The method for multi-attribute emergency decision-making considering the interdependence between information sources

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "The method for multi-attribute emergency decision-making considering the interdependence between information sources"

Transcript

1 ^ 38 *^ 8 fl 6 ß6Jl ^u Vol.38, No fi 8 χ Systems Engineering Theory & Practice Aug., 2018 doi: / (2018) Oßv G7: C934,>μGo: A [dfl 9ο.! T1ffi, $2Φ ( fi j 0 m ; w0p, fi ) = ( Ψ8A ± X±`ffi.7v Qß, "S ο-(<^ff, 9F:*ρ Ξ. 6Y, ψ W ffl-(<+k.]`ffi.7v Qca. fl), hwt:a ± ]`ffi.7v Q&!N fi;»z, ψw-(<+kv_]xχcau ffl-(<+k_]a 4μqA -(; =Z, hwt: Pignistic f C]7vM/cL/?ca, Π[gcLB ]-_R5, 4ρ*` ffi.7v Q] ]. Er, "pχωd'3aeca>`ffi.7v QD]9,.. d'}on, ffl-(<b ]+k.o~ff7v Q}oizΛl, #ßνsflA ± 9k-(<^ff.] ο, Π[fl»>ρy78D]b%.,H 7v; `ffi. Q; A ± ; -(<+k. The method for multi-attribute emergency decision-making considering the interdependence between information sources CHEN Xuelong, WANG Yali (Faculty of Management and Economics, Dalian University of Technology, Dalian , China) Abstract When evidence theory is applied to emergency decision-making, it is often supposed that the information sources are independent which is contrary to the reality. Therefore, we propose the method for multi-attribute emergency decision-making considering the interdependence between information sources. Firstly, the multi-attribute emergency decision-making problem is represented based on evidence theory. Secondly, we put forward the method to compute the interdependent degree between information sources, and the evidence combination rule considering the interdependent degree between information sources to fuse the evidence information. Thirdly, the emergency alternative selection method based on the Pignistic probability, which can expand the difference of alternatives reliability, is discussed. At last, an example analysis on multi-attribute emergency decision-making problem is applied to verify the effectiveness of the proposed method. The analysis results show that considering the interdependence between information sources will make the emergency decision-making more objective and scientific, as well as weaken the independence hypothesis on information sources and expand the application scope of evidence theory. Keywords emergency; multi-attribute decision-making; evidence theory; interdependence of information sources ~'yq: K?GN: Qo3: 0de (1978 ),, 3, [^ΞI<, Λn, fff, gχ F: chenxl dlut.edu.cn; ψen (1990 ), ffl, 3, >±Π3<, fgχy, gχ F: b&k, :Oρi: -ke97cyffi ( ); Λοψ<,QS7cgχ(fiYffi (17YJC630014); ZffiZQ7*JYffi (L13DGL061); Om IYffi7gu1 azeπ (DUT18JC01) Foundation item: National Natural Science Foundation of China ( ); Humanities and Social Science Youth Foundation of Ministry of Education of China (17YJC630014); Social Science Planning Foundation of Liaoning Province of China (L13DGL061); The Fundamental Research Funds for the Central Universities (DUT18JC01) Hfi*1( : 0de, ψen. 4hQ5flA#XWqqX b-' v [J]. 7»ρ7Km _v, 2018, 38(8): ,fi*1( : Chen X L, Wang Y L. The method for multi-attribute emergency decision-making considering the interdependence between information sources[j]. Systems Engineering Theory & Practice, 2018, 38(8):

2 2046 7»ρ 7 Km _ v ^ 38 * 1 +' ffe,,ix#ψμsgyps'λdx#9φ"6jh~;l), ;<LPRn a%jvfi& Z,, ρ4%q!fffi:`av [1,2]. 7nμsgy&ff*ρ9±lm>fiKV a,&j a%jv8o. tffiμsgyvφ"w_ffi abjvfi&w, μsgy a,&jvr$ξk]pψo±fiffiωp49? ` pχum ;n p jρnxvfi4dppw,&/6, ΩffiP4Vfi4dW-Ω, jq! a%j `μvfffit`. 7nppW a,&p4vfi4dw-ω, += [3 7] Ψff[pRΩ, f. Pj:l?`W2:lfi ivmr""fi±;^i. <$Jl [8,9] $BJP4fi4dWzyΦi~;, Ω <$VTdνe4d _ fi4dvp4, ρ /<$P4VA;JS,&VΞV [10 12]. Ωffi Yang [13] Ψ>V<$ρJ u, Ωfi K BJppW,&/6Nfi4dVdW9dXP4, $ppw,&`μfi(y ± [14,15]. Beynon [16] _ Hua [17] Ψ>V DS/AHP zusfi ±$ a`μ Ω,fi4dppW,&-Ω [18]. Pj, <$JlV UV, r a,& p;vm,&/6. ffffi a*ρ_,&ξ VvIW, _nfi? a`fivm bj, RIΨff <$VP4fi V ezu Dfl, $0}dP4l]Nfi8, v [jv w8ωrλdav [jv w, W. 0vΠV)(A;, D, <$JlVP4fiiQW mrbffi$^i ±NoS[vdV?K, $A;e /6Nfi 3g. j>s, RW21>Y: R UBJ [19 24]. 'C j>sω,ω-ω. Ψ> V;4)(, fi?pb2?8. [25]. Guralnik?%<$ % [26]. Xffi4R C, Yager Ψ>vRμ$0T ρe>ωr;4jfi8 PV, A;Φ./,ffi<$V ], P ρ( u [27]. Su VΨχ9flχ ;, [28]. CMΛr, KpEdY$ m, ρ(3gχ W/ue r$ a,&/ 6N, P4fi (c[j) Ap `μw?`ψρv* Chebbah Ψ>[V/<$ u, V<$fi`';kV;4)(, V;4)(. f [29]. PΩzu $Jl(y U l, ' j Q$Pj2tΦfi(yV. r$μsgy jφ"_fi4dvnfi8,,&2 > Vz ν4p4vπj EVd8»iρn, r~ν4tc, fi]uhj3 V. D, fi Xffi=c,&P %Ω,zfifffiVfii, fl+7nppw Ufffi. m:, > ppw a,&-ωv<$jlνetd (±C ß_ffiXflfii ), Ω, a,&/6np4fi4d W-Ω; ffie, nffi<$a;/6niqwmrv-ω, ρ "jv<$t;;4)(, ld, %fikdkω`z ApVPj*, <$P4 ]K%fiiTd, ρf;»pw0tp4, >Xffi Pignistic fiic [30] VppW az `'zu, Gr JS a,&vξv. 2 ;3CT^h»ff "0AXΨflΠ } a,&c az V`'/6, r az Vρχ_`'jaRppW,&-Ω. ffitdkνec8. mrfi s,&2 (cp4fi) (DM 1,DM 2,,DM s ), m Mρχ az (A 1,A 2,,A m ) _ n ρχpw (C 1,C 2,,C n ); z λ j > 0(j =1, 2,,n), ' n j=1 λ j =1. >=c,&"8 G =[u(a k,c j )] m n, ffin u(a k,c j ) νe,&2nz A k $pw C j 8VρχC. $D

3 ^ 8 fl 0de, Y: 4hQ5flA#XWqqX b-' v 2047 μ$z VρχC U ß_ffiXflfii Vfi, ρx$,&2vfi 856jn<$P4 Ul0. 7nppW a,&vpw0tv/, Q!fi?pRzu [31 34], μπλ?fimbr, fl+#±ο av(e 2u [35] 4dpW0T. Dfl, Q!fi"ppW,&-ΩVfffiN, z $fi pw8vρnp4vπjz?fiirv, 4!Z q$,&/6n3gfi4dp4vνe-ω. 2.1 K5<r9~%f"l1 +J <$JlN, Ω={A 1,A 2,,A n } jv ±1 n G9VffiΩ~<];, P (Ω) jff 2 n ß~fi4V Ω Vw]. Xflfii (basic probability assignment, BPA) 2t (s2%]2tw2pj2 t) d}%w] P (Ω) S [0, 1] MVΞO, c: P (Ω) [0, 1], 'qi: m( ) =0, A Ω m(a) =1. (1) ffin, A % Ω Vb]; F m(a) > 0 (2 A % ß, Λfi ßVρ]2%8. PjC m(a) νen Ω A V BΠ>16j, cb] A Vfii. O±<$Jl Ufi4dW,&V"xAv$ffi > ß_ffiXflfii. fit+= [16, 17] NV DS/AHP zu, VffiΩG9] Ω={A 1,A 2,,A m },,&2Vν4(jnΩ `z U ]V<$P4,,&"8 G =[u(a k,c j )] m n j,&2n az ρχv<$p4. (8μ $,&"8 > ß_ffifii VC8ffd. n A kp, A kq Ω, A kp A kq, F u(a kp,c j )=u(a kq,c j ), ( A kp A kq pffi v ß. b E j il νe,&2 DM i $pw C j 8 >V] l ß (i =1, 2,,s; l =1, 2,,N i ; j =1, 2,,n), N i %] i,&2 >V ßht. n A k Ω _ E j il 2Ω, F A k E j il, ( ßVXflfii 8 ^Kνe%: ˆm = p(e j il ) Ni 2,,s; j =1, 2,,n. (2) l=1 p(ej il ),i=1, ffin, p(e j il ) νe$pw C j 8,&2 DM i n] l ßVν4P4, Qν4P4% E»iρn]8μ$»} V E-pCWdXν4C [12] (fl+ lxkc%dxν4cv*a). Q,&2n Λ z VρnP4%<], (Ω,&2 >V ß ±1 Ω. ffffi Ω %±1ΛfiΩ`z V9 o, fit+= [16], b p(ω) = 1 %9 rxd (2) _!rusvpw0t_»} rλn Vν4XKC,U ßVXflfii. 2.2 U±>uIΛΦ I Bu BPA -, <$Jl XnMEdfi P4fiV<$, r^i ±N, ρ~λfivp4fihj XTqV. $ a,&/6n, ffffi,&2v?`ψρwλk/v[t`μfi, >V az ρχp4v85jsfi nffiψffv<$p4 085jVfi U1>. w ij > 0(i =1, 2,,s; j =1, 2,,n) νe,&2 DM i V0T, 'qi s i=1 w ij =1, ($pw C j 8,&2 DM i ΨffVz ρχ<$p4v85j%: w ij v ij = η j max{w ij i =1, 2,,s}. (3) ffin, η j j$pw C j 87nΛfi,&2Vb 6t, vπez, η [0.9, 1]; max{w ij i =1, 2,,s} νe $pw C j 8Λfi,&2VlK0T [18]. x$,&2v85jc8us1>dvl0 BPA, ± m j il (A) ν e, Cd (4) Λe. v ij ˆm j m j il (A) = il (A), A Ω, 1 v ij ˆm j il (B), A =Ω. (4) B Ω 3 effi :ß/"»ff "0AXΨ!fl $<$Jlff6N, Edfi P4fiV<$ /;4)( UA;, V/nΛ ΩV6ff>8j, r^<d_vρj,&/6. fl 7nQ!<$;4)(NP4fiiQWmRV-Ω, ff aω`z V=

4 2048 7»ρ 7 Km _ v ^ 38 * cρnp4nz U#F, $De U<$P4VA;, U>z V6ffPjC; f;fi pwfly8z V6ffPjC, > aω`z VΦ]6j ], D`>lΦz. 3.1 ffffl7μ,flμ 8t Chebbah [29]?%8 /e <$'H 2fi P4fin vjξ U FV*A, r mp4 C.P4finΞ V Fffi2fi, (P4fijiQV; Ξ(flffiW2Ap, q,<$p4jpj2tφfirv, r a,&n"" > EV»iρn. XffiMr 2, flh xfi p Wfly8,&2n aω`z >V EρnP4, I z %Fffi fi V#F, r /#FpVU ffizr]<r]nl $ΛvpW8,,&2 >Ω`z V E»iρn, C?Z Z NX? X. 0»iρnXdVfi Ω`zu U#F, cc.w z (ID v #F. fi VP4fi Ψfffi V#FI, = W Edfi VΩ`z, (fi,&2nω`z VXdI 8?%$ΩpW84W,&2j VΨρ?`, Ue, fi P4fiΨffV ]ID Ω#FV aω`z VtΞ4fflP. R= W P4fi DM i DM j $ΛpW8 ο > aω`z VρnXd h i h j. N P4fi Vz I% vf, > οedffip4fi DM i DM j V#F cl i h i cl j h j, (fi β i h ih j = β i (cl i h i,cl j h j )= cli h i cl j h j cl i h i, β j h ih j = β j (clh i i,cl j h j )= cli h i cl j h j cl j. (5) h j ffin, β i h ih j β j h ih j ο%p4fi DM i DM j F cl i h i cl j h j, ( β i h ih j β j h ih j ; Q #F cl i h i cl j h j VΩ`z ], βh i ih j = β j h ih j Vß~], βh i ih j = =1. M i M j, ονep4fi DM i DM j >V#Fp β j h ih j νec8: M i = β11 i β12 i β1h i βh1 i βh2 i βhh i βh1 i βh2 i βhh i, M j = β j 11 β j 12 β j 1H β j h1 β j h2 β j hh β j H1 β j H2 β j HH. (6) ffin, H %z ρnxdht, '»pwfly8z VρnXdhtvI. F βh i ih j β j h ih j (h i,h j = 1, 2,,H), ( M i M j. %[V/fi P4fi μ$ βh i ih j NVlKC. >P4fi DM i DM j Nz V#F, 'tv cl i h i F $vv cl j h J?"8NΩ#FΛ$ VU9, / M i N βh i ih j c#f. &ff uc8. u 1: #F Algorithm 1 Cluster Matching Require: similarity matrix M. while M is not empty do Find maxm and indexes c and l of clusters having this maximal similarity. Map clusters l and c. Delete line l and column c from M. end while return cluster matching.

5 ^ 8 fl 0de, Y: 4hQ5flA#XWqqX b-' v R]E μ,μ vovu#f, c8 vffiusz 7n a,&/6np4fi4dvφ`, Pj2t, EBJfi4dW3 VP4. md#f cl i h i S#F cl j h j, ΩI,i mh ih j ({Dep}) =αβh i ih j, ΩI,i mh ih j ({Ind}) =α(1 βh i ih j ), ΩI,i m h ih j ({Dep, Ind}) =1 α. ffin, Ω I (Dep), iq (Ind)}; m ΩI,i h ih j ({Dep}), m ΩI,i Vz #F cl i h i cl j h j V856j ffffl7de μ,flμ h ih j ({Ind}) νeffp4fi DM i ΛΨff iq6j. α VPj2t1>6t, fi VP4fi aω`z 0fi ρnxd U#F, "6j. μ$d (7) VUfft P4fiΨffV H P4 c: ffin, m ΩI,DMi m ΩI,DMi (A) = 1 H H h i=1 (7) ΩI,i mh ih j (A), A 2 ΩI. (8) jp4fi DM i N;4 νeffd (8) VUVP4fi DM i Nz V H ld, ± Pignistic fii]k Vzd UfiKDK, Cd (9) (10) Λe. { γ(dmi,dm j )=Betp({Dep}), (9) γ(dm i,dm j )=Betp({Ind}), B A Betp(A) = m(b). (10) B B Ω I,B ffin, Betp( ) %Ξ fii]k2t, ± Pignistic fiic; γ(dm i,dm j ) γ(dm i, DM j ) Q γ(dm i,dm j ) > γ(dm i,dm j ) ], 2P4fi DM i DM j wa2%iq. ffmr/68vuv ffffip4fi DM i np4fi DM j "jfivdxffi DM DM i Λ Dfl, FfiQW P4 cfqfiv P4fi av D, W c γ(dm i,dm j )=max{γ(dm i,dm j ),γ(dm j,dm i )}. (11) 8 2> γ &fi~ψw ~n2wxφ`. ρ(svπ*a, _P4fi c γ(dm i,dm j ) γ(dm i,dm j,dm t ). % _P4fiV*p, D, Q,&2% s ], /e [29], Cd (12). γ(dm 1,DM 2,,DM s )=min(γ(dm i,dm j )), i,j =1, 2,,s. (12) μ$mrzu, 8VUfi ffixfl CjXffi,&27n FΞ >Vfi ρnp4e r+= [29] /e <$pv'h U#F. D, += Ωzu8 Dfl, Ωzuj7nppW a,&p4 fiffiω'p± E»i rvφ`ψ>v, e οlbπ r, Ξk±ffi a,&]pfflfi P4fiffiΩ XΦ`. 3.2 Ybffffl7μ,χ BS4ff ppw a,&/6pffi6ff,&/6, Zq fi P4fiΨffV<$P4 UfiKA;, V/ ß V6ffPjC. Q!, <$V;4)(fipRTd [36 40], p#± Dempster ;4)(ρmRP4fiiQ. 7

6 2050 7»ρ 7 Km _ v ^ 38 * Denoeux [25] Ψ>V V;4)(US(yV?8. PC!Λr, "jμ$b+ mv, 0 c 1, (0, 1) ](/u m. %Ω, Mr-Ω, flh Ψ>vR<$VT;;4)(, V/ppW a,&-ωn»pwfly8 ßV6ffP j2tc. T;;4)(C8: m Mixed (A) =(1 γ) m (A)+γ m (A), A Ω ' A. (13) ffin, m Mixed (A) νeλpw8 Ω A V6ffPjC; γ ±6 ονe Dempster ;4)(9 V;4)(. R m 1 m 2 Ω Md}VW BPA 2t, Dempster ;4)(9 V;4)(νeC8: m (A) =m 1 2 (A) = 1 K 1 w(a) = B,C Ω,B C=A m 1 (B) m 2 (C), A Ω, (14) m (A) =m 1 2(A) = 1 K A Ω A w1(a) w2(a), A Ω, (15) 2 B A, B 2N q(b) if A 2N, B A, B 2N q(b), q(b) ( 1) B A +1 = A,B Ω,B A B A, B 2N q(b) (16) otherwise. B A, B 2N q(b), q(b) = m(c), B Ω. (17) C Ω,C B 1 ffin, K 1 1 K 2 νe:μ6j, K 1 =1 B,C Ω,B C= m 1(B) m 2 (C),K 2 =1 m 1 m 2 ( ). A w1(a) A w2(a) j"ffi A VrN>12t (simple basic belief assignment, SBBA). SBBA je m 2tNHp±1W ß, 'Q±1W ß], ffinv ß Ω. vπtdνe%: m(ω) = w, m(a) =1 w, w [0, 1], 8rg% A w[30]. w 1 w 2 jff:) ΩUSV m 1 m 2 V0T, jrn>12t/h b [41]. q(b) j` VPj2t, νe[8ω]ys Ω B VlK"$PjC, $,&*ρnνez B Vl K8Pj. N %d8t];. PC, Ω={a, b, c}, W P4fi >Wj BPA 2t m 1 m 2. ν 1 ονe[q γ =0,γ =0.3, γ =0.6 _ γ =1]» ßVA;Φ.. 1 ΞΨ5fi0<» fiν2λz5 2 Ω m 1 m 2 m m m Mixed γ =0 m Mixed γ =0.3 m Mixed γ =0.6 m Mixed γ =1 {a} {b} {a, b} {c} {a, c} {b, c} Ω ffν 1 8 2>, QP4fijffi2iQ] (γ =0),A;Φ. Dempster ; "] (γ =1),A;Φ. ; (0, 1) Ap], A;Φ.(jWRj;)(Vl 0DVΦ Pignistic %ff -> $ffiz $; ffffi M2thjd}$ Ω N= b]m, bu>v ß6ffPjCnΛ &ffz Vfi4dW,?ΦX4 az V,& w. Pignistic fiil%ff Smith [42] Ψ>, ΞVjΩ,P4fi4d]V6,&-Ω. Smets [43] vffi 2 [ Pignistic fiivjlx$, ρ<~ffi$fi4dρj`μv,&fikw. Smets?%PjI$ffi 2 fi (

7 ^ 8 fl 0de, Y: 4hQ5flA#XWqqX b-' v 2051 y: Credal(9 Pignistic (. $ Credal (, Ω8 /»RρJ R (D-S R 8C_JP R JPp R 8ΩW RX) VUPjρn; $ Pignistic (, ΩVPjfi]P4fiiVTd ffi,&. C w(,&&fi~;vφi. Pignistic fiivνjtd ο±;;fvb+, ρωfikdk» ΩApVPj*,?οpVZffi,&uCVC`Ξ ; BΠX ffifiivzupcy$ Bayes Pignistic fiififfipj, fizq:lfii, ρ8$fi (EMn< $ Uj;. ΩffiQ6 VC`Ξ fi!d, 8Ω ]*s], Pignistic fiivφiοl~; [44]. D, fl H #± Pignistic fii (wd (10)), DK 3.2 H ΛU»z 6ffPjV*, ffilq,&. Dfl, nffippwfly8v a,&-ω, Z3g»pWV0T.»z Vl0f; Pignistic fiicc d (18) Λe. Beptg=(A) = n λ j Bept(A). (18) j=1 ffin, Beptg=(A) νez A Vf; Pignistic fiic; λ j %»pw0t, ff(e 2uVU. ffmd,>» z V Pignistic fiic, rnω`z U ], &filkf; Pignistic fiicvz %l8ωvz. 4 Ξ_$ffi μ$+= [18], H,&[j DM 1 DM 2 _ DM 3 % a,&-ω`'lφz. ρχ az VΦ ]vπfi 8 4 ρnpw: AΩΩT (C 1 ) ψffωt (C 2 ) QΦΩT (C 3 ) _D ]p (C 4 ). #±οav (E 2u (AHP) /WWnffl m"8vupw C j (j =1, 2, 3, 4) V0T λ j, Cν 2 Λe.,&2n 5 aω`z (A 1, A 2,, A 5 ) U Eρn, >=c»}ν4"8, Cν 3 Λe, ffin»}ν4x K"8Cν 4 Λe. 2 ψß qx C 1 C 2 C 3 C 4 λ j C 1 1 1/2 1/ C / C C 4 1/2 1/2 1/ C.R= ΞΨ ψ»)v?ß.?}%χ Ξw Λ C 1 C 2 C 3 C 4 DM 1 DM 2 DM 3 DM 1 DM 2 DM 3 DM 1 DM 2 DM 3 DM 1 DM 2 DM 3 A 2 * [ OY OY OY * OY OY OY * [ OY A 3 OY [ [ OY * [ OY [ OY * A OY OY A 5 OY OY OY [ OY * OY 4 4)o3`6G ~ s 2 [ 3 OY 4 6 cb,&"8nλlp4j3 V, μ$d ß. C,&2 DM 1 $ pw C 1 8 ß% E 1 11 = {A 1,A 4 } E 1 12 = {A 3} E 1 13 = {A 5} E 1 14 = {Ω}. μ$ν 4 U> E1 11 E1 12 E1 13 E1 14

8 2052 7»ρ 7 Km _ v ^ 38 * n V,&ν4XKC ο% 6, 4, 5, 1. ffd (2) U>pW C 1 8,&2 DM 1 >V ßfii %: ˆm 1 11 ({A 6λ 1 1,A 4 })= 6λ 1 +4λ 1 +5λ 1 +1 =0.2846, ˆm1 12 ({A 4λ 1 3}) = 6λ 1 +4λ 1 +5λ 1 +1 =0.1897, ˆm 1 13({A 5 })= 5λ 1 6λ 1 +4λ 1 +5λ 1 +1 =0.2372, ˆm1 14({Ω}) = 1 6λ 1 +4λ 1 +5λ 1 +1 = ffin, λ 1 = jpw C 1 V0T. J, fi fi pw8fi,&2 >V ß_ffiXflfii C, C ν 5 Λe. 5 ΞΨ ψ»)v?*ffl L6=s: &g#m (BPA) qx -'3 ρ`χo W BPA C 1 DM 2 {A 1, A 4, A 5}: ; {A 2, A 3}: DM 1 {A 1, A 4}: ; {A 3}: ; {A 5}: ; Ω: DM 3 {A 1}: ; {A 2, A 4, A 5}: ; {A 3}: C 2 DM 2 {A 1, A 4}: ; {A 2, A 5}: ; Ω: DM 1 {A 1, A 4}: ; {A 2, A 3, A 5}: DM 3 {A 1}: ; {A 3, A 5}: ; {A 4}: ; Ω: C 3 DM 2 {A 1}: ; {A 2}: ; {A 3, A 4}: ; Ω: DM 1 {A 1, A 4}: ; {A 2, A 3, A 5}: DM 3 {A 1, A 4}: ; {A 2, A 5}: ; {A 3}: C 4 DM 2 {A 1, A 5}: ; {A 2}: ; {A 4}: ; Ω: DM 1 {A 1}: ; {A 3}: ; {A 4, A 5}: ; Ω: DM 3 {A 1, A 3, A 5}: ; {A 2, A 4}: ffffifi,&2v0t -fi, mr w 1j =0.36, w 2j =0.34, w 3j =0.3 (j =1, 2, 3, 4), /b 6 t η j =0.95. (ffd (3) U,&2 DM 1 DM 2 9 DM 3 n V85j ο%: v 1j =0.95, v 2j =0.8972, v 3j = (j =1, 2, 3, 4). ffd (4), ßV BPA VfiοN, USl0DV BPA. Cν 6 Λe. 6 ZcV?vJ Cv BPA qx -'3 ρ`χo BPA C 1 DM 2 {A 1, A 4, A 5}: ; {A 2, A 3}: ; Ω: DM 1 {A 1, A 4}: ; {A 3}: ; {A 5}: ; Ω: DM 3 {A 1}: ; {A 2, A 4, A 5}: ; {A 3}: ; Ω: C 2 DM 2 {A 1, A 4}: ; {A 2, A 5}: ; Ω: DM 1 {A 1, A 4}: ; {A 2, A 3, A 5}: ; Ω: DM 3 {A 1}: ; {A 3, A 5}: ; {A 4}: ; Ω: C 3 DM 2 {A 1}: ; {A 2}: ; {A 3, A 4}: ; Ω: DM 1 {A 1, A 4}: ; {A 2, A 3, A 5}: ; Ω: DM 3 {A 1, A 4}: ; {A 2, A 5}: ; Ω: C 4 DM 2 {A 1, A 5}: ; {A 2}: ; {A 4}: ; Ω: DM 1 {A 1}: ; {A 3}: ; {A 4, A 5}: ; Ω: DM 3 {A 1, A 3, A 5}: ; {A 2, A 4}: ; Ω: F vffiv/n pw8 ßV6ffPj2tC, nfi,&2 (cp4fi) UP4;4. μ$ 3.1 zu, m:μ$ν 3 V=c m"8, c,&2 >V aω`z ρnp4 U#F. C$pW C 1 8,,&2 DM 1 DM 2 >V aω`z #FI %: DM 1 = {cl3(a 1 3 ),cl4(a 1 5 ),cl5(a 1 1,A 4 )} DM 2 = {cl2(a 2 2,A 3 ),cl4(a 2 1,A 4,A 5 )}. ffd (5), V/ 4fi DM 1 DM 2 M 1 M 2 : M 1 = , M 2 = / /3 2/

9 ^ 8 fl 0de, Y: 4hQ5flA#XWqqX b-' v 2053 ff u 1 nw"8 U#F, US DM 1 DM 2 Vz DM 1 : β32 1 =1,β54 1 =1;DM 2 : β45 2 =2/3, β23 2 =1/2. $D, (7) U:H. Ω =5,ρmR#F±1VPj2ttXiffiK, / α =0.75 [29], U: m 1 32 ({Dep}) =0.75 m 1 54 ({Dep}) =0.75 DM 1 : m 1 32({Ind}) =0, m 1 54({Ind}) =0, m 1 32 ({Dep, Ind}) =0.25 m 1 54 ({Dep, Ind}) =0.25 m 2 45 ({Dep}) =0.5 m 2 23 ({Dep}) =0.375 DM 2 : m 2 45({Ind}) =0.25, m 2 23({Ind}) = m 2 45 ({Dep, Ind}) =0.25 m 2 23 ({Dep, Ind}) P4fiVz ffd (8) (10) VUP4fi { γ(dm1,dm 2 )=0.875 γ(dm 1,DM 2 )=0.125, { γ(dm2,dm 1 )= γ(dm 2,DM 1 )= ffffiffiqw Λ, ffd (11) UP4fiApV9 γ(dm 1,DM 2 )=max{γ(dm 1,DM 2 ),γ(dm 2,DM 1 )} = J, V/$fi pwfly8 Cν 7 Λe. O±d (13) ß6ffPjC, Cν 8 Λe. 7 ΞΨ ψ»fi 8EF A±ν-ffiν qx C 1 C 2 C 3 C 4 γ(dm 1,DM 2,DM 3) ΞΨ ψ»l6x±fiνg C 1 C 2 C 3 C 4 ρ BPA ρ BPA ρ BPA ρ BPA {A 1} {A 1} {A 1} {A 1} {A 4} {A 4} {A 1, A 4} {A 3} {A 2} {A 2, A 5} {A 2, A 5} {A 4, A 5} {A 2, A 3} {A 2, A 3, A 5} {A 2, A 3, A 5} {A 1, A 5} {A 1, A 4, A 5} {A 3, A 5} {A 2} {A 2} {A 5} {A 5} {A 3,A 4} {A 4} {A 4, A 5} {A 1, A 4} {A 4} {A 1, A 3, A 5} {A 3} Ω {A 3} {A 2, A 4} {A 1, A 4} Ω {A 5} {A 2, A 4, A 5} Ω Ω ld, % ffi,&, ffd (18) nfi 0TpW8V ß Ul0, ßV6PjC U Pignistic fii ]K, nz U ], ρ += [18] (Dempster ;4) 9Xffi V;4)(ΛUz V Pignistic fiic_ z Φ]y] UfflΞ, Cν 9 Λe. fffflξφ.8?, lφz % A 1 8fi. PXffi Dempster ;4 )(US aω`z ] A 5 >A 2, rxffifl+t;;4)(vφ. Xffi V;4)(VΦ.vI, c A 2 >A 5. 4jffffiT;;4)(j Dempster ;4)( ffi ;4Φ.flffiO±WR;4)(USVΦ.Ap; 'ffe Λ fl+zu;4vφ.ξπ ffiff V)(;4VΦ., Cο 1 Λe. Pffν V;4 )(, T;;4)(fiKDK[ ]' pv Pignistic *C, ο ffiz V/N, vd6 jmff<[fl+zuvφi. afl, Gν 3 NV=c,&P48 2>,»P4fin aω`z A 2 V»i ρn9ffzffiz A 5. D, Dempster ;4)(8ΩUSVfitffiB$,& P4VΦ., b a,&φ.οl6b ;$.

10 2054 7»ρ 7 Km _ v ^ 38 * 9 ΞΨ5fi0<» ).?}%χ Pignistic &gg=χ j# ffa Λ U<<5*) Dempster <5*) W<5*) Bept(A i) Λ ^ Bept(A i) Λ ^ Bept(A i) Λ ^ A A A A A Mh Bept(A i ) A 1 A 2 A 3 A 4 A 5 Dempster Ω 1 ΞΨ5fi0<» χ Pignistic &gg fi=P 5fi0<»)j#νa.?}%χ Pignistic &gω Pignistic flj+ U<<5*) W<5*) Bept(A 1) Bept(A 4) Bept(A 4) Bept(A 3) Bept(A 3) Bept(A 5) Bept(A 5) Bept(A 2) appw,&jμsgy a%jv"x-ωav, &fi]pfflfi P4Φ ffi2v/_ppwf; ρnxφ`. <$JlΩ?4 BJP4fi4dV-Ω, Pffi<$A;/6NVP4fiiQWmR$^i ±NfiΩfi<^. a,&zu. m:, 7nppW a,&-ω NP4fi4dV-Ω, >Xffi<$JlV-Ωνe. ffie, nfi P4fi >Vz ρnp4 U#F, /#F e $ VTΦe V ], sff<[<$jl$bj3 P4]VΦi. #E, ;4)(, A;fi P4fi<$P4; r >Xffi Pignistic fiicv aω`z V`', ^<pp W a,&vξv. ld, / P,r[zuV ±/6, ρ U[nffl 2. 2Φ.ν ~, fl+ψ>vzufi ΩbppW a,&v/6οlfik Φ.οl6b, ]GG[<$Jlfi"P 4fiiQWVmR, DK[ffi$^i ±NVx#. ΠYff [1] cq, ', %v, Y. νthz b&k vgχ»+ ^j [J]. &Kffm, 2016, 28(8): 3 5. Liu Y, Xu W, Qiao H, et al. A preface to the progress of research on emergency management of emergencies[j]. Management Review, 2016, 28(8): 3 5. [2] PΠ', roν,.,-, Y..*νthz b&kgχ»+ [J]. 7»ρ7Km _v, 2012, 32(5):

11 ^ 8 fl 0de, Y: 4hQ5flA#XWqqX b-' v 2055 Zhong Y G, Mao Z G, Weng W G, et al. Progress of study on unconventional emergencies management [J]. Systems Engineering Theory & Practice, 2012, 32(5): [3] Levy J K, Taji K. Group decision support for hazards planning and emergency management: A group analytic network process (GANP) approach[j]. Mathematical and Computer Modeling, 2007, 46(7): [4] p,v,?,»s, Y. zfνthzw FqΠμ b-' v [J]. 7»ρ7Km _v, 2012, 32(6): Wu W S, Kou G, Peng Q, et al. A fuzzy multi-criteria emergency decision-making method[j]. Systems Engineering Theory & Practice, 2012, 32(6): [5] ß5, p*}, /0k. Yfflxmν FH%^W b-' S v [J].!< &K, 2014, 23(2): Sun B Z, Ma W M, Zhao H Y. The model and approach of emergency decision-making based on fuzzy rough set over two universes[j]. Operations Research and Management Science, 2014, 23(2): [6] 0Λß, 7ffl/. fl5eofl9νthzgπ b-'gχ [J]. E7c, 2014, 28(3): Wu F P, Cheng T J. Dynamic decision support for emergency response under uncertain environment[j]. Soft Science, 2014, 28(3): [7] &)ψ, 0de, ψh,. Yffl(IxW b-')q5b< v [J]. 7»ρ7Km _v, 2015, 35(1): Guan Q Y, Chen X L, Wang Y Z. Distance entropy based decision-making information fusion method[j]. Systems Engineering Theory & Practice, 2015, 35(1): [8] Dempster A P. Upper and lower probabilities induced by a multivalued mapping[j]. Annals of Mathematical Statistics, 1967, 38(2): [9] Shafer G. A mathematical theory of evidence[m]. Princeton: Princeton University Press, [10] ±y, ψw, -s/. flχffq5ffiz9yffl=%kmw CGF V&-' v [J]. 7»ρ7Km _v, 2013, 33(6): Tan X, Wang W, Zhang M J. Behavior decision method of CGF with incomplete information based on evidence theory[j]. Systems Engineering Theory & Practice, 2013, 33(6): [11] +1B, L,R. v`χfi+ [J]. O-&K7c, 2011, 19(5): Guo K H, Li W L. A method for multiple attribute group decision making with complete unknown weight information and its extension[j]. Chinese Journal of Management Science, 2011, 19(5): [12] +1B, L,R. Yffl=%ffKWfl5eqqX-' v [J]. &Kρ7cΦ, 2012, 26(2): Guo K H, Li W L. Evidential reasoning-based approach for multiple attribute decision making problems under uncertainty[j]. Journal of Industrial Engineering and Engineering Management, 2012, 26(2): [13] Yang J B, Xu D L. On the evidential algorithm for multiple attribute decision analysis under uncertainty[j]. IEEE Transactions on System, Man and Cybertics, Part A: System and Humans, 2002, 32(3): [14] Xu D, Yang B, Wang Y. The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty[j]. European Journal of Operational Research, 2006, 174(3): [15] Guo M, Yang J B, Chin K S, et al. Evidential reasoning based preference programming for multiple attribute decision analysis under uncertainty[j]. European Journal of Operational Research, 2007, 182(3): [16] Beynon M J. DS/AHP method: A mathematical analysis, including an understanding of uncertainty[j]. European Journal of Operation Research, 2002, 140(1): [17] Hua Z, Gong B, Xu X. A DS-AHP approach for multi-attribute decision making problem with incomplete information[j]. Expert Systems with Applications, 2008, 34(3): [18] Ju Y, Wang A. Emergency alternative evaluation under group decision makers: A method of incorporating DS/AHP with extended TOPSIS[J]. Expert Systems with Applications, 2012, 39(1): [19] M}, nff. wsa#=%<5 v [J]. f ZcΦ, 1999, 22(9): Sun H J, Yang J Y. A combination method for dependent evidences[j]. Chinese Journal of Computers, 1999, 22(9): [20] ψ», M}. ws DSm KmA#=% S [J]. f Z7c, 2009, 36(8): Wang J, Sun H J. Model for dependent evidences in DSmT framework[j]. Computer Science, 2009, 36(8): [21] J,, ψ;fl, ψrt. wsa#=%w<5*) [J]. =L -', 2011, 26(5): Xiao W, Wang Z Y, Wang Y D. Combination rule for dependent evidences[j]. Control and Decision, 2011, 26(5): [22] Su X, Mahadevan S, Han W, et al. Combining dependent bodies of evidence[j]. Applied Intelligence, 2016, 44(3): [23] nl^, W*f, > k. Yffl9»$uΨLWA#=%<5 vgχ [J]. &K7ccΦ, 2003, 6(5): Yang S L, Zhu W D, Ren M L. Combination theory and method for interrelated evidences based optimal adjustment coefficient[j]. Journal of Management Sciences in China, 2003, 6(5): [24] 0M. YfflSc7Tß!nΨLWA#=%<5` [J]. 7» 6cΦ, 2009, 21(3): Chen L. Related evidence synthesis based on particle swarm optimization neural network parameter and application[j]. Journal of System Simulation, 2009, 21(3):

12 2056 7»ρ 7 Km _ v ^ 38 * [25] Denoeux T. Conjunctive and disjunctive combination of belief functions induced by non-distinct bodies of evidence[j]. Artificial Intelligence, 2008, 172 (2 3): [26] Guralnik V, Mylaraswamy D, Voges H. On handling dependent evidence and multiple faults in knowledge fusion for engine health management[c]// Aerospace Conference, 2006 IEEE, Big Sky, MT, 2006: [27] Yager R R. On the fusion of non-independent belief structures[j]. International Journal General Systems, 2009, 38(5): [28] Su X, Mahadevan S, Xu P, et al. Handling of dependence in Dempster-Shafer theory[j]. International Journal of Intelligent Systems, 2015, 30(4): [29] Chebbah M, Martin A, Yaghlane B B. Combining partially independent belief functions[j]. Decision Support Systems, 2015, 73(C): [30] Smets P, Kennes R. The transferable belief model[j]. Artificial Intelligence, 1994, 66(2): [31] Saaty T L. A scaling method for priorities in hierarchical structure[j]. Journal of Mathematical Psychology, 1977, 15(3): [32] A", [#p, fiß.!n)f 3v (ANP) ffψ b$vsf Λ [J]. 7»ρ7Km _v, 2007, 27(3): Sun H C, Xu G Y, Tian P. Design alternatives evaluation of emergency bridge by applying analytic network process (ANP)[J]. Systems Engineering Theory & Practice, 2007, 27(3): [33] /v, >rr, L. Yffl Fx - x1vwu<qqx-' v [J].!< &K, 2013, 22(6): Zhao M, Ren R R, Li G. Method based on fuzzy entropy-entropy weight for hybird multi-attribute decision making[j]. Operations Research and Management Science, 2013, 22(6): [34] Liu D R, Shih Y Y. Integrating AHP and data mining for product recommendation based on customer lifetime value[j]. Information and Management, 2005, 42(3): [35] Amiri M P. Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods[j]. Expert Systems with Applications, 2010, 37(9): [36] Dubois D, Prade H. Representation and combination of uncertainty with belief functions and possibility measures[j]. Computational Intelligence, 1988, 4(3): [37] Martin A, Osswald C. Toward a combination rule to deal with partial conflict and specificity in belief functions theory[c]// International Conference on Information Fusion, Québec, Canada, 2007: 1 8. [38] Murphy C K. Combining belief functions when evidence conflicts[j]. Decision Support System, 2000, 29(1): 1 9. [39] Yager R R. On the Dempster-Shafer framework and new combination rules[j]. Information Science, 1987, 41(2): [40] Lefèvre E, Elouedi Z. How to preserve the conflict as an alarm in the combination of belief functions[j]. Decision Support System, 2013, 56(1): [41] Smets P. The canonical decomposition of a weighted belief[c]// International Joint Conference on Artificial Intelligence, Morgan Kaufman, Montréal, Québec, Canada, 1995: [42] Smith C A B. Consistency in statistical inference and decision[j]. Journal of the Royal Statistical Society, 1961, 23(1): [43] Smets P. Constructing the pignistic probability function in a context of uncertainty[j]. Machine Intelligence & Pattern Recognition, 1990, 10: [44] 0[7, ψ..qdqflψfl9;ν=%k< [J]. 7»ρ7Km _v, 2014, 34(1): Chen S Q, Wang Y M. Conflicting evidence combination of interval-valued belief structures[j]. Systems Engineering Theory & Practice, 2014, 34(1):