Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα"

Transcript

1 Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή Δρ. Κυριακή Τσιλίκα Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Θεσσαλίας

2 Η απαρχή της Γεωμετρίας Οι Βαβυλώνιοι, για πρώτη φορά, χρησιμοποίησαν ένα είδος αρίθμησης και ένα πρωτόγονο μετρικό σύστημα, για τις ανάγκες των συναλλαγών τους. Οι Αιγύπτιοι, από ανάγκη επαναπροσδιορισμού των συνόρων των αγροτεμαχίων που καλλιεργούσαν εκατέρωθεν του Νείλου, τα οποία κατάστρεφαν τα πλημμυρικά φαινόμενα του ποταμού, αναγκάστηκαν να εφεύρουν μεθόδους μέτρησης της γης, ώστε να ξαναβρίσκουν το μέγεθος και τα όρια των αγροτεμαχίων τους, τα οποία είχε μεταβάλει το νερό. Αιγύπτιοι τεχνίτες κατείχαν αρκετές εμπειρικές μεθόδους μέτρησης επιφανειών και όγκων όπως αποδεικνύει η κατασκευή στην Αίγυπτο, τεράστιων τεχνικών και καλλιτεχνικών έργων (πυραμίδες, ογκώδη αγάλματα)

3 Η Ελληνική Σχολή και τα ευρήματά της Ο Θαλής μέτρησε το ύψος των πυραμίδων της Αιγύπτου, με το γνωστό θεώρημά του των αναλογιών. Ο Πυθαγόρας θεμελίωσε γεωμετρικά τον εμπειρικό κανόνα του 3,4,5 ή 30,40,50 με τον οποίο κατασκευάζεται ορθή γωνία Αλεξανδρινή περίοδος Ευκλείδης Το έργο του «Στοιχεία» (Επιπεδομετρία αριθμητική θεωρία και τη Στερεομετρία) κατατάσσεται μέσα στα δέκα καλύτερα νοητικά δημιουργήματα του ανθρώπινου νου. Ο Αρχιμήδης εφεύρε πολλές πολεμικές μηχανές (εμπρηστικά κάτοπτρα, τηλεβόλα κ.α Απολλώνιος Το έργο του «αι Κώνου τομαί» χαρακτηρίστηκε δείγμα θαυμαστής επιστημονικής εργασίας και δύναμης

4 Οι ανάγκες της τέχνης και της τεχνικής Φρόνημα ελεύθερο και πειθαρχημένο Οικονομική ευρωστία, πολιτική σταθερότητα και κοινωνική ευημερία Τεχνική κατάρτιση και επιδεξιότητα Γνώση σχημάτων, μεγεθών και αναλογιών Η μορφή, το σχήμα, προϋποθέτει δομή. Η δομή προϋποθέτει Γεωμετρία. Όλα τα σχέδια, οι τομές, οι κατόψεις, τα πλαίσια εμπεριέχουν την κωδικοποιημένη γνώση της Γεωμετρίας. Κολώνες, δοκάρια, πλαίσια, γωνίες κ.α. αναπαριστούν συγκεκριμένα γεωμετρικά σχήματα.

5 Γεωμετρία και Αρχιτεκτονική «Η οικοδομική τέχνη αποτελείται από το γραμμικό σχέδιο και την κατασκευή. Η σημασία και ο σκοπός του σχεδίου είναι να δείχνει τον ορθό και ξεκάθαρο τρόπο με τον οποίο ενώνονται γραμμές και γωνίες, με τις οποίες αποδίδεται και οριοθετείται η εικόνα ενός κτιρίου. Ο Αρχιτέκτονας είναι απαραίτητο να γνωρίζει ζωγραφική και μαθηματικά. Τα μαθηματικά είναι η φύση του αρχιτεκτονικού κάλλους, που εξαρτάται άμεσα από τον αριθμό, το μέτρο και την αναλογία. Η ζωγραφική και τα μαθηματικά στον Αρχιτέκτονα είναι, ότι η φωνή και οι συλλαβές στον Ποιητή» (Leon Battista Albert)

6 Leonardo da Vinci, ως εκπρόσωπος της Τέχνης και της Τεχνικής Ο Leonardo με τους Κώδικες, προτείνει μία επιστημονική προσέγγιση της τέχνης και υποδεικνύει μέσα και τρόπους καλλιτεχνικής δημιουργίας, όπως, α) τρόπους παρατήρησης, β) καταγραφή των παρατηρήσεων, γ) οργάνωση της γνώσης και προετοιμασία της επιφάνειας αποτύπωσης, δ) υλικά που είναι απαραίτητα για τη συγκεκριμένη επιφάνεια και ε) αιτιολόγηση του μεγέθους, της απόχρωσης, της σκιάς, με μαθηματική τεκμηρίωση Ισχυρίζεται ότι, όλα τα θέματα προοπτικής εξηγούνται με πέντε μαθηματικούς όρους. Το σημείο, τη γραμμή, τη γωνία, την επιφάνεια και το στερεό. Και όπως έλεγε, «καμία ανθρώπινη δραστηριότητα δεν μπορεί να ονομαστεί αληθινή επιστήμη, εάν δεν μπορεί να στηριχτεί στα μαθηματικά»

7

8 Τεθωρακισμένο άρμα

9 Πολλαπλό ολμοβόλο

10 Θεατρική μηχανή

11 Αρχιμήδης, ως εκπρόσωπος της Τεχνικής Σύμφωνα με τον Πλούταρχο, ο Αρχιμήδης αν και είχε πνεύμα εφευρετικό, ήταν τύπος θεωρητικού ανθρώπου. Στην εποχή του ήταν γνωστός ως «Μέγας Γεωμέτρης». Η μεθοδικότητα της σκέψης του, τον βοηθούσε να διατυπώνει δύσκολα θεωρήματα κατά τρόπο τόσο απλό, ώστε να είναι κατανοητά από όλους. «Είναι αδύνατον να βρει κανείς στη γεωμετρία δυσκολότερες και σπουδαιότερες θεωρητικές προτάσεις, με διατύπωση απλούστερη και καθαρότερη, από αυτή του Αρχιμήδη».

12 Υπολογιστής Αντικυθήρων

13 Αιγυπτιακός κοχλίας

14 Εμπρηστικό κάτοπτρο

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΑΡΧΑΙΑ ΑΙΓΥΠΤΟ H γενική τάση των κατοίκων της Αιγύπτου στις επιστήμες χαρακτηριζόταν από την προσπάθεια

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας ΜΕΡΟΣ ΠΡΩΤΟ Ένα από τα δύο κομβικά ερευνητικά προβλήματα που οι συστηματικές

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Το Θεώρημα γεννιέται πριν από 4000 χρόνια Οι ρίζες του Πυθαγορείου Θεωρήματος βρίσκονται στη Γεωμετρία. Το θεώρημα διαδραματίζει κεντρικό ρόλο σε πολυάριθμους επιστημονικούς κλάδους,

Διαβάστε περισσότερα

ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015

ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ Γ Υ Μ Ν Α Σ Ι Ο ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 «Τα Μαθηµατικά µέσα

Διαβάστε περισσότερα

Σπουδαίοι μαθηματικοί ανά τους αιώνες

Σπουδαίοι μαθηματικοί ανά τους αιώνες Σπουδαίοι μαθηματικοί ανά τους αιώνες ΑΡΧΑΙΟΙ ΧΡΟΝΟΙ Πυθαγόρας (580-500π.Χ) Ευκλείδης (350-270π.Χ) Αρχιμήδης (287-212π.Χ) Διοκλής (240-180π.Χ) ΠΡΩΤΟΧΡΙΣΤΙΑΝΙΚΗ ΠΕΡΙΟΔΟΣ Ήρων (1 Ος αιώνας μ.χ) Υπατία (370-416

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 1: Εισαγωγικά. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε.

Τεχνικό Σχέδιο. Ενότητα 1: Εισαγωγικά. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 1: Εισαγωγικά Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Να φύγει ο Ευκλείδης;

Να φύγει ο Ευκλείδης; Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω

Διαβάστε περισσότερα

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας;

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Τα μαθηματικά διαπερνούν κάθε ανθρώπινη δραστηριότητα. Σ αυτή την παρουσίαση θα

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης)

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΣΧΕΔΙΟ (Ελεύθερο και Προοπτικό) και που ενδέχεται

Διαβάστε περισσότερα

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας,

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας, ΠΡΟΟΠΤΙΚΗ Εισαγωγή Αυτό που στην εφαρμοσμένη γεωμετρία ονομάζουμε συχνά γραμμική προοπτική είναι ένα σύστημα αναπαράστασης του τρισδιάστατου χώρου σε επιφάνεια δύο διαστάσεων. Η μέθοδος αυτή απεικόνισης

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

Οι σπουδές στην Αρχιτεκτονική

Οι σπουδές στην Αρχιτεκτονική ΓΡΑΦΕΙΟ ΔΙΑΣΥΝΔΕΣΗΣ ΣΠΟΥΔΩΝ ΚΑΙ ΣΤΑΔΙΟΔΡΟΜΙΑΣ Οι σπουδές στο ΑΠΘ Πολυτεχνική Σχολή, Τμήμα Αρχιτεκτόνων Αναστάσιος Τέλλιος, Επίκουρος καθηγητής Οι σπουδές στην Αρχιτεκτονική Ιανουάριος 2016 Αιγυπτιακός

Διαβάστε περισσότερα

Το πυθαγόρειο θεώρημα: απόδειξη με ένα απλό πείραμα

Το πυθαγόρειο θεώρημα: απόδειξη με ένα απλό πείραμα Το πυθαγόρειο θεώρημα: απόδειξη με ένα απλό πείραμα Γιατί να μαθαίνουμε Μαθηματικά; Ένας καθηγητής Μαθηματικών ανεξάρτητα από το πόσο αγαπά τη δουλειά του και κατά πόσο η επικοινωνία του με τους μαθητές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3 Σύμβολα και σχεδιαστικά στοιχεία Μάθημα 3 Τα αρχιτεκτονικά σύμβολα αποτελούν μια διεθνή, συγκεκριμένη και απλή γλώσσα. Είναι προορισμένα να γίνονται κατανοητά από τον καθένα, ακόμα και από μη ειδικούς.

Διαβάστε περισσότερα

Θέμα [2] Γεωμετρία: ΣΤΕΡΕΑ: [Ονοματολογία Συμβολισμός] Η έννοια της μεταβλητής -Απλές εξισώσεις. [ο προγραμματισμός]

Θέμα [2] Γεωμετρία: ΣΤΕΡΕΑ: [Ονοματολογία Συμβολισμός] Η έννοια της μεταβλητής -Απλές εξισώσεις. [ο προγραμματισμός] Θέμα [2] 1 Γεωμετρία: ΣΤΕΡΕΑ: [Ονοματολογία Συμβολισμός] Η έννοια της μεταβλητής -Απλές εξισώσεις Ενδεικτική πορεία διδασκαλίας [ο προγραμματισμός] Α. Δίνουμε στους εκπαιδευομένους διάφορα στερεά (κατασκευασμένα)-πολύεδρα

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Α. Προτεινόμενες θεματικές ενότητες Τίτλοι από το Ι.Ε.Π. ΑΛΓΕΒΡΑ 5ο 5.1: Ακολουθίες Η ακολουθία Fibonacci στην Φύση και

Διαβάστε περισσότερα

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων ΔΙΔΑΚΤΕΑ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ (version 22-10-2016) Τα παρακάτω προέρχονται (με δικές μου αλλαγές μορφοποίησης προσθήκες και σχολιασμό) από το έγγραφο (σελ.15 και μετά) με Αριθμό Πρωτοκόλλου 150652/Δ2, που

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

«Οι Σπουδές στην Αρχιτεκτονική»

«Οι Σπουδές στην Αρχιτεκτονική» ΓΡΑΦΕΙΟ ΔΙΑΣΥΝΔΕΣΗΣ ΣΠΟΥΔΩΝ ΚΑΙ ΣΤΑΔΙΟΔΡΟΜΙΑΣ «Οι Σπουδές στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» Πολυτεχνική Σχολή Τμήμα Αρχιτεκτόνων Καθηγητής Μιχαήλ Ε. Νομικός «Οι Σπουδές στην Αρχιτεκτονική» Δεκέμβριος

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Β. Δρακόπουλος Σχολικός Σύμβουλος Δευτεροβάθμιας Εκπαίδευσης Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Ε.Κ.Π.Α. Σχολή Θετικών

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΕΛΕΥΘΕΡΟ ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ Β ΛΥΚΕΙΟΥ Γνωριμία, συζήτηση Περιγραφή του μαθήματος, στόχοι Παρουσίαση σχεδίων διαφόρων μορφών φωτογραφίες -3 Διαγνωστικό

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά Ερευνητική Εργασία - Ζωγραφική και Μαθηµατικά Ηλίας Νίνος Ερευνητική Εργασία µε θέµα: Μαθηµατικά και Τέχνη Υποθέµα: Μαθηµατικά και Ζωγραφική Οµάδα: Μαρία Βαζαίου- Ηρώ Μπρούφα- Μαθηµατικά εννοούµε την επιστήµη

Διαβάστε περισσότερα

«ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ»

«ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ» ΤΑΚΕΦΑΛΑΙΑΤΟΥΒΙΒΛΙΟΥ 1. ΟΡΙΣΜΟΣ ΚΑΙ ΙΣΤΟΡΙΚΗ ΑΝΑΣΚΟΠΗΣΗ 2. ΒΙΟΓΡΑΦΙΕΣ:ΘΑΛΗΣ, ΠΥΘΑΓΟΡΑΣ, ΑΡΧΙΜΗ ΗΣ, ΕΥΚΛΕΙ ΗΣ 3. ΜΑΘΗΜΑΤΙΚΑ: ΑΝΑΚΑΛΥΨΗ Η ΕΠΙΝΟΗΣΗ; 4. Ο ΘΑΥΜΑΣΤΟΣ ΚΟΣΜΟΣ ΤΩΝ

Διαβάστε περισσότερα

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΦΑΙΔΡΑ ΚΟΥΡΒΙΣΙΑΝΟΥ ΒΑΣΙΛΗΣ ΚΑΤΣΑΝΤΩΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΗΛΙΟΠΟΥΛΟΣ ΑΝΔΡΕΑΣ ΚΑΣΙΜΑΤΗΣ Ερευνητικά Ερωτήματα Ποιοι είναι ΟΙ ΣΗΜΑΝΤΙΚΟΙ

Διαβάστε περισσότερα

Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία»

Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία» 3ο Γενικό Λύκειο Λάρισας Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία» Θέµα Ερευνητικής Εργασίας: ιερεύνηση των εξισώσεων και ανισώσεων µέσα από την επίλυση καθηµερινών προβληµάτων.

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Γ' Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΕΛΕΥΘΕΡΟ-ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ( Εικαστική και Αρχιτεκτονική

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΠΥΘΑΓΟΡΑΣ Πέτρου Αναστασία Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΑΘΗΝΑ 2013 Ο Πυθαγόρας (586 500 π.χ.) του Μνησάρχου και της «ωραίας υπέρ φύσιν» Πυθαϊδος γεννήθηκε στη Σάμο. Μικρός επισκέφθηκε τους Δελφούς,

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 15.03.12 Χ. Χαραλάμπους Έργα Στοιχεία Δεδομένα Φαινόμενα ή Σφαιρικά Οπτικά Κατοπτρικά Στοιχεία Μουσικής Βιβλίο περί διαιρέσεων Πορίσματα Κωνικά Τόποι προς επιφάνειες Ψευδάρια Μηχανική

Διαβάστε περισσότερα

Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα.

Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα. Ο ΧΡΥΣΟΣ ΑΡΙΘΜΟΣ Φ Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα. Η σκέψη του ήταν πως αν υπάρχει ένα ευθύγραμμο τμήμα και ένα σημείο

Διαβάστε περισσότερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Βασίλειος Παπαντωνίου Ομ. Καθηγητής Πανεπιστημίου Πατρών bipapant@math.upatras.gr Επίκεντρο της παρουσίασης Η εξέλιξη της μαθηματικής σκέψης

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις Παρουσιάσεις, Ασκήσεις,

Διαβάστε περισσότερα

H ΕΞΕΛΙΞΗ ΤΩΝ ΙΔΕΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

H ΕΞΕΛΙΞΗ ΤΩΝ ΙΔΕΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1 H ΕΞΕΛΙΞΗ ΤΩΝ ΙΔΕΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Ας ξεκινήσουμε την μελέτη μας από την ετυμολογία της λέξεως ΓΕΩΜΕΤΡΙΑ. Με την πρώτη ματιά και χωρίς ιδιαίτερες γνώσεις γλωσσολογίας διακρίνουμε ότι είναι σύνθετη και

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Τεύχος Α ε 3 Κ Ε Γ ε 1 ε 2 Ι Ο Θ Η Ζ Α μ α Β Ψ ε 4 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΑΡΧΑΙΑ ΕΛΛΑΔΑ

ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΑΡΧΑΙΑ ΕΛΛΑΔΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΑΡΧΑΙΑ ΕΛΛΑΔΑ Μελετώντας το παρελθόν και παρατηρώντας την σταδιακή εξέλιξη των μαθηματικών από τούς προελληνικούς χρόνους έως σήμερα, διαπιστώνουμε ότι τα μαθηματικά αποτέλεσαν έναν από

Διαβάστε περισσότερα

Από τον Θαλή στον Αρχιμήδη

Από τον Θαλή στον Αρχιμήδη Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Tel.: +30 2310998051, Ιστοσελίδα: http://users.auth.gr/theodoru Από τον Θαλή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.2: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

Θαλής ο Μιλήσιος. «Χαλεπόν Εαυτόν Γνώναι» ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ

Θαλής ο Μιλήσιος. «Χαλεπόν Εαυτόν Γνώναι» ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ Εργάστηκαν οι παρακάτω μαθητές της ομάδας «ΜΑΣΕ» της Γ' Γυμνασίου του 2 ου Γυμνασίου Πειραιά: ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ Θαλής ο Μιλήσιος «Χαλεπόν Εαυτόν Γνώναι»

Διαβάστε περισσότερα

ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ. Αναστασία Ταουκτσόγλου. Μαθηματικός, Δρ Διαφορικής Γεωμετρίας

ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ. Αναστασία Ταουκτσόγλου. Μαθηματικός, Δρ Διαφορικής Γεωμετρίας ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Αναστασία Ταουκτσόγλου Μαθηματικός, Δρ Διαφορικής Γεωμετρίας Νέες Τεχνολογίες στην Εκπαίδευση Με τον όρο αυτό αναφερόμαστε στην εφαρμογή των Τεχνολογιών

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 2: Απόδειξη Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Η ΔΙΑΧΥΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΕΜΒΑΔΟΥ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΔΗΜΙΟΥΡΓΙΑ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 1/5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία

Διαβάστε περισσότερα

Αρχαία Ελληνική Επιστήμη και Τεχνολογία

Αρχαία Ελληνική Επιστήμη και Τεχνολογία Αρχαία Ελληνική Επιστήμη και Τεχνολογία Αρχαία Ελληνική Επιστήμη και Τεχνολογία Περιοδική Έκθεση Αρχαία Ελληνική Επιστήμη και Τεχνολογία Μια έκθεση που παρουσιάζει την εξέλιξη της σκέψης των Αρχαίων Ελλήνων,

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ;

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; Γιώργου Τσαπακίδη Είναι εύκολο να παρατηρήσουμε ότι τα συμμετρικά σχήματα έχουν πολύ περισσότερες ιδιότητες από τα μη συμμετρικά σχήματα. Το ισοσκελές τρίγωνο, που έχει άξονα

Διαβάστε περισσότερα

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013 Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013 Η Χρυσή τοµή στην καθηµερινότητά µας Η χρυσή τοµή δεν είναι µόνο ένας µαθηµατικός όρος, αλλά και µια

Διαβάστε περισσότερα

ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ

ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΒΑΒΥΛΩΝΙΩΝ Οι Βαβυλώνιοι ζούσαν στη Μεσοποταµία,περιοχή µεταξύ των ποταµών Τίγρη και Ευφράτη.Η Μεσοποταµία ήταν κέντρο πολιτισµού των Σουµέριων,Ακκάδιων,Ασσύριων,Αραµαίων

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

Γεωδαισία IV. Γεωδαισία IV Μάθημα Εαρινού 6ου Εξαμήνου, Ακαδ. Έτος Ιστοχώρος μαθήματος:

Γεωδαισία IV. Γεωδαισία IV Μάθημα Εαρινού 6ου Εξαμήνου, Ακαδ. Έτος Ιστοχώρος μαθήματος: Γεωδαισία IV Μάθημα Εαρινού 6ου Εξαμήνου, Ακαδ. Έτος 2011-12 ΤΕΠΑΚ, Τμ. Πολιτικών Μηχ./Τοπογράφων Μηχ. Και Μηχ. Γεωπληροφορικής Διδάσκων μαθήματος: Δημήτρης Δεληκαράογλου Επισκ. Καθ., Αναπλ. Καθ., ΣΑΤΜ,

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI

ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI ΜΕΤΡΗΣΕΙΣ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΤΕΤΡΑΠΛΕΥΡΟΥ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ CABRI Πέτρος Κλιάπης Τάξη Στ Βοηθητικό υλικό: Σχολικό βιβλίο μάθημα 58 Δραστηριότητα 1, ασκήσεις 2, 3 και δραστηριότητα με προεκτάσεις Προσδοκώμενα

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

Το φράγμα του Ασουάν. Γιάννος Παπαϊωάννου Μαρία Παταρασβίλη Αλεξάνδρα Αδαμίδου Μαργαρίτα Χαραλάμπους Νοέμβριος 2013

Το φράγμα του Ασουάν. Γιάννος Παπαϊωάννου Μαρία Παταρασβίλη Αλεξάνδρα Αδαμίδου Μαργαρίτα Χαραλάμπους Νοέμβριος 2013 Το φράγμα του Ασουάν Γιάννος Παπαϊωάννου Μαρία Παταρασβίλη Αλεξάνδρα Αδαμίδου Μαργαρίτα Χαραλάμπους Νοέμβριος 2013 Πώς σκέφτηκαν οι Αιγύπτιοι να δημιουργήσουν το φράγμα του Ασουάν; Για πολλούς αιώνες οι

Διαβάστε περισσότερα

Γεωμετρία: από την Επιστήμη στην Εφαρμογή

Γεωμετρία: από την Επιστήμη στην Εφαρμογή ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ Αιγάλεω, 18.02.2012 2 η ΠΡΟΣΚΛΗΣΗ ΕΝΔΙΑΦΕΡΟΝΤΟΣ Κατά τις τελευταίες δεκαετίες, η ανάπτυξη μεθόδων και εργαλείων είχε ως άμεση συνέπεια τη ραγδαία

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΑΡΧΑΙΑ ΕΛΛΑΔΑ Πυραμίδες στην Ελλάδα

ΑΡΧΑΙΑ ΕΛΛΑΔΑ Πυραμίδες στην Ελλάδα ΑΡΧΑΙΑ ΕΛΛΑΔΑ Πυραμίδες στην Ελλάδα Oι πυραμίδες που έχουν εντοπιστεί στην Ελλάδα, αποτελούν μοναδικά δείγματα πυραμιδικής αρχιτεκτονικής στον ευρωπαϊκό χώρο. Η μορφή τους, η αρχιτεκτονική τους, καθώς

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ / ΜΥΤΙΛΗΝΗ / Ετήσιο Πρόγραμμα Παιδαγωγικής Κατάρτισης / Ε.Π.ΠΑΙ.Κ.

ΠΑΡΑΡΤΗΜΑ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ / ΜΥΤΙΛΗΝΗ / Ετήσιο Πρόγραμμα Παιδαγωγικής Κατάρτισης / Ε.Π.ΠΑΙ.Κ. ΠΑΡΑΡΤΗΜΑ ΒΟΡΕΙΟΥ ΑΙΓΑΙΟΥ / ΜΥΤΙΛΗΝΗ / Ετήσιο Πρόγραμμα Παιδαγωγικής Κατάρτισης / Ε.Π.ΠΑΙ.Κ. ΠΕΙΡΑΜΑΤΙΚΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΙΓΑΙΟΥ ΑΘΑΝΑΣΙΟΣ Ι. ΚΑΛΑΜΑΤΑΣ / Θεολόγος Καθηγητής DEA

Διαβάστε περισσότερα

4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 6.Ανάλυση των παραμέτρων που θεωρήθηκε ότι δεν επηρεάζουν τα αποτελέσματα της έρευνας.

4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 6.Ανάλυση των παραμέτρων που θεωρήθηκε ότι δεν επηρεάζουν τα αποτελέσματα της έρευνας. Πρόλογος 1.Τίτλος της έρευνας. 2.Παρουσίαση του προβλήματος. 3.Παρουσίαση του σκοπού της έρευνας. 4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 5.Διαμωρφωση της υπόθεσης της έρευνας. 6.Ανάλυση

Διαβάστε περισσότερα

ΜΙΑ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗ ΣΦΑΙΡΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΜΙΑ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗ ΣΦΑΙΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΜΙΑ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗ ΣΦΑΙΡΙΚΗ ΓΕΩΜΕΤΡΙΑ Πρότυπο Πειραματικό Γενικό Λύκειο Πανεπιστημίου Μακεδονίας ΜΙΑ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗ ΣΦΑΙΡΙΚΗ ΓΕΩΜΕΤΡΙΑ Ερευνητική εργασία στο πλαίσιο του project Η αναζήτηση της Μαθηματικής

Διαβάστε περισσότερα

Νεοελληνική Γλώσσα Β Λυκείου ΚΑΛΥΒΑ ΑΙΚΑΤΕΡΙΝΗ ΙΩΑΝΝΑ

Νεοελληνική Γλώσσα Β Λυκείου ΚΑΛΥΒΑ ΑΙΚΑΤΕΡΙΝΗ ΙΩΑΝΝΑ ΚΩΔΙΚΟΣ ΘΕΜΑΤΟΣ: 18673 ΗΜΕΡΟΜΗΝΙΑ: 16/12/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΚΑΛΥΒΑ ΑΙΚΑΤΕΡΙΝΗ ΙΩΑΝΝΑ ΚΕΙΜΕΝΟ Η ΠΡΟΕΛΕΥΣΗ ΤΗΣ ΤΕΧΝΗΣ Α. Ο συγγραφέας του παρόντος κειμένου παρουσιάζει τον προβληματισμό του αναφορικά με

Διαβάστε περισσότερα

ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ

ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ ΕΛΠ22 ΤΕΤΑΡΤΗ ΕΡΓΑΣΙΑ Υποστηρίζεται η άποψη ότι η ελληνιστική περίοδος (3ος - 2ος αι. π.χ.) αποτελεί το «απόγειο» της αρχαίας ελληνικής επιστήµης. Επίσης, ορισµένοι ιστορικοί της επιστήµης εκτιµούν ότι

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΤΗΣ ΚΑΘΗΜΕΡΙΝΗΣ ΖΩΗΣ

ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΤΗΣ ΚΑΘΗΜΕΡΙΝΗΣ ΖΩΗΣ ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΤΗΣ ΚΑΘΗΜΕΡΙΝΗΣ ΖΩΗΣ Κατοικία στον Κολωνό 3 ο ΕΞΑΜΗΝΟ ΑΡΧΙΤΕΚΤΟΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ 3 ΠΑΡΑΜΕΤΡΙΚΗ ΣΚΕΨΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ Παραγωγή περιεχομένου: Άννα Λάσκαρη - Τάσος Κανέλλος ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΠΑΡΑΜΕΤΡΙΚΗ

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Αριθμητικά συστήματα 123, 231, 312 Τι σημαίνουν; Τι δίνει αξία σε κάθε ίδιο ψηφίο; Ποια είναι η αξία του κάθε ψηφίου; Αριθμητικά

Διαβάστε περισσότερα

ΙΣΤΟΡΙΚΟ ΠΛΑΙΣΙΟ ΚΑΙ ΑΡΧΕΣ ΑΝΑΓΕΝΝΗΣΙΑΚΗΣ ΖΩΓΡΑΦΙΚΗΣ

ΙΣΤΟΡΙΚΟ ΠΛΑΙΣΙΟ ΚΑΙ ΑΡΧΕΣ ΑΝΑΓΕΝΝΗΣΙΑΚΗΣ ΖΩΓΡΑΦΙΚΗΣ ΙΣΤΟΡΙΚΟ ΠΛΑΙΣΙΟ ΚΑΙ ΑΡΧΕΣ ΑΝΑΓΕΝΝΗΣΙΑΚΗΣ ΖΩΓΡΑΦΙΚΗΣ ΣΤΟΧΟΙ: 1. Ιχνηλάτηση της Αναγεννησιακής ζωγραφικής. 2. Σπουδή του πλαισίου μέσα στο οποίο διαμορφώθηκε 3. Επαφή με τα κέντρα στα οποία αναπτύχθηκε.

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών).

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών). ΣΤΕΡΕΟΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.6 Ονομάζουν, περιγράφουν και ταξινομούν τρισδιάστατα σχήματα (κύβο, ορθογώνιο παραλληλεπίπεδο, πυραμίδα, σφαίρα, κύλινδρο, κώνο),

Διαβάστε περισσότερα

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58].

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. Η συνεισφορά του Kepler στα Αρχιµήδεια ήταν µεγάλη, γιατί αυτός απέδειξε

Διαβάστε περισσότερα

H Εξέλιξη των υπολογιστών

H Εξέλιξη των υπολογιστών H Εξέλιξη των υπολογιστών January 2014 Γιάννης Συρίγος Κοντογιάννη Μαρία Κωνσταντίνα Μαυροείδη Ανδριάνα Τζανίδου Γιώργος Παπαδάκος 1. Ο Μηχανισμός των Αντικυθήρων 2. Ανακαλύφθηκε σε ναυάγιο ανοιχτά του

Διαβάστε περισσότερα

Έρευνα 1: Μέσα παράλληλων χορδών

Έρευνα 1: Μέσα παράλληλων χορδών Μέσα χορδών Έρευνα 1: Μέσα παράλληλων χορδών Σχεδιάστε με το Sketchpad το ίχνος των μέσων των χορδών κατά την παράλληλη μεταφορά μιας ευθείας. Για το σκοπό αυτό, πρέπει πρώτα να κατασκευάσετε τα μέσα.

Διαβάστε περισσότερα

Μεγάλοι μαθηματικοί. και το έργο τους...

Μεγάλοι μαθηματικοί. και το έργο τους... Μεγάλοι μαθηματικοί και το έργο τους... Eυκλείδης Ο Ευκλείδης από την Αλεξάνδρεια (~ 350 π.χ. - 270 π.χ.), ήταν Έλληνας μαθηματικός, που δίδαξε και πέθανε στην Αλεξάνδρεια της Αιγύπτου, περίπου κατά την

Διαβάστε περισσότερα

Οι απόγονοι του Νώε, μετά τη διασπορά τους σ όλη τη γη, άρχισαν να λησμονούν τον αληθινό Θεό και να λατρεύουν τα είδωλα, δηλαδή τα δημιουργήματα του

Οι απόγονοι του Νώε, μετά τη διασπορά τους σ όλη τη γη, άρχισαν να λησμονούν τον αληθινό Θεό και να λατρεύουν τα είδωλα, δηλαδή τα δημιουργήματα του H εποχή των Πατριαρχών Από τον πολυθεϊσμό στην πίστη στον ένα Θεό Ο Θεός σχεδιάζει τη σωτηρία του κόσμου Οι απόγονοι του Νώε, μετά τη διασπορά τους σ όλη τη γη, άρχισαν να λησμονούν τον αληθινό Θεό και

Διαβάστε περισσότερα

Εμμανουήλ Νικολουδάκης Διδάκτωρ Διδακτικής Μαθηματικών Δομημένης Μορφής Φύλλο Εργασίας (ΔΜΦΕ)

Εμμανουήλ Νικολουδάκης Διδάκτωρ Διδακτικής Μαθηματικών Δομημένης Μορφής Φύλλο Εργασίας (ΔΜΦΕ) Η διδασκαλία του Θεωρήματος της εσωτερικής διχοτόμου με τη βοήθεια του συνδυασμού της θεωρίας van Hiele και της Γνωστικής Μαθητείας στα πλαίσια των ΤΠΕ Εμμανουήλ Νικολουδάκης Διδάκτωρ Διδακτικής Μαθηματικών

Διαβάστε περισσότερα

H περιπέτεια της Γεωμετρίας.

H περιπέτεια της Γεωμετρίας. ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ H περιπέτεια της Γεωμετρίας. Εάν αναζητούσαμε σε κάποιο ερμηνευτικό λεξικό έναν ορισμό για την κλασική Γεωμετρία η απάντηση θα ήταν ότι αποτελεί εκείνο τον κλάδο των μαθηματικών που

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci»

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Μάθημα: Άλγεβρα Υπεύθυνος καθηγητής: κ. Σκοτίδας Τάξη: Β Λυκείου Τμήμα Β2 Ονοματεπώνυμο: Λαμπρινή Μαρίνα Λάππα Σχολικό έτος: 2010 2011 1 ΠΕΡΙΕΧΟΜΕΝΑ 1) Ποιο πρόβλημα

Διαβάστε περισσότερα

Οι γωνιάσεις, κύριο χαρακτηριστικό του συμφυούς παραστήματος. Τα παραστήματα είναι τα τρία τέταρτα του στυλ

Οι γωνιάσεις, κύριο χαρακτηριστικό του συμφυούς παραστήματος. Τα παραστήματα είναι τα τρία τέταρτα του στυλ ΤΟ ΜΠΡΕΤΟΝ ΚΑΙ ΟΙ ΓΩΝΙΑΣΕΙΣ ΤΟΥ Οι γωνιάσεις, κύριο χαρακτηριστικό του συμφυούς παραστήματος. Τα παραστήματα είναι τα τρία τέταρτα του στυλ Δεν σας κρύβω ότι στην προσέγγιση μου για την παρουσίαση των

Διαβάστε περισσότερα

185 Πλαστικών Τεχνών και Επιστημών της Τέχνης Ιωαννίνων

185 Πλαστικών Τεχνών και Επιστημών της Τέχνης Ιωαννίνων 185 Πλαστικών Τεχνών και Επιστημών της Τέχνης Ιωαννίνων Το Τμήμα Επιστημών της Τέχνης αποτελεί ανεξάρτητο Τμήμα του Πανεπιστημίου Ιωαννίνων και λειτουργεί από το ακαδημαϊκό έτος 2000-01. Το Τμήμα ιδρύθηκε

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Σύντομη ιστορία των Μαθηματικών

Σύντομη ιστορία των Μαθηματικών Σύντομη ιστορία των Μαθηματικών Ο άνθρωπος χρειάστηκε 1.000.000 χρόνια για να οδηγηθεί στην αφηρημένη έννοια των αριθμών. Ο Homo sapiens (300.000 χρόνια πριν) κάνει μια μικρή αρίθμηση με κλαδιά. Ο Homo

Διαβάστε περισσότερα