Κορδάτος Κωνσταντίνος Λισέβσκι Αντριάν Μακελαράκη Μελίνα Μιράντα Νίξον Μπελέρης Άρης Νεζεργιώτης Ιωάννης Παβλόβσκα Μάρτα Τάμπα Ιουλιάν

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κορδάτος Κωνσταντίνος Λισέβσκι Αντριάν Μακελαράκη Μελίνα Μιράντα Νίξον Μπελέρης Άρης Νεζεργιώτης Ιωάννης Παβλόβσκα Μάρτα Τάμπα Ιουλιάν"

Transcript

1

2

3 ΟΙ ΜΑΘΗΤΕΣ ΤΟΥ PROJECT Αντέμι Ορέστης Γκαντάλλα Μάρκος Γεωργακόπουλος Ευάγγελος Γιώργκο Σπύρο Καρούσης Στέφανος Κερμέζο Χριστίνα Κονιτόπουλος Πέτρος-Παύλος Κορδάτος Κωνσταντίνος Λισέβσκι Αντριάν Μακελαράκη Μελίνα Μιράντα Νίξον Μπελέρης Άρης Νεζεργιώτης Ιωάννης Παβλόβσκα Μάρτα Τάμπα Ιουλιάν

4 Αναρωτηθήκαμε: Είναι τα μαθηματικά χρήσιμα στη καθημερινή μας ζωή; Μήπως η ιστορική εξέλιξη των μαθηματικών παίζει ρόλο στη διαμόρφωση της κοινωνίας; Υπάρχουν κρυμμένα μαθηματικά στο τρόπο σκέψης και ζωής του σύγχρονου ανθρώπου; Μπορεί να υπάρξει ο δυτικός πολιτισμός χωρίς τα μαθηματικά; Πώς συνδέεται η επιστήμη των μαθηματικών με την κοινωνία; Μπορούμε να ζήσουμε χωρίς τα μαθηματικά; Ποια αντικείμενα ή συνηθισμένες κινήσεις γύρω μας σχετίζονται με τα μαθηματικά; Υπάρχει ενδεχόμενο τα μαθηματικά να μας κάνουν τη ζωή ευκολότερη;

5 Το πλαίσιο έρευνας είναι πολύ μεγάλο και εμείς περιοριστήκαμε σε μερικές μόνο πλευρές της σύγχρονης ζωής: Μαθηματικά και τεχνολογία Μαθηματικά και αθλητισμός Μαθηματικά και τέχνη Μαθηματικά και αρχιτεκτονική Μαθηματικά και καθημερινή ζωή Μαθηματικά και κινηματογράφος Μαθηματικά και ιατρική Μαθηματικά και μαγειρική

6 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΚΑΘΗΜΕΡΙΝΗ ΖΩΗ

7 Μαθηματικά και οικονομία

8 Οι εμπορικές συναλλαγές είναι το Α και το Ω της παγκόσμιας οικονομίας. Οι μετακινήσεις εμπορευμάτων κάθε είδους (υλικά και άυλα προϊόντα) από χώρα σε χώρα γίνονται συνεχώς, 365 μέρες το χρόνο, 24 ώρες την ημέρα. Για να μπορέσουν να μπορέσει να πραγματοποιηθεί το εμπόριο μεταξύ ιδιωτών και εταιρειών, στηρίζεται σε μαθηματικά μοντέλα. Ισοτιμία συναλλάγματος, στατιστική, λογιστική, μηχανοργάνωση, είναι μερικά από αυτά.

9 ΤΡΑΠΕΖΙΚΕΣ ΣΥΝΑΛΛΑΓΕΣ

10 Μαθηματικά και οικογένεια

11 Πολλά νοικοκυριά καταρτίζουν έναν οικογενειακό προϋπολογισμό, τον οποίο χρησιμοποιούν ως οδηγό κατά την κατανομή των οικογενειακών τους πόρων σε μια συγκεκριμένη χρονική περίοδο. Οι οικογενειακοί προϋπολογισμοί είναι συχνά το αποτέλεσμα διαπραγματεύσεων μεταξύ των μελών της οικογένειας. Ο προϋπολογισμός λειτουργεί ως μέσον προγραμματισμού, και ως βάση παρακολούθησης και ελέγχου των δαπανών. Χωρίς μια τέτοια παρακολούθηση, μια οικογένεια μπορεί να οδηγηθεί σε υπέρμετρο δανεισμό και σοβαρές οικονομικές δυσκολίες.

12 ΕΠΑΓΓΕΛΜΑΤΑ που το αντικείμενο τους έχει άμεση σχέση με τα μαθηματικά

13 ΑΕΡΟΝΑΥΠΗΓΟΣ

14 ΜΗΧΑΝΟΛΟΓΟΣ

15 ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ

16 ΑΣΦΑΛΙΣΤΙΚΟΣ ΑΝΑΛΥΤΗΣ

17 ΠΡΟΓΡΑΜΜΑΤΙΣΤΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

18 ΑΡΧΙΤΕΚΤΟΝΑΣ

19 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΘΛΗΤΙΣΜΟΣ

20 ΠΕΡΙΠΤΩΣΕΙΣ ΟΠΟΥ ΥΠΕΙΣΕΡΧΟΝΤΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΟΔΟΣΦΑΙΡΟ Σύστημα που ακολουθεί η ομάδα για να νικήσει τον αγώνα. Παράδειγμα: Ταχύτητα που χτυπιέται η μπάλα σε χτύπημα φάουλ και τροχιά που ακολουθεί. Παράδειγμα: km/h.

21 ΑΓΩΝΙΣΜΑΤΑ ΡΙΨΕΩΝ Ταχύτητα απελευθέρωσης: Μια αύξηση της ταχύτητας απελευθέρωσης κατά 4% βελτιώνει την επίδοση κατά 8%. Γωνία απελευθέρωσης: Είναι η γωνία που σχηματίζεται ανάμεσα στην εφαπτόμενη της τροχιάς που διαγράφει το κέντρο βάρους του οργάνου τη στιγμή της απελευθέρωσης του και του οριζοντίου επιπέδου.

22 ΜΠΑΣΚΕΤ - ΚΑΛΑΘΟΣΦΑΙΡΙΣΗ Αν ο μέσος όρος πόντων ενός παίχτη σε 4 αγώνες είναι 10 πόντοι, μπορούμε να βρούμε τους ελαχίστους πόντους που πρέπει να πετύχει στον 5 ο αγώνα, ώστε ο νέος του μέσος όρος να είναι 12. Λύση: Επομένως, στον πόντους. αγώνα χρειάζεται

23 ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΤΕΧΝΗ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗ

24 ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕ ΔΙΑΦΟΡΕΣ ΜΟΡΦΕΣ ΤΕΧΝΗΣ Θα πάρουμε μία ιδέα από ποικίλες εφαρμογές των Μαθηματικών σε διάφορες μορφές της τέχνης: Μαθηματικά και ζωγραφική Μαθηματικά και μουσική Μαθηματικά και λογοτεχνία Μαθηματικά και κινηματογράφος

25 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΖΩΓΡΑΦΙΚΗ Ο ζωγράφος χρησιμοποιεί πολλές φορές εν αγνοία του τα γεωμετρικά σχήματα διαισθητικά με δύο τρόπους: Είτε σαν αόρατα θεμέλια εξασφαλίζοντας ισορροπία ή επιβάλλοντας κάποια ατμόσφαιρα. Παραδείγματα Ο κύκλος αφήνει τη αίσθηση του σταθερού και του απόλυτου. Το τρίγωνο αφήνει τη αίσθηση του ασταθούς και του μεταβαλλόμενου. Είτε σαν πραγματικά σχήματα Παραδείγματα Ο κύκλος παριστάνει τον ήλιο. Το ορθογώνιο παραλληλόγραμμο παριστάνει ένα σπίτι.

26

27 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΟΥΣΙΚΗ Τα μαθηματικά και η μουσική είναι δυο επιστήμες που έχουν πολύ μεγάλη σχέση μεταξύ τους. Από την αρχαιότητα ακόμη δυο τέχνες αλληλεπιδρούν μεταξύ τους και η αλληλεπίδραση αυτή φτάνει ως τις μέρες μας. Η ιδέα της σύνδεσης των μαθηματικών και της μουσικής γεννήθηκε πριν από 26 ολόκληρους αιώνες στην αρχαία Ελλάδα από τον Πυθαγόρα μαθηματικό και ιδρυτή της πυθαγόρειας σχολής σκέψης. Είναι εντυπωσιακό το γεγονός ότι μόνο οι ακριβείς μαθηματικές σχέσεις δίνουν αρμονικούς ήχους. Είναι ξεκάθαρο λοιπόν ότι τα μαθηματικά κυβερνούν τη μουσική.

28

29 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΛΟΓΟΤΕΧΝΙΑ Όσοι δεν έχουν καλή σχέση με τους αριθμούς, μπορούν να απολαύσουν ένα μαθηματικό μυθιστόρημα. Η ανάγνωση, θα τους βοηθήσει να εκτιμήσουν την επιρροή των μαθηματικών στη λογοτεχνία. Τα μαθηματικά, σε γλώσσα κατανοητή, έδωσαν την ευκαιρία να βγουν στη δημοσιότητα αμφισβητούμενα θέματά τους σε διάφορα μυθιστορήματα και βιογραφίες.

30 ΛΟΓΟΤΕΧΝΙΚΑ ΒΙΒΛΙΑ ΜΑΘΗΜΑΤΙΚΟΥ ΠΕΡΙΕΧΟΜΕΝΟΥ Το πυθαγόρειο θεώρημα Η ποίηση του σύμπαντος Το θεώρημα του παπαγάλου

31 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΚΙΝΗΜΑΤΟΓΡΑΦΟΣ Αρκετές κινηματογραφικές ταινίες έχουν αναφορές στα μαθηματικά. Η συνύπαρξη μαθηματικής ευφυΐας και η καθημερινή αντιμετώπιση προβλημάτων σε ένα γοργό ρυθμό ζωής καθηλώνει τους θεατές και τους βάζουν σε σκέψεις. Μπαίνουν στη θέση των πρωταγωνιστών και αναρωτιούνται μήπως τα μαθηματικά είναι η λύση των καθημερινών προβλημάτων τους. Μερικές από αυτές είναι:

32 Π O ξεχωριστός Γουίλ Χάντινγκ Proof Το δωμάτιο του Fermat Κώδικας Ντα Βίντσι Agora Ο Κύβος 1-2-3

33

34

35 ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ Τα μαθηματικά και η αρχιτεκτονική, ενώ αποτελούν δυο ξεχωριστά πεδία της ανθρώπινης δραστηριότητας, είναι δυνατόν να συνδυαστούν και να αποδώσουν εκπληκτικές, εντυπωσιακές και αξιοθαύμαστες δημιουργίες. Και το αποτέλεσμα αυτό θα είναι κάτι μοναδικό και όμορφο. Όπως υποστήριζε και ο Πρόκλος «όπου υπάρχουν Μαθηματικά, εκεί υπάρχει ομορφιά.»

36 Η Χρυσή τομή στην αρχιτεκτονική Οι αρχαίοι Έλληνες συμπέραναν ότι ένα ευθύγραμμο τμήμα είναι αρμονικά χωρισμένο όταν το χωρίσουμε σε δυο επιμέρους τμήματα έτσι ώστε ο αριθμός που παίρνουμε αν διαιρέσουμε το μήκος του μεγάλου τμήματος με το μήκος του μικρού να ισούται με τον αριθμό που περνούμε αν διαιρέσουμε το μήκος ολόκληρης της γραμμής με το μήκος του μεγάλου. Με άλλα λόγια αναφερόμαστε στη Χρυσή τομή, που συμβολίζεται με το ελληνικό γράμμα Φ, όπως έχουμε ήδη αναφέρει και στη σχέση μαθηματικών με τη ζωγραφική. Οι αρχαίοι Έλληνες την εκμεταλλεύτηκαν για να δημιουργήσουν μορφές με τέτοιες αναλογίες, που να προκαλούν έντονα την αίσθηση της αρμονίας και του ωραίου. Κάποιος μπορεί να συναντήσει τη χρυσή τομή τον Παρθενώνα της Ακρόπολης, στην Μόνα Λίζα του Leonardo da Vinci, στην πυραμίδα του Χέοπα, στο ανθρώπινο σώμα.

37 Τα μεγάλα σύγχρονα αρχιτεκτονικά οικοδομήματα, σε όλο τον κόσμο, βασίζονται σε θεμελιώδες μαθηματικές έννοιες, όπως τα κανονικά πολύγωνα, επιπεδομετρία και συμμετρίες.

38

39

40 Η σύγχρονη εποχή χαρακτηρίζεται από πληθώρα τεχνολογικών ανακαλύψεων και εφαρμογών. Στο project αυτό εξετάζουμε την χρησιμότητα των μαθηματικών στην σύγχρονη τεχνολογία και στις επιστήμες. Κλάδοι, όπως η Αστρονομία, η Ιατρική, οι Τηλεπικοινωνίες, η Πληροφορική, η Αεροδυναμική, η Ναυπηγική, τα Γεωγραφικά Συστήματα, η Μετεωρολογία, η Νανοτεχνολογία, η Ρομποτική, η Γενετική και άλλες επιστήμες απαιτούν τη γνώση και τη χρήση μαθηματικών εξισώσεων, τύπων και ανώτερων μαθηματικών.

41 Απόλυτο Μέγεθος M-m=5-logr, όπου: Μ: Φαινόμενο Μέγεθος του αστέρα m: Απόλυτο Μέγεθος του αστέρα r: Απόσταση αστέρα σε parsec

42 ΓΕΝΕΤΙΚΗ Η γενετική αποτελεί τον κλάδο της βιολογίας που επιχειρεί να δώσει απαντήσεις σε ερωτήματα γύρω από τους μηχανισμούς της κληρονομικότητας και της βιοποικιλότητας.

43 ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ Νανοτεχνολογία είναι ένας όρος ο οποίος χρησιμοποιείται για να περιγράψει τη δημιουργία και χρήση λειτουργικών δομών μεγέθους μεταξύ 1 και 100 νανομέτρων. Οι διαστάσεις γίνονται ευκολότερα αντιληπτές αναφέροντας πως ένα νανόμετρο ισούται περίπου με το 1/80000 μιας ανθρώπινης τρίχας ή με το μήκος 10 ατόμων υδρογόνων σε σειρά. Κατά παρόμοιο τρόπο ορίζεται και ο όρος νανοεπιστήμη αναφερόμενος σε επιστήμες οι οποίες μελετούν φαινόμενα στην κλίμακα αυτή.

44 ΓΕΩΡΓΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Για τον προσδιορισμό της θέσης ενός σημείου Σ στην ουράνια σφαίρα, χρησιμοποιούμε σφαιρικές συντεταγμένες. Θεωρούμε ότι το αστέρι είναι πάνω στην ουράνια σφαίρα (με ακτίνα 1) και ως άξονες επιλέγουμε 2 μέγιστους κύκλους που τέμνονται ορθογώνια: ο βασικός κύκλος και ο πρώτος κάθετος. Ανάλογα ποιους κύκλους θα επιλέξουμε προκύπτει και το αντίστοιχο σύστημα συντεταγμένων. Ο μέγιστος κύκλος που διέρχεται από το Σ και τους πόλους του βασικού και του πρώτου κάθετου λέγεται δεύτερος κάθετος.

45 ΜΕΤΕΩΡΟΛΟΓΙΑ Υδροστατική ισορροπία PGF vertical + g = 0, όπου: PGF vertical : Δύναμη βαροβαθμίδας g: Επιτάχυνση της βαρύτητας

46 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΙΑΤΡΙΚΗ Τα μαθηματικά, η βασική γλώσσα της επιστήμης, όχι μόνο αποτελούν το θεμέλιο της Φυσικής, αλλά είχαν και έχουν σημαντική προσφορά στην γενικότερη επιστημονική πρόοδο. Όσον αφορά στην Ιατρική, τα Μαθηματικά της προσέφεραν την εξαιρετικά χρήσιμη τεχνική της Στατιστικής.

47 Διάφορες περιοχές των μαθηματικών, συμπεριλαμβανομένων των διαφορικών εξισώσεων, δυναμικά συστήματα, και τοπολογικά μοντέλα έχουν βοηθήσει στην κατανόηση της ηλεκτρικής συμπεριφοράς των καρδιακών κυττάρων, τις συνδέσεις μεταξύ των κυττάρων και τη συνολική γεωμετρία της καρδιάς.

48

49 «Κλασσική ομοιοπαθητική και Μαθηματικά» Στις λέξεις είναι η έννοια της ομοιότητας, της μοναδικότητας που προσδιορίζεται από το ένα (αυτό αποτυπώνεται στη λέξη κλασσική) και από το πάθος που σημαίνει ταλαιπωρία. Στα μαθηματικά οι διάφορες αυτές έννοιες μπορούν να προσδιοριστούν ως εξής. Ομοιότητα είναι ο γεωμετρικός μετασχηματισμός μέσω ενός κέντρου, μιας γωνίας και ενός θετικού αριθμού. Ομοιομορφισμός είναι η τάση για ομοιομορφία και είναι έννοια ανεξάρτητη της έννοιας του χρόνου. Τοπολογικός χώρος είναι το ζεύγος μιας τοπολογίας ( π χ. ο χώρος ενός οργανισμού ) και ενός συνόλου ( π χ. συμπτωμάτων) που ορίζεται σ αυτό

50 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΓΕΙΡΙΚΗ

51 ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΕΩΣ ΚΑΙ ΖΥΓΙΣΗΣ ΣΥΣΤΑΤΙΚΩΝ Η ακρίβεια στη ζύγιση και μέτρηση των συστατικών για παρασκευή γευμάτων είναι σπουδαία για την ποιότητα φαγητών που πληρούν και τις εντολές που δίνει ο γιατρός όταν γράφει δίαιτες για θεραπευτικούς σκοπούς. Πρέπει ο καθένας να γνωρίζει τα συστήματα ζύγισης και μέτρων, και να γνωρίζει τις υποδιαιρέσεις των μετρητικών δοχείων και τις κλίμακες. ΣΥΣΤΗΜΑΤΑ ΜΕΤΡΗΣΗΣ Τα δύο πιο κοινά χρησιμοποιούμενα συστήματα μέτρησης είναι το Αγγλικό και το μετρικό. Το Αγγλικό σύστημα παραμένει το πιο κοινό στις Η.Π.Α.. Οι μονάδες μέτρησης προέρχονται από διάφορους πολιτισμούς. Μονάδες Αγγλικού Συστήματος: Βαθμός Φαρενάιτ, ίντσα, γιάρδα, πόδι, μίλι Το μετρικό σύστημα είναι διεθνές σύστημα μέτρων και σταθμών βασισμένο στο δεκαδικό σύστημα. Επειδή η δύναμη του δέκα είναι κοινή σε όλες τις μονάδες, οι μετατροπές είναι απλές. Στο σύστημα αυτό η βασική μονάδα βάρους ή μάζας είναι το γραμμάριο. Το μήκος μετριέται σε μέτρα και ο όγκος σε λίτρα. Η θερμοκρασία μετριέται σε βαθμούς Κελσίου.

52 ΜΟΝΑΔΕΣ ΒΑΡΟΥΣ Ουγγιά Λίβρα Γραμμάρια Κιλά 1 ουγγιά 1,0 0,06 28,4 0,028 1 λίβρα 16,0 1, ,454 1 γραμμάριο 0,035 0,002 1,0 0,001 1 κιλό 35,3 2, ,0 ΜΟΝΑΔΕΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΑΣ Ουγγιά Πίντα ½ γαλονιού Χιλιοστόλιτρο Λίτρο 1 ουγγιά 1,0 0,062 0,031 29,57 0,029 1 πίντα 16,0 1,0 0, ,473 ¼ γαλονιού 32,0 2,0 1, ,946 1 χιλιοστόλιτρο 0,034 0,002 0,001 1,0 0,001 1 λίτρο 33,8 2,112 1, ,0

53

54

55 ΣΥΜΠΕΡΑΣΜΑΤΑ Σύμφωνα με όσο αναπτύξαμε στα προηγούμενα θέματα, καταλήξαμε στο συμπέρασμα ότι τα Μαθηματικά είναι η υποδομή και ο στυλοβάτης πολλών επιστημών, οι οποίες επιστήμες οφείλουν την ανάπτυξή τους σε σχέσεις και εφαρμογές μαθηματικών. Έτσι τα Μαθηματικά, που μπορεί να φαίνονται δύσκολα, στην πραγματικότητα δίνουν απαντήσεις σε κατασκευές, σε φαινόμενα του κόσμου και σε δραστηριότητες της καθημερινής ζωής. Βρίσκονται παντού γύρω μας, μόνο που χρειάζεται λίγη προσπάθεια να τα ανακαλύψουμε. Με άλλα λόγια δεν απευθύνονται σε μερικούς, αλλά σε όλους τους ανθρώπους, αφού όλοι μας θέλουμε να περιβαλλόμαστε από αξιόπιστες λύσεις, να προβλέπουμε την εξέλιξη διαφόρων φαινομένων και να επεξεργαζόμαστε ή να αναλύουμε δεδομένα. Ο σύγχρονος δυτικός πολιτισμός με τα τεχνολογικά του επιτεύγματα είναι άρρητα συνδεδεμένος με την επιστήμη των μαθηματικών και δεν μπορούμε να φανταστούμε τη ζωή μας χωρίς μαθηματικά, είτε άμεσα είτε έμμεσα.

56

ΘΕΜΑ: «Κύπρος: Πολυπολιτισμικές Ψηφίδες» ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΘΛΗΤΙΣΜΟΣ ΤΜΗΜΑ: Γ 6

ΘΕΜΑ: «Κύπρος: Πολυπολιτισμικές Ψηφίδες» ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΘΛΗΤΙΣΜΟΣ ΤΜΗΜΑ: Γ 6 ΘΕΜΑ: «Κύπρος: Πολυπολιτισμικές Ψηφίδες» ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΑΘΛΗΤΙΣΜΟΣ ΤΜΗΜΑ: Γ 6 ΝΑ ΑΠΟΔΕΙΞΕΤΕ ΤΗΝ ΤΑΥΤΟΤΗΤΑ A μέλος= Επιστήμη + Έλληνες Μαθηματικοί + Μαθηματικές Ανακαλύψεις + Μαθηματικά B μέλος= Εργαλείο

Διαβάστε περισσότερα

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών

Ο χρυσός αριθμός φ. Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών Ο χρυσός αριθμός φ Η συνάντηση της αισθητικής τελειότητας και των μαθηματικών ΤΟ ΠΡΟΒΛΗΜΑ Το πρόβλημα της χρυσής τομής, σε απλή διατύπωση είναι το εξής: Να χωριστεί ένα τμήμα ΑΒ σε μέσο και άκρο λόγο δηλαδή

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ

ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΤΙ ΡΩΤΑΜΕ ΜΙΑ ΕΙΚΟΝΑ ; ΤΙ ΜΑΣ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΠΩΣ ΜΑΣ ΤΟ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Α. Προτεινόμενες θεματικές ενότητες Τίτλοι από το Ι.Ε.Π. ΑΛΓΕΒΡΑ 5ο 5.1: Ακολουθίες Η ακολουθία Fibonacci στην Φύση και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ - ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Δυναμική ενέργεια δυο φορτίων Δυναμική ενέργεια τριών ή περισσοτέρων

Διαβάστε περισσότερα

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Αναστασία Πέτρου Κωνσταντίνος Χρήστου Β 3 ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Ο Πυθαγόρας ο Σάμιος, υπήρξε σημαντικός Έλληνας φιλόσοφος, μαθηματικός, γεω μέτρης και θεωρητικός της μουσικής. Είναι ο κατεξοχήν

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ

Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ ΦΥΣΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ Η ΣΥΜΜΕΤΡΙΑ ΣΤΟ ΦΥΣΙΚΟ ΚΟΣΜΟ Επιμέλεια: Μιχαηλίσιν Άννα- Μαρία, Τζιώτης Δημήτρης, Τσάτσα Κωνσταντίνα Η συμμετρία στο φυσικό κόσμο Η συμμετρία που κατεξοχήν

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΣΥΝΤΕΛΕΣΤΕΣ Συγγραφική Ομάδα Βλάμος Παναγιώτης Δρούτσας Παναγιώτης Πρέσβης Γεώργιος Ρεκούμης Κωνσταντίνος Φιλολογική Επιμέλεια Βελάγκου Ευγενία Σκίτσα Βρανάς Θεοδόσης Υπεύθυνος Παιδαγωγικού

Διαβάστε περισσότερα

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΦΑΙΔΡΑ ΚΟΥΡΒΙΣΙΑΝΟΥ ΒΑΣΙΛΗΣ ΚΑΤΣΑΝΤΩΝΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΗΛΙΟΠΟΥΛΟΣ ΑΝΔΡΕΑΣ ΚΑΣΙΜΑΤΗΣ Ερευνητικά Ερωτήματα Ποιοι είναι ΟΙ ΣΗΜΑΝΤΙΚΟΙ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

Ο χώρος. 1.Μονοδιάστατη κίνηση

Ο χώρος. 1.Μονοδιάστατη κίνηση Ο χώρος Τα χελιδόνια έρχονται και ξανάρχονται. Κάθε χρόνο βρίσκουν μια γωνιά για να χτίσουν τη φωλιά, που θα γίνει το επίκεντρο του χώρου τους. Ο χώρος είναι ένας οργανικός χώρος, όπως εκείνος που αφορά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,

Διαβάστε περισσότερα

Η 6η Δέσμη ΚΑΛΩΝ ΤΕΧΝΩΝ

Η 6η Δέσμη ΚΑΛΩΝ ΤΕΧΝΩΝ Η 6η Δέσμη ΚΑΛΩΝ ΤΕΧΝΩΝ Η Δέσμη Καλών Τεχνών προσφέρεται ως επιλογή στους μαθητές της Β' και Γ' λυκείου. Για την 6η Δέσμη δεν υπάρχει στην Α' λυκείου αντίστοιχη ΟΜΠ (Ομάδα Μαθημάτων Προσανατολισμού), έτσι

Διαβάστε περισσότερα

Ένα παιχνίδι των πολυγώνων

Ένα παιχνίδι των πολυγώνων Ένα παιχνίδι των πολυγώνων Το παιγνίδι αυτό, αναπτύχθηκε στα πλαίσια του μαθήματος πληροφορικής της Γ τάξης, στην ενότητα που αφορά στο σχεδιασμό πολυγώνων, απ όλα τα παιδιά, της Γ τάξης του σχολείου μας.

Διαβάστε περισσότερα

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738)

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Το μαθηματικό λογισμικό GeoGebra ως αρωγός για τη λύση προβλημάτων γεωμετρικών κατασκευών Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

ΤΑΞΗ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

ΤΑΞΗ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ο - Οι φυσικοί αριθµοί 1.1. Φυσικοί αριθµοί - ιάταξη Φυσικών - Στρογγυλοποίηση 1.2. Πρόσθεση, αφαίρεση και πολλαπλασιασµός

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να

Διαβάστε περισσότερα

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ

ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 467 ΚΙΝΗΣΕΙΣ ΣΩΜΑΤΩΝ ΣΕ ΟΜΟΓΕΝΗ ΠΕΔΙΑ Βαρυπάτη Αθηνά Φυσικός- Επιμορφώτρια Τ.Π.Ε. avarypat@de.sch.gr Μαστραλέξης Δημήτρης Φυσικός-Επιμορφωτής Τ.Π.Ε. dmastral@de.sch.gr

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Λυμένες Ασκήσεις 1. Στο παρακάτω σχήμα να βρείτε τις συντεταγμένες των σημείων Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι Οι συντεταγμένες των ζητούμενων σημείων είναι: Α(2,3),

Διαβάστε περισσότερα

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού 117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003 Λευκωσία, Κύπρος Τηλ: 22378101- Φαξ:22379122 cms@cms.org.cy, www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Η Κυπριακή Μαθηματική Εταιρεία

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. ΔΙΑΝΥΣΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΟ ΣΥΝΕΧΕΙΑ Ορισμός. Αν τα και είναι τα μοναδιαία διανύσματα των αξόνων και αντίστοιχα η συνάρτηση που ορίζεται από τη σχέση όπου (συνιστώσες) είναι

Διαβάστε περισσότερα

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ

5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ 5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ Μετρούμε αλλά και υπολογίζουμε Στο προηγούμενο μάθημα χρησιμοποιήσαμε το μέτρο, αλλά και άλλα όργανα με τα οποία μετρούμε το μήκος. Το σχήμα που μετρούμε με το μέτρο

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 8γ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 8γ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΚΕΦΑΛΑΙΟ ο Διαφορικός Λογισμός (Νο 8γ) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η Ο Κ Ε Φ Α Λ Α Ι Ο ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013 1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Σταυρούλα Πατσιομίτου

Σταυρούλα Πατσιομίτου Αριστοτέλους Μεταφυσικά 1078 α 30 Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Σ υνδέονται τα Μαθηματικά με την Αισθητική, με την Τέχνη, με την Τεχνολογία. Πόσο σημαντικό είναι να γνωρίζουμε την Ιστορία τους;

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά

Διαβάστε περισσότερα

Κυκλική Κίνηση - Οριζόντια βολή

Κυκλική Κίνηση - Οριζόντια βολή Μάθημα/Τάξη: Κεφάλαιο: Φυσική Προσανατολισμού Β Λυκείου Κυκλική Κίνηση - Οριζόντια βολή Ονοματεπώνυμο Μαθητή: Ημερομηνία: 24-10-2016 Επιδιωκόμενος Στόχος: 85/100 Θέμα 1 ο Στις ερωτήσεις Α.1 Α.4 επιλέξτε

Διαβάστε περισσότερα

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο.

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Μεθοδολογία Υπερβολής

Μεθοδολογία Υπερβολής Μεθοδολογία Υπερβολής Υπερβολή ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερή και μικρότερη από την απόσταση

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.

Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας 81 ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας Εισαγωγή Σε πολλά προβλήματα της Χαρτογραφίας, της Ανώτερης Γεωδαισίας, της Γεωδαιτικής Αστρονομίας και της Δορυφορικής Γεωδαισίας εμφανίζονται γεωμετρικά

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ

Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ ΜΑΘΗΜΑ 5: Η ΣΧΕΤΙΚΟΤΗΤΑ ΚΑΙ Ο ΝΤΕΤΕΡΜΙΝΙΣΜΟΣ Salviati: Εκεί όπου δεν μας βοηθούν οι αισθήσεις πρέπει να παρέμβει η λογική, γιατί μόνο αυτή θα επιτρέψει να εξηγήσουμε τα φαινόμενα ΓΑΛΙΛΑΪΚΟΙ ΔΙΑΛΟΓΟΙ Η

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

Υποομάδα 3 Θέμα: Χρυσός Αριθμός Φ- Χρυσή Τομή

Υποομάδα 3 Θέμα: Χρυσός Αριθμός Φ- Χρυσή Τομή Α Γενικό Λύκειο Τοσιτσειο Αρσάκειο Εκάλης Ερευνητική εργασία project :Τα μαθηματικά στην Ακρόπολη Υποομάδα 3 Θέμα: Χρυσός Αριθμός Φ- Χρυσή Τομή Μέλη ομάδας: Χρήστος Παπακωνσταντίνου Βασίλης Πελωριάδης

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ : Αν δυο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f (, όταν f είναι μια συνάρτηση παραγωγίσιμη στο, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το στο σημείο την παράγωγο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

Ανδριοπούλου Αγγελική Σταθοπούλου Σωτηρία Χαλούλη Αλεξία Ψαράκη Κωνσταντίνα. Leonardo Da Vinci. Ανατομία Ενός Μυαλού

Ανδριοπούλου Αγγελική Σταθοπούλου Σωτηρία Χαλούλη Αλεξία Ψαράκη Κωνσταντίνα. Leonardo Da Vinci. Ανατομία Ενός Μυαλού Οι μαθητές με αφορμή το πολύπλευρο έργο του Λεονάρντο Ντα Βίντσι προσέγγισαν επιστημονικά και καλλιτεχνικά πεδία του ενδιαφέροντός τους σε μία προσπάθεια να «αποκωδικοποιήσουν» τον επιστήμονα και καλλιτέχνη

Διαβάστε περισσότερα

ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ

ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 0 ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ Ι Καθηγητής: Σ Πνευματικός Μάθημα ο ΤΡΟΧΙΕΣ ΣΤΟ ΧΩΡΟ ΤΩΝ ΘΕΣΕΩΝ ΚΑΙ ΤΑΧΥΤΗΤΩΝ Η Κλασική Μηχανική, ως ορθολογική

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0 Ι.Μ. Δόκας Επικ. Καθηγητής Γεωδαισία Μοιράζω τη γη (Γη + δαίομαι) Ακριβής Έννοια: Διαίρεση, διανομή /μέτρηση της Γής. Αντικείμενο της γεωδαισίας: Ο προσδιορισμός της μορφής, του

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci»

Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Ε Ρ Γ Α Σ Ι Α Θέμα: «Ακολουθία Fibonacci» Μάθημα: Άλγεβρα Υπεύθυνος καθηγητής: κ. Σκοτίδας Τάξη: Β Λυκείου Τμήμα Β2 Ονοματεπώνυμο: Λαμπρινή Μαρίνα Λάππα Σχολικό έτος: 2010 2011 1 ΠΕΡΙΕΧΟΜΕΝΑ 1) Ποιο πρόβλημα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 16118 Δύο σφαιρίδια Σ 1 και Σ 2 βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.

Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1. Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.

Διαβάστε περισσότερα

Υποδοχείς Αισθήσεις (σελ: 171) Σωματικές Αισθήσεις ( σελ: ) Ειδικές Αισθήσεις : όλο εκτός από την παράγραφο «Βιοχημεία της όρασης»

Υποδοχείς Αισθήσεις (σελ: 171) Σωματικές Αισθήσεις ( σελ: ) Ειδικές Αισθήσεις : όλο εκτός από την παράγραφο «Βιοχημεία της όρασης» 1 ο Γενικό Λύκειο Ζωγράφου Σχολ. Έτος 2015-2016 Εξεταστέα Ύλη Μαθημάτων Α Λυκείου 1] ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1.1.5 Η έννοια της ταχύτητας στην ευθύγραμμη ομαλή κίνηση εκτός Μελέτη κίνησης με χρήση του ηλεκτρικού

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Γεωμετρική σκέψη και γεωμετρικές έννοιες. Γεωμετρικά σχήματα και σώματα

Γεωμετρική σκέψη και γεωμετρικές έννοιες. Γεωμετρικά σχήματα και σώματα Γεωμετρική σκέψη και γεωμετρικές έννοιες Γεωμετρικά σχήματα και σώματα Αφόρμιση Σχεδιάστε 5 τρίγωνα, κάθε ένα από τα οποία διαφέρει από τα άλλα Εξηγείστε ως προς τι διαφέρουν τα τρίγωνά σας Σε τι διαφέρουν;

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ. Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή

1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή 1 ΙΝΥΣΜΤ Εισαγωγή Το διάνυσμα είναι ένα χαρακτηριστικό παράδειγμα έννοιας που αναπτύχθηκε μέσα από τη στενή αλληλεπίδραση Μαθηματικών και Φυσικής. κανόνας του παραλληλόγραμμου, σύμφωνα με τον οποίο το

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΠΥΘΑΓΟΡΑΣ Πέτρου Αναστασία Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΑΘΗΝΑ 2013 Ο Πυθαγόρας (586 500 π.χ.) του Μνησάρχου και της «ωραίας υπέρ φύσιν» Πυθαϊδος γεννήθηκε στη Σάμο. Μικρός επισκέφθηκε τους Δελφούς,

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Isaac Newton: Θεωρείται πατέρας της Κλασικής Φυσικής, καθώς ξεκινώντας από τις παρατηρήσεις του Γαλιλαίου αλλά και τους νόμους του Κέπλερ για την κίνηση των πλανητών

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Κωνικές τοµ ές) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Κωνικές τοµ ές) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα