εισαγωγή Κίνηση είναι η αλλαγή της θέσης ενός

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 Α. ΣΤΟΧΟΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG Η πραγματοποίηση αρμονικής ταλάντωσης μικρού πλάτους με τη χρήση μάζας δεμένης σε ελατήριο. Η εφαρμογή

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου

Διαγώνισμα Φυσικής Α Λυκείου Διαγώνισμα Φυσικής Α Λυκείου Δυναμιική.. Θέμα 1 ο 1. Συμπληρώστε την παρακάτω πρόταση. H αρχή της αδράνειας λέει ότι όλα ανεξαιρέτως τα σώματα εκδηλώνουν μια τάση να διατηρούν την... 2. Ένα αυτοκίνητο

Διαβάστε περισσότερα

Θεωρητικό Μέρος Θέμα 1 ο Α. Για την ταχύτητα υυ και την επιτάχυνση αα ενός κινούμενου σώματος δίνονται οι ακόλουθοι συνδυασμοί τιμών:

Θεωρητικό Μέρος Θέμα 1 ο Α. Για την ταχύτητα υυ και την επιτάχυνση αα ενός κινούμενου σώματος δίνονται οι ακόλουθοι συνδυασμοί τιμών: Α Λυκείου 7 Μαρτίου 2015 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα

Διαβάστε περισσότερα

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

F Στεφάνου Μ. 1 Φυσικός

F Στεφάνου Μ. 1 Φυσικός F 1 ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ Όταν δίνονται οι δυνάμεις οι οποίες ασκούνται σε ένα σώμα, υπολογίζουμε τη συνισταμένη των δυνάμεων και από τη σχέση (ΣF=m.α ) την επιτάχυνσή του. Αν ασκούνται σε αρχικά

Διαβάστε περισσότερα

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Το διαστημόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

Κεφάλαιο 1. Κίνηση σε μία διάσταση

Κεφάλαιο 1. Κίνηση σε μία διάσταση Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής

Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής Σύνοψη Διερεύνηση με τη βοήθεια της μηχανής του Atwood της σχέσης μεταξύ δύναμης και επιτάχυνσης, καθώς και προσδιορισμός της επιτάχυνσης της βαρύτητας. Προαπαιτούμενη

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραµµης οµαλής και επιταχυνόµενης κίνησης. Σκοπός του πειράµατος

ΠΕΙΡΑΜΑ 5. Μελέτη ευθύγραµµης οµαλής και επιταχυνόµενης κίνησης. Σκοπός του πειράµατος ΠΕΙΡΑΜΑ 5 Μελέτη ευθύγραµµης οµαλής και επιταχυνόµενης κίνησης. Σκοπός του πειράµατος Σκοπός του πειράµατος είvαι vα µελετηθούν τα βασικά φυσικά µεγέθη της µεταφορικής κίνησης σε µία διάσταση. Τα µεγέθη

Διαβάστε περισσότερα

Εργαστηριακές Ασκήσεις Φυσικής - Α Λυκείου. Δύναμη και κίνηση. Όργανα, συσκευές, υλικά: Θεωρία. v = v αρχ + α Δt Δx = v αρχ Δt +1/2 α Δt 2

Εργαστηριακές Ασκήσεις Φυσικής - Α Λυκείου. Δύναμη και κίνηση. Όργανα, συσκευές, υλικά: Θεωρία. v = v αρχ + α Δt Δx = v αρχ Δt +1/2 α Δt 2 Δύναμη και κίνηση Όργανα, συσκευές, υλικά: Ένα εργαστηριακό αμαξάκι + πλάκες βαριδιών. Τροχαλία+ βάση χυτοσίδηρου για stp στο αμαξίδιο. Νήμα (70-80cm). Μάζα (50gr.) Δυναμόμετρο. Χρονομετρητής. Μετροταινία

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2014. Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:...

ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2014. Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:... 1 ΛΥΚΕΙΟ ΠΟΛΕΜΙΔΙΩΝ Σχολική Χρονιά 2013-2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2014 Μάθημα: ΦΥΣΙΚΗ Τάξη: A Ενιαίου Λυκείου Βαθμός:... Ημερομηνία: 3/06/2014 Διάρκεια: 2 ώρες Ονοματεπώνυμο:...

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Συγγραμμικές δυνάμεις 1 ος -2 ος νόμος του Νεύτωνα 1. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες; α. Μια δύναμη μπορεί να προκαλέσει αλλαγή στην κινητική

Διαβάστε περισσότερα

Α u. u cm. = ω 1 + α cm. cm cm

Α u. u cm. = ω 1 + α cm. cm cm ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας

Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας Υπολογισμός της επιτάχυνσης από την κλίση της ευθείας Στοιχεία άσκησης Τάξη: Α' Λυκείου Διάρκεια: Συγγραφέας: Έκδοση: Άδεια χρήσης: 2 διδακτικές ώρες Ιωάννης Σ. Κάτσενος, Φυσικός MSc, ikatsenos@gmail.com

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )

ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Σέρρες 26/11/2011. Σύνολο µορίων:...

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Σέρρες 26/11/2011. Σύνολο µορίων:... ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΕΡΡΩΝ 10 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2012 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 26/11/2011

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

1.1. Κινηµατική Οµάδα Γ.

1.1. Κινηµατική Οµάδα Γ. 1.1. Οµάδα Γ. 1.1.21. Πληροφορίες από το διάγραµµα θέσης-χρόνου..ένα σώµα κινείται ευθύγραµµα και στο διάγραµµα βλέπετε τη θέση του σε συνάρτηση µε το χρόνο. i) Βρείτε την κλίση στο διάγραµµα x-t στις

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι.

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι. ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι. Χριστακόπουλος] Για τον καθηγητή Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενός ισοπλεύρου τριγώνου ΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σημειακά ηλεκτρικά φορτία 1 =2μC και 2 αντίστοιχα.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Τζ. Τσιτοπούλου, Ι. Χριστακόπουλος] Για

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

Κίνηση σε μια διάσταση

Κίνηση σε μια διάσταση Κίνηση σε μια διάσταση Θεωρούμε κίνηση κατά μήκος μιας ευθύγραμμης διαδρομής. Η απόσταση x του κινούμενου σώματος από ένα σημείο του άξονα της κίνησης που παραμένει ακίνητο χρησιμοποιείται ως συντεταγμένη.

Διαβάστε περισσότερα

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα. Γενικές ασκήσεις Θέματα εξετάσεων από το 1ο κεφάλαιο ΚΕΦΑΛΑΙΟ 1 1 Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα α Να βρείτε

Διαβάστε περισσότερα

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης 2013 ΘΕΜΑ Α Για τις ερωτήσεις 1 έως 4 γράψτε τον αριθμό τις ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Για ένα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 Ε_3.Φλ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 6 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε στο απαντητικό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΙΑΓΡΑΜΜΑΤΑ ΣΤΙΣ ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ 1) Το διπλανό διάγραµµα παριστά τη θέση ενός σώµατος που κινείται σε ευθύγραµµα, σε συνάρτηση µε το χρόνο. i) Μεγαλύτερη ταχύτητα

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 05 Έργο και Κινητική Ενέργεια ΦΥΣ102 1 Όταν μια δύναμη δρα σε ένα σώμα που κινείται,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ.

ΘΕΜΑΤΑ. Θέμα Α ΘΕΜΑΤΑ Στις παρακάτω ερωτήσεις πολλαπλής επιλογής Α-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α. Ένα σώμα εκτελεί ευθύγραμμη

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική Α ΤΑΞΗ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική ΜΕΡΟΣ 1 : Ευθύγραμμες Κινήσεις 1. Να επαναληφθεί το τυπολόγιο όλων των κινήσεων - σελίδα 2 (ευθύγραμμων και ομαλών, ομαλά μεταβαλλόμενων) 2. Να επαναληφθούν όλες οι

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.

Διαβάστε περισσότερα

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ).

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). 1 ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΘΕΜΑ 1 Ο Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). *1. Μια κίνηση είναι

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ

ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΛΕΤΗ ΚΑΙ ΕΛΕΓΧΟΣ ΤΗΣ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις ΕΡΓΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο φύλλο των απαντήσεών

Διαβάστε περισσότερα

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

ΜΕΡΟΣ Α Αποτελείται από 6 ερωτήσεις. Κάθε ορθή απάντηση βαθμολογείται με 5 μονάδες. Να απαντήσετε όλες τις ερωτήσεις.

ΜΕΡΟΣ Α Αποτελείται από 6 ερωτήσεις. Κάθε ορθή απάντηση βαθμολογείται με 5 μονάδες. Να απαντήσετε όλες τις ερωτήσεις. ΛΥΚΕΙΟ ΑΓ. ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΤΑΞΗ: Α ΗΜΕΡ.: 02/06/2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ονοματεπώνυμο: ΔΙΑΡΚΕΙΑ: 2 ώρες Τάξη: ΟΔΗΓΙΕΣ : α) Το εξεταστικό

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΟΡΓΑΝΑ, ΣΥΣΚΕΥΕΣ ΚΑΙ ΥΛΙΚΑ Ηλεκτρονικός υπολογιστής Βιντεοπροβολέας

ΟΡΓΑΝΑ, ΣΥΣΚΕΥΕΣ ΚΑΙ ΥΛΙΚΑ Ηλεκτρονικός υπολογιστής Βιντεοπροβολέας ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Εργαστηριακή άσκηση 4 ΜΕΛΕΤΗ ΤΗΣ ΟΡΙΖΟΝΤΙΑΣ ΒΟΛΗΣ (Προσαρµογή του εργαστηριακού οδηγού - Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΣΤΟΧΟΙ Στόχοι αυτής της εργαστηριακής άσκησης

Διαβάστε περισσότερα

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

Φίλε μαθητή, Το βιβλίο αυτό, που κρατάς στα χέρια σου προέκυψε τελικά μέσα από την εμπειρία και διδακτική διαδικασία πολλών χρόνων στον Εκπαιδευτικό Όμιλο Άλφα. Είναι το αποτέλεσμα συγγραφής πολλών καθηγητών

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΠΑΛΟΥΡΙΩΤΙΣΣΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑÏΟΥ- ΙΟΥΝΙΟΥ 2014

ΛΥΚΕΙΟ ΠΑΛΟΥΡΙΩΤΙΣΣΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑÏΟΥ- ΙΟΥΝΙΟΥ 2014 ΛΥΚΕΙΟ ΠΑΛΟΥΡΙΩΤΙΣΣΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014 ΒΑΘΜΟΣ...... ΟΛΟΓΡΑΦΩΣ... ΥΠΟΓΡΑΦΗ... ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑÏΟΥ- ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 26/05/2014 ΧΡΟΝΟΣ: 2 ΩΡΕΣ ΩΡΑ: 7.45-9.45

Διαβάστε περισσότερα

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός

Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Βασικές έννοιες, σχέσεις και διαδικασίες Αδρανειακό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

1 ο ΚΕΦΑΛΑΙΟ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ ΚΡΕΜΑΣΤΑΣ ΙΩΑΝΝΗΣ

1 ο ΚΕΦΑΛΑΙΟ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ ΚΡΕΜΑΣΤΑΣ ΙΩΑΝΝΗΣ Α. ΜΟΝΑΔΕΣ Β. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΩΝ 1 ΚΕΦΑΛΑΙΟ 1 Ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ- ΘΕΩΡΙΑ Μετατόπιση (Δx): Είναι η διαφορά μεταξύ της αρχικής και της τελικής θέσης ενός σώματος και έχει μονάδες τα μέτρα (m).

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Ε_3.Φλ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 6 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε στο απαντητικό φύλλο τον αριθµό της πρότασης

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1η εξεταστική περίοδος από 4/10/15 έως 08/11/15 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α Α Στις ερωτήσεις Α1-Α4 να επιλέξετε τη σωστή

Διαβάστε περισσότερα

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG )

ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG ) 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG ) Α. ΣΤΟΧΟΙ Η εφαρμογή των νόμων της Μηχανικής στη μελέτη της κίνησης σώματος,

Διαβάστε περισσότερα

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ

Α και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011-12 Τοπικός διαγωνισμός στη Φυσική 10-12-2011 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Κεντρική ιδέα της άσκησης Στην άσκηση μελετάμε την κίνηση ενός

Διαβάστε περισσότερα

υ r 1 F r 60 F r A 1

υ r 1 F r 60 F r A  1 2.2. Ασκήσεις Έργου-Ενέργειας. 4.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης

ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης ΠΕΙΡΑΜΑ III Μελέτη Ελευθερης Πτώσης Σκοπός πειράµατος Στο πείραµα αυτό θα µελετήσουµε την κίνηση ενός σώµατος καθώς πέφτει ελεύθερα υπό την επίδραση του βάρους του. Πιο συγκεκριµένα θα επαληθεύσουµε τις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) U β A

ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) U β A Σελίδα 1 από 5 ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α και

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 27 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Πρόβλημα 1 V A V B I. 1 ος τρόπος: Για να υπολογιστεί η απόσταση που τα χωρίζει θα πρέπει να υπολογιστούν πρώτα από

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου

ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ. Από τη Φυσική της Α' Λυκείου ΒΑΣΙΚΕΣ ΚΑΙ ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ Από τη Φυσική της Α' Λυκείου Δεύτερος νόμος Νεύτωνα, και Αποδεικνύεται πειραματικά ότι: Η επιτάχυνση ενός σώματος (όταν αυτό θεωρείται

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Ο πύραυλος Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑ: ΧΡΟΝΟΣ: ΦΥΣΙΚΗ 3 ΩΡΕΣ ΗΜΕΡΟΜΗΝΙΑ: 27/05/2014 ΩΡΑ ΕΝΑΡΞΗΣ:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Α ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Α ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Α ΛΥΚΕΙΟΥ ΟΔΗΓΙΕΣ: 1. Στο θέμα Α να χαρακτηρίσετε τις προτάσεις ως σωστές με το γράμμα Σ ή ως λανθασμένες με το γράμμα Λ, χωρίς αιτιολόγηση, γράφοντας την επιλογή σας στον ειδικό χώρο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Ι. Α1.Β Α2.Γ Α3. Α Α4. Α ΙΙ. 1.Σ 2.Σ 3.Λ 4.Σ 5. Λ ΘΕΜΑ Β Β1. Σωστή η β) Έστω Σ το υλικό σημείο που απέχει d από το άκρο Α. Στο σχήμα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014

ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 013 014 Κατεύθυνση: ΘΕΩΡΗΤΙΚΗ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 014 Μάθημα: ΦΥΣΙΚΗ Τάξη: Α Αρ. Μαθητών: 59 Κλάδος: ΟΛΟΙ Ημερομηνία: 03/06/014 Τμήματα:

Διαβάστε περισσότερα

Η επιτάχυνση της βαρύτητας στον Πλανήτη Άρη είναι g=3,7 m/s 2 και τα πλαίσια αποτελούν μεγέθυνση των αντίστοιχων θέσεων.

Η επιτάχυνση της βαρύτητας στον Πλανήτη Άρη είναι g=3,7 m/s 2 και τα πλαίσια αποτελούν μεγέθυνση των αντίστοιχων θέσεων. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την

ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ. = t. (1) 2 επειδή Δx 1 = Δx 2 = Δ xoλ / 2 Επειδή Δx 1 = u 1 t 1, από την 1 ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗΣ 1) Δίνεται η διπλανή γραφική παράσταση της ταχύτητας με το χρόνο. Να γίνει το διάγραμμα (θέσης χρόνου ), αν όταν o= είναι o =. Υπόδειξη Βρείτε τα εμβαδά μεταξύ της γραφικής παράστασης

Διαβάστε περισσότερα

Άσκηση 6 Ώθηση δύναμης Μεταβολή ορμής

Άσκηση 6 Ώθηση δύναμης Μεταβολή ορμής Άσκηση 6 Ώθηση δύναμης Μεταβολή ορμής Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι η κατανόηση του φυσικού διανυσματικού μεγέθους ώθηση δύναμης και η σχέση του με: τη μεταβολή της ορμής υλικού σημείου

Διαβάστε περισσότερα

Εισαγωγικές Γνώσεις Πειραματική Διαδικασία

Εισαγωγικές Γνώσεις Πειραματική Διαδικασία ΕΚΦΕ Ν.ΚΙΛΚΙΣ 1 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ Στόχοι 1.

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

Β22. Μέτρηση Ροπής Αδράνειας

Β22. Μέτρηση Ροπής Αδράνειας Β22. Μέτρηση Ροπής Αδράνειας Α. Σκοπός της άσκησης Στο εργαστήριο αυτό θα μελετήσουμε την περιστροφική κίνηση που εκτελεί ένα υλικό σημείο ή ένα στερεό σώμα, σταθερού μεγέθους και σχήματος, υπό την παρουσία

Διαβάστε περισσότερα

Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής

Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής Σύνοψη Η άσκηση αυτή διαφέρει από όλες τις άλλες. Σκοπός της είναι η πειραματική επαλήθευση του θεμελιώδους νόμου της Μηχανικής. Αυτό θα γίνει με τη γραφική ανάλυση

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Μαΐου 014 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από Α1-Α4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΤΟ ΟΠΟΙΟ ΑΣΚΕΙΤΑΙ ΣΤΑΘΕΡΗ ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΗ. 1. ΣΤΟΧΟΙ :

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΤΟ ΟΠΟΙΟ ΑΣΚΕΙΤΑΙ ΣΤΑΘΕΡΗ ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΗ. 1. ΣΤΟΧΟΙ : ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΤΟ ΟΠΟΙΟ ΑΣΚΕΙΤΑΙ ΣΤΑΘΕΡΗ ΣΥΝΙΣΤΑΜΕΝΗ ΥΝΑΜΗ. Μαθητής/Μαθήτρια ------------------------------------------- Οµάδα------------------ Τµήµα:----------- Ηµεροµηνία-----------------------

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓ. ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: Α ΗΜΕΡ.: 27/05/13 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΔΙΑΡΚΕΙΑ: 2 ώρες ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΜΗΜΑ: ΟΔΗΓΙΕΣ : α) Το εξεταστικό

Διαβάστε περισσότερα

12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α. Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση:

12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α. Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 12ο ΓΕΛ ΠΕΙΡΑΙΑ Οµάδα Α ΔΙΑΓΩΝΙΣΜΑ Α ΤΕΤΡ/ΝΟΥ ΣΤΗ ΦΥΣΙΚΗ Ονοµατεπώνυµο: Τµήµα: Ηµεροµηνία: 17/12/2010 Ζήτηµα 1ο Στις παρακάτω ερωτήσεις να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 1) Μια

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ

ΜΕΛΕΤΗ ΤΗΣ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Εργαστηριακή άσκηση 2: ΜΕΛΕΤΗ ΤΗΣ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ Τροποποίηση του εργαστηριακού οδηγού (Βαγγέλης Δημητριάδης, 4 ο ΓΕΛ Ζωγράφου) ΣΤΟΧΟΙ Στόχοι αυτής της εργαστηριακής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/10/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 214-2 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19/1/214 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Άρχων Μάρκος, Γεράσης Δημήτρης, Τζαγκαράκης Γιάννης ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Για τις επόμενες τέσσερες ερωτήσεις ( 1η έως και 4η)) να επιλέξετε την σωστή πρόταση, χωρίς δικαιολόγηση

Για τις επόμενες τέσσερες ερωτήσεις ( 1η έως και 4η)) να επιλέξετε την σωστή πρόταση, χωρίς δικαιολόγηση ΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Σχολικό έτος 2014-14 Πέμπτη 21/5/2015 ΡΑΠΤΕΣ ΠΡΟΑΩΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 Στο μάθημα της ΦΥΣΙΚΗΣ ΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α ια τις επόμενες τέσσερες

Διαβάστε περισσότερα

1. Εισαγωγή στην Κινητική

1. Εισαγωγή στην Κινητική 1. Εισαγωγή στην Κινητική Σύνοψη Στο κεφάλαιο γίνεται εισαγωγή στις βασικές αρχές της Κινητικής θεωρίας. Αρχικά εισάγονται οι έννοιες των διανυσματικών και βαθμωτών μεγεθών στη Φυσική. Έπειτα εισάγονται

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα