MECHANINIS DARBAS, GALIA, ENERGIJA. TVERMĖS DĖSNIAI MECHANIKOJE. HIDRODINAMIKA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MECHANINIS DARBAS, GALIA, ENERGIJA. TVERMĖS DĖSNIAI MECHANIKOJE. HIDRODINAMIKA"

Transcript

1 LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS MECHANINIS DARBAS, GALIA, ENERGIJA TVERMĖS DĖSNIAI MECHANIKOJE HIDRODINAMIKA III KURSO III TURO METODINIAI NURODYMAI IR UŢDUOTYS

2 LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS Aurelija Pelanskienė MECHANINIS DARBAS, GALIA, ENERGIJA TVERMĖS DĖSNIAI MECHANIKOJE HIDRODINAMIKA III KURSO III TURO METODINIAI NURODYMAI IR UŢDUOTYS Metodinė priemonė mokslo metai Šiauliai 05

3 III TURAS MECHANINIS DARBAS, GALIA, ENERGIJA TVERMĖS DĖSNIAI MECHANIKOJE HIDRODINAMIKA Metodiniai nurodymai m masės kūno, judančio greičiu, kūno impulsas, arba judesio kiekis, yra ektorinis dydis: p m () Todėl antrąjį Niutono dėsnį galima uţrašyti taip: p p Δp F () t t Dydis F t adinamas jėgos impulsu; čia t jėgos eikimo laikas, p p judesio kiekio (kūno impulso) pokytis Kūnų sistemos judesio kiekis lygus sistemą sudarančių kūnų judesių kiekių ektorinei sumai: n p m m m m ; sist i i n n (3) i čia n sistemą sudarančių kūnų skaičius Jeigu sąeikaujančių kūnų sistemą dar eikia išorinės jėgos (pz: trinties, elektrinės arba magnetinės), tai bendras sistemos judesio kiekio pokytis aprašomas lygybe: n i Δ(m ) i i n i Ft; čia Δ m i i kiekieno sistemos kūno judesio kiekio pokytis dėl išorinės jėgos F i poeikio, F i t tos jėgos impulsas Jei kūną eikia kintamoji jėga, tai judesio kiekio pokytį galima apskaičiuoti grafiškai Funkcijos F = F(t) kreiės apribotas plotas sao skaitine erte lygus judesio kiekio pokyčiui Δp ( pa) Kai išorinės jėgos nėra, galioja judesio kiekio termės dėsnis: uţdaros sistemos judesio kiekis yra pastous dydis: p sist n i m i i i const Jeigu sistemą sudaro du sąeikaujantys kūnai, tai judesio kiekio termės dėsnį uţrašome taip: a) kai sąeika tamprioji, t y kai kūnai po sąeikos juda atskirai: m m mu mu; (6) čia ir kūnų greičiai prieš sąeiką, u ir u kūnų greičiai po sąeikos; b) kai sąeika netamprioji (plastinė), t y kai kūnai po sąeikos juda kartu: m m (m m )u; (7) čia u kartu judančių kūnų greitis po sąeikos Pastoiosios jėgos F atliekamas darbas A F s Fs cosα; (8) čia s poslinkio ektorius, α kampas tarp jėgos F ir poslinkio s krypties π π π Jeigu α, tai A > 0, jeigu α, tai A = 0, jeigu α, tai A < 0 Pagal šią formulę galima apskaičiuoti ir kintamosios jėgos darbą, jeigu ţinoma jėgos idutinė ertė per judėjimo laiką Elementariosios matematikos metodais F id galima apskaičiuoti tik paprasčiausiais atejais, kai jėgos F modulis kinta proporcingai poslinkiui s, t y kai F k s; (4) 3 pa (5) (9) 3

4 čia k proporcingumo koeficientas Payzdţiui, pagal šį dėsnį kinta jėga, kuria tampri spyruoklė eikia ją suspaudţiančius arba ištempiančius kūnus Taip pat Archimedo jėga panyrant arba išnyrant taisyklingos formos kūnui Šiais atejais kintamosios jėgos idutinė ertė: F F Fid ; (0) čia F jėgos ertė poslinkio pradţioje, F jėgos ertė poslinkio pabaigoje Kintamosios jėgos darbą galima apskaičiuoti grafiškai, jei ţinomas jėgos kitimo dėsnis Funkcijos F = F(s) kreiės ribojamas plotas skaitine erte lygus jėgos atliktam darbui ( pa) Darbas, pakeliant m masės kūną graitacijos lauke, lygus A = m g h c ; () čia h c kūno masės centro pakilimo aukštis pa Mechaninė galia A N () t Kampu α į poslinkio kryptį nukreiptos pastoiosios jėgos F galia s N F cos α Fcosα ; (3) t čia kūno greičio modulis Jeigu sprendţiant uţdainius reikia apskaičiuoti galios idutinę ertę, tai yra idutinis kūno judėjimo greitis Jeigu reikia apskaičiuoti momentinę galią, tai momentinė greičio ertė Maksimali ir minimali galia yra momentinės galios atejai Mechanizmo naudingumo koeficientas: An η, (4) A N n η, (5) N En η ; (6) E čia A n (N n,e n ) mechanizmo naudingas darbas (galia, energija), A (N,E ) isas atliktas darbas (artojama galia, energija) Mechaninė energija (E) dydis, kuris parodo, kokį didţiausią darbą gali atlikti kūnas (kūnų sistema), pakitus jo mechaninei būsenai Mechaninė energija skirstoma į kinetinę ir potencinę m masės kūno, judančio greičiu, kinetinė energija: m E k (7) Tampriai deformuotas kūnas (pz, suspausta arba ištempta spyruoklė) turi potencinės energijos: kx E p ; (8) čia k standumo koeficientas, x absoliutinis spyruoklės pailgėjimas arba sutrumpėjimas m ir m masės kūnų, esančių atstumu R ienas nuo kito, graitacinės sąeikos potencinė energija: m m E p G ; (9) R 3 m čia G graitacijos konstanta, G 6,67 0 kg s 4

5 m masės kūnas, esantis aukštyje h irš Ţemės pairšiaus (irš nulinio lygmens), turi potencinės energijos: E p = m g h (0) Kūnų sistemos pilnutinė mechaninė energija lygi isų sistemą sudarančių kūnų kinetinės ir potencinės energijų sumai: E E E piln k i p i () i i Kūnų kinetinės energijos sudedamos aritmetiškai, nes jos nepriklauso nuo judėjimo krypties Potencinė energija priklauso nuo parinkto atskaitos lygmens Potencinė energija gali būti teigiama ar neigiama Energijos termės dėsnis: uţdaros kūnų sistemos pilnutinė mechaninė energija nekinta, jei ji neirsta kitų rūšių energija E piln = const () Jei sistema nėra uţdara, t y kūną (arba kūnų sistemą) eikia išorinės jėgos, tai mechaninės energijos termės dėsnis negalioja Tada sistemos pilnutinės mechaninės energijos pokytis lygus išorinių jėgų, eikiančių sistemą, atliktam darbui: ΔE = A (3) Sprendžiant termės dėsnių uždainius, siūlome laikytis tokios tarkos: Išsiaiškinkite, kas duota sąlygoje ir ką reikia rasti Sudarykite sąlygos lentelę 3 Nubrėţkite brėţinį, paţymėkite isus duotus ir ieškomus dydţius (judesio kiekio arba greičio ektorius), paţymėkite koordinačių ašis 4 Išsiaiškinkite, ar kūnų sistema uţdara 5 Parašykite judesio kiekio ir energijos termės dėsnius 6 Parašykite dėsnių lygtis skaliariškai (suprojektuokite į pasirinktą kryptį) 7 Uţrašykite trūkstamas lygtis Išspręskite uţdainį, patikrinkite ir įertinkite atsakymą Skysčių ir dujų mechanika Hidro- ir aerodinamikos uţdainiai maţai skiriasi nuo įprastų statikos uţdainių Sprendţiant šiuos uţdainius taikomi judesio kiekio ir energijos termės dėsniai Pagrindinis hidromechanikos uţdainys nustatyti slėgio ir greičio pasiskirstymo skysčio iduje dėsnius Pradţioje yra nagrinėjamas idealusis, nespūdus skystis Tarp tokio skysčio sluoksnių neeikia trinties jėgos Jėgų sąeiką tokiame skystyje apibūdina skaliarinis dydis slėgis p: F p ; S čia F jėga, eikianti S ploto pairšių ir statmena jam Pusiausiro skysčio sukeltas slėgis adinamas hidrostatiniu slėgiu: p = ρ g h; čia ρ skysčio tankis, h skysčio stulpelio aukštis Galioja Paskalio dėsnis: Atirajame skysčio pairšiuje slėgis p 0 persiduoda nepakitęs į bet kurį skysčio tašką Bet kuriame skysčio taške pilnutinį slėgį sudaro slėgis p 0 į atirąjį pairšių (paprastai tai atmosferos slėgis) ir skysčio stulpelio hidrostatinis slėgis Kai skystis pusiausiras, slėgis į ienalyčio idealaus skysčio ienodo lygio pairšių isuose šio pairšiaus taškuose ienodas Skystyje (dujose) esantį kūną eikia Archimedo jėga Ši jėga nukreipta statmenai skysčio atirajam pairšiui Archimedo jėga skaitmeniškai lygi kūno išstumto skysčio (dujų) soriui: F A = ρ 0 g V; čia ρ 0 skysčio (dujų) tankis, V išstumto skysčio tūris (lygus panirusio kūno dalies tūriui) Jei, tekant skysčiui, pro bet kurį skerspjūio plotą per tą patį laiką prateka ienodas skysčio kiekis, tai toks skysčio tekėjimas adinamas stacionariu Esant tokiam judėjimui: 5

6 S = S ; čia S, S skerspjūio plotai,, skysčio greitis Bet kuriuose diejuose idealiojo skysčio skerspjūiuose slėgis yra ienodas: p gh p gh Šis sąryšis adinamas Bernulio dėsniu Taigi stacionaraus srauto bet kuriame skerspjūyje pasirinkę pakankamai ploną ρ tankio skysčio sluoksnį, kurio sunkio centras yra aukštyje h nuo nulinio atskaitos lygio, galime parašyti: p gh čia p išorinis slėgis, tekančio skysčio greitis payzdys Suma p + ρ g h adinama statiniu slėgiu, const; skysčio dinaminiu slėgiu Uždainių sprendimo payzdžiai 3 pa m masės kūnas juda apskritimu pastoiu greičiu Apskaičiuokite judesio kiekio pokytį per a) ketirtadalį apsisukimo, b) per pusę apsisukimo p m Sprendţiant šį uţdainį sarbu nepamiršti, kad judesio kiekis yra ektorinis dydis a 4 pa b Nubraiţome brėţinį (4 pa), paaizduojame greičio ektorius Judesio kiekio pokytis: p p p m m m Pirmuoju ateju (5 pa):, pa

7 Kadangi, tai Ir Antruoju ateju (6 pa): Kadangi 3, tai p m, 3 3 Ir p m Atsakymas: p m, p m 3 6 pa payzdys Kokią galią N išysto ţmogus, traukdamas pastoiu greičiu m masės kroinį į kalną, kurio pasirimo kampas α? Trinties koeficientas tarp kroinio ir kalno pairšiaus μ N m α μ Traukdamas kroinį pastoiu greičiu ţmogus išysto galią N F Nubraiţome brėţinį (7 pa), paţymime kroinį eikiančias jėgas y N * F x α F tr α mg 7 pa Kroinį eikia sunkio jėga mg, trinties jėga ţmogus eikia kroinį) Pagal II Niutono dėsnį * F N Ftr mg 0 Suprojektuojame jėgas į pasirinktas ašis: 7 F tr, atramos reakcijos jėga * N ir jėga F (kuria

8 Ţinome: x: F Ftr mgsin 0 () * F tr N, () * y: N mgcos 0 (3) () ir (3) lygtis, įrašę į (), gauname: F mg(sin cos ) (4) (4) lygtį įrašę į (), gauname ţmogaus išystomą galią: N mg(sin cos ) Atsakymas: N mg(sin cos ) 3 payzdys Horizontaliame kelyje stointį m masės kūną pradeda eikti jėga F Kokia bus kūno kinetinė energija po t laiko? m E k F t čia Jėgos atliktas darbas yra lygus kinetinės energijos pokyčiui A E k E k (pradiniu momentu kūnas stoi) () Jėgos F atliktas darbas A F s () Kadangi kūnas juda eikiamas jėgos, tai jis juda tolygiai greitėdamas ir at s, (3) F a (4) m (), (3), (4) lygtis įrašę į (), gauname: F t E k m F t Atsakymas: E k m 4 payzdys m masės rutulys judėdamas greičiu lygiu pairšiumi susiduria su M masės stoinčiu rutuliu Smūgis centrinis Po smūgio pirmojo rutulio greitis sumaţėja du kartus Raskite suminės kinetinės energijos po smūgio santykį su pradine pirmojo rutulio energija Išnagrinėkime du atejus: Po smūgio pirmasis rutulys juda ta pačia kryptimi, kaip ir iki smūgio Pagal judesio kiekio termės dėsnį: m m Mu, () 8

9 čia u antrojo rutulio greitis po smūgio Aišku, kad u ir m M Pagal energijos termės dėsnį: m m Mu 8 Tai energijos santykis α po ir iki smūgio: m Mu 8 m, M u 4 m () Iš () lygties: u m M (3) (3) lygtį įrašę į () gauname: m 4 M (4) Didţiausia α ertė gali būti lygi ienetui α =, o tai reikštų, kad energijos nuostolių nėra smūgis absoliučiai tamprus Šiuo ateju m = 3M Maţiausia α ertė, tai iš (4) lygties matyti, kad m = M, tada iš () lygties u, t y rutuliai judėtų tuo pačiu greičiu tai reikštų, kad smūgis yra absoliučiai netamprus T y jei M m 3 M, tai Po smūgio pirmasis rutulys atšoka atgal Tada pagal judesio kiekio termės dėsnį: m m Mu Iš čia: u 3 m M (5) (5) lygtį įrašę į (), gauname: m 9 4 M (6) 0 < m Jei smūgis absoliučiai tamprus, tai α = ir M, tai < α 3 4 m M 3 Aišku, kad m > 0, todėl α > 4 Taigi, jei 9

10 III TURO UŢDUOTYS MECHANINIS DARBAS, GALIA, ENERGIJA TVERMĖS DĖSNIAI MECHANIKOJE HIDRODINAMIKA m masės kūnas juda R spindulio apskritimu f daţniu Koks judesio kiekio pokytis per /4 apsisukimo? = m/s greičiu riedantis pirmasis rutulys absoliučiai tampriai smogia į tokį pat stointį rutulį Po smūgio pirmasis rutulys atšoka α = 30 kampu pradinės krypties atţilgiu Kokiu greičiu ir kokia kryptimi nuriedės antrasis rutulys? 3 Du ienodi m masės rutuliai rieda statmenomis kryptimis = 5 m/s ir = 5 m/s greičiais Apskaičiuokite rutulių greitį po absoliučiai netampraus smūgio? 4 Skriejantis artilerijos siedinys sprogsta į di skeeldras Pirmoji skeeldra nulekia α = 90 kampu pradinės krypties atţilgiu = 50 m/s greičiu Antroji skeeldra nulekia α = 30 kampu, = 00 m/s greičiu Apskaičiuokite skeeldrų masių santykį 5 Kokį maţiausią darbą turi atlikti darbininkai, kad pastatytų M = 00 kg masės l = 0 m ilgio stulpą, kurio iršūnėje įtirtintas m = 30 kg masės šiestuas? 6 Kokį darbą atlieka traukos jėga, eikianti Mėnulį, judantį apie Ţemę? 7 Kūną eikianti jėga kinta pagal dėsnį F = F 0 + kx Kokį darbą atlieka ši jėga perkeldama kūną atstumu x = cm? Ţinoma x 0 = 0 m, F 0 = 0 N, k = 3 N/m 8 m masės ţmogus lipa į iršų judančiu ţemyn greičiu eskalatoriumi Eskalatoriaus aukštis h, eskalatorius sudaro α kampą su horizontaliąja plokštuma Kokį maţiausią darbą turi atlikti ţmogus uţlipdamas į iršų per laiką t? 9 Kūnas metamas ertikaliai į iršų 0 pradiniu greičiu Kokiame aukštyje h irš ţemės pairšiaus kūno greitis sumaţės perpus? Oro pasipriešinimo nepaisykite 0 m = kg masės kūnas metamas horizontaliai nuo aukšto bokšto 0 = 0 m/s pradiniu greičiu Apskaičiuokite kūno kinetinę energiją po t = 4 s laiko Oro pasipriešinimo nepaisykite Lygiu horizontaliu pairšiumi greičiu juda M masės eţimėlis Į jį pataiko greičiu lekianti m masės kulka ir įstringa eţimėlyje Koks bus eţimėlio greitis, jei: ) kulka lėkė horizontaliai eţimėlio judėjimo kryptimi; ) kulka lėkė ertikaliai ţemyn? m masės kulka, lekianti horizontaliai 0 greičiu, pataiko į ant l ilgio siūlo kabančio M masės maţo skersmens rutulio centrą ir pramušusi rutulį iš jo išlekia Po sąeikos siūlas atsilenkia α kampu Kiek šilumos išsiskyrė smūgio metu? Oro pasipriešinimo nepaisykite 3 Du kūnai juda horizontaliu stalo pairšiumi ienas prieš kitą Pirmojo kūno greitis = 5 m/s, antrojo = 5 m/s Kūnų masių santykis m n 4 Tarp kūnų įyksta centrinis netamprus m smūgis Trinties koeficientas tarp kūnų ir stalo μ = 0,7 Kokį kelią l nueis kūnai, per laiką, per kurį jų greitis sumaţės k = 30 %? 4 Iš taško A, loeliu, be pradinio greičio, pradeda slysti kūnas Taškas A yra aukštyje H = 6 m irš taško B, esančio ţemės pairšiuje (8 pa) Judant loeliu, kūno energija dėl trinties sumaţėja dydţiu ΔE = J Iš loelio kūnas išlekia α = 5 kampu į horizontą ir nukrinta taške C, esančiame atstumu l = 4 m nuo taško B Apskaičiuokite kūno masę Oro pasipriešinimo nepaisykite 0

11 A H B α C l 8 pa 5 Kūno judesio kiekis sumaţėjo α procentų Kiek procentų z pakito kūno kinetinė energija? 6 Kamuolys metamas į sienelę Jo greitis prieš pat smūgį yra du kartus didesnis, nei tuoj pat po smūgio Smūgio metu išsiskyrė Q = 5 J šilumos Kokia buo kamuolio kinetinė energija prieš smūgį? 7 Kūnas be trinties slysta iš h = 5 m maţiausio aukščio (9 pa), reikalingo įeikti mirties kilpą Kokio R spindulio mirties kilpą įeikė kūnas? R = m h min R 8 Ţmogaus širdies kairysis skilelis per ieną susitraukimą į aortą išstumia m = 70 g kraujo, kurio slėgis p = 6 kpa Tarkime, kad per laiką t = min skilelis susitraukia n = 75 kartus Kraujo tankis ρ = 050 kg/m 3 Kokią galią išysto širdis? 9 m masės rutulys, judėdamas greičiu, paeja m masės rutulį, judantį greičiu Apskaičiuokite rutulių greitį po absoliučiai netampraus centrinio smūgio (0 pa) Kiek mechaninės energijos irto idine? Kuri mechaninės energijos dalis irstų idine, jei rutulių masės būtų ienodos, o ienas iš rutulių prieš smūgį nejudėtų? 9 pa m m m m u iki smūgio 0 pa po smūgio 0 Kodėl greitai lekianti kulka pramuša plastmasinėje stiklinėje di skyles, o uţpildţius stiklinę andeniu, ji išlaksto į skeeldras?

12 Lietuos fizikų draugija Šiaulių uniersiteto Jaunųjų fizikų mokykla FOTONAS Aurelija Pelanskienė III kurso III turo metodiniai nurodymai ir uţduotys mokslo metai Rinko ir maketao Irma Bolskytė

I.4. Laisvasis kūnų kritimas

I.4. Laisvasis kūnų kritimas I4 Laisvasis kūnų kitimas Laisvuoju kitimu vadinamas judėjimas, kuiuo judėtų kūnas veikiamas tik sunkio jėos, nepaisant oo pasipiešinimo Kūnui laisvai kintant iš nedidelio aukščio h (dau mažesnio už Žemės

Διαβάστε περισσότερα

Matematika 1 4 dalis

Matematika 1 4 dalis Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios

Διαβάστε περισσότερα

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI 008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI

Διαβάστε περισσότερα

III.Termodinamikos pagrindai

III.Termodinamikos pagrindai III.ermodinamikos pagrindai III.. Dujų plėtimosi darbas egu dujos yra cilindre su nesvariu judančiu stūmokliu, kurio plotas lygus S, ir jas veikia tik išorinis slėgis p. Pradinius dujų parametrus pažymėkime

Διαβάστε περισσότερα

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika 1. (Paskaitų konspektas) 2009 m. sausio d. Prof. Papildoo ugdyo okykla izikos olipas Mechanika Dinaika (Paskaitų konspektas) 9. sausio -8 d. Prof. Edundas Kuokštis Vilnius Paskaita # Dinaika Jei kineatika nagrinėja tik kūnų judėjią, nesiaiškindaa tą

Διαβάστε περισσότερα

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra. Juozas Navickas FIZIKA. I dalis MOKOMOJI KNYGA

LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra. Juozas Navickas FIZIKA. I dalis MOKOMOJI KNYGA LIETUVOS ŽEMĖS ŪKIO UNIVERSITETAS Vandens ūkio ir žemėtvarkos fakultetas Fizikos katedra Juozas Navickas FIZIKA I dalis MOKOMOJI KNYGA KAUNAS, ARDIVA 8 UDK 53(75.8) Na95 Juozas Navickas FIZIKA, I dalis

Διαβάστε περισσότερα

KŪNŲ PUSIAUSVYRA. PAPRASTIEJI MECHANIZMAI. SLĖGIS. KŪNAI SKYSČIUOSE (DUJOSE)

KŪNŲ PUSIAUSVYRA. PAPRASTIEJI MECHANIZMAI. SLĖGIS. KŪNAI SKYSČIUOSE (DUJOSE) LIETUVOS IZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ IZIKŲ MOKYKLA OTONAS KŪNŲ PUSIAUSVYRA. PAPRASTIEJI MECHANIZMAI. SLĖGIS. KŪNAI SKYSČIUOSE (DUJOSE) I KURSO I TURO UŽDAVINIŲ SPRENDIMŲ METODINIAI NURODYMAI

Διαβάστε περισσότερα

LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS MECHANIKA

LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS MECHANIKA LIETUVOS IZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ IZIKŲ MOKYKLA OTONAS MECHANIKA SVEIKINAME MOKSLEIVIUS, ĮSTOJUSIUS Į OTONO MOKYKLĄ! Šiaulių universiteto jaunųjų fizikų mokykla otonas, siekianti padėti

Διαβάστε περισσότερα

Dviejų kintamųjų funkcijos dalinės išvestinės

Dviejų kintamųjų funkcijos dalinės išvestinės Dviejų kintamųjų funkcijos dalinės išvestinės Dalinės išvestinės Tarkime, kad dviejų kintamųjų funkcija (, )yra apibrėžta srityje, o taškas 0 ( 0, 0 )yra vidinis srities taškas. Jei fiksuosime argumento

Διαβάστε περισσότερα

LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS ŠILUMA I KURSO II TURO UŽDUOTYS IR METODINIAI NURODYMAI

LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS ŠILUMA I KURSO II TURO UŽDUOTYS IR METODINIAI NURODYMAI LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS ŠILUMA I KURSO II TURO UŽDUOTYS IR METODINIAI NURODYMAI LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA

Διαβάστε περισσότερα

. (2 taškai) (1 taškas) . (2 taškai) . (2) (2 taškai)

. (2 taškai) (1 taškas) . (2 taškai) . (2) (2 taškai) 0 m. ietuvos 6-ojo fizikos čempionato UŽDUOČŲ SPRENDMA 0 m. gruodžio 6 d. (Kiekvienas uždavinys vertinamas 0 taškų, visa galimų taškų suma 00). Pervyniojant transformatoriaus ritę buvo pastebėta, kad ritėje

Διαβάστε περισσότερα

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas

Fizika. doc. dr. Vytautas Stankus. Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Fizika doc. dr. Vytautas Stankus Fizikos katedra Matematikos ir gamtos mokslų fakultetas Kauno Technologijos Universitetas Studentų 50 58 kab. Darbo tel.: 861033946 Vytautas.Stankus@ktu.lt Bendrosios fizikos

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai

Διαβάστε περισσότερα

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7

Διαβάστε περισσότερα

PNEUMATIKA - vožtuvai

PNEUMATIKA - vožtuvai Mini vožtuvai - serija VME 1 - Tipas: 3/2, NC, NO, monostabilūs - Valdymas: Mechaninis ir rankinis - Nominalus debitas (kai 6 barai, Δp = 1 baras): 60 l/min. - Prijungimai: Kištukinės jungtys ø 4 žarnoms

Διαβάστε περισσότερα

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol

II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 05 m. birželio 8 d. įsakymu Nr. (.3.)-V-73 05 M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA. Pagrindinė sesija I dalis Teisingas

Διαβάστε περισσότερα

1. Individualios užduotys:

1. Individualios užduotys: IV. PAPRASTOSIOS DIFERENCIALINĖS LYGTYS. Individualios užduots: - trumpa teorijos apžvalga, - pavzdžiai, - užduots savarankiškam darbui. Pirmosios eilės diferencialinių lgčių sprendimas.. psl. Antrosios

Διαβάστε περισσότερα

Termochemija. Darbas ir šiluma.

Termochemija. Darbas ir šiluma. Termochemija. Darbas ir šiluma. Energija gyvojoje gamtoje. saulės šviesa CO 2 H 2 O O 2 gliukozė C 6 H 12 O 6 saulės šviesa Pavyzdys: Fotosintezė chloroplastas saulės 6CO 2 + 6H 2 O + šviesa C 6 H 12 O

Διαβάστε περισσότερα

Kai kurios uþdaviniø sprendimo formulës. Tolygiai kintamo judesio (veikia pastovios iðorinës jëgos): Greitis (apibrëþiamas taip pat)

Kai kurios uþdaviniø sprendimo formulës. Tolygiai kintamo judesio (veikia pastovios iðorinës jëgos): Greitis (apibrëþiamas taip pat) 178 F I Z I K A biomedicinos ir fiziniø mokslø studentams UÞDAVINIAI Kai kurios uþdaviniø sprendimo formulës M e c h a n i k a. D i n a m i k a Kûno poslinkis s (kûno neveikia iðorinës jëgos) s =v t (ds

Διαβάστε περισσότερα

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1 Spalvos Grafika ir vizualizavimas Spalvos Šviesa Spalvos Spalvų modeliai Gama koregavimas Šviesa Šviesos savybės Vandens bangos Vaizdas iš šono Vaizdas iš viršaus Vaizdas erdvėje Šviesos bangos Šviesa

Διαβάστε περισσότερα

r F F r F = STATIKA 1 Q = qmax 2

r F F r F = STATIKA 1 Q = qmax 2 STTIK Mechanika fizinių moksų šaka, naginėjanti mateiaiuosius objektus: kūnus, kūnų sistemas, tų sistemų pusiausvyą, judėjimo dėsnius i mechaninę tapusavio sąveiką. Statika moksas apie pavienius mateiaiuosius

Διαβάστε περισσότερα

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija

2014 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 04 m. birželio 6 d. Nr. (.)-V-69birželio 4 04 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA I dalis Kiekvieno I dalies klausimo

Διαβάστε περισσότερα

= γ. v = 2Fe(k) O(g) k[h. Cheminė kinetika ir pusiausvyra. Reakcijos greičio priklausomybė nuo temperatūros. t2 t

= γ. v = 2Fe(k) O(g) k[h. Cheminė kinetika ir pusiausvyra. Reakcijos greičio priklausomybė nuo temperatūros. t2 t Cheminė kineika ir pusiausyra Nagrinėja cheminių reakcijų greiį ir mechanizmą. Cheminių reakcijų meu kina reaguojančių iagų koncenracijos: c ų koncenracija, mol/l laikas, s c = Reakcijos greičio io ()

Διαβάστε περισσότερα

1 TIES ES IR PLOK TUMOS

1 TIES ES IR PLOK TUMOS G E O M E T R I J A Gediminas STEPANAUSKAS 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir ties es plok²tumoje normalin es lygtys 111 Vektorin e forma Plok²tumos α padetis koordina iu sistemos Oxyz atºvilgiu

Διαβάστε περισσότερα

, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką.

, t.y. per 41 valandą ir 40 minučių. (3 taškai) v Braižome h = f(t) priklausomybės grafiką. 5 m. Lietuvos 7-ojo fizikos čempionato UŽDUOČIŲ SPENDIMI 5 m. gruodžio 5 d. (Kiekvienas uždavinys vertinamas taškų, visa galimų taškų suma ). L 5 m ilgio ir s m pločio baseino dugno profilis pavaizduotas

Διαβάστε περισσότερα

Skysčiai ir kietos medžiagos

Skysčiai ir kietos medžiagos Skysčiai ir kietos medžiagos Dujos Dujos, skysčiai ir kietos medžiagos Užima visą indo tūrį Yra lengvai suspaudžiamos Lengvai teka iš vieno indo į kitą Greitai difunduoja Kondensuotos fazės (būsenos):

Διαβάστε περισσότερα

LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS ELEKTROS SROVĖS STIPRIS ĮTAMPA. VARŽA LAIDININKŲ JUNGIMO BŪDAI

LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS ELEKTROS SROVĖS STIPRIS ĮTAMPA. VARŽA LAIDININKŲ JUNGIMO BŪDAI LETVOS FZKŲ DAGJA ŠALŲ NVESTETO JANŲJŲ FZKŲ MOKYKLA FOTONAS ELEKTOS SOVĖS STPS ĮTAMPA. VAŽA LADNNKŲ JNGMO BŪDA LETVOS FZKŲ DAGJA ŠALŲ NVESTETO JANŲJŲ FZKŲ MOKYKLA FOTONAS omas Senkus ELEKTOS SOVĖS STPS.

Διαβάστε περισσότερα

Statistinė termodinamika. Boltzmann o pasiskirstymas

Statistinė termodinamika. Boltzmann o pasiskirstymas Statistinė termodinamika. Boltzmann o pasiskirstymas DNR molekulių vaizdas DNR struktūros pakitimai. Keičiantis DNR molekulės formai keistųsi ir visos sistemos entropija. Mielėse esančio DNR struktūros

Διαβάστε περισσότερα

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu IV DEKARTO KOORDINAČIU SISTEMA VEKTORIAI 41 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n Priminsime, kad šios erdvės elementai yra vektoriai α = (a 1,, a n ) Be mums jau žinomu

Διαβάστε περισσότερα

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilniaus universitetas Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilnius 1992 T U R I N Y S 1. Vektorinė erdvė............................................. 3 2. Matricos rangas.............................................

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

Statistinis ir termodinaminis tyrimo metodai

Statistinis ir termodinaminis tyrimo metodai MOLEKULINĖS FIZIKOS IR TERMODINAMIKOS PAGRINDAI Statistiis i temodiamiis tyimo metodai Statistiis tyimo metodas Kaip buvo aiškiama medžiagos sadaa Mitį, kad kiekviea medžiaga sudayta iš smulkiausių edalomų

Διαβάστε περισσότερα

Technologiniai vyksmai ir matavimai. dr. Gytis Sliaužys

Technologiniai vyksmai ir matavimai. dr. Gytis Sliaužys Technologiniai vyksmai ir matavimai dr. Gytis Sliaužys Paskaitos turinys Srautų matavimas. Bendrosios žinios Srauto matavimas slėgių skirtumo metodu Greičio ir ploto metodai Pito vamzdelis greičiui matuoti

Διαβάστε περισσότερα

Matavimo vienetų perskaičiavimo lentelės

Matavimo vienetų perskaičiavimo lentelės Matavimo vienetų perskaičiavimo lentelės Matavimo vieneto pavadinimas Santrumpa Daugiklis Santrumpa ILGIO MATAVIMO VIENETAI Perskaičiuojamo matavimo Pavyzdžiui:centimetras x 0.3937 = colis centimetras

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis

Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Techninis aprašymas Balniniai vožtuvai (PN 16) VRG 2 dviejų eigų vožtuvas, išorinis sriegis VRG 3 trijų eigų vožtuvas, išorinis sriegis Aprašymas Šie vožtuvai skirti naudoti su AMV(E) 335, AMV(E) 435 arba

Διαβάστε περισσότερα

Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos

Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Su pertrūkiais dirbančių elektrinių skverbtis ir integracijos į Lietuvos elektros energetikos sistemą problemos Rimantas DEKSNYS, Robertas STANIULIS Elektros sistemų katedra Kauno technologijos universitetas

Διαβάστε περισσότερα

TEMA: Kūnai skysčiuose (dujose) Natkiškių Zosės Petraitienės pagrindinė mokykla. Austėja Armonaitė 8 klasė Mokytoja: Rasa Armonienė 2014 m.

TEMA: Kūnai skysčiuose (dujose) Natkiškių Zosės Petraitienės pagrindinė mokykla. Austėja Armonaitė 8 klasė Mokytoja: Rasa Armonienė 2014 m. TEMA: Kūnai skysčiuose (dujose) Natkiškių Zosės Petraitienės pagrindinė mokykla Austėja Armonaitė 8 klasė Mokytoja: Rasa Armonienė 2014 m. Turinys: Archimedo jėga Archimedo dėsnis Kūnų plūduriavimas Vandens

Διαβάστε περισσότερα

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA PATVIRTINTA Nacionalinio egzaminų centro direktoriaus -6- įsakymu Nr. (..)-V-8 m. matematikos valstybinio brandos egzamino VERTINIMO

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį

Διαβάστε περισσότερα

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam,

IV. FUNKCIJOS RIBA. atvira. intervala. Apibrėžimas Sakysime, kad skaičius b yra funkcijos y = f(x) riba taške x 0, jei bet kokiam, 41 Funkcijos riba IV FUNKCIJOS RIBA Taško x X aplinka vadiname bet koki atvira intervala, kuriam priklauso taškas x Taško x 0, 2t ilgio aplinka žymėsime tokiu būdu: V t (x 0 ) = ([x 0 t, x 0 + t) Sakykime,

Διαβάστε περισσότερα

Lina Ragelienė, Donatas Mickevičius. Fizikin chemija. Praktiniai darbai

Lina Ragelienė, Donatas Mickevičius. Fizikin chemija. Praktiniai darbai Lina Ragelienė, Donatas Mickevičius Fizikinchemija Praktiniai darbai Vytauto Didžiojo universitetas Kaunas, 011 ISBN 978-9955-1-751- Lina Ragelienė, Donatas Mickevičius Vytauto Didžiojo universitetas TURINYS

Διαβάστε περισσότερα

TERMODINAMIKA. 1. Pagrindinės sąvokos ir apibrėžimai

TERMODINAMIKA. 1. Pagrindinės sąvokos ir apibrėžimai TERMODINAMIKA 1. Pagrindinės sąvks ir apibrėžimai Įvadas Termdinamika (T) graikiškas ždisiš dviejų daliųterm (šiluma) + dinamika (jėga). Tai fundamentalus bendrsis inžinerijs mkslas apie energiją : js

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

VIESMANN VITOCAL 242-S Kompaktinis šilumos siurblio prietaisas, skaidytas modelis 3,0 iki 10,6 kw

VIESMANN VITOCAL 242-S Kompaktinis šilumos siurblio prietaisas, skaidytas modelis 3,0 iki 10,6 kw VIESMANN VITOCAL 242-S Kompaktinis šilumos siurblio prietaisas, skaidytas modelis 3,0 iki 10,6 kw Techninis pasas Užsak. Nr. ir kainas žr. kainoraštyje VITOCAL 242-S Tipas AWT-AC 221.A/AWT- AC 221.B Skaidytos

Διαβάστε περισσότερα

Įžanginių paskaitų medžiaga iš knygos

Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 1 Teiginio

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Trigonometrinės Furje eilutės Moksle ir technikoje dažnai susiduriame su periodiniais reiškiniais, apibūdinamais periodinėmis laiko funkcijomis: f(t). 2 Paprasčiausia periodinė

Διαβάστε περισσότερα

. Variklio veikimo trukę laikome labai maža. ir β ir apskaičiuokite jo skaitinę vertę esant β = 1/ 4 ( )

. Variklio veikimo trukę laikome labai maža. ir β ir apskaičiuokite jo skaitinę vertę esant β = 1/ 4 ( ) XXXVI TAPTAUTINĖ FIZIKOS OLIMPIADA 5 m. liepos d., Salamanka, Ispanija Teoinė užduotis Nelaimingas palydovas Kosminiai laivai dažniausiai manevuoja keisdami geitį išilgai judėjimo kypties peeidami į aukštesnę

Διαβάστε περισσότερα

Gabija Maršalkaitė Motiejus Valiūnas. Astronomijos pratybų užduočių komplektas

Gabija Maršalkaitė Motiejus Valiūnas. Astronomijos pratybų užduočių komplektas Gabija Maršalkaitė Motiejus Valiūnas Astronomijos pratybų užduočių komplektas Vilnius 2014 1 Įvadas 1.1 Astronomijos olimpiados Lietuvoje kylant moksleivių susidomėjimu astronomijos olimpiada buvo pastebėta,

Διαβάστε περισσότερα

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 Teiginio

Διαβάστε περισσότερα

06 Geometrin e optika 1

06 Geometrin e optika 1 06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco

Διαβάστε περισσότερα

1 iš 15 RIBOTO NAUDOJIMO

1 iš 15 RIBOTO NAUDOJIMO iš 5 PATVIRTINTA Nacionalinio egzaminų centro direktoriau 00-06-08 įakymu Nr. 6.-S- 00 m. matematiko valtybinio brando egzamino VERTINIMO INSTRUKCIJA Pagrindinė eija 8 uždavinių atakymai Užd. Nr. 5 6 7

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA 006 m. valstybinio brandos egzamino uþduotis Pagrindinë sesija 006 m. geguþës 17 d. Trukmë 3 val. Nacionalinis

Διαβάστε περισσότερα

Arenijaus (Arrhenius) teorija

Arenijaus (Arrhenius) teorija Rūgštys ir bazės Arenijaus (Arrhenius) teorija Rūgštis: Bazė: H 2 O HCl(d) H + (aq) + Cl - (aq) H 2 O NaOH(k) Na + (aq) + OH - (aq) Tuomet neutralizacijos reakcija: Na + (aq) + OH - (aq) + H + (aq) + Cl

Διαβάστε περισσότερα

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS .5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS 5.. Pirmoji Bolcao Koši teorema. Jei fucija f tolydi itervale [a;b], itervalo galuose įgyja priešigų želų reišmes, tai egzistuoja tos tašas cc, ( ab ; ), uriame

Διαβάστε περισσότερα

KLASIKIN E MECHANIKA

KLASIKIN E MECHANIKA KLASIKIN E MECHANIKA Algirdas MATULIS Puslaidininkiu zikos institutas Vadoveliu serijos papildymas auk²tuju mokyklu tiksliuju mokslu specialybiu studentams Email: amatulis@takas.lt Mob.: +370 654 543 06

Διαβάστε περισσότερα

5 klasė. - užduotys apie varniuką.

5 klasė. - užduotys apie varniuką. 5 klasė - užduotys apie varniuką. 1. Varniukas iš plastilino lipdė raides ir iš jų sudėliojo užrašą: VARNIUKO OLIMPIADA. Vienodas raides jis lipdė iš tos pačios spalvos plastelino, o skirtingas raides

Διαβάστε περισσότερα

KADETAS (VII ir VIII klasės)

KADETAS (VII ir VIII klasės) ADETAS (VII ir VIII klasės) 1. E 10 000 Galima tikrinti atsakymus. adangi vidutinė kainasumažėjo, tai brangiausia papūga kainavo daugiau kaip 6000 litų. Vadinasi, parduotoji papūga kainavo daugiau kaip

Διαβάστε περισσότερα

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav.

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav. LIETUVOS JUNŲ J Ų MTEMTIKŲ MOKYKL tema. TRIGONOMETRIJOS TIKYMI GEOMETRIJOJE (008-00) Terinę medžiagą parengė bei šeštąją uždutį sudarė Vilniaus pedaggini universitet dentas Edmundas Mazėtis Šiame darbe

Διαβάστε περισσότερα

Inžinerinių technologijų projektavimas

Inžinerinių technologijų projektavimas 0 7 ALEKSANDRO STULGINSKIO UNIVERSITETAS Žemės ūkio inžinerijos fakultetas Šilumos ir biotechnologijų inžinerijos katedra Henrikas Novošinskas Inžinerinių technologijų projektavimas Mokomoji knyga AKADEMIJA

Διαβάστε περισσότερα

Palmira Pečiuliauskienė. Fizika. Vadovėlis XI XII klasei. Elektra ir magnetizmas KAUNAS

Palmira Pečiuliauskienė. Fizika. Vadovėlis XI XII klasei. Elektra ir magnetizmas KAUNAS Palmira Pečiuliauskienė Fizika Vadovėlis XI XII klasei lektra ir magnetizmas KAUNAS UDK 53(075.3) Pe3 Turinys Leidinio vadovas RGIMANTAS BALTRUŠAITIS Recenzavo mokytoja ekspertė ALVIDA LOZDINĖ, mokytojas

Διαβάστε περισσότερα

TRANSPORTO PRIEMONIŲ DINAMIKA

TRANSPORTO PRIEMONIŲ DINAMIKA Marijonas Bogdevičius RANSPORO PRIEMONIŲ DINAMIKA Projekto kodas VP-.-ŠMM 7-K--3 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius studijų metodus Vilnius

Διαβάστε περισσότερα

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis?

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis? VIII FRAKTALINĖ DIMENSIJA 81 Fraktalinės dimensijos samprata Ar baigtinis Norvegijos sienos ilgis? Tarkime, kad duota atkarpa, kurios ilgis lygus 1 Padalykime šia atkarpa n lygiu daliu Akivaizdu, kad kiekvienos

Διαβάστε περισσότερα

III. Darbas ir energija

III. Darbas ir energija III. Dabas enegja III.. Knetnė enegja. III.. Dabas. III. 3. Konsevatyvos jėgos (potencalnės). III.4. Potencnė enegja šonų jėgų lauke. III.5. Enegjos tvemės dėsns mechankoje. III.6. Enegjos dspacja. III..

Διαβάστε περισσότερα

1. Įvadas. Laisvųjų dalelių kvantinės mechanikos elementai

1. Įvadas. Laisvųjų dalelių kvantinės mechanikos elementai 1. Įvadas. Laisvųjų dalelių kvantinės mechanikos elementai 1.1. Branduolio nukleonų energijos diskretumo aiškinimas. Dalelė stačiakampėje potencialo duobėje Dalelės banginė funkcija tai koordinačių ir

Διαβάστε περισσότερα

STOGO ŠILUMINIŲ VARŽŲ IR ŠILUMOS PERDAVIMO KOEFICIENTO SKAIČIAVIMAS

STOGO ŠILUMINIŲ VARŽŲ IR ŠILUMOS PERDAVIMO KOEFICIENTO SKAIČIAVIMAS STOGO ŠILUMINIŲ VAŽŲ I ŠILUMOS PEDAVIMO KOEFICIENTO SKAIČIAVIMAS ST 2.05.02:2008 2 priedas 1. Stogo suminė šiluminė varža s (m 2 K/W) apskaičiuojama pagal formulę [4.6]: s 1 2... n ( g q ); (2.1) čia:

Διαβάστε περισσότερα

Matematinis modeliavimas

Matematinis modeliavimas ALGIRDAS AMBRAZEVIƒIUS Matematinis modeliavimas Vilniaus universitetas 2006 2 TURINYS 1 SKYRIUS PAPRASƒIAUSI MATEMATINIAI MODELIAI 4 11 Pagrindines s vokos 4 12 Fundamentaliu gamtos desniu taikymas 10

Διαβάστε περισσότερα

04 Elektromagnetinės bangos

04 Elektromagnetinės bangos 04 Elektromagnetinės bangos 1 0.1. BANGINĖ ŠVIESOS PRIGIMTIS 3 Šiame skyriuje išvesime banginę lygtį iš elektromagnetinio lauko Maksvelo lygčių. Šviesa yra elektromagnetinė banga, kurios dažnis yra optiniame

Διαβάστε περισσότερα

1.4. Rungės ir Kuto metodas

1.4. Rungės ir Kuto metodas .4. RUNGĖS IR KUTO METODAS.4. Rungės ir Kuto metodas.4.. Prediktoriaus-korektoriaus metodas Palyginkime išreikštinį ir simetrinį Eulerio metodus. Pirmojo iš jų pagrindinis privalumas tas, kad išreikštinio

Διαβάστε περισσότερα

BIOMECHANIKOS PRAKTIKUMAS

BIOMECHANIKOS PRAKTIKUMAS Julius Griškevičius Kristina Daunoravičienė BIOMECHANIKOS PRAKTIKUMAS 1 DALIS Projekto kodas VP1-2.2-ŠMM 07-K-01-023 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant

Διαβάστε περισσότερα

Taikomoji branduolio fizika

Taikomoji branduolio fizika VILNIAUS UNIVERSITETAS Taikomoji branduolio fizika Parengė A. Poškus Vilnius 2015-05-20 Turinys 1. Neutronų sąveika su medžiaga...1 1.1. Neutronų sąveikos su medžiaga rūšys...1 1.2. Neutrono sukeltų branduolinių

Διαβάστε περισσότερα

FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU

FIZ 313 KOMPIUTERINĖ FIZIKA. Laboratorinis darbas FIZIKOS DIFERENCIALINIŲ LYGČIŲ SPRENDIMAS RUNGĖS KUTOS METODU EUROPOS SĄJUNGA Europos socialinis fondas KURKIME ATEITĮ DRAUGE! 2004-2006 m. Bendrojo programavimo dokumento 2 prioriteto Žmogiškųjų išteklių plėtra 4 priemonė Mokymosi visą gyvenimą sąlygų plėtra Projekto

Διαβάστε περισσότερα

Šotkio diodo voltamperinės charakteristikos tyrimas

Šotkio diodo voltamperinės charakteristikos tyrimas VILNIAUS UNIVERSITETAS Kietojo kūno elektronikos katedra Krūvio pernašos vyksmų skaitinis modeliavimas Darbas Nr. 1 Šotkio diodo voltamperinės charakteristikos tyrimas Parengė A. Poškus 214-9-3 Turinys

Διαβάστε περισσότερα

1 teorinė eksperimento užduotis

1 teorinė eksperimento užduotis 1 teorinė eksperimento užduotis 2015 IPhO stovykla DIFERENCINIS TERMOMETRINIS METODAS Šiame darbe naudojame diferencinį termometrinį metodą šiems dviems tikslams pasiekti: 1. Surasti kristalinės kietosios

Διαβάστε περισσότερα

Balniniai vožtuvai (PN 16) VRB 2 dviejų angų, vidiniai ir išoriniai sriegiai VRB 3 trijų angų, vidiniai ir išoriniai sriegiai

Balniniai vožtuvai (PN 16) VRB 2 dviejų angų, vidiniai ir išoriniai sriegiai VRB 3 trijų angų, vidiniai ir išoriniai sriegiai Techninis aprašymas alniniai vožtuvai (PN 16) VR 2 dviejų angų, vidiniai ir išoriniai sriegiai VR 3 trijų angų, vidiniai ir išoriniai sriegiai prašymas Savybės: Padidinto sandarumo ( bubble tight ) konstrukcija

Διαβάστε περισσότερα

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka

Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató Automatická pračka Používateľská príručka WMB 71032 PTM Skalbimo mašina Vartotojo vadovas Πλυντήριο Ρούχων Εγχειρίδιο Χρήστη Mosógép Használati útmutató utomatická pračka Používateľská príručka Dokumentu Nr 2820522945_LT / 06-07-12.(16:34) 1 Svarbūs

Διαβάστε περισσότερα

Atsitiktinių paklaidų įvertinimas

Atsitiktinių paklaidų įvertinimas 4.4.4. tsitiktinių paklaidų įvertinimas tsitiktinės paklaidos įvertinamos nurodant du dydžius: pasikliaujamąjį intervalą ir pasikliaujamąją tikimybę. tsitiktinių paklaidų atveju, griežtai tariant, nėra

Διαβάστε περισσότερα

2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija

2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 008 M MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA 008 m matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 7 uždavinių atsakymai I variantas Užd

Διαβάστε περισσότερα

V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI

V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI V skyrius ĮVAIRŪS PALŪKANŲ APSKAIČIAVIMO KLAUSIMAI Uždirbtų palūkanų suma priklauso ne tik nuo palūkanų normos dydžio, bet ir nuo palūkanų kapitalizavimo dažnio Metinė palūkanų norma nevisada atspindi

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

Δp nustatymo ribos (bar) Kodas 003H6200

Δp nustatymo ribos (bar) Kodas 003H6200 Techninis aprašymas Slėgio perkryčio reguliatorius (PN 16) AVP montuojamas tiekimo ir grąžinimo vamzdyne, reguliuojami nustatymai AVP-F montuojamas grąžinimo vamzdyne, nekeičiami nustatymai Pritaikymas

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS Į S A K Y M A S

LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS Į S A K Y M A S LIETUVOS RESPUBLIKOS SVEIKATOS APSAUGOS MINISTRAS Į S A K Y M A S DĖL LĖTINIO VIRUSINIO C HEPATITO DIAGNOSTIKOS IR AMBULATORINIO GYDYMO KOMPENSUOJAMAISIAIS VAISTAIS TVARKOS APRAŠO TVIRTINIMO 2012 m. spalio

Διαβάστε περισσότερα

Diskrečioji matematika

Diskrečioji matematika VILNIAUS UNIVERSITETAS Gintaras Skersys Julius Andrikonis Diskrečioji matematika Pratybų medžiaga Versija: 28 m. sausio 22 d. Vilnius, 27 Turinys Turinys 2 Teiginiai. Loginės operacijos. Loginės formulės

Διαβάστε περισσότερα

9. Sukimas Bendrosios žinios

9. Sukimas Bendrosios žinios 9. Sukimas 9.. Benrosios žinios Sukimas ra eformavimo tias, aibūinamas skersjūvių asisukimu stro ašies atžvilgiu nuo sukimo momento (9. av.). Jis susijęs su kaminėmis eformacijomis (žr. 8. oskrį). ai eformuojasi

Διαβάστε περισσότερα

TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010

TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010 TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010 Tikimybiu teorija nagrin eja atsitiktinius ivykius ir tu ivykiu tikimybes ivykio pasirodymo galimyb es mat, i²reik²t skai iumi p,

Διαβάστε περισσότερα

FDMGEO4: Antros eilės kreivės I

FDMGEO4: Antros eilės kreivės I FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Taikomosios matematikos institutas, Diferencialinių lygčių katedra Naugarduko g. 24, LT-3225

Διαβάστε περισσότερα

KURKIME ATEITĮ DRAUGE! FIZ 414 APLINKOS FIZIKA. Laboratorinis darbas SAULĖS ELEMENTO TYRIMAS

KURKIME ATEITĮ DRAUGE! FIZ 414 APLINKOS FIZIKA. Laboratorinis darbas SAULĖS ELEMENTO TYRIMAS EUROPOS SĄJUNGA Europos socialinis fondas KURKIME ATEITĮ DRAUGE! 2004-2006 m. Bendrojo programavimo dokumento 2 prioriteto Žmogiškųjų išteklių plėtra 4 priemonė Mokymosi visą gyvenimą sąlygų plėtra Projekto

Διαβάστε περισσότερα

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga

FUNKCIJOS. veiksmu šioje erdvėje apibrėžkime dar viena. a = {a 1,..., a n } ir b = {b 1,... b n } skaliarine sandauga VII DAUGELIO KINTAMU JU FUNKCIJOS 71 Bendrosios sa vokos Iki šiol mes nagrinėjome funkcijas, apibrėžtas realiu skaičiu aibėje Nagrinėsime funkcijas, kurios apibrėžtos vektorinėse erdvėse Tarkime, kad R

Διαβάστε περισσότερα

Egidijus Rimkus Meteorologijos įvadas PRIEDAI

Egidijus Rimkus Meteorologijos įvadas PRIEDAI Egidijus Rimkus Meteorologijos įvadas PRIEDAI PRIEDAI Turinys 1. Universa Meteorologia 2. Ţemės atmosferos funkcijos 3. Tarptautinė standartinė atmosfera 4. Ozonas 5. Šiltnamio efektas 6. Smogas 7. Saulė

Διαβάστε περισσότερα

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras,

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras, MIF kurss, Bioinformtik, semestrs, 29 6 Tolydžios tške ir intervle funkciju pibrėžimi Teorem Jei f C[, ], f() = A , ti egzistuoj toks c [, ], kd f(c) = 2 Konverguojnčios ir diverguojnčios eikutės

Διαβάστε περισσότερα

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad 45 DISKREČIOJI MATEMATIKA. LOGIKA. PAVYZDŽIAI Raidėmis U, B ir C pažymėti teiginiai: U = Vitas yra studentas ; B = Skirmantas yra studentas ; C = Jonas yra studentas. 1 Tada teigini Ne visi šie vaikinai

Διαβάστε περισσότερα

SKYSČIŲ MECHANIKA. HIDRAULINIŲ IR PNEUMATINIŲ SISTEMŲ ELEMENTAI IR PAVAROS

SKYSČIŲ MECHANIKA. HIDRAULINIŲ IR PNEUMATINIŲ SISTEMŲ ELEMENTAI IR PAVAROS Bronislovas SPRUOGIS SKYSČIŲ MECHANIKA. HIDRAULINIŲ IR PNEUMATINIŲ SISTEMŲ ELEMENTAI IR PAVAROS Projekto kodas VP1-.-ŠMM 07-K-01-03 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų

Διαβάστε περισσότερα

Elektrotechnikos pagrindai

Elektrotechnikos pagrindai Valentinas Zaveckas Elektrotechnikos pagrindai Projekto kodas VP1-2.2-ŠMM 07-K-01-023 Vilnius Technika 2012 Studijų programų atnaujinimas pagal ES reikalavimus, gerinant studijų kokybę ir taikant inovatyvius

Διαβάστε περισσότερα

9. KEVALŲ ELEMENTAI. Pavyzdžiai:

9. KEVALŲ ELEMENTAI. Pavyzdžiai: 9. KEVALŲ ELEMENTAI Kealai Tai ploni storio krptii kūnai, sudarti iš kreių plokštuų. Geoetrija nusakoa iduriniu pairšiui ir storiu t. Kiekiena pairšiaus taške galia rasti di kreies, atitinkančias inialius

Διαβάστε περισσότερα

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika (II dalis) (Paskaitų konspektas) 2009 m. kovo d. Prof.

Papildomo ugdymo mokykla Fizikos olimpas. Mechanika Dinamika (II dalis) (Paskaitų konspektas) 2009 m. kovo d. Prof. Papldoo ugdyo okykla Fzkos olpas Mechanka Dnaka (II dals) (Paskatų konspektas) 9 kovo 1-18 d Prof Edundas Kuokšts Planas Ketojo kūno asės centras Statka Pagrndnė sukaojo judėjo lygts Judeso keko (pulso)

Διαβάστε περισσότερα

ELEKTRINIS KIETŲJŲ KŪNŲ LAIDUMAS

ELEKTRINIS KIETŲJŲ KŪNŲ LAIDUMAS II skyrius ELEKTRINIS KIETŲJŲ KŪNŲ LAIDUMAS 2.1. Kietųjų kūnų klasifikacija pagal laiduą Pagal gebėjią praleisti elektros srovę visos edžiagos gatoje yra skirstoos į tris pagridines klases: laidininkus,

Διαβάστε περισσότερα