(classification) 2 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(classification) 2 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.1"

Transcript

1 Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Κατηγοριοποίηση (classification) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων Περιεχόµενα Το πρόβληµα της κατηγοριοποίησης Τεχνικές κατηγοριοποίησης Στατιστικές τεχνικές Τεχνικές βασισµένες στην απόσταση ένδρα αποφάσεων Νευρωνικά δίκτυα Κανόνες κατηγοριοποίησης 2 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.1

2 Κατηγοριοποίηση (Classification) Εκµάθηση µιας τεχνικής να προβλέπει την κλάση ενός στοιχείου επιλέγοντας από προκαθορισµένες τιµές 3 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Εποπτευόµενη vs. Μη εποπτευόµενη µάθηση Εποπτευόµενη µάθηση (κατηγοριοποίηση) Επόπτευση: Τα δεδοµένα εκπαίδευσης συνοδεύονται από ετικέτες για την κλάση µε την οποία ανήκει το καθένα Τα νέα δεδοµένα κατηγοριοποιούνται µε βάση τη γνώση που µας παρέχουν τα δεδοµένα εκπαίδευσης Μη εποπτευόµενη µάθηση (συσταδοποίηση) ε γνωρίζουµε την κλάση στην οποία ανήκουν τα δεδοµένα εκπαίδευσης Μας δίνεται ένα σύνολο µετρήσεων, παρατηρήσεων κλπ. µε στόχο να ανακαλύψουµε κλάσεις ή οµάδες µέσα στα δεδοµένα 4 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.2

3 Το πρόβληµα της κατηγοριοποίησης Αν µας δοθεί µια βάση δεδοµένων D={t 1,t 2,,t n } και ένα σύνολο κατηγοριών - "κλάσεων" C={C 1,,C m }, το Πρόβληµα Κατηγοριοποίησης έγκειται στον ορισµό µιας απεικόνισης f: D C όπου κάθε εγγραφή t i ανατίθεται σε µία κλάση C j. Ουσιαστικά, η κατηγοριοποίηση διαµερίζει τη D σε κλάσεις ισοδυναµίας. Η Πρόβλεψη είναι παρόµοιο πρόβληµα, αλλά µπορεί να θεωρηθεί ότι έχει άπειρο αριθµό κλάσεων. 5 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Παραδείγµατα κατηγοριοποίησης Οι δάσκαλοι αναθέτουν βαθµούς µέσα από τις κατηγορίες A, B, C, D, F. Τα µανιτάρια ταξινοµούνται σε δηλητηριώδη και φαγώσιµα. Μπορεί να γίνει πρόβλεψη εάν θα πληµµυρίσει ένας ποταµός. Οι πελάτες της τράπεζας µπορούν να κατηγοριοποιηθούν ως προς την πιστωτική τους ικανότητα. 6 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.3

4 Παράδειγµα κατηγοριοποίησης Βαθµολογία πτυχίου If x 8.5 then grade = «άριστα». If 6.5 x < 8.5 then grade = «λίαν καλώς». If x < 6.5 then grade = «καλώς». x < x άριστα < καλώς λίαν καλώς 7 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Τεχνικές κατηγοριοποίησης Τυπική προσέγγιση: 1. ηµιουργία ενός µοντέλου µέσω της αξιολόγησης ενός συνόλου δεδοµένων εκπαίδευσης (training data) (ή µέσω της γνώσης ειδικών του πεδίου). 2. Εφαρµογή του µοντέλου σε νέα δεδοµένα. Οι κλάσεις πρέπει να είναι προκαθορισµένες Οι πιο κοινές τεχνικές είναι τα δένδρα αποφάσεων, τα νευρωνικά δίκτυα και τεχνικές βασισµένες σε απόσταση ή σε στατιστικές µεθόδους. 8 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.4

5 1 ο βήµα: ηµιουργία µοντέλου εδοµένα εκπαίδευσης (training data) Αλγόριθµος Κατηγοριοποίησης όνοµα βαθµίδα έτη µόνιµος Μιχάλης Επικ.Καθηγητής 3 ΟΧΙ Νίκος Επικ.Καθηγητής 7 ΝΑΙ Βασίλης Καθηγητής 2 ΝΑΙ ηµήτρης Αναπλ.Καθηγητής 7 ΝΑΙ Γιώργος Επικ.Καθηγητής 6 ΟΧΙ Κώστας Αναπλ.Καθηγητής 3 ΟΧΙ Μοντέλο IF βαθµίδα = Καθηγητής OR έτη > 6 THEN µόνιµος = ΝΑΙ 9 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 2 ο βήµα: Εφαρµογή µοντέλου Μοντέλο οκιµαστικά εδοµένα (test data) Νέα δεδοµένα (Γιάννης, Καθηγητής, 4) όνοµα βαθµίδα έτη µόνιµος Θωµάς Επικ.Καθηγητής 2 ΟΧΙ Νίκος Αναπλ.Καθηγητής 7 ΟΧΙ Γεράσιµος Καθηγητής 5 ΝΑΙ Ιωσήφ Επικ.Καθηγητής 7 ΝΑΙ Μόνιµος; 10 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.5

6 Προσδιορισµός κλάσεων µεβάσητην απόσταση µεβάσητη διαµέριση 11 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Ζητήµατα που προκύπτουν Ελλιπή δεδοµένα (missing data) τα αγνοούµε τα αντικαθιστούµε µε ειδικές τιµές Μέτρηση απόδοσης Μέτρηση ακρίβειας µε χρήση συνόλου δοκιµαστικών δεδοµένων (test data) Μήτρα σύγχυσης (confusion matrix) Καµπύλη OC (operating characteristic) 12 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.6

7 Παράδειγµα µε δοκιµαστικά δεδοµένα Name Gender Height Output1 Output2 Kristina F 1.6m Short Medium Jim M 2m Tall Medium Maggie F 1.9m Medium Tall Martha F 1.88m Medium Tall Stephanie F 1.7m Short Medium Bob M 1.85m Medium Medium Kathy F 1.6m Short Medium Dave M 1.7m Short Medium Worth M 2.2m Tall Tall Steven M 2.1m Tall Tall Debbie F 1.8m Medium Medium Todd M 1.95m Medium Medium Kim F 1.9m Medium Tall Amy F 1.8m Medium Medium Wynette F 1.75m Medium Medium 13 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Ακρίβεια κατηγοριοποίησης Για 2 κλάσεις (π.χ. Tall/Medium) υπάρχουν 4 πιθανοί συνδυασµοί (m κλάσεις m 2 συνδυασµοί) Αληθώς θετικό Ψευδώς αρνητικό Οπτικοποίηση ποιότητας κατηγοριοποίησης: Μήτρα σύγχυσης Καµπύλη OC Ψευδώς θετικό Αληθώς αρνητικό 14 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.7

8 Μήτρα σύγχυσης Έστω Output1 η ορθή κατηγοριοποίηση και Output2 η ανάθεση σε κλάσεις που προέκυψε από την (όποια) τεχνική κατηγοριοποίησης Μήτρα σύγχυσης (confusion matrix): Name Gender Height Output1 Output2 Kristina F 1.6m Short Medium Jim M 2m Tall Medium Maggie F 1.9m Medium Tall Martha F 1.88m Medium Tall Stephanie F 1.7m Short Medium Bob M 1.85m Medium Medium Kathy F 1.6m Short Medium Dave M 1.7m Short Medium Worth M 2.2m Tall Tall Steven M 2.1m Tall Tall Debbie F 1.8m Medium Medium Todd M 1.95m Medium Medium Kim F 1.9m Medium Tall Amy F 1.8m Medium Medium Wynette F 1.75m Medium Medium Πραγµατική Ανάθεση κλάση Short Medium Tall Short Medium Tall ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Καµπύλη OC (Operating Characteristic) Αληθώς θετικά Ψευδώς θετικά 16 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.8

9 Παλινδρόµηση Κάνουµε την παραδοχή ότι τα δεδοµένα ταιριάζουν σε µία συνάρτηση: y = c 0 + c 1 x c n x n Το πρόβληµα είναι ο προσδιορισµός των συντελεστών παλινδρόµησης c 0, c 1,, c n. Παραδοχή σφάλµατος: y = c 0 + c 1 x c n x n + ε Εκτίµηση σφάλµατος µε χρήση σφάλµατος τετραγωνικού µέσου πάνω στο σύνολο δοκιµαστικών δεδοµένων: 17 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Γραµµική παλινδρόµηση Φτωχή απόδοση (µέτριο ταίριασµα) 18 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.9

10 Κατηγοριοποίηση µε χρήση παλινδρόµησης ιαίρεση: χρησιµοποιούµε τη συνάρτηση παλινδρόµησης για να διαιρέσουµε το χώρο σε περιοχές. Πρόβλεψη: χρησιµοποιούµε τη συνάρτηση παλινδρόµησης για να προβλέψουµε τη συνάρτηση µέλους για µια κλάση. Η επιθυµητή κλάση δίνεται ως είσοδος στο πρόβληµα. 19 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης ιαίρεση y = c 0 + ε Θέλουµε να ελαχιστοποιήσουµε το L ως προς c 0 c 0 = = y = ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.10

11 Πρόβλεψη 21 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Bayesian κατηγοριοποίηση ύο παραδοχές για τα γνωρίσµατα Εξίσου σηµαντικά Στατιστικώς ανεξάρτητα (δοθείσης της τιµής µιας κλάσης) ηλαδή, αν γνωρίζουµε την τιµή ενός γνωρίσµατος δεν µπορούµε να πούµε τίποτα για την τιµή ενός άλλου γνωρίσµατος (µε δεδοµένο ότι γνωρίζουµε την κλάση) Η παραδοχή για την ανεξαρτησία των γνωρισµάτων σχεδόν ποτέ δεν ισχύει! αλλά αυτό το σχήµα δείχνει να δουλεύει καλά στην πράξη 22 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.11

12 Πρόγνωση καιρού Sunny Overcast Rainy Sunny Overcast Rainy Outlook /9 4/9 3/9 No /5 0/5 2/5 Temperature Humidity Windy No Hot 2 2 High Mild 4 2 Normal Cool 3 1 Hot 2/9 2/5 High Mild 4/9 2/5 Normal Cool 3/9 1/5 No 3 4 False 6 1 True 3/9 4/5 False 6/9 1/5 Outlook True Temp 6 3 6/9 3/9 Humidity Play No No /5 9/14 5/14 Sunny Hot High True No Overcast Hot High False Rainy Mild High False Rainy Cool Normal False Rainy Cool Normal True No Overcast Cool Normal True Sunny Mild High False No Sunny Cool Normal False Rainy Mild Normal False Sunny Mild Normal True Overcast Mild High True Overcast Hot Normal False 23 Rainy Mild High True No ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 3/5 Windy Play Sunny Hot High False No Πρόγνωση καιρού (συν.) Outlook No Temperature No Humidity No Windy No Play No Sunny 2 3 Hot 2 2 High 3 4 False Overcast Rainy Mild Cool Normal 6 1 True 3 3 Sunny 2/9 3/5 Hot 2/9 2/5 High 3/9 4/5 False 6/9 2/5 9/14 5/14 Overcast Rainy 4/9 3/9 0/5 2/5 Mild Cool 4/9 3/9 2/5 1/5 Normal 6/9 1/5 True 3/9 3/5 Μια νέα ηµέρα: Outlook Sunny Temp. Cool Humidity High Windy True Play? Πιθανοφάνειες για τις δύο κλάσεις yes : 2/9 3/9 3/9 3/9 9/14 = no : 3/5 1/5 4/5 3/5 5/14 = Πιθανότητες (µετά την κανονικοποίηση): P( yes ) = / ( ) = P( no ) = / ( ) = ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.12

13 Ο κανόνας του Bayes Η πιθανότητα να συµβεί ένα γεγονός H δοθείσης µιας µαρτυρίας E : Pr[ E H ]Pr[ H ] Pr[ H E] = Pr[ E] A priori πιθανότητα του H : Η πιθανότητα του γεγονότος χωρίς την επίκληση της µαρτυρίας A posteriori πιθανότητα του H : Pr[H ] Pr[ H E] Η πιθανότητα του γεγονότος µε την επίκληση της µαρτυρίας 25 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Κατηγοριοποίηση Naïve Bayes Εκµάθηση κατηγοριοποίησης: ποια η πιθανότητα µιας κλάσης δοθείσης µιας µαρτυρίας; Η µαρτυρία E είναι η εγγραφή στη Β Το γεγονός H είναι η κλάση της εγγραφής Απλοϊκή (naïve) παραδοχή: η µαρτυρία διαιρείται σε µέρη (όσο και τα γνωρίσµατα) που είναι ανεξάρτητα µεταξύ τους Pr[ E Pr[ H E] = 1 H]Pr[ E 2 H] KPr[ E Pr[ E] n H]Pr[ H] 26 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.13

14 Παράδειγµα πρόγνωσης καιρού Outlook Sunny Temp. Cool Humidity High Windy True Play? µαρτυρία E Πιθανότητα κλάσης yes Pr[ yes E] = Pr[ Outlook = Sunny yes] = Pr[ Temperatur e= Cool yes] Pr[ Humidity=High yes] Pr[ Windy= True yes] Pr[ yes] Pr[ E] Pr[ E] ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Το πρόβληµα της "µηδενικής συχνότητας" Τι θα συµβεί εάν δεν εµφανίζεται µια τιµή γνωρίσµατος σε κάθε κλάση; (π.χ. Humidity = high για την κλάση yes ) Η πιθανότητα θα είναι µηδέν! Pr[ Humidity= High yes] = 0 Η a posteriori πιθανότητα θα είναι επίσης µηδέν! (άσχετα µε το ποιες είναι οι υπόλοιπες τιµές!) Pr[ yes E] = 0 Τέχνασµα: προσθέτουµε 1 στο µετρητή κάθε ζευγαριού τιµής γνωρίσµατος κλάσης (εκτιµήτρια Laplace) Αποτέλεσµα: οι πιθανότητες δεν είναι ποτέ µηδέν! 28 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.14

15 Σχολιασµός Naïve Bayes Η κατηγοριοποίηση Naïve Bayes περιέργως δουλεύει καλά! ακόµη και αν καταστρατηγείται φανερά η παραδοχή περί ανεξαρτησίας γνωρισµάτων Γιατί; Επειδή η κατηγοριοποίηση δεν απαιτεί ακριβείς εκτιµήσεις πιθανοτήτων αρκεί η µέγιστη πιθανότητα να αντιστοιχεί στη σωστή κλάση Όµως: η προσθήκη επιπλέον γνωρισµάτων µπορεί να δηµιουργήσει προβλήµατα π.χ. ταυτόσηµα γνωρίσµατα 29 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Κατηγοριοποίηση µε χρήση απόστασης Τοποθετούµε τα δεδοµένα στην «πλησιέστερη" (µε όρους απόστασης) κλάση. Πρέπει να προσδιορίσουµε την απόσταση µεταξύ ενός στοιχείου και µιας κλάσης. Κάθε κλάση µπορεί να αναπαρασταθεί µε Κέντρο βάρους (Centroid): η κεντρική τιµή της κλάσης Κεντρικό στοιχείο (Medoid): ένα αντιπροσωπευτικό σηµείο µέλος της. Σύνολο από ενδεικτικά σηµεία Αλγόριθµος: k- nearest neighbors (KNN) 30 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.15

16 Η προσέγγιση KNN Το σύνολο δεδοµένων εκπαίδευσης περιλαµβάνει τις κλάσεις. Για να αναθέσουµε ένα νέο στοιχείο σε µια κλάση εξετάζουµε τα K πλησιέστερα σ αυτό σηµεία. Τοποθετούµε το νέο στοιχείο στην κλάση που έχει την πλειοψηφία µέσα στα κοντινά στοιχεία. Πολυπλοκότητα O(q) για κάθε νέο στοιχείο (q είναι το µέγεθος του συνόλου δεδοµένων εκπαίδευσης). 31 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Αλγόριθµος KNN Input: T //training data K //Number of neighbors t //Input tuple to classify Output: c //Class to which t is assigned KNN algorithm: //Algorithm to classify tuple using KNN begin N = ; //Find set of neighbors, N, for t for each d T do Υποθέτει ότι Ν είναι µια ειδική δοµή, if N K, then οργανωµένη µε βάση την οµοιότητα N = N {d}; sim(t,u) π.χ. σωρός ελαχίστων else if u N such that sim(t,u) sim(t,d), then begin N = N {u}; N = N {d}; end //Find class for classification c = class to which the most u N are classified end 32 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.16

17 Παράδειγµα KNN Name Gender Height Output1 Kristina F 1.6m Short Jim M 2m Tall Maggie F 1.9m Medium Martha F 1.88m Medium Stephanie F 1.7m Short Bob M 1.85m Medium Kathy F 1.6m Short Dave M 1.7m Short Worth M 2.2m Tall Steven M 2.1m Tall Debbie F 1.8m Medium Todd M 1.95m Medium Kim F 1.9m Medium Amy F 1.8m Medium Wynette F 1.75m Medium Pat F 1.6m? Short 33 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Κατηγοριοποίηση µε δένδρα αποφάσεων (decision trees) Κατηγοριοποίηση βασισµένη στη διαµέριση: διαίρεση του χώρου σε ορθογώνιες περιοχές Οι εγγραφές ανατίθενται σε κλάσεις µε βάση την περιοχή µέσα στην οποία πέφτουν. Οι τεχνικές Α διαφέρουν µεταξύ τους στον τρόπο κατασκευής του δένδρου (επαγωγή Α) Οι εσωτερικοί κόµβοι ενός Α αντιστοιχούν σε γνωρίσµατα και τα τόξα ενός Α σε τιµές αυτών των γνωρισµάτων. Αλγόριθµοι: ID3, C4.5, CART = Καθηγητής ΝΑΙ Βαθµίδα Καθηγητής 6 ΟΧΙ έτη >6 ΝΑΙ 34 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.17

18 Παράδειγµα: πρόγνωση καιρού Outlook Temperature Humidity Windy Play? sunny hot high false No sunny hot high true No overcast hot high false rain mild high false rain cool normal false rain cool normal true No overcast cool normal true sunny mild high false No sunny cool normal false rain mild normal false sunny mild normal true overcast mild high true overcast hot normal false rain mild high true No 35 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Παράδειγµα Α για το γνώρισµα Play? Outlook sunny overcast rain Humidity Windy high normal true false No No 36 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.18

19 ένδρο Απόφασης οθέντων: µιας βάσης δεδοµένων D = {t 1,, t n } όπου t i =<t i1,, t ih > του σχήµατος της Β {A 1, A 2,, A h } ενός συνόλου κλάσεων C={C 1,., C m } ένδρο απόφασης (ή κατηγοριοποίησης) είναι ένα δένδρο συσχετισµένο µε τη D έτσι ώστε = Καθηγητής Κάθε εσωτερικός κόµβος έχει ως ετικέτα ένα γνώρισµα, A i ΝΑΙ Κάθε τόξο έχει ως ετικέτα ένα κατηγόρηµα που µπορεί να εφαρµοστεί στο γνώρισµα του κόµβου-γονέα Κάθε φύλλο (τερµατικός κόµβος) έχει ως ετικέτα µια κλάση, C j Βαθµίδα 6 ΟΧΙ Καθηγητής έτη >6 ΝΑΙ 37 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Επαγωγή Α Input: D //Training data Output: T //Decision tree DTBuild algorithm: //Simplistic algorithm to illustrate naïve approach to building DT begin T = ; Determine splitting criterion; T = Create root node and label with splitting attribute; T = Add arc to root node for each split predicate and label; for each arc do begin D = Database created by applying splitting predicate to D; if stopping point reached for this path, then T = Create leaf node and label with appropriate class; else T = DTBuild(D); end T = Add T to arc; end 38 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.19

20 Ζητήµατα στα Α Αρχική επιλογή των γνωρισµάτων διάσπασης Κάποια από τα γνωρίσµατα της Β πρέπει να παραλειφθούν (δεν εξυπηρετούν την κατηγοριοποίηση) Κριτήριο διάσπασης Επιλογή του γνωρίσµατος διάσπασης Επιλογή των κατηγορηµάτων διάσπασης (πάνω στο γνώρισµα διάσπασης) ενδρική δοµή επιθυµητό: ισοζυγισµένο δένδρο µε λίγα επίπεδα κάποιες τεχνικές παράγουν µόνο δυαδικά δένδρα Κριτήρια τερµατισµού ακρίβεια κατηγοριοποίησης vs. απόδοση vs. υπερπροσαρµογή Κλάδεµα (pruning) εκ των υστέρων «τακτοποίηση» του Α για καλύτερη απόδοση 39 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Ένα κριτήριο για την επιλογή του κατάλληλου γνωρίσµατος διάσπασης Ποιο είναι το καλύτερο; Αυτό που θα οδηγήσει στο µικρότερο δένδρο Ένας ευριστικός κανόνας (heuristic): επιλέγουµε το γνώρισµα που παράγει τους πιο "αγνούς" κόµβους. Για το σκοπό αυτό, χρησιµοποιείται µια συνάρτηση καταλληλότητας (fitness function). Στρατηγική: επιλέγουµε το γνώρισµα που µεγιστοποιεί τη συνάρτηση καταλληλότητας Χαρακτηριστικές συναρτήσεις καταλληλότητας: Κέρδος πληροφορίας Gain (ID3) Λόγος κέρδους πληροφορίας GainRatio (C4.5) gini index (SPRINT) 40 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.20

21 Θεωρία Πληροφορίας Η επαγωγή Α βασίζεται συχνά στη Θεωρία Πληροφορίας 41 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Πληροφορία / Εντροπία Έστω πιθανότητες p 1, p 2,.., p s των οποίων το άθροισµα είναι 1. Η Εντροπία ορίζεται ως εξής: s H η βάση του λογάριθµου δεν προσδιορίζεται (συνήθως, 10 ή 2) Η εντροπία είναι ποσοτικοποίηση της τυχαιότητας (έκπληξης, αβεβαιότητας) Ο στόχος της κατηγοριοποίησης καθόλου έκπληξη εντροπία = 0 ( p1, p2,..., ps) = i= 1 p i log 1 p i H(p,1-p) 42 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.21

22 Αλγόριθµος ID3 ηµιουργεί Α µε χρήση στοιχείων από τη θεωρία πληροφορίας (εντροπία) Επιλέγει για διάσπαση το γνώρισµα µε το µεγαλύτερο κέρδος πληροφορίας (information gain): Gain ( D, S) = H( D) P( D ) H( ) s i= 1 i D i H(D) η εντροπία του D (πριν το διαχωρισµό) H(D i ) η εντροπία των επιµέρους D i (µετά το διαχωρισµό) Όσο µεγαλύτερη είναι η µείωση (το «άλµα» προς το 0), τόσο µεγαλύτερο είναι το κέρδος Gain(D,S) 43 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Παράδειγµα ID3 Αρχική κατάσταση εντροπίας: H(D) = 4/15 log(15/4) + 8/15 log(15/8) + 3/15 log(15/3) = Κέρδος αν γίνει διάσπαση στο gender: Gender= F : 3/9 log(9/3) + 6/9 log(9/6)= Gender= M : 1/6 log(6/1) + 2/6 log(6/2) + 3/6 log(6/3) = Weighted sum: (9/15)(0.2764) + (6/15)(0.4392) = Gain: = Κέρδος αν γίνει διάσπαση στο height: Weighted sum: (2/15)(0.301) = Gain: = Κατηγορήµατα διάσπ.: (0, 1.6], (1.6, 1.7], (1.7, 1.8], (1.8, 1.9], (1.9, 2.0], (2.0, ) Επιλέγουµε height Name Gender Height Output1 Kristina F 1.6m Short Jim M 2m Tall Maggie F 1.9m Medium Martha F 1.88m Medium Stephanie F 1.7m Short Bob M 1.85m Medium Kathy F 1.6m Short Dave M 1.7m Short Worth M 2.2m Tall Steven M 2.1m Tall Debbie F 1.8m Medium Todd M 1.95m Medium Kim F 1.9m Medium Amy F 1.8m Medium Wynette F 1.75m Medium 44 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.22

23 Αλγόριθµος C4.5 Ο αλγόριθµος ID3 µεροληπτεί υπέρ των γνωρισµάτων µε µεγάλο αριθµό διαιρέσεων Ο αλγόριθµος C4.5 αποτελεί βελτιωµένη εκδοχή του ID3: Καλύτερη διαχείριση ελλιπών / συνεχών δεδοµένων Κλάδεµα 2 τεχνικές: αντικατάσταση υποδένδρου / ανύψωση υποδένδρου Κανόνες αποφάσεων (που παράγονται από τα Α) Βελτιωµένη συνάρτηση καταλληλότητας (για αποφυγή υπερπροσαρµογής): GainRatio ( D, S) ( D, S) Gain = D 1 H,..., D D D s 45 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Αλγόριθµος CART ηµιουργεί δυαδικό δένδρο Χρησιµοποιεί εντροπία Μαθηµατικός τύπος για την επιλογή του σηµείου διάσπασης, s, για τον κόµβο t: Οι πιθανότητες P L,P R αντιστοιχούν στην πιθανότητα µια εγγραφή να βρεθεί στην αριστερή ή τη δεξιά πλευρά, αντίστοιχα, του δένδρου. 46 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.23

24 Παράδειγµα CART Στο ξεκίνηµα, υπάρχουν έξι επιλογές για σηµείο διάσπασης: Gender= M, height=1.6, height=1.7, height=1.8, height=1.9, height=2.0 (παραδοχή: η ισότητα οδηγεί στο δεξί κλαδί): Φ(Gender= M ) = 2 (6/15) (9/15) (2/15 + 4/15 + 3/15)=0.224 Φ(height=1.6) = 0 Φ(height=1.7) = 2 (2/15) (13/15) (0 + 8/15 + 3/15) = Φ(height=1.8) = 2 (5/15) (10/15) (4/15 + 6/15 + 3/15) = Φ(height=1.9) = 2 (9/15) (6/15) (4/15 + 2/15 + 3/15) = Φ(height=2.0) = 2 (12/15) (3/15) (4/15 + 8/15 + 3/15) = 0.32 Αποφασίζεται διάσπαση στο height=1.8 κοκ. Name Gender Height Output1 Kristina F 1.6m Short Jim M 2m Tall Maggie F 1.9m Medium Martha F 1.88m Medium Stephanie F 1.7m Short Bob M 1.85m Medium Kathy F 1.6m Short Dave M 1.7m Short Worth M 2.2m Tall Steven M 2.1m Tall Debbie F 1.8m Medium Todd M 1.95m Medium Kim F 1.9m Medium Amy F 1.8m Medium Wynette F 1.75m Medium 47 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης Σύνοψη Κατηγοριοποίηση (ή ταξινόµηση): η ανάθεση ετικετών στις εγγραφές της βάσης δεδοµένων σχετικά µε την κλάση στην οποία ανήκει η καθεµία Αλλιώς, διαµέριση της βάσης δεδοµένων σε (προκαθορισµένες) κατηγορίες Τεχνικές: στατιστικές (παλινδρόµηση, Bayesian, ) βασισµένες σε απόσταση (k-nn, ) δένδρα αποφάσεων (ID3, C4.5, CART, ) 48 ΠΑ.ΠΕΙ. ΓιάννηςΘεοδωρίδης 4.24

(training data) (test data)

(training data) (test data) Αποθήκες εδοµένων και Εξόρυξη Γνώσης Κατηγοριοποίηση Νίκος Πελέκης, Γιάννης Θεοδωρίδης http://isl.cs.unipi.gr/db/courses/dwdm 1 ΠΑ.ΠΕΙ. Περιεχόµενα Το πρόβληµα της κατηγοριοποίησης Τεχνικές κατηγοριοποίησης

Διαβάστε περισσότερα

Data Mining. Εισαγωγικά και Προηγµένα Θέµατα Εξόρυξης Γνώσης. Κατηγοριοποίηση (κεφ. 4)

Data Mining. Εισαγωγικά και Προηγµένα Θέµατα Εξόρυξης Γνώσης. Κατηγοριοποίηση (κεφ. 4) Data Mining Εισαγωγικά και Προηγµένα Θέµατα Εξόρυξης Γνώσης Κατηγοριοποίηση (κεφ. 4) Βασίλης Βερύκιος - Γιάννης Θεοδωρίδης http://isl.cs.unipi.gr/dmbook Περιεχόµενα Το πρόβληµα της κατηγοριοποίησης Τεχνικές

Διαβάστε περισσότερα

14Ιαν Νοε

14Ιαν Νοε Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Επανάληψη Γιάννης Θεοδωρίδης, Νίκος Πελέκης Εργαστήριο Πληροφοριακών Συστηµάτων http://infolab.cs.unipi.gr

Διαβάστε περισσότερα

Δέντρα Απόφασης (Decision(

Δέντρα Απόφασης (Decision( Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 11: Δημιουργία Βάσεων Κανόνων Από Δεδομένα- Εξαγωγή Κανόνων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων Από Δεδομένα-

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής. Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Mining) Τεχνικές Data Mining. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής. Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Mining) Τεχνικές Data Mining. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς - Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Mining) Τεχνικές Data Mining Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων

Διαβάστε περισσότερα

Κατηγοριοποίηση. Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης. 2 ο Φροντιστήριο. Σκούρα Αγγελική

Κατηγοριοποίηση. Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης. 2 ο Φροντιστήριο. Σκούρα Αγγελική Κατηγοριοποίηση Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης 2 ο Φροντιστήριο Σκούρα Αγγελική skoura@ceid.upatras.gr Μηχανική Μάθηση Η μηχανική μάθηση είναι μια περιοχή της τεχνητής νοημοσύνης η οποία αφορά

Διαβάστε περισσότερα

Κατηγοριοποίηση (Εποπτευόμενη μάθηση)

Κατηγοριοποίηση (Εποπτευόμενη μάθηση) Κατηγοριοποίηση (Εποπτευόμενη μάθηση) Αποθήκες και Εξόρυξη Δεδομένων Διδάσκoυσα: Μαρία Χαλκίδη με βάση slides από J. Han and M. Kamber Data Mining: Concepts and Techniques, 2 nd edition Εποπτευόμενη vs.

Διαβάστε περισσότερα

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining)

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Εξόρυξη Γνώσης από Χωρικά εδοµένα (spatial data mining) Γιάννης Θεοδωρίδης, Νίκος Πελέκης

Διαβάστε περισσότερα

Υπερπροσαρμογή (Overfitting) (1)

Υπερπροσαρμογή (Overfitting) (1) Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Ευφυής Προγραμματισμός

Ευφυής Προγραμματισμός Ευφυής Προγραμματισμός Ενότητα 10: Δημιουργία Βάσεων Κανόνων Από Δεδομένα-Προετοιμασία συνόλου δεδομένων Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δημιουργία Βάσεων Κανόνων

Διαβάστε περισσότερα

Διδάσκουσα: Χάλκου Χαρά,

Διδάσκουσα: Χάλκου Χαρά, Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών

Διαβάστε περισσότερα

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Ταξινόμηση I Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ : DATASET WEATHER ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ

ΕΡΓΑΣΙΑ : DATASET WEATHER ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ ΕΡΓΑΣΙΑ : DATASET WEATHER ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ Το dataset weather περιέχει 4 μεταβλητές (outlook, temperature, humidity, windy) και 14 καταχωρήσεις για το καθένα από αυτά. Με βάση αυτές εξετάζεται το γεγονός

Διαβάστε περισσότερα

Ταξινόμηση I. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή

Ταξινόμηση I. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μια ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Ταξινόμηση I Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach,

Διαβάστε περισσότερα

Ταξινόμηση. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή

Ταξινόμηση. Εισαγωγή. Ορισμός. Ορισμός. Τεχνικές Ταξινόμησης. Εισαγωγή 0 0 0 Εισαγωγή Ταξινόμηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μια ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Ταξινόμηση Οι διαφάνειες στηρίζονται στο P.-N. Tan,

Διαβάστε περισσότερα

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006

Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Κατηγοριοποίηση I Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εισαγωγή Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 05: Αλγόριθμοι εκμάθησης Μέρος Α Δένδρα&Κανόνες Αλγόριθμοι Δεδομένα input Αλγόριθμοι Εξόρυξης Πληροφορίας Εξαγόμενα output

Διαβάστε περισσότερα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα

«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα «Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα Σεμινάριο 8: Χρήση Μηχανικής Μάθησης στην Εξαγωγή Πληροφορίας Ευάγγελος Καρκαλέτσης, Γεώργιος Πετάσης Εργαστήριο Τεχνολογίας Γνώσεων & Λογισμικού, Ινστιτούτο

Διαβάστε περισσότερα

Ταξινόμηση II Σύντομη Ανακεφαλαίωση

Ταξινόμηση II Σύντομη Ανακεφαλαίωση 0 0 0 Ταξινόμηση II Σύντομη Ανακεφαλαίωση Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Εξόρυξη Δεδομένων: Ακ. Έτος 2007-2008 ΤΑΞΙΝΟΜΗΣΗ

Διαβάστε περισσότερα

Διάλεξη 06: Αλγόριθμοι εκμάθησης ΜέροςΒ Bayes, ΚανόνεςΣυσχέτισης, ΑδρανήςΕκμάθηση & Ομαδοποίηση

Διάλεξη 06: Αλγόριθμοι εκμάθησης ΜέροςΒ Bayes, ΚανόνεςΣυσχέτισης, ΑδρανήςΕκμάθηση & Ομαδοποίηση ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 06: Αλγόριθμοι εκμάθησης ΜέροςΒ Bayes, ΚανόνεςΣυσχέτισης, ΑδρανήςΕκμάθηση & Ομαδοποίηση Αλγόριθμοι Δεδομένα input Αλγόριθμοι

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008

Διαβάστε περισσότερα

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη

Διαχείριση εγγράφων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Διαχείριση εγγράφων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκων: Μ. Χαλκίδη Απεικόνιση κειμένων για Information Retrieval Δεδομένου ενός κειμένου αναζητούμε μια μεθοδολογία απεικόνισης του γραμματικού χώρου

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη02 ΣυνιστώσεςΔεδομένων Οπτικοποίηση&Εξερεύνηση Η μορφή των δεδομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

Predicting the Choice of Contraceptive Method using Classification

Predicting the Choice of Contraceptive Method using Classification ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΣΣΑΛΟΝΙΚΗ Predicting the Choice of Contraceptive Method using Classification ΠΑΠΑΔΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Νικόλαος Σαμαράς ΕΞΕΤΑΣΤΗΣ:

Διαβάστε περισσότερα

Μάθηση με παραδείγματα Δέντρα Απόφασης

Μάθηση με παραδείγματα Δέντρα Απόφασης Μάθηση με παραδείγματα Δέντρα Απόφασης Μορφές μάθησης Επιβλεπόμενη μάθηση (Ταξινόμηση Πρόβλεψη) Παραδείγματα: {(x, t )} t κατηγορία ταξινόμηση t αριθμός πρόβλεψη Μη-επιβλεπόμενη μάθηση (Ομαδοποίηση Μείωση

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΕΓΚΡΙΣΗΣ ΠΙΣΤΩΤΙΚΗΣ ΚΑΡΤΑΣ ΑΠΟ ΙΣΤΟΡΙΚΑ ΔΕΔΟΜΕΝΑ

ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΕΓΚΡΙΣΗΣ ΠΙΣΤΩΤΙΚΗΣ ΚΑΡΤΑΣ ΑΠΟ ΙΣΤΟΡΙΚΑ ΔΕΔΟΜΕΝΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ & ΔΙΟΙΚΗΣΗ» ΔΗΜΙΟΥΡΓΙΑ ΜΟΝΤΕΛΟΥ ΕΓΚΡΙΣΗΣ ΠΙΣΤΩΤΙΚΗΣ ΚΑΡΤΑΣ

Διαβάστε περισσότερα

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 7 Ουρές Προτεραιότητας Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω

Διαβάστε περισσότερα

Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services

Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services Εξόρυξη Γνώσης µε SQL Server 2005 Analysis Services Γεράσιµος Μαρκέτος Οµάδα ιαχείρισης εδοµένων, Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιώς (http://isl.cs.unipi.gr/db) οµή παρουσίασης SQL Server 2005 Επιχειρηµατική

Διαβάστε περισσότερα

Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση

Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση Εισαγωγή στο Data Mining Από τα δεδομένα στη γνώση Η πληροφορία στη σύγχρονη επιχείρηση Η Ανάγκη Διαδικασία Ορισμός Αφετηρία Πρότυπα Πέραν του ανθρώπινου δυναμικού, η πληροφορία αποτελεί τον πλέον πολύτιμο

Διαβάστε περισσότερα

Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μία ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις)

Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μία ή περισσότερες προκαθορισμένες κατηγορίες (κλάσεις) Κατηγοριοποίηση ΙΙ Εξόρυξη Δεδομένων: Ακ. Έτος 200-20 ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ II Κατηγοριοποίηση Κατηγοριοποίηση (classification) Το γενικό πρόβλημα της ανάθεσης ενός αντικειμένου σε μία ή περισσότερες προκαθορισμένες

Διαβάστε περισσότερα

AVL-trees C++ implementation

AVL-trees C++ implementation Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ AVL-trees C++ implementation Δομές Δεδομένων Μάριος Κενδέα 31 Μαρτίου 2015 kendea@ceid.upatras.gr Εισαγωγή (1/3) Δυαδικά Δένδρα Αναζήτησης:

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Μεταπτυχιακή Εργασία. Εξόρυξη γνώσης από ειδησεογραφικά δεδοµένα και συσχετισµός µε πραγµατικά γεγονότα

Μεταπτυχιακή Εργασία. Εξόρυξη γνώσης από ειδησεογραφικά δεδοµένα και συσχετισµός µε πραγµατικά γεγονότα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μεταπτυχιακή Εργασία Εξόρυξη γνώσης από ειδησεογραφικά δεδοµένα και συσχετισµός µε πραγµατικά γεγονότα Ειρήνη Ντούτση Μηχανικός Η/Υ και Πληροφορικής

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 7: Μηχανική μάθηση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 7: Μηχανική μάθηση Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 7: Μηχανική μάθηση Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα

Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα Αλγόριθμοι Μηχανικής Μάθησης σε Πολυεπεξεργαστικά Περιβάλλοντα Στεργίου Κωνσταντίνος Α.Μ.496 Σχολή Θετικών Επιστημών - Τμήμα Μαθηματικών Μ.Π.Σ. Μαθηματικά και Σύγχρονες Εφαρμογές στα «Υπολογιστικά Μαθηματικά

Διαβάστε περισσότερα

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (path) o Πρόγονος απόγονος (ancestor, descendant)

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

«ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ ΤΟΝ ΠΙΣΤΩΤΙΚΟ ΚΙΝΔΥΝΟ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ ΕΞΟΡΥΞΗΣ STATISTICA DATA MINER»

«ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ ΤΟΝ ΠΙΣΤΩΤΙΚΟ ΚΙΝΔΥΝΟ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ ΕΞΟΡΥΞΗΣ STATISTICA DATA MINER» Τ.Ε.Ι ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ «ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΠΟ ΤΟΝ ΠΙΣΤΩΤΙΚΟ ΚΙΝΔΥΝΟ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ ΕΞΟΡΥΞΗΣ STATISTICA DATA MINER»

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:

Διαβάστε περισσότερα

o AND o IF o SUMPRODUCT

o AND o IF o SUMPRODUCT Πληροφοριακά Εργαστήριο Management 1 Information Συστήματα Systems Διοίκησης ΤΕΙ Τμήμα Ελεγκτικής Ηπείρου Χρηματοοικονομικής (Παράρτημα Πρέβεζας) και Αντικείµενο: Μοντελοποίηση προβλήµατος Θέµατα που καλύπτονται:

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη 04: Απεικόνιση Γνώσης, Αξιοπιστία & Αποτίμηση Η μορφή των εξαγομένων και η σημασία της Δεδομένα input Αλγόριθμοι Εξόρυξης

Διαβάστε περισσότερα

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο

Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών

Διαβάστε περισσότερα

Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση

Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση (clustering) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων

Διαβάστε περισσότερα

Δημιουργία Δυαδικών Δέντρων Αναζήτησης

Δημιουργία Δυαδικών Δέντρων Αναζήτησης Δημιουργία Δυαδικών Δέντρων Αναζήτησης Τα Δυαδικά δέντρα αναζήτησης είναι διατεταγμένα δυαδικά δέντρα όπου έχει σημασία η διάταξη των παιδιών κάθε κόμβου. Συγκεκριμένα για τα Δυαδικά δέντρα αναζήτησης,

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Μεγίστου Σφάλµατος. Παναγιώτης Καρράς. Αθήνα, 26 Αυγούστου 2005

Μεγίστου Σφάλµατος. Παναγιώτης Καρράς. Αθήνα, 26 Αυγούστου 2005 Μ ένα Σµπάρο υο Τρυγώνια: Εισάπαξ Κυµατιδιακές Συνόψεις για Μέτρα Μεγίστου Σφάλµατος Παναγιώτης Καρράς Αθήνα, 6 Αυγούστου 005 Έρευνα στο HKU µε τον Νίκο Μαµουλή Περίληψη Προκαταρκτικά & Κίνητρα Χρησιµότητα

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία

Διαβάστε περισσότερα

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής. Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση. Γιάννης Θεοδωρίδης Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Εξόρυξη Γνώσης από εδοµένα (Data Mining) Συσταδοποίηση Γιάννης Θεοδωρίδης Οµάδα ιαχείρισης εδοµένων Εργαστήριο Πληροφοριακών Συστηµάτων http://isl.cs.unipi.gr/db

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Παράδειγµα (Risky Business 1)

Παράδειγµα (Risky Business 1) Πληροφοριακά Συστήµατα ιοίκησης Τµήµα Χρηµατοοικονοµικής και Ελεγκτικής Management Information Systems Εργαστήριο 3 ΤΕΙ Ηπείρου (Παράρτηµα Πρέβεζας) ΑΝΤΙΚΕΙΜΕΝΟ: Συµπεράσµατα για την αβεβαιότητα Θέµατα

Διαβάστε περισσότερα

if(συνθήκη) {... // οµάδα εντολών } C: Από τη Θεωρία στην Εφαρµογή 5 ο Κεφάλαιο

if(συνθήκη) {... // οµάδα εντολών } C: Από τη Θεωρία στην Εφαρµογή 5 ο Κεφάλαιο C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 5 ο Έλεγχος Προγράµµατος Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Η εντολή if (Ι) Η εντολή if είναι µία από τις βασικότερες δοµές ελέγχου ροής στη C, αλλά και στις περισσότερες

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Κατηγοριοποίηση με βάση δυναμικό αριθμό κοντινότερων γειτόνων

Κατηγοριοποίηση με βάση δυναμικό αριθμό κοντινότερων γειτόνων Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών στην Πληροφορική Κατεύθυνση: Πληροφοριακά Συστήματα Κατηγοριοποίηση με βάση δυναμικό αριθμό

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 3: Στοχαστικά Συστήματα Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Πεδί α

ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ. Πεδί α ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Βάση δεδομένων είναι συσχετισμένα μεταξύ τους δεδομένα, οργανωμένα σε μορφή πίνακα. Οι γραμμές του πίνακα αποτελούν τις εγγραφές και περιλαμβάνουν τις πληροφορίες για μια οντότητα. Οι

Διαβάστε περισσότερα

Εξόρυξη Γνώσης - το εργαλείο WEKA

Εξόρυξη Γνώσης - το εργαλείο WEKA Εξόρυξη Γνώσης - το εργαλείο WEKA Οµάδα ιαχείρισης εδοµένων, Τµήµα Πληροφορικής, Πανεπιστήµιο Πειραιώς (http:// http://isl.cs.unipi.gr/) Κοτσιφάκος Ευάγγελος ek@unipi.gr Νοέµβριος 2008 Ανακάλυψη και Εξόρυξη

Διαβάστε περισσότερα

Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort

Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ο αλγόριθμος ταξινόμησης Radix Sort -Δυο εκδοχές: Most Significant Digit (MSD) και Least Significant

Διαβάστε περισσότερα

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη Προεπεξεργασία Δεδομένων Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη Η διαδικασίας της ανακάλυψης γνώσης Knowledge Discovery (KDD) Process Εξόρυξη δεδομένων- πυρήνας της διαδικασίας ανακάλυψης

Διαβάστε περισσότερα

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές

Νευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

1η εργασία για το μάθημα «Αναγνώριση προτύπων»

1η εργασία για το μάθημα «Αναγνώριση προτύπων» 1η εργασία για το μάθημα «Αναγνώριση προτύπων» Σημειώσεις: 1. Η παρούσα εργασία είναι η πρώτη από 2 συνολικά εργασίες, η κάθε μια από τις οποίες θα βαθμολογηθεί με 0.4 μονάδες του τελικού βαθμού του μαθήματος.

Διαβάστε περισσότερα

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β

Ε ανάληψη. Παιχνίδια παιχνίδια ως αναζήτηση. Βέλτιστες στρατηγικές στρατηγική minimax. Βελτιώσεις κλάδεµα α-β ΠΛΗ 405 Τεχνητή Νοηµοσύνη Παιχνίδια Τύχης Παιχνίδια Ατελούς Πληροφόρησης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Παιχνίδια παιχνίδια ως αναζήτηση Βέλτιστες στρατηγικές

Διαβάστε περισσότερα

Ταξινόμηση ΙI. Σύντομη Επανάληψη. Εισαγωγή Κατασκευή έντρου Απόφασης. Εξόρυξη Δεδομένων

Ταξινόμηση ΙI. Σύντομη Επανάληψη. Εισαγωγή Κατασκευή έντρου Απόφασης. Εξόρυξη Δεδομένων Ταξινόμηση ΙI Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 Σύντομη Επανάληψη Εισαγωγή Κατασκευή έντρου Απόφασης Εξόρυξη Δεδομένων:

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο

Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Κατακερματισμός 1 Αποθήκευση εδομένων (σύνοψη) Τα δεδομένα (περιεχόμενο) μιας βάσης δεδομένων αποθηκεύεται στο δίσκο Παραδοσιακά, μία σχέση (πίνακας/στιγμιότυπο) αποθηκεύεται σε ένα αρχείο Αρχείο δεδομένων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Προγραμματισμός Η/Υ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Προγραμματισμός Η/Υ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Προγραμματισμός Η/Υ Ενότητα 3 η : Η Γλώσσα Προγραμματισμού VB.NET (2 ο Μέρος) Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Ελάχιστα Γεννητορικά ένδρα

Ελάχιστα Γεννητορικά ένδρα λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΜΕΡΟΣ ΠΕΜΠΤΟ Triggers, Stored procedures Γιώργος Μαρκοµανώλης Περιεχόµενα Triggers-Ενηµέρωση δεδοµένων άλλων πινάκων... 1 Ασφάλεια...

Διαβάστε περισσότερα

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 3 Επιλογή μοντέλου Επιλογή μοντέλου Θεωρία αποφάσεων Επιλογή μοντέλου δεδομένα επικύρωσης Η επιλογή του είδους του μοντέλου που θα χρησιμοποιηθεί σε ένα πρόβλημα (π.χ.

Διαβάστε περισσότερα

TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ

TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση

Διαβάστε περισσότερα

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

Δομές δεδομένων. Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 8: Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 8 Ξένα Σύνολα

Διαβάστε περισσότερα

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη01Εισαγωγή

ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας. Διάλεξη01Εισαγωγή ΕΜΠ ΔΠΜΣ Εφαρμοσμένες Μαθηματικές Επιστήμες Αλγόριθμοι Εξόρυξης Πληροφορίας Διάλεξη01Εισαγωγή Η πληροφορία είναι ζωτική Τεχνητή Γονιμοποίηση Συλλογή ωαρίων Γονιμοποίηση με σπέρμα συντρόφου ή δότη Παράγονται

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 7: Ομαδοποίηση Μέρος Α Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Επίλυση Προβλημάτων 1

Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης

Διαβάστε περισσότερα

Ερωτήσεις Χωροχρονικών. Προτύπων-Κινήσεων

Ερωτήσεις Χωροχρονικών. Προτύπων-Κινήσεων Ερωτήσεις Χωροχρονικών Προτύπων-Κινήσεων Μ. Χατζηελευθερίου Γ. Κόλλιος P. Bakalov Β. Ι. Τσότρας Τα Κίνητρα Η ανάγκη ανεύρεσης αντικειµένων τα οποία ακολουθούν συγκεκριµένες τροχιές. Παραδείγµατα: Εντοπισµός

Διαβάστε περισσότερα

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r. Κεφάλαιο 2 Θεωρία Αριθμών Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Hardy and Wright 1979 και Graham, Knuth, and Patashnik 1994. 2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί Θεώρημα 2.1 Αν

Διαβάστε περισσότερα

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5

2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5 IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό

Διαβάστε περισσότερα

Αποθήκες και Εξόρυξη Δεδομένων

Αποθήκες και Εξόρυξη Δεδομένων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Αποθήκες και Εξόρυξη Δεδομένων 1 Ο Εργαστήριο Εισαγωγή στο WEKA (Preprocessing Select Attributes) Στουγιάννου Ελευθερία estoug@unipi.gr -2- ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Μπεϋζιανά & Νευρωνικά Δίκτυα

Μπεϋζιανά & Νευρωνικά Δίκτυα Μπεϋζιανά & Νευρωνικά Δίκτυα Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης 4o Φροντιστήριο Σκούρα Αγγελική skoura@ceid.upatras.gr 1 ο Μέρος Φροντιστηρίου: Μπεϋζιανά Δίκτυα Εισαγωγή στα Μπεϋζιανά Δίκτυα (1/2)

Διαβάστε περισσότερα

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1

Κεφάλαιο 14. οµές Ευρετηρίων για Αρχεία. ιαφάνεια 14-1 ιαφάνεια 14-1 Κεφάλαιο 14 οµές Ευρετηρίων για Αρχεία Copyright 2007 Ramez Elmasri and Shamkant B. NavatheΕλληνικήΈκδοση, ιαβλος, Επιµέλεια Μ.Χατζόπουλος 1 Θα µιλήσουµε για Τύποι Ταξινοµηµένων Ευρετηρίων

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 01/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Τετάρτη Ιουνίου 7 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΒΛΗΜΑΤΑ ΕΛΑΧΙΣΤΟΠΟΙΗΣΗΣ Ελαχιστοποίηση κόστους διατροφής Ηεπιχείρηση ζωοτροφών ΒΙΟΤΡΟΦΕΣ εξασφάλισε µια ειδική παραγγελίααπό έναν πελάτη της για την παρασκευή 1.000 κιλών ζωοτροφής, η οποία θα πρέπει

Διαβάστε περισσότερα