Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα"

Transcript

1 Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή Δρ. Κυριακή Τσιλίκα Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Θεσσαλίας

2 Η απαρχή της Γεωμετρίας Οι Βαβυλώνιοι, για πρώτη φορά, χρησιμοποίησαν ένα είδος αρίθμησης και ένα πρωτόγονο μετρικό σύστημα, για τις ανάγκες των συναλλαγών τους. Οι Αιγύπτιοι, από ανάγκη επαναπροσδιορισμού των συνόρων των αγροτεμαχίων που καλλιεργούσαν εκατέρωθεν του Νείλου, τα οποία κατάστρεφαν τα πλημμυρικά φαινόμενα του ποταμού, αναγκάστηκαν να εφεύρουν μεθόδους μέτρησης της γης, ώστε να ξαναβρίσκουν το μέγεθος και τα όρια των αγροτεμαχίων τους, τα οποία είχε μεταβάλει το νερό. Αιγύπτιοι τεχνίτες κατείχαν αρκετές εμπειρικές μεθόδους μέτρησης επιφανειών και όγκων όπως αποδεικνύει η κατασκευή στην Αίγυπτο, τεράστιων τεχνικών και καλλιτεχνικών έργων (πυραμίδες, ογκώδη αγάλματα)

3 Η Ελληνική Σχολή και τα ευρήματά της Ο Θαλής μέτρησε το ύψος των πυραμίδων της Αιγύπτου, με το γνωστό θεώρημά του των αναλογιών. Ο Πυθαγόρας θεμελίωσε γεωμετρικά τον εμπειρικό κανόνα του 3,4,5 ή 30,40,50 με τον οποίο κατασκευάζεται ορθή γωνία Αλεξανδρινή περίοδος Ευκλείδης Το έργο του «Στοιχεία» (Επιπεδομετρία αριθμητική θεωρία και τη Στερεομετρία) κατατάσσεται μέσα στα δέκα καλύτερα νοητικά δημιουργήματα του ανθρώπινου νου. Ο Αρχιμήδης εφεύρε πολλές πολεμικές μηχανές (εμπρηστικά κάτοπτρα, τηλεβόλα κ.α Απολλώνιος Το έργο του «αι Κώνου τομαί» χαρακτηρίστηκε δείγμα θαυμαστής επιστημονικής εργασίας και δύναμης

4 Οι ανάγκες της τέχνης και της τεχνικής Φρόνημα ελεύθερο και πειθαρχημένο Οικονομική ευρωστία, πολιτική σταθερότητα και κοινωνική ευημερία Τεχνική κατάρτιση και επιδεξιότητα Γνώση σχημάτων, μεγεθών και αναλογιών Η μορφή, το σχήμα, προϋποθέτει δομή. Η δομή προϋποθέτει Γεωμετρία. Όλα τα σχέδια, οι τομές, οι κατόψεις, τα πλαίσια εμπεριέχουν την κωδικοποιημένη γνώση της Γεωμετρίας. Κολώνες, δοκάρια, πλαίσια, γωνίες κ.α. αναπαριστούν συγκεκριμένα γεωμετρικά σχήματα.

5 Γεωμετρία και Αρχιτεκτονική «Η οικοδομική τέχνη αποτελείται από το γραμμικό σχέδιο και την κατασκευή. Η σημασία και ο σκοπός του σχεδίου είναι να δείχνει τον ορθό και ξεκάθαρο τρόπο με τον οποίο ενώνονται γραμμές και γωνίες, με τις οποίες αποδίδεται και οριοθετείται η εικόνα ενός κτιρίου. Ο Αρχιτέκτονας είναι απαραίτητο να γνωρίζει ζωγραφική και μαθηματικά. Τα μαθηματικά είναι η φύση του αρχιτεκτονικού κάλλους, που εξαρτάται άμεσα από τον αριθμό, το μέτρο και την αναλογία. Η ζωγραφική και τα μαθηματικά στον Αρχιτέκτονα είναι, ότι η φωνή και οι συλλαβές στον Ποιητή» (Leon Battista Albert)

6 Leonardo da Vinci, ως εκπρόσωπος της Τέχνης και της Τεχνικής Ο Leonardo με τους Κώδικες, προτείνει μία επιστημονική προσέγγιση της τέχνης και υποδεικνύει μέσα και τρόπους καλλιτεχνικής δημιουργίας, όπως, α) τρόπους παρατήρησης, β) καταγραφή των παρατηρήσεων, γ) οργάνωση της γνώσης και προετοιμασία της επιφάνειας αποτύπωσης, δ) υλικά που είναι απαραίτητα για τη συγκεκριμένη επιφάνεια και ε) αιτιολόγηση του μεγέθους, της απόχρωσης, της σκιάς, με μαθηματική τεκμηρίωση Ισχυρίζεται ότι, όλα τα θέματα προοπτικής εξηγούνται με πέντε μαθηματικούς όρους. Το σημείο, τη γραμμή, τη γωνία, την επιφάνεια και το στερεό. Και όπως έλεγε, «καμία ανθρώπινη δραστηριότητα δεν μπορεί να ονομαστεί αληθινή επιστήμη, εάν δεν μπορεί να στηριχτεί στα μαθηματικά»

7

8 Τεθωρακισμένο άρμα

9 Πολλαπλό ολμοβόλο

10 Θεατρική μηχανή

11 Αρχιμήδης, ως εκπρόσωπος της Τεχνικής Σύμφωνα με τον Πλούταρχο, ο Αρχιμήδης αν και είχε πνεύμα εφευρετικό, ήταν τύπος θεωρητικού ανθρώπου. Στην εποχή του ήταν γνωστός ως «Μέγας Γεωμέτρης». Η μεθοδικότητα της σκέψης του, τον βοηθούσε να διατυπώνει δύσκολα θεωρήματα κατά τρόπο τόσο απλό, ώστε να είναι κατανοητά από όλους. «Είναι αδύνατον να βρει κανείς στη γεωμετρία δυσκολότερες και σπουδαιότερες θεωρητικές προτάσεις, με διατύπωση απλούστερη και καθαρότερη, από αυτή του Αρχιμήδη».

12 Υπολογιστής Αντικυθήρων

13 Αιγυπτιακός κοχλίας

14 Εμπρηστικό κάτοπτρο

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία ΕΠΙΣΤΗΜΕΣ ΣΤΗΝ ΑΡΧΑΙΑ ΑΙΓΥΠΤΟ H γενική τάση των κατοίκων της Αιγύπτου στις επιστήμες χαρακτηριζόταν από την προσπάθεια

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά,

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Το Θεώρημα γεννιέται πριν από 4000 χρόνια Οι ρίζες του Πυθαγορείου Θεωρήματος βρίσκονται στη Γεωμετρία. Το θεώρημα διαδραματίζει κεντρικό ρόλο σε πολυάριθμους επιστημονικούς κλάδους,

Διαβάστε περισσότερα

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας ΜΕΡΟΣ ΠΡΩΤΟ Ένα από τα δύο κομβικά ερευνητικά προβλήματα που οι συστηματικές

Διαβάστε περισσότερα

ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015

ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ Γ Υ Μ Ν Α Σ Ι Ο ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 «Τα Μαθηµατικά µέσα

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Αναστασία Πέτρου Κωνσταντίνος Χρήστου Β 3 ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Ο Πυθαγόρας ο Σάμιος, υπήρξε σημαντικός Έλληνας φιλόσοφος, μαθηματικός, γεω μέτρης και θεωρητικός της μουσικής. Είναι ο κατεξοχήν

Διαβάστε περισσότερα

Σπουδαίοι μαθηματικοί ανά τους αιώνες

Σπουδαίοι μαθηματικοί ανά τους αιώνες Σπουδαίοι μαθηματικοί ανά τους αιώνες ΑΡΧΑΙΟΙ ΧΡΟΝΟΙ Πυθαγόρας (580-500π.Χ) Ευκλείδης (350-270π.Χ) Αρχιμήδης (287-212π.Χ) Διοκλής (240-180π.Χ) ΠΡΩΤΟΧΡΙΣΤΙΑΝΙΚΗ ΠΕΡΙΟΔΟΣ Ήρων (1 Ος αιώνας μ.χ) Υπατία (370-416

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

Με τον Αιγυπτιακό

Με τον Αιγυπτιακό Με ποιον πολιτισμό θα ασχοληθούμε; Με τον Αιγυπτιακό Η θέση της Αιγύπτου Τι βλέπετε; Αίγυπτος και Νείλος Η Αίγυπτος οφείλει την ύπαρξη της στον Νείλο. Το άγονο έδαφος κατέστη εύφορο χάρη στις πλημμύρες,

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

2. Η ΑΙΓΥΠΤΟΣ (Σελ )

2. Η ΑΙΓΥΠΤΟΣ (Σελ ) 2. Η ΑΙΓΥΠΤΟΣ (Σελ. 20-23) 2.1. Η Χώρα. Νείλος : Πηγές από Αιθιοπία και δέλτα. Δυτικά : Η Λιβυκή έρημος. Ανατολικά : Η έρημος του Σινά έως Ερυθρά Θάλασσα. Λάσπη Ευφορία. Άνω Αίγυπτος-Κάτω Αίγυπτος. 2.2.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 1: Εισαγωγικά. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε.

Τεχνικό Σχέδιο. Ενότητα 1: Εισαγωγικά. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 1: Εισαγωγικά Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Να φύγει ο Ευκλείδης;

Να φύγει ο Ευκλείδης; Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Κεφάλαιο 2: Αναλογίες - Ομοιότητα Κεφάλαιο 3: Πυθαγόρειο Θεώρημα (και μετρικές σχέσεις) Κεφάλαιο 4: Εμβαδά ευθυγράμμων σχημάτων

ΕΙΣΑΓΩΓΗ Κεφάλαιο 2: Αναλογίες - Ομοιότητα Κεφάλαιο 3: Πυθαγόρειο Θεώρημα (και μετρικές σχέσεις) Κεφάλαιο 4: Εμβαδά ευθυγράμμων σχημάτων ΕΙΣΑΓΩΓΗ Στη Γεωμετρία της Β Λυκείου παρουσιάζονται θεωρήματα και προβλήματα που έχουν μεγάλη ιστορική και μαθηματική αξία. Αξιοποιείται η αναλυτικήσυνθετική μέθοδος και επιχειρείται μία πρώτη επαφή με

Διαβάστε περισσότερα

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας,

ΠΡΟΟΠΤΙΚΗ. Εισαγωγή. Πρώτος κατέδειξε τις αρχές της γραμμικής προοπτικής ο Brounelesci, γλύπτης και αρχιτέκτονας, ΠΡΟΟΠΤΙΚΗ Εισαγωγή Αυτό που στην εφαρμοσμένη γεωμετρία ονομάζουμε συχνά γραμμική προοπτική είναι ένα σύστημα αναπαράστασης του τρισδιάστατου χώρου σε επιφάνεια δύο διαστάσεων. Η μέθοδος αυτή απεικόνισης

Διαβάστε περισσότερα

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας;

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Τα μαθηματικά διαπερνούν κάθε ανθρώπινη δραστηριότητα. Σ αυτή την παρουσίαση θα

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης)

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΣΧΕΔΙΟ (Ελεύθερο και Προοπτικό) και που ενδέχεται

Διαβάστε περισσότερα

ΟΜΑΔΑ 4 Ιορδανίδης Γιώργος Βασιλακάκης Ανέστης Καρακάσης Αναστάσιος Μαυρόπουλος Γιώργος Αλή Ογλού Μπουσέ Κόλα Κατερίνα

ΟΜΑΔΑ 4 Ιορδανίδης Γιώργος Βασιλακάκης Ανέστης Καρακάσης Αναστάσιος Μαυρόπουλος Γιώργος Αλή Ογλού Μπουσέ Κόλα Κατερίνα ΟΜΑΔΑ 4 Ιορδανίδης Γιώργος Βασιλακάκης Ανέστης Καρακάσης Αναστάσιος Μαυρόπουλος Γιώργος Αλή Ογλού Μπουσέ Κόλα Κατερίνα Απολλώνιος ο Περγαίος γεννήθηκε το 265 π.χ. και πέθανε το 170 π.χ. Μεγάλος μελετητής

Διαβάστε περισσότερα

Ειδικό Τεχνικό Σχέδιο

Ειδικό Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ειδικό Τεχνικό Σχέδιο Ενότητα 1: Εισαγωγή Δρ Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

Οι σπουδές στην Αρχιτεκτονική

Οι σπουδές στην Αρχιτεκτονική ΓΡΑΦΕΙΟ ΔΙΑΣΥΝΔΕΣΗΣ ΣΠΟΥΔΩΝ ΚΑΙ ΣΤΑΔΙΟΔΡΟΜΙΑΣ Οι σπουδές στο ΑΠΘ Πολυτεχνική Σχολή, Τμήμα Αρχιτεκτόνων Αναστάσιος Τέλλιος, Επίκουρος καθηγητής Οι σπουδές στην Αρχιτεκτονική Ιανουάριος 2016 Αιγυπτιακός

Διαβάστε περισσότερα

Το πυθαγόρειο θεώρημα: απόδειξη με ένα απλό πείραμα

Το πυθαγόρειο θεώρημα: απόδειξη με ένα απλό πείραμα Το πυθαγόρειο θεώρημα: απόδειξη με ένα απλό πείραμα Γιατί να μαθαίνουμε Μαθηματικά; Ένας καθηγητής Μαθηματικών ανεξάρτητα από το πόσο αγαπά τη δουλειά του και κατά πόσο η επικοινωνία του με τους μαθητές

Διαβάστε περισσότερα

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3 Σύμβολα και σχεδιαστικά στοιχεία Μάθημα 3 Τα αρχιτεκτονικά σύμβολα αποτελούν μια διεθνή, συγκεκριμένη και απλή γλώσσα. Είναι προορισμένα να γίνονται κατανοητά από τον καθένα, ακόμα και από μη ειδικούς.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Α. Προτεινόμενες θεματικές ενότητες Τίτλοι από το Ι.Ε.Π. ΑΛΓΕΒΡΑ 5ο 5.1: Ακολουθίες Η ακολουθία Fibonacci στην Φύση και

Διαβάστε περισσότερα

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων ΔΙΔΑΚΤΕΑ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ (version 22-10-2016) Τα παρακάτω προέρχονται (με δικές μου αλλαγές μορφοποίησης προσθήκες και σχολιασμό) από το έγγραφο (σελ.15 και μετά) με Αριθμό Πρωτοκόλλου 150652/Δ2, που

Διαβάστε περισσότερα

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών Ο χρυσός αριθμός φ Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών ΤΟ ΠΡΟΒΛΗΜΑ Το πρόβλημα της χρυσής τομής, σε απλή διατύπωση είναι το εξής: Να χωριστεί ένα τμήμα ΑΒ σε μέσο και άκρο λόγο δηλαδή

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΧΑΡΤΟΓΡΑΦΙΑΣ ΧΑΡΤΟΓΡΑΦΙΑ ΧΑΡΤΗΣ ΧΡΗΣΗ ΗΜΙΟΥΡΓΙΑ. β. φιλιππακοπουλου 1

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΧΑΡΤΟΓΡΑΦΙΑΣ ΧΑΡΤΟΓΡΑΦΙΑ ΧΑΡΤΗΣ ΧΡΗΣΗ ΗΜΙΟΥΡΓΙΑ. β. φιλιππακοπουλου 1 ΧΑΡΤΟΓΡΑΦΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ ΧΑΡΤΗΣ ΓΕΩΓΡΑΦΙΚΟΣ ΧΩΡΟΣ ΗΜΙΟΥΡΓΙΑ ΧΡΗΣΗ β. φιλιππακοπουλου 1 Αναλυτικό Πρόγραµµα 1. Εισαγωγή: Μια επιστηµονική προσέγγιση στη χαρτογραφική απεικόνιση και το χαρτογραφικό σχέδιο

Διαβάστε περισσότερα

«Οι Σπουδές στην Αρχιτεκτονική»

«Οι Σπουδές στην Αρχιτεκτονική» ΓΡΑΦΕΙΟ ΔΙΑΣΥΝΔΕΣΗΣ ΣΠΟΥΔΩΝ ΚΑΙ ΣΤΑΔΙΟΔΡΟΜΙΑΣ «Οι Σπουδές στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» Πολυτεχνική Σχολή Τμήμα Αρχιτεκτόνων Καθηγητής Μιχαήλ Ε. Νομικός «Οι Σπουδές στην Αρχιτεκτονική» Δεκέμβριος

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία

Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Η επιστημονική και καλλιτεχνική δημιουργία ως αρωγοί στην εκπαιδευτική διαδικασία Β. Δρακόπουλος Σχολικός Σύμβουλος Δευτεροβάθμιας Εκπαίδευσης Τμήμα Πληροφορικής και Τηλεπικοινωνιών, Ε.Κ.Π.Α. Σχολή Θετικών

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4. ΠΑΡΑΡΤΗΜΑ Α Γεωμετρικές κατασκευές Σκοπός των σημειώσεων αυτών είναι να υπενθυμίζουν γεωμετρικές κατασκευές, που θα φανούν ιδιαίτερα χρήσιμες στο μάθημα της παραστατικής γεωμετρίας, της προοπτικής, αξονομετρίας

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΕΛΕΥΘΕΡΟ ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ Β ΛΥΚΕΙΟΥ Γνωριμία, συζήτηση Περιγραφή του μαθήματος, στόχοι Παρουσίαση σχεδίων διαφόρων μορφών φωτογραφίες -3 Διαγνωστικό

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β Ημερήσιου και Γ Εσπερινού Γενικού Λυκείου II. Διαχείριση διδακτέας ύλης Κεφάλαιο 7 ο (Προτείνεται να διατεθούν 6 διδακτικές ώρες). 7.1-7.6 Στις παραγράφους αυτές γίνεται πρώτη

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά

Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά Ερευνητική Εργασία - Ζωγραφική και Μαθηµατικά Ηλίας Νίνος Ερευνητική Εργασία µε θέµα: Μαθηµατικά και Τέχνη Υποθέµα: Μαθηµατικά και Ζωγραφική Οµάδα: Μαρία Βαζαίου- Ηρώ Μπρούφα- Μαθηµατικά εννοούµε την επιστήµη

Διαβάστε περισσότερα

Θέμα [2] Γεωμετρία: ΣΤΕΡΕΑ: [Ονοματολογία Συμβολισμός] Η έννοια της μεταβλητής -Απλές εξισώσεις. [ο προγραμματισμός]

Θέμα [2] Γεωμετρία: ΣΤΕΡΕΑ: [Ονοματολογία Συμβολισμός] Η έννοια της μεταβλητής -Απλές εξισώσεις. [ο προγραμματισμός] Θέμα [2] 1 Γεωμετρία: ΣΤΕΡΕΑ: [Ονοματολογία Συμβολισμός] Η έννοια της μεταβλητής -Απλές εξισώσεις Ενδεικτική πορεία διδασκαλίας [ο προγραμματισμός] Α. Δίνουμε στους εκπαιδευομένους διάφορα στερεά (κατασκευασμένα)-πολύεδρα

Διαβάστε περισσότερα

Σταυρούλα Πατσιομίτου

Σταυρούλα Πατσιομίτου Αριστοτέλους Μεταφυσικά 1078 α 30 Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Σ υνδέονται τα Μαθηματικά με την Αισθητική, με την Τέχνη, με την Τεχνολογία. Πόσο σημαντικό είναι να γνωρίζουμε την Ιστορία τους;

Διαβάστε περισσότερα

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΦΑΙΔΡΑ ΚΟΥΡΒΙΣΙΑΝΟΥ ΒΑΣΙΛΗΣ ΚΑΤΣΑΝΤΩΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΗΛΙΟΠΟΥΛΟΣ ΑΝΔΡΕΑΣ ΚΑΣΙΜΑΤΗΣ Ερευνητικά Ερωτήματα Ποιοι είναι ΟΙ ΣΗΜΑΝΤΙΚΟΙ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ Πανεπιστήμιο Θεσσαλίας Τμήμα Αρχιτεκτόνων Μηχανικών Σύγχρονες Θεωρίες και Κριτική της Αρχιτεκτονικής ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΙΣΑΓΩΓΗ ΝΙΚΟΣ ΠΑΤΣΑΒΟΣ MATHEMATICAL SURFACES

Διαβάστε περισσότερα

Ανάλυση δραστηριότητας- φύλλο εργασίας

Ανάλυση δραστηριότητας- φύλλο εργασίας Ανάλυση δραστηριότητας- φύλλο εργασίας Τίτλος : Δύο δραστηριότητες σε ευθεία-κύκλο. α) Η «χρυσή ευθεία» β) οι γεωμετρικοί τόποι μιας οικογένειας κύκλων. Τάξη: Δίωρο μάθημα σε μαθητές Β λυκείου σε αίθουσα

Διαβάστε περισσότερα

5ο Παναρσακειακό Μαθητικό Συνέδριο Αγώνας και Αγώνες Πρόκληση στο πνεύμα, στην κοινωνία, στην επιστήμη, στον πολιτισμό

5ο Παναρσακειακό Μαθητικό Συνέδριο Αγώνας και Αγώνες Πρόκληση στο πνεύμα, στην κοινωνία, στην επιστήμη, στον πολιτισμό Υπεύθυνος καθηγητής: Γιώργος Καγκάκης 5ο Παναρσακειακό Μαθητικό Συνέδριο Αγώνας και Αγώνες Πρόκληση στο πνεύμα, στην κοινωνία, στην επιστήμη, στον πολιτισμό Τίτλος εργασίας: Ελληνική γλώσσα και «γλώσσα

Διαβάστε περισσότερα

Τεχνικό Σχέδιο - CAD

Τεχνικό Σχέδιο - CAD Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Τεχνικό Σχέδιο - CAD Ενότητα 1: Ιστορική αναδρομή Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό. Αρχιμήδης ο Συρακούσιος Ο μεγαλύτερος μαθηματικός της αρχαιότητας και από τους μεγαλύτερους όλων των εποχών. Λέγεται ότι υπήρξε μαθητής του Ευκλείδη, ότι ταξίδεψε στην Αίγυπτο, σπούδασε στην Αλεξάνδρεια

Διαβάστε περισσότερα

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ

ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Γ' Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΕΛΕΥΘΕΡΟ-ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ( Εικαστική και Αρχιτεκτονική

Διαβάστε περισσότερα

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών

Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η ΓΕΩΜΕΤΡΙΑ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ ΚΑΙ ΣΤΗΝ ΔΕΥΤΕΡΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ ΥΠΑΡΧΕΙ ΣΥΝΕΧΕΙΑ; Εμμ. Νικολουδάκης Σχ. Σύμβουλος Μαθηματικών Η Ευκλείδεια Γεωμετρία σε σχέση με Θεωρία van Hiele Οι τρεις κόσμοι του Tall

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 15.03.12 Χ. Χαραλάμπους Έργα Στοιχεία Δεδομένα Φαινόμενα ή Σφαιρικά Οπτικά Κατοπτρικά Στοιχεία Μουσικής Βιβλίο περί διαιρέσεων Πορίσματα Κωνικά Τόποι προς επιφάνειες Ψευδάρια Μηχανική

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΠΥΘΑΓΟΡΑΣ Πέτρου Αναστασία Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΑΘΗΝΑ 2013 Ο Πυθαγόρας (586 500 π.χ.) του Μνησάρχου και της «ωραίας υπέρ φύσιν» Πυθαϊδος γεννήθηκε στη Σάμο. Μικρός επισκέφθηκε τους Δελφούς,

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 13.03.14 Χ. Χαραλάμπους Εντονες πυθαγόρειες επιδράσεις. Η Γεωμετρία και τα Μαθηματικά έχουν μια ξεχωριστή ξχ θέση. Ουδείς αγεωμέτρητος εισί Στον κόσμο των ιδεών τα μαθηματικά αντικείμενα

Διαβάστε περισσότερα

PROJECT ΑΛΕΞΑΝΔΡΙΝΟΙ ΜΑΘΗΜΑΤΙΚΟΙ

PROJECT ΑΛΕΞΑΝΔΡΙΝΟΙ ΜΑΘΗΜΑΤΙΚΟΙ PROJECT ΑΛΕΞΑΝΔΡΙΝΟΙ ΜΑΘΗΜΑΤΙΚΟΙ Οι αλεξανδρινοί μαθηματικοί εργάστηκαν ιδιαίτερα πάνω στη γεωμετρία αλλά γνωρίζουμε πως έγιναν συγκεκριμένες έρευνες πάνω στην θεωρία των αριθμών. Όπως για παράδειγμα οι

Διαβάστε περισσότερα

Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα.

Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα. Ο ΧΡΥΣΟΣ ΑΡΙΘΜΟΣ Φ Ο Πυθαγόρας ήταν ο πρώτος που διατύπωσε τον μαθηματικό ορισμό της αναλογίας χρησιμοποιώντας δύο ευθύγραμμα τμήματα. Η σκέψη του ήταν πως αν υπάρχει ένα ευθύγραμμο τμήμα και ένα σημείο

Διαβάστε περισσότερα

«ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ»

«ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ» «ΕΥΡΗΚΑΕΥΡΗΚΑ» «ΕΥΡΗΚΑ ΕΥΡΗΚΑ» ΤΑΚΕΦΑΛΑΙΑΤΟΥΒΙΒΛΙΟΥ 1. ΟΡΙΣΜΟΣ ΚΑΙ ΙΣΤΟΡΙΚΗ ΑΝΑΣΚΟΠΗΣΗ 2. ΒΙΟΓΡΑΦΙΕΣ:ΘΑΛΗΣ, ΠΥΘΑΓΟΡΑΣ, ΑΡΧΙΜΗ ΗΣ, ΕΥΚΛΕΙ ΗΣ 3. ΜΑΘΗΜΑΤΙΚΑ: ΑΝΑΚΑΛΥΨΗ Η ΕΠΙΝΟΗΣΗ; 4. Ο ΘΑΥΜΑΣΤΟΣ ΚΟΣΜΟΣ ΤΩΝ

Διαβάστε περισσότερα

Ι. ΠΡΟΪΣΤΟΡΙΑ ΚΕΦΑΛΑΙΟ Β': Η ΕΠΟΧΗ ΤΟΥ ΧΑΛΚΟΥ ( π.Χ.) 3. Ο ΜΙΝΩΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ. - Η Κρήτη κατοικήθηκε για πρώτη φορά τη... εποχή.

Ι. ΠΡΟΪΣΤΟΡΙΑ ΚΕΦΑΛΑΙΟ Β': Η ΕΠΟΧΗ ΤΟΥ ΧΑΛΚΟΥ ( π.Χ.) 3. Ο ΜΙΝΩΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ. - Η Κρήτη κατοικήθηκε για πρώτη φορά τη... εποχή. Ι. ΠΡΟΪΣΤΟΡΙΑ ΚΕΦΑΛΑΙΟ Β': Η ΕΠΟΧΗ ΤΟΥ ΧΑΛΚΟΥ (3000-1100π.Χ.) 3. Ο ΜΙΝΩΙΚΟΣ ΠΟΛΙΤΙΣΜΟΣ - Η Κρήτη κατοικήθηκε για πρώτη φορά τη... εποχή. - Ο σημαντικότερος οικισμός ήταν η... - Κατά τη 2 η και 3 η χιλιετία

Διαβάστε περισσότερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα

Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Η εξέλιξη της γεωμετρικής σκέψης από τον Ευκλείδη μέχρι σήμερα Βασίλειος Παπαντωνίου Ομ. Καθηγητής Πανεπιστημίου Πατρών bipapant@math.upatras.gr Επίκεντρο της παρουσίασης Η εξέλιξη της μαθηματικής σκέψης

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 2: Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία ΘΕΜΕΛΙΩΔΕΙΣ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΣΧΕΣΕΙΣ

Διαβάστε περισσότερα

ΟΡΟΣ ΕΠΙΣΤΗΜΗ. Ο όρος επιστήμη με την ευρεία έννοια αρχικά δηλώνει το οργανωμένο σώμα της εξακριβωμένης και τεκμηριωμένης γνώσης.

ΟΡΟΣ ΕΠΙΣΤΗΜΗ. Ο όρος επιστήμη με την ευρεία έννοια αρχικά δηλώνει το οργανωμένο σώμα της εξακριβωμένης και τεκμηριωμένης γνώσης. ΕΠΙΣΤΗΜΕΣ & ΤΕΧΝΕΣ ΟΡΟΣ ΕΠΙΣΤΗΜΗ Ο όρος επιστήμη με την ευρεία έννοια αρχικά δηλώνει το οργανωμένο σώμα της εξακριβωμένης και τεκμηριωμένης γνώσης. ΟΡΟΣ ΤΕΧΝΗ Τέχνη είναι η δημιουργία φύσης χωρίς να είναι

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων.

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων. ΜΑΘΗΜΑ 1 αόριστες έννοιες Έννοιες που είναι τόσο απλές και οικείες από την εμπειρία μας, ώστε δεν μπορούμε να βρούμε πιο απλές με τη βοήθεια των οποίων να τις περιγράψουμε Σημείο Επίπεδο ο χώρος η ευθεία

Διαβάστε περισσότερα

O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών

O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική Δέσποινα Πόταρη Πανεπιστήμιο Πατρών Η έννοια της δραστηριότητας Δραστηριότητα είναι κάθε ανθρώπινη δράση που έχει ένα κίνητρο και ένα

Διαβάστε περισσότερα

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ

ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις Παρουσιάσεις, Ασκήσεις,

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Λυκείου Α τεύχος ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ Μαθηματικά Α Λυκείου, Α Τεύχος Συγγραφή: Συντονιστής:

Διαβάστε περισσότερα

H ΕΞΕΛΙΞΗ ΤΩΝ ΙΔΕΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

H ΕΞΕΛΙΞΗ ΤΩΝ ΙΔΕΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1 H ΕΞΕΛΙΞΗ ΤΩΝ ΙΔΕΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Ας ξεκινήσουμε την μελέτη μας από την ετυμολογία της λέξεως ΓΕΩΜΕΤΡΙΑ. Με την πρώτη ματιά και χωρίς ιδιαίτερες γνώσεις γλωσσολογίας διακρίνουμε ότι είναι σύνθετη και

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Τεύχος Α ε 3 Κ Ε Γ ε 1 ε 2 Ι Ο Θ Η Ζ Α μ α Β Ψ ε 4 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

Διαβάστε περισσότερα

εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η

εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η μετακίνηση, περιστροφή, αυξομείωση, ανάκλαση και απόκρυψη του

Διαβάστε περισσότερα

Θέμα: Αποδείξεις της τριγωνικής ανισότητας

Θέμα: Αποδείξεις της τριγωνικής ανισότητας Πειραματικό Λύκειο Ευαγγελικής Σχολής Σμύρνης Μάθημα: Γεωμετρία Θεματική Ενότητα: Ανισοτικές Σχέσεις Θέμα: Αποδείξεις της τριγωνικής ανισότητας Ομάδα εργασίας: Γιώργος Ρούμελης Ρωμανός Τζουνάκος Διονύσης

Διαβάστε περισσότερα

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες

ΣΚΙΑΓΡΑΦΙΑ. Γενικές αρχές και έννοιες ΣΚΙΑΓΡΑΦΙΑ Γενικές αρχές και έννοιες Στο σύστημα προβολής κατά Monge δεν μας δίνεται η δυνατότητα ν αντιληφθούμε άμεσα τα αντικείμενα του χώρου, παρά μόνο αφού συνδυάσουμε τις δύο προβολές του αντικειμένου

Διαβάστε περισσότερα

ΑΙΓΥΠΤΟΣ. Κάτω Αίγυπτος: είναι το βόρειο τμήμα που βρέχεται από την Μεσόγειο. Αποτελεί το εύφορο τμήμα- δέλτα του Νείλου Πρωτεύουσα η Μέμφιδα

ΑΙΓΥΠΤΟΣ. Κάτω Αίγυπτος: είναι το βόρειο τμήμα που βρέχεται από την Μεσόγειο. Αποτελεί το εύφορο τμήμα- δέλτα του Νείλου Πρωτεύουσα η Μέμφιδα ΑΙΓΥΠΤΟΣ Κάτω Αίγυπτος: είναι το βόρειο τμήμα που βρέχεται από την Μεσόγειο. Αποτελεί το εύφορο τμήμα- δέλτα του Νείλου Πρωτεύουσα η Μέμφιδα Άνω Αίγυπτος: είναι το νότιο τμήμα και ορεινό τμήμα υπάρχουν

Διαβάστε περισσότερα

Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία»

Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία» 3ο Γενικό Λύκειο Λάρισας Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία» Θέµα Ερευνητικής Εργασίας: ιερεύνηση των εξισώσεων και ανισώσεων µέσα από την επίλυση καθηµερινών προβληµάτων.

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΑΡΧΑΙΑ ΕΛΛΑΔΑ

ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΑΡΧΑΙΑ ΕΛΛΑΔΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΑΡΧΑΙΑ ΕΛΛΑΔΑ Μελετώντας το παρελθόν και παρατηρώντας την σταδιακή εξέλιξη των μαθηματικών από τούς προελληνικούς χρόνους έως σήμερα, διαπιστώνουμε ότι τα μαθηματικά αποτέλεσαν έναν από

Διαβάστε περισσότερα

ΘΕΜΑ: «Κύπρος: Πολυπολιτισμικές Ψηφίδες» ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΘΛΗΤΙΣΜΟΣ ΤΜΗΜΑ: Γ 6

ΘΕΜΑ: «Κύπρος: Πολυπολιτισμικές Ψηφίδες» ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΘΛΗΤΙΣΜΟΣ ΤΜΗΜΑ: Γ 6 ΘΕΜΑ: «Κύπρος: Πολυπολιτισμικές Ψηφίδες» ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΘΛΗΤΙΣΜΟΣ ΤΜΗΜΑ: Γ 6 ΝΑ ΑΠΟΔΕΙΞΕΤΕ ΤΗΝ ΤΑΥΤΟΤΗΤΑ A μέλος= Επιστήμη + Έλληνες Μαθηματικοί + Μαθηματικές Ανακαλύψεις + Μαθηματικά B μέλος= Εργαλείο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.2: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 7: Συγγραφή μιας εργασίας

Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 7: Συγγραφή μιας εργασίας Ποιοτική μεθοδολογία έρευνας στη Διδακτική των Μαθηματικών Ενότητα 7: Πόταρη Δέσποινα, Σακονίδης Χαράλαμπος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Έλεγχος του περιεχομένου της έρευνας (1) Είναι σημαντικά

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 2: Απόδειξη Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Η ΔΙΑΧΥΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΕΜΒΑΔΟΥ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ

Διαβάστε περισσότερα

Θαλής ο Μιλήσιος. «Χαλεπόν Εαυτόν Γνώναι» ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ

Θαλής ο Μιλήσιος. «Χαλεπόν Εαυτόν Γνώναι» ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ Εργάστηκαν οι παρακάτω μαθητές της ομάδας «ΜΑΣΕ» της Γ' Γυμνασίου του 2 ου Γυμνασίου Πειραιά: ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ Θαλής ο Μιλήσιος «Χαλεπόν Εαυτόν Γνώναι»

Διαβάστε περισσότερα

ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ. Αναστασία Ταουκτσόγλου. Μαθηματικός, Δρ Διαφορικής Γεωμετρίας

ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ. Αναστασία Ταουκτσόγλου. Μαθηματικός, Δρ Διαφορικής Γεωμετρίας ΧΡΗΣΗ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Αναστασία Ταουκτσόγλου Μαθηματικός, Δρ Διαφορικής Γεωμετρίας Νέες Τεχνολογίες στην Εκπαίδευση Με τον όρο αυτό αναφερόμαστε στην εφαρμογή των Τεχνολογιών

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 1/5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία

Διαβάστε περισσότερα

Αρχαία Ελληνική Επιστήμη και Τεχνολογία

Αρχαία Ελληνική Επιστήμη και Τεχνολογία Αρχαία Ελληνική Επιστήμη και Τεχνολογία Αρχαία Ελληνική Επιστήμη και Τεχνολογία Περιοδική Έκθεση Αρχαία Ελληνική Επιστήμη και Τεχνολογία Μια έκθεση που παρουσιάζει την εξέλιξη της σκέψης των Αρχαίων Ελλήνων,

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΔΗΜΙΟΥΡΓΙΑ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΗΜΕΡΟΜΗΝΙΑ

Διαβάστε περισσότερα

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013

Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013 Γεώργιος Βασιλειάδης, Λύκειο Παιανίας «Η χρυσή τομή στα μαθηματικά, στην τέχνη, στη ζωή» 2012-2013 Η Χρυσή τοµή στην καθηµερινότητά µας Η χρυσή τοµή δεν είναι µόνο ένας µαθηµατικός όρος, αλλά και µια

Διαβάστε περισσότερα

ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ

ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΒΑΒΥΛΩΝΙΩΝ Οι Βαβυλώνιοι ζούσαν στη Μεσοποταµία,περιοχή µεταξύ των ποταµών Τίγρη και Ευφράτη.Η Μεσοποταµία ήταν κέντρο πολιτισµού των Σουµέριων,Ακκάδιων,Ασσύριων,Αραµαίων

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ;

ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; ΕΙΝΑΙ ΤΟ ΤΡΙΓΩΝΟ ΙΣΟΣΚΕΛΕΣ; Γιώργου Τσαπακίδη Είναι εύκολο να παρατηρήσουμε ότι τα συμμετρικά σχήματα έχουν πολύ περισσότερες ιδιότητες από τα μη συμμετρικά σχήματα. Το ισοσκελές τρίγωνο, που έχει άξονα

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΟΣ ΠΙΝΑΚΑΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ της Χριστίνας Φίλη (Επίκουρη καθηγήτρια Ε.Μ.Π )

ΣΥΝΟΠΤΙΚΟΣ ΠΙΝΑΚΑΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ της Χριστίνας Φίλη (Επίκουρη καθηγήτρια Ε.Μ.Π ) ΣΥΝΟΠΤΙΚΟΣ ΠΙΝΑΚΑΣ ΤΗΣ ΑΝΑΠΤΥΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ της Χριστίνας Φίλη (Επίκουρη καθηγήτρια Ε.Μ.Π ) 3000-2000 π.χ Αίγυπτος Εμφάνιση ιερογλυφικών αριθμών. Κατασκευή πυραμίδων. Πραγματεία Μεταθέσεων (yang-ying

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

Το φράγμα του Ασουάν. Γιάννος Παπαϊωάννου Μαρία Παταρασβίλη Αλεξάνδρα Αδαμίδου Μαργαρίτα Χαραλάμπους Νοέμβριος 2013

Το φράγμα του Ασουάν. Γιάννος Παπαϊωάννου Μαρία Παταρασβίλη Αλεξάνδρα Αδαμίδου Μαργαρίτα Χαραλάμπους Νοέμβριος 2013 Το φράγμα του Ασουάν Γιάννος Παπαϊωάννου Μαρία Παταρασβίλη Αλεξάνδρα Αδαμίδου Μαργαρίτα Χαραλάμπους Νοέμβριος 2013 Πώς σκέφτηκαν οι Αιγύπτιοι να δημιουργήσουν το φράγμα του Ασουάν; Για πολλούς αιώνες οι

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα