Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings"

Transcript

1 Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings

2 Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true name and the good name, or the great name and the little name; and while the good or little name was made public, the true or great name appears to have been carefully concealed. The Golden Bough, Sir James George Frazer

3 Kρυπτογραφια Μυστικου Κλειδιου (Private-Key Cryptography) Η παραδοσιακη κρυπτογραφια ιδιωτικου/μυστικου μυστικου/μοναδικουμοναδικου κειδιου χρησιμοποιει ενα μονο κλειδι. Το κλειδι αυτο μοιραζεται αναμεσα στον αποστολεα και τον παραληπτη Αν το κλειδι αποκαλυφθει, τοτε πληττεται η ασφαλεια της επικοινωνιας Επισης ειναι συμμετρικος, τα μερη ειναι ισα. Δεν προστατευει τον μεταδοτη απο το ενδεχομενο να κατασκευασει ο αποδεκτης ενα μηνυμα και να ισχυριστει οτι το εστειλε ο μεταδοτης.

4 Κρυπτογραφια Δημοσιου Κλειδιου (Public-Key Cryptography) Ειναι ισως η μεγαλυτερη ανακαλυψη στη 3000 ετων ιστορια της κρυπτογραφιας Χρησιμποιει δυο κλειδια. Το δημοσιο και το ιδιωτικο (public key & private key) Eναι ασυμμερος διοτι τα δυο μερη δεν ειναι ισα. Χρησιμοποιει εξυπνα στοιχεια απο τη θεωρια αριθμων για να λειτουργησει Συμπληρωνει και δεν αντικαθιστα την κρυπτογραφια ιδιωτικου κλειδιουo

5 Γιατι χρειαζομαστε την Κρυπτογραφια Δημοσιου Κλειδιου? Αναπτυχθηκε για να αντιμετωπισει δυο βασικα θεματα: Διανομη Κλειδιου (key distribution) Ψηφιακες Υπογραφες (digital signatures) Ανακαλυφθηκε επισημα απο τους Whitfield Diffie & Martin Hellman στο Πανεπιστημιο Stanford το1976 Ηταν γνωστος νωριτερα στην κρυπτογραφικη κοινοτητα

6 Κρυπτογραφια Δημοσιου Κλειδιου (Public-Key Cryptography) Η Kρυπτογραφια Δημοσιου κλειδιου (ή Ασυμμετρη Κρυπτογραφια) χρησιμοποιει δυο κλειδια: Το δημοσιο κλειδι (public-key), που μπορει να ειναι γνωστο σε ολους και χρησιμοποιειται για την κρυπτογραφηση μηνυματων και την επιβεβαιωση ψηφιακων υπογραφων. Το ιδιωτικο κλειδι που ειναι γνωστο μονο στον κατοχο του και χρησιμοποιειται για την αποκρυπτογραφηση μηνυματων και για να υπογραψει ο κατοχος του ενα ψηφιακο εγγραφο. Πρεπει να ειναι αδυνατο να προσδιορισει καποιος το ιδιωτικο κλειδι γνωριζοντας μονο το δημοσιο. Ειναι Ασυμμετρη γιατι αυτος που μπορει να κρυπτογραφει μηνυματα και να επιβεβαιωνει ψηφιακες υπογραφες, δεν μπορει να αποκρυπτογραφει και να βαζει ψηφιακες υπογραφες.

7 Κρυπτογραφια Δημοσιου Κλειδιου

8 Συμμετρική vs Δημοσιου Κλειδιου

9 Κρυπτοσυστηματα Δημοσιου Κλειδιου

10 Eφαρμογες Κρυπτογραφιας Δημοσιου Κλειδιου Κρυπτοραφηση/αποκρυπτογραφηση αποκρυπτογραφηση Ψηφιακες Υπογραφες Ανταλλαγη Κλειδιου Καποιοι αλγοριθμοι εινναι καταλληλοι και για τις τρεις χρησεις, ενω αλλοι μονο για καποιες απο αυτες

11 Απαιτησεις απο τους Κρυπτογραφικους Αλγοριθμους Δημοσιου Κλειδιου Οι αλγοριθμοι Δημοσιου Κλειδιου βασιζονται σε δυο κλειδια τα οποια: Ειναι υπολογιστικα αδυνατο να βρεθει το ιδιωτικο κλειδι απο καποιον που γνωριζει μονο το δημοσιο Ειναι υπολογιστικα ευκολο να κρυπτογραφει/αποκρυπτγραφει αποκρυπτγραφει καποιος μηνυματα οταν γνωριζει το αντιστοιχο κλειδι Οτι κρυπτογρφειται με το ενα κλειδι αποκρυπτογραφειται με το αλλο, και το αντιστροφο.. (δεν( ισχυει για ολους τους αλγοριθμους δημοσιου κλειδιου). Ειναι εξαιρετικα δυσκολες οι παραπανω απαιτησεις και ελαχιστοι αλγοριθμοι τις πληρουν.

12 Ασφαλεια συστηματων δημοσιου κλειδιου Οπως και στα συμμετρικα συστηματα, παντα μπορει θεωρητικα να γινει επιθεση brute force Αλλα εδω τα κλειδια ειναι πολυ μεγαλα (>512bits) Η ασφαλεια βασιζεται στη μεγαλη διαφορα της δυσκολιας αναμεσα στην ευκολη κρυπτογραφηση/αποκρυπτογραφηση αποκρυπτογραφηση και τη δυσκολη κρυπταναλυση Χρησιμοποιει πολυ μεγαλους αριθμους και αρα ειναι πολυ πιο αργη απο την συμμετρικη κρυπτογραφια

13 RSA Δημιουργοι: Rivest,, Shamir & Adleman of MIT in 1977 Ο πιο γνωστος και ο ευρυτερα χρησιμοποιουμενος αλγοριθμος δημοσιου κλειδιου Βασιζεται στην υψωση ακεραιων σε δυναμη και σε αριθμητικη modulo Χρησιμοποιει πολυ μεγαλους ακεραιους Η ασφαλεια του βασιζεται στη δυσκολια παραγοντοποιησης μεγαλων αριθμων

14 Κρυπτογραφηση και Αποκρυπτογραφηση με τον RSA Κρυπτογραφηση μηνυματος Μ (στο μεταδοτη): Λαμβανεται το δημοσιο κλειδι του αποδεκτη PU={e,n e,n} Υπολογιζεται το : C = M e mod n, n οπου 0 M<n Αποκρυπτογραφηση το ciphertext C (στον αππδεκτη): Χρησιμοποιειται το ιδιωτικο κλειδι PR={d,n d,n} Υπολογιζται το: M = C d mod n Το μηνυμα M πρεπει να ειναι μικροτερο απο το n (αλλιως πρεπει να χωριστει σε τμηματα)

15 Δημιουργια κλειδιων στον RSA Καθε χρηστης δημιουργει ενα ζευγος δημοσιου/ιδιωτικου ιδιωτικου κλειδιου: Επιλεγοντας δυο μεγαλουν πρωτους αριθμους τυχαια: p, q Υπολογίζει το modulus n=p.q Ετσι ωστε: φ(n)=(p-1)(q-1) Επιλεγει τυχαια το κλειδι κρυπτογραφησης (δημοσιο κλειδι) e Ετσι ωστε ωστε: 1<e<φ(n (n), ΜΚΔ(e, e,φ(n))=1 Λυνει την παρακατω εξισωση για να βρει το κλειδι αποκρυπτογραφησης (ιδιωτικο κλειδι) d e.d=1 mod φ(n) ) and 0 d n0 Δημοσιοποιει το κλειδι κρυπτογραφησης: : PU={e,n e,n} Κραταει μυστικο το κλειδι αποκρυπτογραφησης: : PR={d,n d,n}

16 Γιατι λειτουργει ο RSA? Απο το θεωρημα του Euler ισχυει: a φ(n) mod n = 1, 1 οπου ΜΚΔ(a,n a,n)=1 Στον RSA έχουμε: n=p.q φ(n)=(p-1)(q-1) Επιλεγουμε προσεκτικα τους e & d ωστε να ειναι αντιστροφοι mod φ(n) Ως εκ τουτου e.d=1+k. =1+k.φ(n) για καποιο k Και επομενως: C d = M e.d = M 1+k.φ(n) = M 1.(M = M 1.(1) k = M 1 = M mod n.(m φ(n) ) k

17 Παραδειγμα: RSA Ορισμος των κλειδιων 1. Επιλέγουμε πρωτους αριθμους: p=17 & q=11 2. Υπολογίζουμε: n = pq =17 x 11= Υπολογίζουμε: φ(n)=( )=(p 1)( 1)(q-1)=16x10=16010= Επιλέγουμε το e, τετοιο ωστε να ειναι πρωτος ως προς το φ(n)= )= (Δηλ( Δηλ. ΜΚΔ(e,160)=1 (e,160)=1); Επιλεγουμε: e=7. 5. Οριζουμε το d, τετοιο ωστε: de mod = 1 και d < 160 Η σωστη τιμη ειναι d=23 επειδη 23x7=161=10 7=161=10x Δημοσιευουμε το Δημοσιο Κλειδι PU={7,187} 7. Κραταμε μυστικο το ιδιωτικο κλειδι PR={23,187}

18 Παραδειγμα: Κρυπτογραφηση /Αποκρυπτογραφηση RSA Μηνυμα M = 88 (ισχυει: 88<187) Κρυπτογράφηση: C = 88 7 mod 187 = 11 Αποκρυπτογράφηση: M = mod 187 = 88

19 Υψωση σε δυναμη Μπορουμε να χρησιμοποιησουμε τον αλγοριθμο «Square and Multiply» που ειναι γρηγορος και αποδοτικος Βασιζεται στην επανειλημενη υψωση στο τετραγωνο και στους πολλαπλασιασμους που ειναι απαραιτητοι για να υπολογισουμε το τελικο αποτελεσμα Προσεξτε τη δυαδικη αναπαρασταση του εκθετη. Απαιτουνται μονο O(log 2 n) πολλαπλασιασμοι για εναν αριθμο n eg. 7 5 = = 3.7 = 10 mod 11 eg = = 5.3 = 4 mod 11

20 Υψωση σε δυναμη c = 0; f = 1 for i = k downto 0 do c = 2 x c f = (f x f) mod n if b i == 1 then c = c + 1 f = (f x a) mod n return f

21 Αποτελεσματικη Κρυπτογραφηση Η κρυπτογραφηση χρησιμοποιει υψωση σε δυναμη e Επειδη το e ειναι μικρο, αυτο γινεται γρηγορα, Συχνα επιλεγουμε: e=65537 (2 16-1) Αλλα αν ειναι υπερβολικα μικρο (π.χ. e=3) μειωνεται η ασφαλεια Αν το e ειναι σταθερο, πρεπει να ειμαστε σιγουροι οτι ΜΚΔ(e, e,φ(n))=1 Απορριπτονται οποιαδηποτε p ή q που δεν ειναι σχετικα πρωτοι ως προς το e

22 Αποτελεσματικη Αποκρυπτογραφηση Η αποκρυπτογραφηση χρησιμοποιει υψωση σε δυναμη d Το d πρεπει να ειναι μεγαλο, αλλιως ειναι μη ασφαλες. Μπορουμε να χρησιμοποιησουμε το Chinese Remainder Theorem (CRT) για να υπολογισουμε τα mod p & q ξεχωριστα. Τοτε τα συνδυαζουμε για να παρουμε την επιθυμητη απαντηση Αυτο ειναι περιπου 4 φορες γρηγοροτερο απο το να το κανουμε αμεσα Μονο ο κατοχος του ιδιωτικου κλειδιου που γνωριζει τις τιμες τις τιμες των p & q μπορει να εφαρμοσει αυτην την τεχνικη

23 Δημιουργια κλειδιου RSA Οι χρηστες του RSA πρεπει: Να επιλεξουν στην τυχη δυο πρωτους αριθμους p,q Να επιλέξουν το ειτε το e ειτε το d και να υπολογισουν το αλλο. Οι πρωτοι αριθμοι p,q πρεπει να ειναι αρκετα μεγαλοι ωστε να μην προκυπτουν ευκολα απο το modulus n=p.q

24 Ασφαλεια του RSA Πιθανες επιθεσεις στον RSA: brute force key search αδυνατο λογω των τεραστιων αριθμων που χρησιμοποιουνται Μσθηματικες επιθεσεις βασιζονται στη δσκολια υπολογισμου του φ(n), παραγοντοποιωντας το modulus n Επιθεσεις χρονισμου Επιθεσεις επιλεγμενου ciphertext (Chosen ciphertext attacks)

25 Το προβλημα της παραγοντοποιησης Η μαθηματικη προσεγγιση εχει τρεις μορφες: Παραγοντοποιησε το n=p.q p.q, και στη συνεχεια υπολογισε το φ(n) και τελος το d Βρες απ ευθειας το φ(n) και υπολογισε το d Βρες απ ευθειας το d Σημερα RSA με κλειδια bit θεωρειται ασφαλης Εφοσον τα p, q ειναι παρομοιου μεγεθους και πληρουν ολα τα κριτηρια που εχουν τεθει.

26 Progress in Factoring

27 Η προοδος στην παραγοντο ποιηση

28 Επιθεσεις Χρονισμου στον RSA (Timing Attacks) Αναπτυχθηκαν απο τον Paul Kocher στα μεσα της δεκαετιας του 90. Εκμεταλλεύονται τη διαφοροποιηση στη χρονικη διαρκεια των λειτουργιων π.χ. Ο πολλαπλασιασμος μικρου αριθμου εναντι του πολλαπλασιασμου μεγαλου αριθμου ή το ποιες εντολες εκτελουνται μετα απο ενα IF Συμπεραινει το μεγεθος του ορισματος με βαση το χρονο που παιρνει η εντολη για να εκτελεστει Στην περιπτωση του RSA εκμεταλευεται το χρονο που παιρνει η υψωση σε δυναμη. Αντιμετρα: Χρηση σταθερου χρονου υψωσης σε δυναμη Προσθηκη τυχαιων καθυστερησεων Πολλαπλασμος του ciphertext με εναν τυχαιο αριθμο πριν την υψωση του σε δυναμη.

29 Επιθεσεις Eπιλεγμενου Ciphertext (Chosen Ciphertext Attacks, CCA) O RSA ειναι ευπαθης σε επιθεσεις Επιλεγμενου Ciphertext O επιτιθεμενος εχει τη δυνατοτητα να επιλεγει το ciphertext και να παιρνει πισω το αποκρυπτογραφημενο κειμενο Επιλεγει το ciphertext ετσι ωστε να εκμεταλευεται τις ιδιοτητες του RSA και με τον τροπο αυτο να παιρνει πληροφοριες που τον βοηθουν στην κρυπταναλυση Ως αντιμετρο η RSA προτεινει την τροποποιηση του plaintext μεσω μιας διαδικασιας που ονομαζεται Optimal Asymmetric Encryption Padding (OASP)

30 Optimal Asymmetric Encryption Padding (OASP)

31 Συζητησαμε: Συνοψη Τις αρχες της κρυπτογραφιας δημοσιου κλειδιου Τον αλγοριθμο RSA, την υλοποιηση του και την ασφαλεια του

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής

Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας

Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών

Στοιχεία Θεωρίας Αριθμών Ε Μ Π Σ Ε Μ & Φ Ε Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Κωστής Γ Διδάσκοντες: Στάθης Ζ Άρης Π 9 Δεκεμβρίου 2011 1 Πιθανές Επιθέσεις στο RSA Υπενθύμιση

Διαβάστε περισσότερα

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης

Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται

Διαβάστε περισσότερα

Το κρυπτοσύστημα RSA

Το κρυπτοσύστημα RSA Το κρυπτοσύστημα RSA Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2016-2017) 25/11/2016 1 / 49 (ΕΜΠ - Κρυπτογραφία (2016-2017)) Το κρυπτοσύστημα RSA Περιεχόμενα Κρυπτογραφία Δημοσίου Κλειδιού

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3

Διαβάστε περισσότερα

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA Τον Απρίλιο του 977 οι Ρόναλντ Ρίβεστ, Άντι Σαµίρ και Λέοναρντ Άντλεµαν, ερευνητές στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ) µετά από ένα χρόνο προσπαθειών

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο 2015 1 ΤΙ ΕΙΝΑΙ Η ΚΡΥΠΤΟΛΟΓΙΑ?

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6.1. Εισαγωγή Οι σύγχρονες κρυπτογραφικές λύσεις συμπεριλαμβάνουν κρυπτογραφία δημόσιου κλειδιού ή αλλιώς, ασύμμετρη κρυπτογραφία. Η ασύμμετρη κρυπτογραφία βασίζεται αποκλειστικά

Διαβάστε περισσότερα

Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Βασικά Θέματα Κρυπτογραφίας Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιά Αντικείμενο μελέτης Εφαρμοσμένη Κρυπτογραφία, απαραίτητη για την Ασφάλεια Δικτύων Υπολογιστών Χαρακτηριστικά των

Διαβάστε περισσότερα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα

Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Διαχείριση Ασφάλειας και Εμπιστοσύνης σε Πολιτισμικά Περιβάλλοντα Ενότητα 5: ΚΡΥΠΤΟΓΡΑΦΗΣΗ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΜΣ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΣΤΟΛΙΔΟΥ ΚΥΡΙΑΚΗ ΕΠΙΒΛΕΠΩΝ: ΜΠΙΣΜΠΑΣ ΑΝΤΩΝΙΟΣ, Καθηγητής

Διαβάστε περισσότερα

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος

Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου

Διαβάστε περισσότερα

Σύγχρονη Κρυπτογραφία

Σύγχρονη Κρυπτογραφία Σύγχρονη Κρυπτογραφία 50 Υπάρχουν μέθοδοι κρυπτογράφησης πρακτικά απαραβίαστες Γιατί χρησιμοποιούμε λιγότερο ασφαλείς μεθόδους; Η μεγάλη ασφάλεια κοστίζει σε χρόνο και χρήμα Πολλές φορές θυσιάζουμε ασφάλεια

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστημάτων

Ασφάλεια Υπολογιστικών Συστημάτων Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 3: Κρυπτογραφία δημόσιου κλειδιού Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2016-2017 Outline Public Key Cryptography! RSA cryptosystem " Περιγραφή και

Διαβάστε περισσότερα

Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να

Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές. ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Κρυπτογραφία και Ηλεκτρονικοί Υπολογιστές ΣΥΝΤΕΛΕΣΤΕΣ: Κραβαρίτης Αλέξανδρος Μαργώνη Αγγελική Χαλιμούρδα Κων/να Ορισμός κρυπτογραφίας Με τον όρο κρυπτογραφία, αναφερόμαστε στη μελέτη μαθηματικών τεχνικών

Διαβάστε περισσότερα

Βασικές Έννοιες Κρυπτογραφίας

Βασικές Έννοιες Κρυπτογραφίας Βασικές Έννοιες Κρυπτογραφίας Παύλος Εφραιμίδης Κρυπτογραφία Βασικές Έννοιες 1 Τι θα μάθουμε Obscurity vs. Security Βασικές υπηρεσίες κρυπτογραφίας: Confidentiality, Authentication, Integrity, Non- Repudiation

Διαβάστε περισσότερα

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Threshold Cryptography Algorithms Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Ορισμός Το σύστημα το οποίο τεμαχίζει ένα κλειδί k σε n τεμάχια έτσι ώστε οποιοσδήποτε συνδυασμός πλήθους

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 θα εξετάσουμε τα ακόλουθα εργαλεία κρυπτογραφίας: ψηφιακές υπογραφές κατακερματισμός (hashing) συνόψεις μηνυμάτων μ (message digests) ψευδοτυχαίοι

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 2. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 2. Fifth Edition by William Stallings Cryptography and Network Security Chapter 2 Fifth Edition by William Stallings Κεφαλαιο 2 Κλασσικες Τεχνικες Κρυπτογράφησης "I am fairly familiar with all the forms of secret writings, and am myself the

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το

Διαβάστε περισσότερα

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων

Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό

Διαβάστε περισσότερα

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών Κρυπτογραφία Θεωρία Αριθμών Παύλος Εφραιμίδης v1.8, 02/04/2014 1 Θεωρία Αριθμών Θεωρία Αριθμών Ένας όμορφος κλάδος των μαθηματικών Απέκτησε μεγάλη πρακτική αξία χάρη στη Σύγχρονη Κρυπτογραφία Η Υπολογιστική

Διαβάστε περισσότερα

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη

Διαβάστε περισσότερα

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ 1 Σύνοψη Πρόβλημα: θέλω να στείλω μήνυμα σε κάποιον δημόσια χωρίς να μπορούν να το καταλάβουν

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο

Διαβάστε περισσότερα

Κρυπτοσυστήματα Δημοσίου Κλειδιού

Κρυπτοσυστήματα Δημοσίου Κλειδιού Κεφάλαιο 6 Κρυπτοσυστήματα Δημοσίου Κλειδιού 6.1 Εισαγωγή Η ιδέα της κρυπτογραφίας δημοσίων κλειδιών οφείλεται στους Diffie και Hellman (1976) [4], και το πρώτο κρυπτοσύστημα δημοσίου κλειδιού ήταν το

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou ιαχείριση Κλειδιών Ορισμός: Εγκαθίδρυση κλειδιού (key establishment) είναι η διαδικασία κατά την οποία

Διαβάστε περισσότερα

Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web

Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου 11η Διάλεξη: Ασφάλεια στο Web Δρ. Απόστολος Γκάμας Λέκτορας (407/80) gkamas@uop.gr Σχεδίαση Εφαρμογών και Υπηρεσιών Διαδικτύου Διαφάνεια 1 1 Εισαγωγικά Βασικές

Διαβάστε περισσότερα

W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων:

W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων: 6/4/2017 Μετά την πρόταση των ασύρματων πρωτοκόλλων από τους Diffie-Hellman το 1976, το 1978 προτάθηκε ένα πρωτόκολλο από τους Merkle-Hellman το οποίο βασίστηκε στο ότι δεν μπορούμε να λύσουμε γρήγορα

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις)

Κρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Κρυπτογραφία Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Έστω ότι το κλειδί είναι ένας πίνακας 2 x 2. Αυτό σημαίνει ότι: Σπάμε το μήνυμα σε ζευγάρια γραμμάτων Κάθε γράμμα το αντιστοιχούμε σε έναν αριθμό

Διαβάστε περισσότερα

Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου

Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου 2013-2014 Project Ορισμοί Ιστορία Η αποκρυπτογράφηση στις μέρες μας Κρυπτογράφηση Αποκρυπτογράφηση Αποκρυπτογραφημένο-Κρυπτογραφημένο

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ Επιστήμη του Διαδικτύου Web Science

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ Επιστήμη του Διαδικτύου Web Science ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ Επιστήμη του Διαδικτύου Web Science ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Επιθέσεις Πλευρικού Καναλιού στο RSA Θεοχαροπούλου

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος ttouskas@aueb.gr

Διαβάστε περισσότερα

Public Key Cryptography. Dimitris Mitropoulos

Public Key Cryptography. Dimitris Mitropoulos Public Key Cryptography Dimitris Mitropoulos dimitro@di.uoa.gr Symmetric Cryptography Key Management Challenge K13 U1 U3 K12 K34 K23 K14 U2 K24 U4 Trusted Third Party (TTP) Bob KΒ K1 U1 KAB TTP KΑ K2 Alice

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 5: Διαχείριση κλειδιών Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

7. O κβαντικός αλγόριθμος του Shor

7. O κβαντικός αλγόριθμος του Shor 7. O κβαντικός αλγόριθμος του Shor Σύνοψη Ο κβαντικός αλγόριθμος του Shor μπορεί να χρησιμοποιηθεί για την εύρεση της περιόδου περιοδικών συναρτήσεων και για την ανάλυση ενός αριθμού σε γινόμενο πρώτων

Διαβάστε περισσότερα

Βασικές αρχές. κρυπτανάλυσης. ΚΕΦΑΛΑΙΟ 1

Βασικές αρχές. κρυπτανάλυσης. ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 1 Βασικές αρχές κρυπτανάλυσης Στο κεφάλαιο αυτό παρουσιάζονται οι ϐασικές αρχές και τα µέσα τα οποία χρησιµοποιεί η κρυπτανάλυση, προκειµένου να γίνουν πιο κατανοητοί οι στόχοι των επόµενων κεφαλαίων.

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ζωή Παρασκευοπούλου Νίκος

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστημάτων

Ασφάλεια Υπολογιστικών Συστημάτων Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 2: Συμμετρική κρυπτογραφία Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τμήμα Μηχανικών Πληροφορικής Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων YΒΡΙΔΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Ο στόχος της υβριδικής μεθόδου είναι να αντισταθμίσει τα μειονεκτήματα της συμμετρικής

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)

Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους

Εισαγωγή στους Αλγόριθμους Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη κρυπτογράφησης

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 10 : Ασφάλεια Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 1

Κρυπτογραφία. Εργαστηριακό μάθημα 1 Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC)

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) Σύνοψη Πρόβλημα: θέλωναστείλωμήνυμασεκάποιον δημόσια χωρίς να μπορούν να το καταλάβουν οι άλλοι Λύση: το κωδικοποιώ Γνωρίζω τον παραλήπτη:

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστηµάτων

Ασφάλεια Υπολογιστικών Συστηµάτων Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία

Διαβάστε περισσότερα

Ασφάλεια ικτύων (Computer Security)

Ασφάλεια ικτύων (Computer Security) Ασφάλεια ικτύων (Computer Security) Τι Εννοούµε µε τον Όρο Ασφάλεια ικτύων; Ασφάλεια Μόνο ο αποστολέας και ο προοριζόµενος παραλήπτης µπορούν να διαβάσουν και να κατανοήσουν ένα µήνυµα. Ο αποστολέας το

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων ΕΙΣΑΓΩΓΉ ΣΤΟ CRYPTOOL... 3 DOWNLOADING CRYPTOOL... 3 ΜΗΧΑΝΙΣΜΟΊ ΚΑΙ ΑΛΓΌΡΙΘΜΟΙ ΚΡΥΠΤΟΓΡΑΦΊΑΣ ΣΤΟ CRYPTOOL...

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Κρυπτογραφικά Πρωτόκολλα. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Κρυπτογραφικά Πρωτόκολλα. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Κρυπτογραφικά Πρωτόκολλα Ασφ Υπολ Συστ 1 Fair Coin Millionaires Problem Blind Signatures Oblivious Signatures Simultaneous Contract Signing Simultaneous Exchange of Secrets προηγμένα

Διαβάστε περισσότερα

GPG & ΚΡΥΠΤΟΓΡΑΦΙΑ. Π. Αγγελάτος, Δ. Ζήνδρος

GPG & ΚΡΥΠΤΟΓΡΑΦΙΑ. Π. Αγγελάτος, Δ. Ζήνδρος GPG & ΚΡΥΠΤΟΓΡΑΦΙΑ Π. Αγγελάτος, Δ. Ζήνδρος Όσο ξεκινάμε... Κατεβάστε το GPG για το σύστημά σας: Αν έχετε Linux, το έχετε ήδη Αν έχετε Windows, Gpg4win: http://gpg4win.org/ Αν έχετε Mac, GPG Suite: https://gpgtools.org/

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Κρυπτογραφία Δημόσιου Κλειδιού

Κρυπτογραφία Δημόσιου Κλειδιού Κρυπτογραφία Δημόσιου Κλειδιού Κρυπτογραφία Δημόσιου Κλειδιού 1 Συμμετρική Κρυπτογραφία Η συμβατική (συμμετρική) κρυπτογραφία χρησιμοποιεί ένα κλειδί Το κλειδί είναι κοινό για τον αποστολέα και τον παραλήπτη

Διαβάστε περισσότερα

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία

ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Συμμετρική Κρυπτογραφία Εισαγωγή Στην συνηθισμένη κρυπτογραφία, ο αποστολέας και ο παραλήπτης ενός μηνύματος γνωρίζουν και χρησιμοποιούν το ίδιο μυστικό κλειδί.

Διαβάστε περισσότερα

Α.ΤΕΙ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝIΚΩΝ ΜΗΧΑΝΙΚΩΝ

Α.ΤΕΙ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝIΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.ΤΕΙ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝIΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΑ ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΚΑΙ ΟΙ ΧΡΗΣΙΜΟΤΗΤΑ ΤΟΥΣ ΧΑΤΖΗΣΤΕΦΑΝΟΥ ΣΤΥΛΙΑΝΟΣ ΧΑΝΙΑ ΜΑΙΟΣ 2013 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΜΠΑΡΜΟΥΝΑΚΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Ασφάλεια Υπολογιστικών Συστημάτων

Ασφάλεια Υπολογιστικών Συστημάτων Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 4: Pretty Good Privacy (PGP) Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ

ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ ΚΡΥΠΤΟΓΡΑΦΗΣΗ ΔΗΜΟΣΙΟΥ ΚΛΕΙΔΙΟΥ Η κρυπτογράφηση δημοσίου κλειδιού (Public Key Cryptography) ή ασύμμετρου κλειδιού (Asymmetric Cryptography) επινοήθηκε στο τέλος της δεκαετίας του 1970 από τους Whitfield

Διαβάστε περισσότερα

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης

Ασφάλεια στο Ηλεκτρονικό Επιχειρείν. ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης Ασφάλεια στο Ηλεκτρονικό Επιχειρείν ΤΕΙ Δυτικής Ελλάδας Τμήμα Διοίκησης Επιχειρήσεων - Πάτρα Κουτσονίκος Γιάννης 1 Κίνδυνοι Η-Ε Μερικοί από τους κινδύνους ενός δικτυακού τόπου Ε-εμπορίου περιλαμβάνουν:

Διαβάστε περισσότερα

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α. 1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Υπογραφές Επιπρόσθετης Λειτουργικότητας Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

8.3 Ασφάλεια ικτύων. Ερωτήσεις

8.3 Ασφάλεια ικτύων. Ερωτήσεις 8.3 Ασφάλεια ικτύων Ερωτήσεις 1. Με τι ασχολείται η ασφάλεια των συστηµάτων; 2. Τι είναι αυτό που προστατεύεται στην ασφάλεια των συστηµάτων και για ποιο λόγο γίνεται αυτό; 3. Ποια η διαφορά ανάµεσα στους

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. προηγμένα κρυπτογραφικά πρωτόκολλα. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. προηγμένα κρυπτογραφικά πρωτόκολλα. Ασφ Υπολ Συστ Παύλος Εφραιμίδης προηγμένα κρυπτογραφικά πρωτόκολλα Ασφ Υπολ Συστ 1 Zero-Knowledge Proofs Zero-Knowledge Proofs of Identity Blind Signatures Oblivious Signatures Simultaneous Contract Signing Simultaneous

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou ιαχείριση Κλειδιών Ορισμός: Εγκαθίδρυση κλειδιού (key establishment) είναι η διαδικασία

Διαβάστε περισσότερα