Ι. Μελέτη και σχεδίαση αυτοδύναμης ενεργειακά αγροτικής μονάδας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ι. Μελέτη και σχεδίαση αυτοδύναμης ενεργειακά αγροτικής μονάδας"

Transcript

1 ΠΡΟΓΡΑΜΜΑ Γ.Γ.Ν.Γ.: ΕΠΙΣΤΗΜΟΝΙΚΗ ΥΠΟΣΤΗΡΙΞΗ ΝΕΩΝ ΑΓΡΟΤΩΝ Τ.Ε.Ι. ΠΕΙΡΑΙΑ «Μελέτη και Σχεδίαση Αυτοδύναμης Ενεργειακά Αγροτικής Εκμετάλλευσης με χρήση Ανανεώσιμων Πηγών Ενέργειας» Ι. Μελέτη και σχεδίαση αυτοδύναμης ενεργειακά αγροτικής μονάδας Επιστημονική Ομάδα: Αν. Καθηγητής Αναστάσιος Ντούνης Γεώργιος Κυριακαράκος Επιστημονικός Υπεύθυνος: Δ. Ι. Τσελές, Καθηγητής Τ.Ε.Ι ΠΕΙΡΑΙΑ-2011

2 ΕΙΣΑΓΩΓΗ Σκοπός αυτής της μελέτης είναι η καταγραφή των ενεργειακών αναγκών μιας αγροτικής μονάδας, ώστε να γίνει εφικτός ο σχεδιασμός ενός ενεργειακού συστήματος, που μπορεί να καταστήσει μια μονάδα ενεργειακά αυτόνομη, με έμφαση στη χρήση Ανανεώσιμων Πηγών Ενέργειας (ΑΠΕ). Συνήθως οι μονάδες είναι στοχευμένες στην φυτική ή στην ζωϊκή παραγωγή και σε πολλές περιπτώσεις περιλαμβάνουν και την οικία του αγρότη. Οι ανάγκες που πρέπει να καλυφθούν αφορούν την παραγωγή μηχανικού έργου, την ηλεκτρική ενέργεια, τη θερμότητα και την ψύξη. Η βασική μονάδα παραγωγής ισχύος σε μια γεωργική εκμετάλλευση είναι ο γεωργικός ελκυστήρας. Ο ελκυστήρας χρησιμοποιεί πετρέλαιο στις περισσότερες περιπτώσεις, αλλά μπορεί να χρησιμοποιήσει και βιοκαύσιμα ή ακόμη και έλαια χωρίς χημική επεξεργασία. Ο ελκυστήρας όμως, δεν είναι το βασικό αντικείμενο αυτής της μελέτης. Η συγκεκριμένη μελέτη αναφέρεται κυρίως στις ηλεκτρικές ανάγκες, κάνοντας μια αναφορά και σε θερμικές ή ψυκτικές ανάγκες, οι οποίες μπορούν να καλυφθούν από ΑΠΕ. Στα πρώτα κεφάλαια θα αναπτυχθεί η ηλιακή και η αιολική ενέργεια, ενώ μετά θα γίνει αναφορά στις συγκεκριμένες ανάγκες των αγροτικών εκμεταλλεύσεων. Τελικά θα παρουσιασθεί η περιγραφή ενός λογισμικού, το οποίο μπορεί να χρησιμοποιηθεί για να δώσει μια αρχική εικόνα της εγκατεστημένης ισχύος ΑΠΕ, που θα απαιτηθεί, για την κάλυψη των ενεργειακών αναγκών μιας αγροτικής μονάδας, δίνοντας και ένα ενδεικτικό κόστος. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

3 1.1 ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ Τα συστήματα που βασίζονται στην ηλιακή ενέργεια έχουν μερικά βασικά πλεονεκτήματα. Είναι καθαρά προς το περιβάλλον και δεν απαιτούν τη χρήση ορυκτών καυσίμων. Το κόστος συντήρησης είναι χαμηλό, ενώ το κόστος εγκατάστασης είναι και αυτό επίσης χαμηλό. Έχουν κατά κανόνα μεγάλη διάρκεια ζωής και δεν χρειάζονται επιτήρηση κατά τη λειτουργία τους. Τέλος, ένα ακόμα μεγάλο πλεονέκτημα είναι ότι μπορούν να συναρμολογηθούν τα απαραίτητα κομμάτια, ώστε να έχουμε το δυνατόν πλησιέστερο σύστημα σε απόδοση προς αυτό που απαιτείται. Μόνα μειονεκτήματα αποτελούν το μεγάλο αρχικό κόστος επένδυσης και η μειωμένη απόδοση τις ημέρες με συννεφιά. Από μελέτες που έχουν γίνει τα τελευταία χρόνια από την Shell International έχει προβλεφθεί ότι η χρήση της ηλιακής ενέργειας θα αυξηθεί μέσα στις επόμενες δεκαετίες. Έχει επίσης προβλεφθεί από την ίδια μελέτη πως μέχρι το 2060 η ενέργεια που θα παράγεται από τον ήλιο θα είναι της τάξης των 5000 εκατομμυρίων τόνων ισοδύναμου πετρελαίου, που καλύπτουν χονδρικά τις μισές ανάγκες της γης σε ενέργεια. (Εικόνα 1.1.1) Εικόνα 1.1.1: Παγκόσμια Κατανάλωση Ενέργειας (Shell, 2000) Το ηλιακό δυναμικό σε πολλές περιοχές της γης είναι μεγάλο και εξασφαλίζει μεγάλες αποδόσεις σε ενέργεια (Εικόνα 1.1.2). Ειδικότερα η νότια Ευρώπη εμφανίζεται σε πάρα πολύ πλεονεκτική θέση, όσον αφορά το ηλιακό δυναμικό (Εικόνα 1.1.3). Τ.Ε.Ι. ΠΕΙΡΑΙΑ

4 Εικόνα 1.1.2: Παγκόσμια μέση ετήσια προσπίπτουσα ηλιακή ακτινοβολία σε οριζόντιο επίπεδο (kwh/m 2 ) (Crest, 2000) Εικόνα 1.1.3: Μέση ετήσια προσπίπτουσα ηλιακή ακτινοβολία σε οριζόντιο επίπεδο στον Ευρωπαϊκό χώρο (kwh/m 2 ) (Crest, 2000) Τέλος, δεν θα πρέπει να ξεχνάμε ότι η ηλιακή ενέργεια αποτελεί μια ανανεώσιμη πηγή ενέργειας με πολλά συγκριτικά περιβαλλοντικά οφέλη. Κυριότερα αυτών είναι η έλλειψη παραγωγής ρύπων CO 2, SO x, NO x, όπως και η αθόρυβη λειτουργία τους. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

5 1.2 ΦΩΤΟΒΟΛΤΑΙΚΑ ΣΤΟΙΧΕΙΑ O Edmond Becquerel παρατήρησε το 1839 την αύξηση της τάσης σε μια μπαταρία που είχε κατασκευάσει, όταν έπεφτε φως πάνω στις ασημένιες πλάκες της. Έτσι ανακαλύφθηκε το φωτοβολταϊκό φαινόμενο. Το 1877 δύο επιστήμονες στο Cambridge παρατήρησαν μεταβολές στις ηλεκτρικές ιδιότητες του σεληνίου, όταν αυτό δεχόταν ηλιακή ακτινοβολία. Αυτή ήταν η πρώτη παρατήρηση του φωτοβολταϊκού φαινομένου σε συμπαγές υλικό. Το πρώτο φωτοβολταϊκό στοιχείο κατασκευάστηκε από τον Charles Edgar Fritts. Αυτό αποτελείτο από φύλλα σεληνίου καλυμμένα με ημιδιαφανή καλώδια χρυσού ανάμεσα σε προστατευτικό γυαλί. Αυτά τα στοιχεία μετέτρεπαν λιγότερο από το 1% της ενέργειας του ήλιου σε ηλεκτρική ενέργεια. Περαιτέρω εξέλιξη ήρθε από τα Bell Telephone Laboratories, τα οποία πειραματίστηκαν με ημιαγωγούς. Εκεί επικέντρωσαν τις προσπάθειές τους στους ημιαγωγούς πυριτίου, πρώτα σε καθαρή κρυσταλλική μορφή και στη συνέχεια με προσθήκη μικρών ποσοτήτων άλλων στοιχείων. Το 1958 ο δεύτερος αμερικανικός δορυφόρος Vanguard I ήταν εξοπλισμένος με φωτοβολταϊκά, τα οποία έδιναν ενέργεια σε ένα ραδιοπομπό. Σήμερα χρησιμοποιούνται αρκετοί τύποι φωτοβολταϊκών στοιχείων, ανάλογα με τις ανάγκες που έχουν να καλύψουν. Το μεγαλύτερο μέρος καταλαμβάνουν τα κρυσταλλικά και πολυκρυσταλλικά στοιχεία πυριτίου, τα οποία σήμερα φτάνουν αποδόσεις της τάξης του 15-18%. Επίσης σήμερα χρησιμοποιούνται και λεπτά φιλμ άμορφου πυριτίου, τα οποία αν και έχουν πολύ μικρότερες αποδόσεις, έχουν εξαπλωθεί λόγω του πολύ μικρού κόστους. Η αιχμή της τεχνολογίας σήμερα έχει να παρουσιάσει μεγάλης απόδοσης ημιαγωγούς, που περιέχουν ποσότητες άλλων στοιχείων, όπως GaAs and indium phosphide. Βέβαια, η χρήση τέτοιων φωτοβολταϊκών κρίνεται οικονομικά αποδεκτή μόνο σε διαστημικές εφαρμογές. Στον πίνακα φαίνονται συγκριτικά οι διάφοροι τύποι φωτοβολταϊκών σε σχέση με τα χαρακτηριστικά τους. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

6 Πίνακας Χαρακτηριστικά διαφόρων τύπων φωτοβολταϊκών στοιχείων Υλικό Τύπος στοιχείου Τυπική Απόδοση (%) Σημειώσεις Πυρίτιο Μονοκρυσταλλικά 13-18% Σε εργαστήριο έχουν φτάσει σε αποδόσεις της τάξης του 29% σε μικρές επιφάνειες Πολυκρυσταλλικά 12% Τυπική απόδοση για εμπορικά στοιχεία Άμορφου πυριτίου 6-8% Τυπική απόδοση για εμπορικά στοιχεία Γαλλίου/ Αρσενικού Κρυσταλλικά GaAs 25% 30+% Μία ένωση Δύο ή περισσότερες ενώσεις Ινδιοσεληνιούχου χαλκού Λεπτού υμενίου 8-16% Τελλουρίου Λεπτού υμενίου 16% Τα φωτοβολταϊκά στοιχεία χαρακτηρίζονται βασικά από τρεις παραμέτρους. Αυτές είναι το ρεύμα που παράγουν, η τάση του ρεύματος και η ισχύς τους. Καθώς το φορτίο που είναι συνδεδεμένο με το φωτοβολταϊκό μεταβάλλεται, έτσι μεταβάλλεται και η σχέση έντασης τάσης του ρεύματος. Για κάθε μία από αυτές τις τρεις παραμέτρους υπάρχει μια τιμή χαρακτηριστική για το κάθε φωτοβολταϊκό στοιχείο. Για το ρεύμα είναι το ρεύμα κλειστού κυκλώματος (short circuit current), όταν το φορτίο είναι μηδενικό και το φωτοβολταϊκό βραχυκυκλωμένο. Για την τάση η χαρακτηριστική τιμή είναι η τάση ανοικτού κυκλώματος (open circuit voltage), όταν δηλαδή το φορτίο είναι άπειρο και για την ισχύ χαρακτηριστική είναι η μέγιστη ισχύς (maximum power point) στο γόνατο της καμπύλης I-V. Αυτά φαίνονται αναλυτικά στην εικόνα Τ.Ε.Ι. ΠΕΙΡΑΙΑ

7 Εικόνα Καμπύλη Ι-V για ένα χαρακτηριστικό φωτοβολταϊκό στοιχείο μονοκρυσταλλικού πυριτίου (Crest, 2000) Γίνεται κατανοητό, πως είναι επιθυμητό τα φωτοβολταϊκά να λειτουργούν στο μέγιστο σημείο ισχύος. Αυτό το επιτυγχάνουμε με τον ελεγκτή μέγιστου σημείου ισχύος (ΜΡΡΤ), ο οποίος είναι ένας ηλεκτρονικός μετατροπέας συνεχούς ρεύματος ( DC σε DC) υψηλής συχνότητας, που βελτιστοποιεί τη σύγκλιση της τάσης μεταξύ της φωτοβολταϊκής συστοιχίας με το φορτίο, αυξάνοντας έτσι την απόδοση του συστήματός μας. Ο ΜΡΡΤ παίρνει το ρεύμα εισόδου, το μετατρέπει σε εναλλασσόμενο μέσω ενός δακτυλιοειδούς μετατροπέα, μετά το ξαναμετατρέπει σε συνεχές με ανόρθωση και το στέλνει στον ελεγκτή εξόδου με μεγαλύτερη ένταση. Χρησιμοποιούνται υψηλές συχνότητες της τάξης των khz, γιατί εκεί τα κυκλώματα αποκτούν μεγάλη απόδοση. Υπάρχουν και ΜΡΡΤ που βασίζονται σε μικροϋπολογιστές και μπορούν να δώσουν τάση μέχρι και 185 Volt. Γενικά οι ΜΡΡΤ έχουν αποδόσεις που κυμαίνονται μεταξύ 95% και 99%. Η χρήση ενός τέτοιου ελεγκτή μεταφράζεται σε ένα κέρδος στην ισχύ μεταξύ 30% και 45% το χειμώνα και μεταξύ 10% και 20% το καλοκαίρι. Η επίδραση του ελεγκτή είναι περισσότερο εμφανής το χειμώνα, όπου έχουμε λίγες ώρες ηλιοφάνειας και απαιτείται η μεγαλύτερη δυνατή ισχύς από τη συστοιχία μας. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

8 Στην εικόνα φαίνεται πώς ο ΜΡΡΤ μεταβάλλει την καμπύλη ρεύματος τάσης των φωτοβολταϊκών. Το φορτίο είναι μια ωμική αντίσταση 20 Ω. Χωρίς τον ΜΡΡΤ λειτουργεί στο σημείο a, ενώ με τον ΜΡΡΤ στο b. Εικόνα 1.2.3: Επίπτωση του ΜΡΡΤ στην καμπύλη Ι-V (Eckstein, 1990) Τέλος, το κόστος των φωτοβολταϊκών έχει μειωθεί αρκετά τα τελευταία χρόνια και η απόδοσή τους τείνει να αυξηθεί. Ένδειξη για αυτό αποτελεί και ο προϋπολογισμός έρευνας και εξέλιξής τους παγκόσμια. Εικόνα 1.2.4: Εκτίμηση κόστους σε λίρες Αγγλίας της ηλεκτρικής ενέργειας από φωτοβολταϊκά στις Ηνωμένες Πολιτείες (Crest, 2000) Τ.Ε.Ι. ΠΕΙΡΑΙΑ

9 Στην εικόνα βλέπουμε την εκτίμηση κόστους της kwh σε αγγλικές λίρες. Μέχρι το 2020 αναμένεται το κόστος να πέσει από τις 14 που είναι σήμερα, μόλις στις 4. Μέσα στα επόμενα χρόνια αναμένεται να πέσει το κόστος αγοράς κάτω από τα 2 ανά Wp. Το Wp είναι η μονάδα που χρησιμοποιείται για τη μέτρηση της ονομαστικής ισχύος των φωτοβολταϊκών. Η ισχύς εξόδου των φωτοβολταϊκών εξαρτάται από την προσπίπτουσα ηλιακή ακτινοβολία, τη θερμοκρασία του περιβάλλοντος και την τεχνολογία του φωτοβολταϊκού. Έτσι, το να δοθεί η μέγιστη ισχύς κάθε φωτοβολταϊκού δεν σημαίνει κάτι από μόνο του. Θα έπρεπε να δοθούν μαζί και οι συνθήκες στις οποίες μετρήθηκε. Επίσης, είναι αναμενόμενο πως το κάθε φωτοβολταϊκό θα έδινε τη μέγιστη ισχύ του σε διαφορετικές συνθήκες από κάποιο άλλο. Για αυτό το λόγο έχει φτιαχτεί ένα πρότυπο, σύμφωνα με το οποίο μετράται η ισχύς εξόδου σε συγκεκριμένες συνθήκες και για αυτές τις συνθήκες δίνεται η ονομαστική ισχύς. Για να δηλωθεί αυτό δίνεται ο δείκτης peak στο W. Πρέπει να σημειωθεί πως υπό ορισμένες συνθήκες μπορεί ένα φωτοβολταϊκό να δώσει μεγαλύτερη ισχύ, ενώ τον περισσότερο χρόνο δίνει μικρότερη. Τα φωτοβολταϊκά παράγουν συνεχές ρεύμα. 1.3 ΗΛΙΑΚΑ ΘΕΡΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Τα ηλιακά θερμικά συστήματα μετατρέπουν την ηλιακή ακτινοβολία σε χρησιμοποιήσιμη θερμότητα και μπορούν να δημιουργήσουν ρεύμα αέρα για φυσικό αερισμό. Μπορεί να θερμανθεί ένα ρευστό (αέριο ή υγρό) και να γίνει έτσι και μεταφορά αυτής της ενέργειας ή μπορεί να χρησιμοποιηθεί άμεσα, όπως στην περίπτωση των ηλιακών φούρνων. Η πιο γνωστή εφαρμογή των θερμικών ηλιακών συστημάτων είναι οι ηλιακοί θερμοσίφωνες, που παρουσιάζουν μεγάλη χρήση στη χώρα μας. 1.4 ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ Όλες οι ανανεώσιμες μορφές ενέργειας προέρχονται από την ηλιακή ενέργεια. Περίπου το 2% της ηλιακής ενέργειας που φτάνει στην γη μετατρέπεται σε αιολική ενέργεια. Αν και το ποσοστό του 2% φαίνεται μικρό, αρκεί να αναλογιστούμε πως είναι πολύ μεγαλύτερο από την ενέργεια που μετατρέπεται σε βιομάζα από όλη την χλωρίδα της γης. Με τον όρο άνεμο ορίζονται οι μεγάλης κλίμακας μετακινήσεις αερίων μαζών στην ατμόσφαιρα. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

10 Οι περιοχές κοντά στον ισημερινό θερμαίνονται περισσότερο από τον ήλιο, ο αέρας γίνεται ελαφρύτερος και μειώνεται η πυκνότητά του, και ο θερμός αέρας ανυψώνεται σε αυτή την περιοχή μέχρι να φτάσει τα 10 km σε ύψος. Από εκεί διασκορπίζεται σε βορά και νότο λόγω της περιστροφικής κίνησης της γης και της μικρότερης θερμοκρασίας της επιφάνειας στους πόλους. Αυτή η κίνηση σταματά σε μια ζώνη ανάμεσα στις 30 ο βόρεια και νότια, όπου και ο αέρας αρχίζει να ψύχεται και να χαμηλώνει. Κατά τον τρόπο αυτόν δημιουργούνται οι παγκόσμιοι άνεμοι, κυρίως λόγω της θερμοκρασιακής διαφοράς. Στις περιοχές όπου υπάρχουν κατερχόμενες αέριες μάζες δημιουργούνται υψηλές πιέσεις, ενώ σε περιοχές όπου έχουμε ανύψωση αερίων μαζών δημιουργούνται χαμηλές πιέσεις. Η ροή του αέρα γίνεται από περιοχές υψηλής πίεσης σε περιοχές χαμηλής. Όσο μεγαλύτερη είναι η διαφορά της ατμοσφαιρικής πίεσης, τόσο μεγαλύτερες είναι οι δυνάμεις που ασκούνται στις αέριες μάζες και τόσο μεγαλύτερη είναι η ταχύτητα του ανέμου. Εικόνα 1.4.1: Ροές παγκόσμιων ανέμων (Crest, 2000) Τ.Ε.Ι. ΠΕΙΡΑΙΑ

11 Σε χαμηλότερα στρώματα, κοντά στην επιφάνεια της γης, η μορφή του ανέμου επηρεάζεται και από το ανάγλυφο της επιφάνειας της γης, το τοπικό κλίμα και από εμπόδια που παρεμβάλλονται στην ροή του ανέμου. Η ταχύτητα του ανέμου σε μια συγκεκριμένη περιοχή μεταβάλλεται συνεχώς. Υπάρχουν αλλαγές στη μέση τιμή της ταχύτητας του ανέμου από χρόνο σε χρόνο, εποχιακές αλλαγές, αλλαγές λόγω καιρικών φαινόμενων, ημερήσιες μεταβολές και ακόμα και στιγμιαίες λόγω του τυρβώδους του ανέμου. Όλες αυτές οι αλλαγές προκαλούν προβλήματα στην προσπάθεια πρόγνωσης του αιολικού δυναμικού μιας περιοχής. Οι μετρήσεις της ταχύτητας ανέμου λαμβάνουν χώρα συνήθως ανά δευτερόλεπτο και η μέση τιμή κάθε 10 λεπτών (έως και 1 ώρα) είναι αυτή που καταγράφεται τελικά. Αυτό γίνεται γιατί έτσι μπορούμε να έχουμε σταθερές μέσες τιμές, είναι αρκετά μικρό το χρονικό βήμα, ώστε να αντικατοπτρίζει απότομες καταιγίδες και είναι τελικά ένας καλός συμβιβασμός για τον αποθηκευτικό χώρο που χρειάζονται τα δεδομένα που έχουν συλλεχθεί. Για να γίνει εφικτή η πρόβλεψη του αιολικού δυναμικού μιας περιοχής πρέπει να χρησιμοποιηθούν στατιστικές μέθοδοι, λόγω της μεγάλης μεταβλητότητας που περιγράφηκε παραπάνω. Στην εικόνα παρουσιάζεται ένα ιστόγραμμα της σχετικής συχνότητας των ταχυτήτων του ανέμου, βασισμένες σε μικρό χρονικό βήμα, για τη διάρκεια ενός ημερολογιακού έτους. Εικόνα 1.4.2: Διάγραμμα κατανομής της συχνότητας της ταχύτητας του ανέμου (Crest, 2000): σχετική συχνότητα-ταχύτητα ανέμου Τ.Ε.Ι. ΠΕΙΡΑΙΑ

12 Κάνοντας στατιστική ανάλυση των παραπάνω δεδομένων, έχει αποδειχθεί πως η κατανομή Weibul περιγράφει καλύτερα την ταχύτητα του ανέμου. Στην εικόνα φαίνονται πειραματικά δεδομένα μαζί με την καμπύλη της κατανομής Weibul. Η κατανομή Weibul περιγράφεται από δυο μεγέθη: την παράμετρο C, που αφορά την κλίμακα, δηλαδή το εύρος των τιμών της ταχύτητας του ανέμου, και την παράμετρο k, που αφορά το ύψος της καμπύλης. Εικόνα 1.4.3: Κατανομή Weibul με C=9.3m/s k=1.7 (Crest, 2000): πιθανότητα- ταχύτητα ανέμου Είναι πολύ σημαντικό να γνωρίζουμε την ταχύτητα του ανέμου σε μια περιοχή, για να μπορέσουμε να αξιολογήσουμε το αιολικό δυναμικό μιας περιοχής. Στην εικόνα φαίνεται πώς μεταβάλλεται το κόστος παραγωγής αιολικής ενέργειας σε μια συγκεκριμένη περιοχή, ανάλογα με την μέση ετήσια ταχύτητα ανέμου. Η ενέργεια που περιέχεται στον άνεμο είναι ανάλογη με την ταχύτητα του ανέμου υψωμένη στον κύβο. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

13 Εικόνα 1.4.4: Μεταβολή του κόστους παραγωγής ηλεκτρικής ενέργειας σε σχέση με τη μέση ετήσια ταχύτητα ανέμου (Crest, 2000) Ένας τρόπος παρουσίασης του αιολικού δυναμικού μιας περιοχής αποτελεί το τριαντάφυλλο του ανέμου. Σε μια εικόνα βλέπουμε ταχύτητα ανέμου, διεύθυνση ανέμου και την κατανομή εμφάνισής τους στο χρόνο. Ένα τυπικό τριαντάφυλλο ανέμου εμφανίζεται στην εικόνα Εικόνα 1.4.5: Τριαντάφυλλο ανέμου (Crest, 2000) Τ.Ε.Ι. ΠΕΙΡΑΙΑ

14 Στην εικόνα φαίνεται ο αιολικός ευρωπαϊκός άτλας. Είναι φανερό πως όλη η περιοχή του Αιγαίου παρουσιάζει υψηλό αιολικό δυναμικό, από τα υψηλότερα σε όλη την περιοχή της Ευρώπης. Εικόνα 1.4.6: Αιολικός Άτλας της Ευρώπης (Crest, 2000) Η αιολική ενέργεια είναι μια ανανεώσιμη μορφή ενέργειας. Όπως φαίνεται στην εικόνα η αιολική ενέργεια σε ανάλυση πλήρους κύκλου ζωής έχει τη μικρότερη παραγωγή CO 2 από όλες τις μορφές ενέργειας. Στο συγκεκριμένο διάγραμμα πρέπει να διευκρινιστεί ότι οι ηλεκτρογεννήτριες πετρελαίου, που παρουσιάζονται, αφορούν αυτοματοποιημένα συστήματα και ότι η μελλοντική πρακτική στην καλλιέργεια των ενεργειακών φυτών αφορά την ενσωμάτωση τεχνικών ολοκληρωμένης γεωργίας. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

15 Εικόνα 1.4.7: Στοιχεία ρύπανσης CO 2 σε ένα πλήρη κύκλο ζωής για την παραγωγή ηλεκτρικής ενέργειας (Crest, 2000) 1.5 ΑΝΕΜΟΜΗΧΑΝΕΣ Η ιστορία των αιολικών μηχανών ξεκινά από μηχανές ελαφρές, και εξελίχθηκε μέχρι βαριές και ογκώδεις μηχανές που εκμεταλλεύονται το φαινόμενο της αεροδυναμικής άνωσης. Η αιολική ενέργεια φυσικά δεν είναι μια σύγχρονη ανακάλυψη. Η πρώτη χρήση της παρατηρήθηκε στη ναυτιλία (ιστιοφόρα καράβια) αλλά και στη γεωργία. Σε στατικές εφαρμογές οι πρώτοι ανεμόμυλοι είχαν κατασκευαστεί στην αρχαιότητα. Οι πρώτοι ανεμόμυλοι χρησιμοποιήθηκαν για το άλεσμα του σιταριού και την άντληση νερού. Η πρώτη γνωστή μηχανή κατακόρυφου άξονα αναπτύχθηκε στην Περσία, περίπου στα μ.χ., για την άντληση νερού. Ένα μοντέλο μιας από αυτές τις ανεμομηχανές φαίνεται στην εικόνα (Dodge, 2002). Τ.Ε.Ι. ΠΕΙΡΑΙΑ

16 Εικόνα 1.5.1: Αντίγραφο της πρώτης καταγεγραμμένης ανεμομηχανής (Dodge, 2002) Ανεμομηχανές κατακόρυφου άξονα χρησιμοποιήθηκαν και στην Κίνα και πολλοί ερευνητές υποστηρίζουν ότι εκεί ήταν και ο τόπος ανακάλυψής τους πριν από 2000 χρόνια, αν και η πρώτη καταγραφή ήταν το 1219 μ.χ. Στην Κρήτη είχαμε μια πολύ μεγάλης έκτασης εφαρμογή των ανεμομηχανών για άντληση νερού από παλιά μέχρι τις ημέρες μας, όπως φαίνεται και στην εικόνα (Dodge, 2002). Εικόνα 1.5.2: Ανεμομηχανές για άντληση νερού στην Κρήτη (Dodge, 2002) Στην δυτική Ευρώπη το περσικής σύλληψης σχέδιο εξελίχτηκε παράλληλα με τους νερόμυλους και έχουμε από το 1270 μ.χ. τις πρώτες αναφορές και στο 1390 μ.χ. έχουμε τις πρώτες κατασκευές με το γνωστό σχήμα του ανεμόμυλου. Η βασική βελτίωση των ευρωπαϊκών ανεμομηχανών ήταν η χρήση πανιών για την δημιουργία αεροδυναμικής άνωσης. Αυτό αύξησε τον βαθμό απόδοσης των μηχανών, επιτρέποντας και την αύξηση της ταχύτητας περιστροφής της ανεμομηχανής. 500 Τ.Ε.Ι. ΠΕΙΡΑΙΑ

17 χρόνια εξέλιξης αυτού του σχεδίου ήταν αρκετά για να φτάσουν να έχουν οι ανεμομηχανές αυτές (Dodge, 2002): - Κύρτωση κατά μήκους της μπροστινής ακμής του πτερυγίου - Τοποθέτηση του κονταριού του πτερυγίου κατά 25% πίσω από την μπροστινή ακμή - Το κέντρο βαρύτητας του πτερυγίου στο 25% πίσω από την μπροστινή ακμή - Μη γραμμική συστροφή του πτερυγίου Μερικά μοντέλα έφτασαν στο σημείο να χρησιμοποιούν αεροδυναμικά φρένα, αεροτομές και βοηθητικά πτερύγια. Αυτές οι μηχανές παρήγαγαν μηχανικό έργο στην εποχή πριν την ανακάλυψη του ηλεκτρισμού. Πτώση στη χρήση τους παρουσιάστηκε με την ανακάλυψη της ατμομηχανής. Νέα εξέλιξη παρουσιάστηκε στο Νέο Κόσμο το 19 ο αιώνα. Οι πρώτες ανεμομηχανές εκεί είχαν ξύλινες πτέρυγες και ουρές, οι οποίες έστρεφαν την μηχανή προς τη διεύθυνση του ανέμου. Ο έλεγχος της ταχύτητας πραγματοποιούνταν με μέρος των πτερύγων να πέφτουν προς τα πίσω σε μεγάλες ταχύτητες ανέμου. Το 1870 αυτές οι ανεμομηχανές εξοπλίστηκαν με πτέρυγες από ατσάλι. Το ατσάλι είχε το πλεονέκτημα της μεγάλης αντοχής και της δυνατότητας διαμόρφωσης του σχήματος ευκολότερα. Ανάμεσα στο 1850 και το 1970 μ.χ. πάνω από 6 εκατομμύρια τέτοιες ανεμομηχανές εγκαταστάθηκαν μόνο στις Ηνωμένες Πολιτείες. Αυτός ο τύπος ανεμομηχανής, που φαίνεται και στην εικόνα 1.5.3, χρησιμοποιήθηκε στο τέλος του 19 ου αιώνα για την παραγωγή ηλεκτρικής ενέργειας (Dodge, 2002). Εικόνα 1.5.3: Ανεμομηχανή με πτέρυγες από ατσάλι για άντληση νερού (Dodge, 2002) Τ.Ε.Ι. ΠΕΙΡΑΙΑ

18 Η πρώτη χρήση μεγάλης ανεμομηχανής για την παραγωγή ηλεκτρικής ενέργειας πραγματοποιήθηκε στο Κληβελαντ του Οχάιο των Ηνωμένων Πολιτειών το 1888 μ.χ. από τον Charles Brush. Η δρομέας είχε διάμετρο 17 μέτρα και ενσωμάτωνε για πρώτη φορά κιβώτιο ταχυτήτων με σχέση 50:1, για να επιτευχθεί η περιστροφή μιας γεννήτριας συνεχούς ρεύματος στην ταχύτητα λειτουργίας της. Αυτή η ανεμομηχανή είχε παραγωγή 12 kw και λειτούργησε για 20 χρόνια (Dodge, 2002). Το 1891 μ.χ. ο Dane Poul La Cour ανέπτυξε την πρώτη ανεμομηχανή για παραγωγή ηλεκτρικής ενέργειας, που ενσωμάτωνε στοιχεία αεροδυναμικής σχεδίασης των καλύτερων ανεμόμυλων εκείνης της εποχής. Η μεγάλη ταχύτητα περιστροφής έκανε τις μηχανές αυτές αρκετά αποδοτικές στην παραγωγή ηλεκτρικής ενέργειας. Μέχρι το τέλος του Πρώτου Παγκοσμίου Πολέμου χρησιμοποιούνταν πολλές τέτοιες ανεμομηχανές με ηλεκτρική απόδοση 25 kw στη Δανία (Dodge, 2002). Μέχρι το 1920 είχαν δοκιμαστεί οι βασικές διατάξεις δρομέα (με πανιά ή σαν ανεμιστήρας) και δεν αποδείχθηκαν αποδοτικοί για την παραγωγή μεγάλων ποσοτήτων ηλεκτρικής ενέργειας. Έτσι αρχικά χρησιμοποιήθηκαν έλικες από αεροπλάνα, ενώ αργότερα οι πτέρυγες των μονοπλάνων χρησιμοποιήθηκαν στις ανεμομηχανές. Οι ανεμομηχανές που χρησιμοποιούνταν για την παραγωγή ηλεκτρικής ενέργειας ονομάστηκαν ανεμογεννήτριες. Στα πρώτα τους βήματα οι ανεμομηχανές ήταν συνδεδεμένες με γεννήτριες συνεχούς ρεύματος. Οι χρήσεις τους ήταν πολλές και σε μεγάλη έκταση, ειδικά στις μεγάλες απομακρυσμένες φάρμες των Ηνωμένων Πολιτειών. Μετά όμως το μεγάλο κραχ, για να τονωθούν οι αγροτικές περιοχές, διευρύνθηκε το κεντρικό δίκτυο ηλεκτροδότησης και έτσι το ενδιαφέρον μειώθηκε. Από το 1950 και μετά όμως το ενδιαφέρον αυξήθηκε για μικρής κλίμακας ανεμογεννήτριες στην Αφρική και την Αυστραλία. Εκτός από τις μικρές ανεμογεννήτριες έγιναν προσπάθειες για την κατασκευή μεγάλου μεγέθους ανεμογεννητριών. Το 1931 κατασκευάστηκε στη Σοβιετική Ένωση ανεμογεννήτρια ισχύος 100 kw, ενώ 10 χρόνια αργότερα στο Βερμόντ των Ηνωμένων Πολιτειών κατασκευάστηκε μια ανεμογεννήτρια οριζοντίου άξονα με 2 πτέρυγες, διάμετρο δρομέα 52 m και βάρος δρομέα 16 τόνους από ατσάλι και ισχύ 1.25 MW. Αυτή η ανεμογεννήτρια μετά από μερικές εκατοντάδες ώρες λειτουργίας Τ.Ε.Ι. ΠΕΙΡΑΙΑ

19 καταστράφηκε, καθώς αποκόπηκαν οι πτέρυγες λόγω αστοχίας υλικού. Η ανεμογεννήτρια αυτή παρουσιάζεται στην εικόνα (Dodge, 2002). Εικόνα 1.5.4: Ανεμογεννήτρια ισχύος 1.25 MW κατασκευής 1941(Dodge, 2002) Από το 1960 και μετά η εξέλιξη στην αεροδυναμική, η κατασκευή νέων ανθεκτικών υλικών, όπως το φαϊμπεργκλας, και η ανάπτυξη των ηλεκτρονικών οδήγησαν στην κατασκευή ανεμογεννητριών υψηλής απόδοσης και χαμηλού κόστους. Στις 2 πετρελαϊκές κρίσεις το ενδιαφέρον για αυτές τις μηχανές ανέβηκε κατακόρυφα. Στις μέρες μας το κόστος τους έχει φτάσει σε τέτοιο σημείο, που οι επενδύσεις σε αυτές είναι αποδοτικές για μεγάλη κλίμακα, ενώ οι μικρής κλίμακας έχουν φτάσει να έχουν κόστος μόλις 1000 / kw και αποδοτικό χρόνο ζωής της τάξης των 20 ετών (Dodge, 2002). Στην εικόνα φαίνεται το κόστος παραγωγής ηλεκτρικής ενέργειας με τη χρήση ανεμομηχανών, σε συνάρτηση με την μέση ταχύτητα ανέμου και σε σύγκριση με συμβατικές μεθόδους παραγωγής ηλεκτρικής ενέργειας. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

20 Εικόνα 1.5.5: Κόστος ηλεκτρικής ενέργειας με τη χρήση ανεμογεννητριών σε σύγκριση με συμβατικές μεθόδους. (Wind Power Magazine, 2004) 1.6 ΒΙΟΜΑΖΑ Με τον όρο βιομάζα εννοούμε το βιολογικό υλικό από ζώντες ή πρόσφατα αποθανόντες οργανισμούς ζωικούς ή φυτικούς. Βιομάζα θεωρείται για παράδειγμα το ξύλο και τα απόβλητα των ζώων. Η καύση της βιομάζας παράγει διοξείδιο του άνθρακα. Όμως κατά την ανάπτυξη της βιομάζας καταναλώνεται από την ατμόσφαιρα διοξείδιο του άνθρακα, οπότε το συνολικό ισοζύγιο είναι ίσο με μηδέν. Μπορούν να χρησιμοποιηθούν κατά περίπτωση βιολογικά υπολείμματα, που τυχόν υπάρχουν σε μια γεωργική μονάδα, για παραγωγή θερμότητας. 1.7 ΓΕΩΘΕΡΜΙΑ Η γεωθερμική ενέργεια προέρχεται από τη θερμική ενέργεια που είναι αποθηκευμένη μέσα στο φλοιό της γης. Η θερμική αυτή ενέργεια από τον πυρήνα της γης μεταφέρεται στον μανδύα. Λόγω τήξης δημιουργείται το μάγμα, το οποίο λόγω μικρότερης πυκνότητας ανέρχεται προς την επιφάνεια της γης. Τις περισσότερες φορές δεν καταφέρνει να φτάσει στην επιφάνεια, φτάνει όμως πολύ κοντά σε αυτή, θερμαίνοντας ορυκτά και νερό που υπάρχουν εκεί. Αυτό το νερό ανέρχεται και είτε φτάνει στην επιφάνεια δημιουργώντας γεωθερμικές πηγές, είτε δημιουργεί γεωθερμικές δεξαμενές λίγο κάτω από την επιφάνεια. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

21 Η γεωθερμική ενέργεια είναι: Καθαρή προς το περιβάλλον Απαιτεί μικρή επιφάνεια ανά παραγόμενη μεγαβατώρα (MWh). Αξιόπιστη, μιας και μπορεί να λειτουργεί συνεχώς. Αν υπάρχει κάποια γεωθερμική πηγή στην έκταση της αγροτικής μονάδος, πρέπει να γίνει εξειδικευμένη μελέτη για την χρήση της, με σκοπό την κάλυψη των θερμικών αναγκών της μονάδος ΧΑΡΤΕΣ ΑΙΟΛΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Το Κέντρο Ανανεώσιμων Πηγών Ενέργειας έχει προχωρήσει από το 2001 στην παραγωγή του ηλεκτρονικού άτλαντα για το "Τεχνικά και Οικονομικά Εκμεταλλεύσιμο Δυναμικό της Αιολικής Ενέργειας", με σκοπό την πληρέστερη ενημέρωση του κοινού για τα αποτελέσματα των έργων, που σχετίζονται με την εκτίμηση του εκμεταλλεύσιμου δυναμικού των ΑΠΕ. Ακολουθούν οι αιολικοί χάρτες των νομών Φθιώτιδας-Φωκίδας-Βοιωτίας, Αργολίδας και Λακωνίας. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

22 Εικόνα Αιολικό Δυναμικό νομού Λακωνίας Τ.Ε.Ι. ΠΕΙΡΑΙΑ

23 Εικόνα Αιολικό Δυναμικό νομού Φθιώτιδας-Φωκίδας-Βοιωτίας Τ.Ε.Ι. ΠΕΙΡΑΙΑ

24 Εικόνα Αιολικό Δυναμικό νομού Αργολίδας Τ.Ε.Ι. ΠΕΙΡΑΙΑ

25 2. ΑΥΤΟΝΟΜΑ ΥΒΡΙΔΙΚΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΟΠΑΡΑΓΩΓΗΣ Υβριδικά λέμε τα συστήματα που αποτελούνται από 2 ή περισσότερες πηγές ενέργειας. Αυτές μπορεί να είναι είτε ανανεώσιμες (φωτοβολταϊκά, ανεμογεννήτριες), είτε συμβατικές (γεννήτριες πετρελαίου). Η τυπική διάταξη αυτών των συστημάτων φαίνεται στην εικόνα 2.1 Φωτοβολταϊκά πλαίσια Ανεμογεννήτρια Ρυθμιστής φόρτισης Μπαταρία Αναστροφέας Μικρά υδροηλεκτρικά Γεωθερμία υψηλής ενθαλπίας Φορτίο Τα φωτοβολταϊκά και οι μικρές ανεμογεννήτριες με ισχύ μικρότερη των πέντε κιλοβάτ (<5 kw) παράγουν συνεχές ρεύμα. Μέσω ενός ρυθμιστή φόρτισης η παραγωγή τους φορτίζει την μπαταρία. Ο ρυθμιστής φόρτισης απαιτείται για την προστασία της μπαταρίας από υπερφόρτιση, κατάσταση που μειώνει τη λειτουργική ζωή της μπαταρίας. Επειδή τα φορτία είναι κατά κύριο λόγο εναλλασσομένου ρεύματος, απαιτείται η χρήση αναστροφέα, για να μετατρέψει το συνεχές ρεύμα της μπαταρίας σε εναλλασσόμενο. Για μικρά συστήματα αυτή η τοπολογία αρκεί. Για μεγαλύτερα συστήματα από 2-3 kw, συνήθως, χρησιμοποιείται η τοπολογία μικροδικτύου, όπου ουσιαστικά φτιάχνουμε μια μικρογραφία του δικτύου της ΔΕΗ. Η τοπολογία ενός υβριδικού συστήματος συνήθως καλύπτει συγκεντρωμένες ανάγκες γύρω από το σύστημα. Αν υπάρχουν περισσότερα σημεία, που απαιτούν ηλεκτρική ενέργεια, διασκορπισμένα σε μια περιοχή, μπορεί να ακολουθηθεί η τοπολογία των μικροδικτύων. Τα μικροδίκτυα είναι ηλεκτρικά δίκτυα χαμηλής τάσης, που μπορούν να ενσωματώνουν κατανεμημένη παραγωγή. Μπορούν να λειτουργούν είτε αυτόνομα, είτε διασυνδεδεμένα με μεγαλύτερα κεντρικά δίκτυα. Με την τοπολογία των μικροδικτύων μπορούν να σχεδιαστούν δίκτυα τριφασικά, ακόμη και άνω των 300 kw εγκατεστημένης ισχύος, και να καλύψουν τις ανάγκες ακόμη και ενός μικρού χωριού. Τ.Ε.Ι. ΠΕΙΡΑΙΑ

26 3. Ενεργειακές ανάγκες αγροτικών εκμεταλλεύσεων. Κρίνεται σκόπιμο να γίνει διαχωρισμός μεταξύ μονάδων φυτικής και ζωϊκής παραγωγής. 3.1 ΦΥΤΙΚΗ ΠΑΡΑΓΩΓΗ ΘΕΡΜΟΚΗΠΙΑ Ενεργειακές ανάγκες στη φυτική παραγωγή ουσιαστικά απαντώνται στις θερμοκηπιακές κατασκευές. Οι ενεργειακές ανάγκες που έχει ένα θερμοκήπιο είναι οι ακόλουθες: - Αερισμός Για την κάλυψη των αναγκών του αερισμού χρησιμοποιούνται αρχικά παράθυρα. Σε αυτοματοποιημένα θερμοκήπια τα παράθυρα είναι εφοδιασμένα με ηλεκτρικούς κινητήρες. Όταν οι ανάγκες είναι μεγαλύτερες, χρησιμοποιούνται ηλεκτρικοί ανεμιστήρες. Εικόνα Ανεμιστήρας θερμοκηπίου Εικόνα Παράθυρο θερμοκηπίου - Φωτισμός Τ.Ε.Ι. ΠΕΙΡΑΙΑ

27 Πολλές φορές απαιτείται παροχή περισσότερων ωρών φωτός για την ιδανική ανάπτυξη μιας καλλιέργειας. Για αυτό το σκοπό χρησιμοποιούνται συνήθως λαμπτήρες. Στις μέρες μας έχουν κάνει την εμφάνισή τους συστήματα βασισμένα σε κρυσταλοδιόδους (led). Το πλεονέκτημα των led είναι η πολύ μικρότερη κατανάλωση σε ηλεκτρική ενέργεια. Εικόνα Φωτισμός με συμβατικές λάμπες Εικόνα Φωτισμός με LED - Δροσισμός Πολλές φορές απαιτείται η μείωση της θερμοκρασίας στο θερμοκήπιο. Αυτό αρχικά μπορεί να επιτευχθεί με το άνοιγμα παραθύρων. Αν αυτό δεν επαρκεί, τα συστήματα που χρησιμοποιούνται είναι κυρίως δύο, η υδρονέφωση και η χρήση διαβρεχόμενων παρειών. Στην υδρονέφωση σωλήνες νερού διαπερνούν ψηλά το θερμοκήπιο. Με κατάλληλα μπεκ δημιουργείται νεφέλωμα από το νερό. Αυτά τα Τ.Ε.Ι. ΠΕΙΡΑΙΑ

28 μικροσταγονίδια νερού εξατμίζονται ρίχνοντας την θερμοκρασία του θερμοκηπίου, αυξάνοντας ταυτόχρονα τη σχετική υγρασία. Οι διαβρεχόμενες παρειές χρησιμοποιούνται σε συνδυασμό με τους ανεμιστήρες. Λόγω της υποπίεσης που δημιουργούν οι ανεμιστήρες, ο εξωτερικός αέρας περνάει μέσα από τις διαβρεχόμενες παρειές, παρασέρνοντας σταγονίδια νερού. Αυτά τα σταγονίδια εξατμίζονται ρίχνοντας τη θερμοκρασία του χώρου. Για την λειτουργία αυτού του συστήματος πρέπει τα παράθυρα να είναι κλειστά. Εικόνα Δροσισμός με διαβρεχόμενα πάνελ Τ.Ε.Ι. ΠΕΙΡΑΙΑ

29 Εικόνα Δροσισμός με υδρονέφωση - Θέρμανση Πολλές φορές κρίνεται αναγκαία η θέρμανση του θερμοκηπίου. Συνήθως χρησιμοποιούνται συμβατικοί καυστήρες πετρελαίου ή βιομάζας, ενώ σε μερικές περιπτώσεις μπορούν να χρησιμοποιηθούν και αερόθερμα. Εικόνα Αερόθερμο θερμοκηπίου - Αυτοματισμοί Όταν κάποιοι από τους μηχανισμούς ελέγχονται αυτόματα, τότε απαιτείται ενέργεια για την κίνηση των διαφόρων ηλεκτροκινητήρων. Όταν το θερμοκήπιο χρησιμοποιεί υδροπονία, τότε απαιτούνται διάφοροι αυτοματισμοί, που απαιτούν τη χρήση ηλεκτρικού ρεύματος. Τέλος, προφανώς απαιτείται νερό. Αν το νερό αυτό παρέχεται από γεώτρηση ή πηγάδι απαιτείται η χρήση κάποιας αντλίας. Συνήθως οι αντλίες είναι ηλεκτρικές στις ημέρες μας. 3.2 ΖΩΪΚΗ ΠΑΡΑΓΩΓΗ ΣΤΑΒΛΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ Κάθε ζωϊκός πληθυσμός έχει διαφορετικές ανάγκες. Οι εντατικές εκμεταλλεύσεις, όπου χρησιμοποιούνται κτιριακές εγκαταστάσεις, μπορούν να παρουσιάσουν κάποιες από τις παρακάτω ενεργειακές ανάγκες: - Αερισμός Για την κάλυψη των αναγκών του αερισμού μπορούν να χρησιμοποιηθούν παράθυρα. Σε αυτοματοποιημένες μονάδες τα παράθυρα είναι εφοδιασμένα με ηλεκτρικούς κινητήρες. Συνήθως γίνεται χρήση ηλεκτρικών ανεμιστήρων. - Φωτισμός Τ.Ε.Ι. ΠΕΙΡΑΙΑ

30 Συνήθως αρκεί ο φυσικός, αλλά χρειάζονται λαμπτήρες για εργασίες που πραγματοποιούνται νωρίς το πρωί ή αργά το απόγευμα. - Δροσισμός Πολλές φορές απαιτείται η μείωση της θερμοκρασίας στη σταβλική εγκατάσταση. Αυτό αρχικά μπορεί να επιτευχθεί με το άνοιγμα παραθύρων. Αν αυτό δεν επαρκεί, τα συστήματα που χρησιμοποιούνται είναι κυρίως δύο: η υδρονέφωση και η χρήση διαβρεχόμενων παρειών. Στην υδρονέφωση σωλήνες νερού διαπερνούν τη σταβλική εγκατάσταση. Με κατάλληλα μπεκ δημιουργείται νεφέλωμα από το νερό. Αυτά τα μικροσταγονίδια νερού εξατμίζονται ρίχνοντας την θερμοκρασία της σταβλικής εγκατάστασης, αυξάνοντας ταυτόχρονα τη σχετική υγρασία. Οι διαβρεχόμενες παρειές χρησιμοποιούνται σε συνδυασμό με τους ανεμιστήρες. Λόγω της υποπίεσης, που δημιουργούν οι ανεμιστήρες, ο εξωτερικός αέρας περνάει μέσα από τις διαβρεχόμενες παρειές παρασέρνοντας σταγονίδια νερού. Αυτά τα σταγονίδια εξατμίζονται ρίχνοντας τη θερμοκρασία του χώρου. Για την λειτουργία αυτού του συστήματος πρέπει τα παράθυρα να είναι κλειστά. - Θέρμανση Συνήθως θέρμανση απαιτείται μόνο στα νεογέννητα ζώα. Χρησιμοποιούνται κυρίως λαμπτήρες υπέρυθρης ακτινοβολίας. - Αμελκτήρια Στα αμελκτήρια πάντα υπάρχει μηχανολογικός εξοπλισμός, που απαιτεί ηλεκτρική ενέργεια. Εικόνα Αμελκτήριο για αιγοπρόβατα Τ.Ε.Ι. ΠΕΙΡΑΙΑ

Ι. Μελέτη και σχεδίαση αυτοδύναμης ενεργειακά αγροτικής μονάδας

Ι. Μελέτη και σχεδίαση αυτοδύναμης ενεργειακά αγροτικής μονάδας «Μελέτη και Σχεδίαση Αυτοδύναμης Ενεργειακά Αγροτικής Εκμετάλλευσης με χρήση Ανανεώσιμων Πηγών Ενέργειας» Ι. Μελέτη και σχεδίαση αυτοδύναμης ενεργειακά αγροτικής μονάδας Επιστημονική Ομάδα: Αν. Καθηγητής

Διαβάστε περισσότερα

Αυτόνομο Ενεργειακά Κτίριο

Αυτόνομο Ενεργειακά Κτίριο Αυτόνομο Ενεργειακά Κτίριο H τάση για αυτονόμηση και απεξάρτηση από καθετί που σχετίζεται με έξοδα αλλά και απρόσμενες αυξήσεις, χαρακτηρίζει πλέον κάθε πλευρά της ζωής μας. Φυσικά, όταν πρόκειται για

Διαβάστε περισσότερα

Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης. Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος

Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης. Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος Α Τοσίτσειο Αρσκάκειο Λύκειο Εκάλης Αναγνωστάκης Νικόλας Γιαννακόπουλος Ηλίας Μπουρνελάς Θάνος Μυλωνάς Μιχάλης Παύλοβιτς Σταύρος Εισαγωγή στις ήπιες μορφές ενέργειας Χρήσεις ήπιων μορφών ενέργειας Ηλιακή

Διαβάστε περισσότερα

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι

Εργασία Πρότζεκτ β. Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Εργασία Πρότζεκτ β Τετραμήνου Ηλιακή Ενέργεια Γιώργος Αραπόπουλος Κώστας Νταβασίλης (Captain) Γεράσιμος Μουστάκης Χρήστος Γιαννόπουλος Τζόνι Μιρτάι Λίγα λόγια για την ηλιακή ενέργεια Ηλιακή ενέργεια χαρακτηρίζεται

Διαβάστε περισσότερα

V Περιεχόμενα Πρόλογος ΧΙΙΙ Κεφάλαιο 1 Πηγές και Μορφές Ενέργειας 1 Κεφάλαιο 2 Ηλιακό Δυναμικό 15

V Περιεχόμενα Πρόλογος ΧΙΙΙ Κεφάλαιο 1 Πηγές και Μορφές Ενέργειας 1 Κεφάλαιο 2 Ηλιακό Δυναμικό 15 V Περιεχόμενα Πρόλογος ΧΙΙΙ Κεφάλαιο 1 Πηγές και Μορφές Ενέργειας 1 1.1 Εισαγωγή 1 1.2 Η φύση της ενέργειας 1 1.3 Πηγές και μορφές ενέργειας 4 1.4 Βαθμίδες της ενέργειας 8 1.5 Ιστορική αναδρομή στην εξέλιξη

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΕΦΑΡΜΟΓΕΣ ΣΕ ΚΑΤΟΙΚΙΕΣ Τι είναι οι Ανανεώσιμες Πηγές Ενέργειας; Ως Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) ορίζονται οι ενεργειακές πηγές, οι οποίες

Διαβάστε περισσότερα

Γεωθερμία Εξοικονόμηση Ενέργειας

Γεωθερμία Εξοικονόμηση Ενέργειας GRV Energy Solutions S.A Γεωθερμία Εξοικονόμηση Ενέργειας Ανανεώσιμες Πηγές Σκοπός της GRV Ενεργειακές Εφαρμογές Α.Ε. είναι η κατασκευή ενεργειακών συστημάτων που σέβονται το περιβάλλον με εκμετάλλευση

Διαβάστε περισσότερα

Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο

Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο Ενεργειακό Γραφείο Κυπρίων Πολιτών Φωτοβολταϊκά συστήματα και σύστημα συμψηφισμού μετρήσεων (Net metering) στην Κύπρο Βασικότερα τμήματα ενός Φ/Β συστήματος Τα φωτοβολταϊκά (Φ/Β) συστήματα μετατρέπουν

Διαβάστε περισσότερα

Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω

Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω Μελέτη και οικονομική αξιολόγηση φωτοβολταϊκής εγκατάστασης σε οικία στη νήσο Κω ΙΩΑΝΝΙΔΟΥ ΠΕΤΡΟΥΛΑ /04/2013 ΓΑΛΟΥΖΗΣ ΧΑΡΑΛΑΜΠΟΣ Εισαγωγή Σκοπός αυτής της παρουσίασης είναι μία συνοπτική περιγραφή της

Διαβάστε περισσότερα

ΑΥΤΟΝΟΜΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΥΤΟΝΟΜΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΝΟΜΑ ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ HELIOS NATURA HELIOS OIKIA HELIOSRES ΟΔΥΣΣΕΑΣ ΔΙΑΜΑΝΤΗΣ ΚΑΙ ΣΙΑ Ε.Ε. Κολοκοτρώνη 9 & Γκίνη 6 15233 ΧΑΛΑΝΔΡΙ Tel. (+30) 210 6893966 Fax. (+30) 210 6893964 E-Mail : info@heliosres.gr

Διαβάστε περισσότερα

Ειδικά κεφάλαια παραγωγής ενέργειας

Ειδικά κεφάλαια παραγωγής ενέργειας Τμήμα Μηχανολόγων Μηχανικών Ειδικά κεφάλαια παραγωγής ενέργειας Ενότητα 3 (γ): Ηλιακή ενέργεια. Φωτοβολταϊκά συστήματα, διαστασιολόγηση και βασικοί υπολογισμοί, οικονομική ανάλυση. Αν. Καθηγητής Γεώργιος

Διαβάστε περισσότερα

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Η θερμοκρασία του εδάφους είναι ψηλότερη από την ατμοσφαιρική κατά τη χειμερινή περίοδο, χαμηλότερη κατά την καλοκαιρινή

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 2: Φωτοβολταϊκά Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ

Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ Μελέτη κάλυψης ηλεκτρικών αναγκών νησιού με χρήση ΑΠΕ Σπουδαστές: ΤΣΟΛΑΚΗΣ ΧΡΗΣΤΟΣ ΧΡΥΣΟΒΙΤΣΙΩΤΗ ΣΟΦΙΑ Επιβλέπων καθηγητής: ΒΕΡΝΑΔΟΣ ΠΕΤΡΟΣ

Διαβάστε περισσότερα

Φωτοβολταϊκά συστήματα ιδιοκατανάλωσης, εφεδρείας και Εξοικονόμησης Ενέργειας

Φωτοβολταϊκά συστήματα ιδιοκατανάλωσης, εφεδρείας και Εξοικονόμησης Ενέργειας Φωτοβολταϊκά συστήματα ιδιοκατανάλωσης, εφεδρείας και Εξοικονόμησης Ενέργειας Λύσεις ΦωτοβολταΙκών συστημάτων εξοικονόμησης ενέργειας Απευθείας κατανάλωση Εφεδρική λειτουργία Αυτόνομο Σύστημα 10ΚWp, Αίγινα

Διαβάστε περισσότερα

Φωτοβολταϊκά από µονοκρυσταλλικό πυρίτιο

Φωτοβολταϊκά από µονοκρυσταλλικό πυρίτιο 1 ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ Τα φωτοβολταϊκά συστήµατα αποτελούν µια από τις εφαρµογές των Ανανεώσιµων Πηγών Ενέργειας, µε τεράστιο ενδιαφέρον για την Ελλάδα. Εκµεταλλευόµενοι το φωτοβολταϊκό φαινόµενο το

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Περιβάλλον και συμπεριφορά ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Δρ Κώστας Αθανασίου Επίκουρος Καθηγητής Εργαστήριο Μη-συμβατικών Πηγών Ενέργειας Τμ. Μηχανικών Περιβάλλοντος Δημοκρίτειο Πανεπιστήμιο Θράκης Τηλ.

Διαβάστε περισσότερα

ΔΡΟΣΙΣΜΟΣ ΤΟΥ ΘΕΡΜΟΚΗΠΙΟΥ Σύστημα με δυναμικό εξαερισμό και υγρό τοίχωμα

ΔΡΟΣΙΣΜΟΣ ΤΟΥ ΘΕΡΜΟΚΗΠΙΟΥ Σύστημα με δυναμικό εξαερισμό και υγρό τοίχωμα ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΜΑΘΗΜΑ: ΒΙΟΚΛΙΜΑΤΟΛΟΓΙΑ ΘΕΡΜΟΚΗΠΙΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Ι. Λυκοσκούφης ΔΡΟΣΙΣΜΟΣ ΤΟΥ ΘΕΡΜΟΚΗΠΙΟΥ Σύστημα με δυναμικό εξαερισμό και υγρό τοίχωμα Ο εξαερισμός του θερμοκηπίου, ακόμη και όταν

Διαβάστε περισσότερα

Πρακτικός Οδηγός Εφαρμογής Μέτρων

Πρακτικός Οδηγός Εφαρμογής Μέτρων Πρακτικός Οδηγός Εφαρμογής Μέτρων Φ ο ρ έ α ς υ λ ο π ο ί η σ η ς Δ Η Μ Ο Σ Ι Ο Σ Τ Ο Μ Ε Α Σ Άξονες παρέμβασης Α. Κτιριακές υποδομές Β. Μεταφορές Γ. Ύ δρευση και διαχείριση λυμάτων Δ. Διαχείριση αστικών

Διαβάστε περισσότερα

Λύσεις Εξοικονόμησης Ενέργειας

Λύσεις Εξοικονόμησης Ενέργειας Λύσεις Εξοικονόμησης Ενέργειας Φωτοβολταϊκά Αστείρευτη ενέργεια από τον ήλιο! Η ηλιακή ενέργεια είναι μια αστείρευτη πηγή ενέργειας στη διάθεση μας.τα προηγούμενα χρόνια η τεχνολογία και το κόστος παραγωγής

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΙΝΣΤΙΤΟΥΤΟ ΕΝΕΡΓΕΙΑΣ ΝΟΤΙΟΑΝΑΤΟΛΙΚΗΣ ΕΥΡΩΠΗΣ Εφαρμογές Α.Π.Ε. σε Κτίρια και Οικιστικά Σύνολα Μαρία Κίκηρα, ΚΑΠΕ - Τμήμα Κτιρίων Αρχιτέκτων MSc Αναφορές: RES Dissemination, DG

Διαβάστε περισσότερα

Ενεργειακά συστήµατα-φωτοβολταϊκά & εξοικονόµηση ενέργειας

Ενεργειακά συστήµατα-φωτοβολταϊκά & εξοικονόµηση ενέργειας Επιστηµονικό Τριήµερο Α.Π.Ε από το Τ.Ε.Ε.Λάρισας.Λάρισας 29-30Νοεµβρίου,1 εκεµβρίου 2007 Ενεργειακά συστήµατα-φωτοβολταϊκά & εξοικονόµηση ενέργειας Θεόδωρος Καρυώτης Ενεργειακός Τεχνικός Copyright 2007

Διαβάστε περισσότερα

Πηγές ενέργειας - Πηγές ζωής

Πηγές ενέργειας - Πηγές ζωής Πηγές ενέργειας - Πηγές ζωής Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2014 Παράγει ενέργεια το σώμα μας; Πράγματι, το σώμα μας παράγει ενέργεια! Για να είμαστε πιο ακριβείς, παίρνουμε ενέργεια από τις

Διαβάστε περισσότερα

ΒΙΟΚΛΙΜΑΤΟΛΟΓΙΑ ΘΕΡΜΟΚΗΠΙΩΝ ΘΕΡΜΟΤΗΤΑΡΥΘΜΙΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ. Δρ. Λυκοσκούφης Ιωάννης

ΒΙΟΚΛΙΜΑΤΟΛΟΓΙΑ ΘΕΡΜΟΚΗΠΙΩΝ ΘΕΡΜΟΤΗΤΑΡΥΘΜΙΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ. Δρ. Λυκοσκούφης Ιωάννης ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΒΙΟΚΛΙΜΑΤΟΛΟΓΙΑ ΘΕΡΜΟΚΗΠΙΩΝ ΘΕΡΜΟΤΗΤΑΡΥΘΜΙΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ Δρ. Λυκοσκούφης Ιωάννης 1 Ισόθερμες καμπύλες τον Ιανουάριο 1 Κλιματικές ζώνες Τα διάφορα μήκη κύματος της θερμικής ακτινοβολίας

Διαβάστε περισσότερα

Εγκατάσταση Μικρής Ανεμογεννήτριας και Συστοιχίας Φωτοβολταϊκών σε Οικία

Εγκατάσταση Μικρής Ανεμογεννήτριας και Συστοιχίας Φωτοβολταϊκών σε Οικία Εγκατάσταση Μικρής Ανεμογεννήτριας και Συστοιχίας Φωτοβολταϊκών σε Οικία Αλεξίου Κωνσταντίνος & Βαρβέρης Δημήτριος ΑΙΓΑΛΕΩ ΙΟΥΝΙΟΣ 2014 Ηλεκτρική Ενέργεια & Ηλεκτροπαραγωγή Συμβατικές Μέθοδοι Παραγωγής

Διαβάστε περισσότερα

2015 Η ενέργεια είναι δανεική απ τα παιδιά μας

2015 Η ενέργεια είναι δανεική απ τα παιδιά μας Εκπαιδευτικά θεματικά πακέτα (ΚΙΤ) για ευρωπαϊκά θέματα Τ4Ε 2015 Η ενέργεια είναι δανεική απ τα παιδιά μας Teachers4Europe Οδηγιεσ χρησησ Το αρχείο που χρησιμοποιείτε είναι μια διαδραστική ηλεκτρονική

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04)

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04) ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη (ΠΕ02) Βασιλική Χατζηκωνσταντίνου (ΠΕ04) Β T C E J O R P Υ Ν Η Μ Α Ρ Τ ΤΕ Α Ν Α Ν Ε Ω ΣΙ Μ ΕΣ Π Η ΓΕ Σ ΕΝ Ε Ρ ΓΕ Ι Α Σ. Δ Ι Ε Ξ Δ Σ Α Π ΤΗ Ν Κ Ρ Ι ΣΗ 2 Να

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ορισμός «Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) είναι οι μη ορυκτές ανανεώσιμες πηγές ενέργειας, δηλαδή η αιολική, η ηλιακή και η γεωθερμική ενέργεια, η ενέργεια κυμάτων, η παλιρροϊκή ενέργεια, η υδραυλική

Διαβάστε περισσότερα

Ανανεώσιμες Μορφές Ενέργειας

Ανανεώσιμες Μορφές Ενέργειας Ανανεώσιμες Μορφές Ενέργειας Ενότητα 5: Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Περιεχόμενα ενότητας Σχεδιασμός ΦΒ Πάρκων Χωροθέτηση - Διαμορφώσεις χώρων Σκιάσεις Ηλεκτρομηχανολογικός

Διαβάστε περισσότερα

«Αποθήκευση Ενέργειας στο Ελληνικό Ενεργειακό Σύστημα και στα ΜΔΝ»

«Αποθήκευση Ενέργειας στο Ελληνικό Ενεργειακό Σύστημα και στα ΜΔΝ» «Αποθήκευση Ενέργειας στο Ελληνικό Ενεργειακό Σύστημα και στα ΜΔΝ» ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΕΝΔΥΤΙΚΟ ΦΟΡΟΥΜ «Επενδύοντας στην Πράσινη Ενέργεια: Αποθήκευση-Διασυνδέσεις-Νέα Έργα ΑΠΕ» 15 Ιουλίου 2019 Ι. Χατζηβασιλειάδης,

Διαβάστε περισσότερα

Ήλιος και Ενέργεια. Ηλιακή ενέργεια:

Ήλιος και Ενέργεια. Ηλιακή ενέργεια: Ηλιακή ενέργεια: Ήλιος και Ενέργεια Ηλιακή ενέργεια είναι η ενέργεια που προέρχεται από τον ήλιο και αξιοποιείται μέσω τεχνολογιών που εκμεταλλεύονται τη θερμική και ηλεκτρομαγνητική ακτινοβολία του ήλιου

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εισηγητές : Βασιλική Σπ. Γεμενή Διπλ. Μηχανολόγος Μηχανικός Δ.Π.Θ Θεόδωρος Γ. Μπιτσόλας Διπλ. Μηχανολόγος Μηχανικός Π.Δ.Μ Λάρισα 2013 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΑΠΕ 2. Ηλιακή ενέργεια

Διαβάστε περισσότερα

Κατευθύνσεις και εργαλεία για την ενεργειακή αναβάθμιση κτιρίων

Κατευθύνσεις και εργαλεία για την ενεργειακή αναβάθμιση κτιρίων Κατευθύνσεις και εργαλεία για την ενεργειακή αναβάθμιση κτιρίων ΚΑΠΕ, 21 Ιουνίου 2016 Κωνσταντίνος Αλβανός, ΜΒΑ Μέλος Δ.Σ. Ένωσης Ελληνικών Επιχειρήσεων Θέρμανσης και Ενέργειας Ανακαίνιση υφιστάμενης οικοδομής

Διαβάστε περισσότερα

Εξοικονόμηση ενέργειας και θέρμανση κτιρίων

Εξοικονόμηση ενέργειας και θέρμανση κτιρίων Εξοικονόμηση ενέργειας και θέρμανση κτιρίων Μέρος 1 ο : Σύγκριση τοπικών και κεντρικών συστημάτων θέρμανσης "Μύρισε χειμώνας" και πολλοί επιλέγουν τις θερμάστρες υγραερίου για τη θέρμανση της κατοικίας

Διαβάστε περισσότερα

4ο Εργαστήριο: ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ

4ο Εργαστήριο: ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ 4ο Εργαστήριο: ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ Συστήματα θέρμανσης Στόχος του εργαστηρίου Στόχος του εργαστηρίου είναι να γνωρίσουν οι φοιτητές: - τα συστήματα θέρμανσης που μπορεί να υπάρχουν σε ένα κτηνοτροφικό

Διαβάστε περισσότερα

ΟΝΟΜΑΤΑ ΜΑΘΗΤΩΝ Δέσποινα Δημητρακοπούλου Μαρία Καραγκούνη Δημήτρης Κασβίκης Θανάσης Κατσαντώνης Νίκος Λουκαδάκος

ΟΝΟΜΑΤΑ ΜΑΘΗΤΩΝ Δέσποινα Δημητρακοπούλου Μαρία Καραγκούνη Δημήτρης Κασβίκης Θανάσης Κατσαντώνης Νίκος Λουκαδάκος ΟΝΟΜΑΤΑ ΜΑΘΗΤΩΝ Δέσποινα Δημητρακοπούλου Μαρία Καραγκούνη Δημήτρης Κασβίκης Θανάσης Κατσαντώνης Νίκος Λουκαδάκος ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Αιολική Ενέργεια Βιομάζα Γεωθερμική Ενέργεια Κυματική Ενέργεια

Διαβάστε περισσότερα

Σχήμα 8(α) Σχήμα 8(β) Εργασία : Σχήμα 9

Σχήμα 8(α) Σχήμα 8(β) Εργασία : Σχήμα 9 3. Ας περιγράψουμε σχηματικά τις αρχές επί των οποίων βασίζονται οι καινοτόμοι σχεδιασμοί κτηρίων λόγω των απαιτήσεων για εξοικονόμηση ενέργειας και ευαισθησία του χώρου και του περιβάλλοντος ; 1. Τέτοιες

Διαβάστε περισσότερα

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ

ΧΡΙΣΤΟΣ ΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣ ΚΑΝΕΛΛΟΣ ΓΙΩΡΓΟΣ ΔΙΒΑΡΗΣ ΠΑΠΑΧΡΗΣΤΟΥ ΣΤΙΓΚΑ ΠΑΝΑΓΙΩΤΗΣ ΣΩΤΗΡΙΑ ΓΑΛΑΚΟΣ ΚΑΖΑΤΖΙΔΟΥ ΔΕΣΠΟΙΝΑ ΜΠΙΣΚΟΣ ΚΥΡΙΑΚΟΣ ΚΟΡΝΕΖΟΣ ΚΑΡΑΔΗΜΗΤΡΙΟΥΧΡΙΣΤΟΣ ΝΙΚΟΛΑΣΑΝΔΡΙΚΟΠΟΥΛΟΣ ΓΙΩΡΓΟΣΚΑΝΕΛΛΟΣ ΘΑΝΑΣΗΣΔΙΒΑΡΗΣ ΚΩΣΤΑΝΤΙΝΟΣΠΑΠΑΧΡΗΣΤΟΥ ΑΛΕΞΑΝΔΡΟΣΣΤΙΓΚΑ ΠΑΠΑΓΕΩΡΓΙΟΥΠΑΝΑΓΙΩΤΗΣ ΖΗΝΤΡΟΥΣΩΤΗΡΙΑ ΝΙΚΗΦΟΡΟΣΓΑΛΑΚΟΣ ΣΟΦΙΑΚΑΖΑΤΖΙΔΟΥ ΣΠΥΡΟΠΟΥΛΟΥΔΕΣΠΟΙΝΑ

Διαβάστε περισσότερα

Κινητήρες μιας νέας εποχής

Κινητήρες μιας νέας εποχής Κινητήρες μιας νέας εποχής H ABB παρουσιάζει μια νέα γενιά κινητήρων υψηλής απόδοσης βασισμένη στην τεχνολογία σύγχρονης μαγνητικής αντίστασης. Η ΑΒΒ στρέφεται στην τεχνολογία κινητήρων σύγχρονης μαγνητικής

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Εισαγωγικά στοιχεία: Δομή εργαστηρίου. Τεχνολογίες ΑΠΕ. Πολυζάκης Απόστολος Καλογήρου Ιωάννης Σουλιώτης Εμμανουήλ Ενότητες Εργαστηρίου ΑΠΕ Ι και Ασκήσεις Ενότητα 1 - Εισαγωγή: Τεχνολογίες

Διαβάστε περισσότερα

Συντελεστής ισχύος C p σαν συνάρτηση της ποσοστιαίας μείωσης της ταχύτητας του ανέμου (v 0 -v 1 )/v 0

Συντελεστής ισχύος C p σαν συνάρτηση της ποσοστιαίας μείωσης της ταχύτητας του ανέμου (v 0 -v 1 )/v 0 Συντελεστής ισχύος C p σαν συνάρτηση της ποσοστιαίας μείωσης της ταχύτητας του ανέμου (v 0 -v 1 )/v 0 19 ΠΑΡΑΓΩΓΗ ΕΝΕΡΓΕΙΑΣ ΑΠΟ ΑΝΕΜΟΓΕΝΝΗΤΡΙΕΣ Ταχύτητα έναρξης λειτουργίας: Παραγόμενη ισχύς = 0 Ταχύτητα

Διαβάστε περισσότερα

Φωτοβολταϊκά συστήματα

Φωτοβολταϊκά συστήματα Φωτοβολταϊκά συστήματα από την Progressive Energy 1 Ήλιος! Μια τεράστια μονάδα αδιάκοπης παραγωγής ενέργειας! Δωρεάν ενέργεια, άμεσα εκμεταλλεύσιμη που πάει καθημερινά χαμένη! Γιατί δεν την αξιοποιούμε

Διαβάστε περισσότερα

Πρακτικός Οδηγός Εφαρμογής Μέτρων

Πρακτικός Οδηγός Εφαρμογής Μέτρων Πρακτικός Οδηγός Εφαρμογής Μέτρων Φ ο ρ έ α ς υ λ ο π ο ί η σ η ς Ν Ο Ι Κ Ο Κ Υ Ρ Ι Α Άξονες παρέμβασης Α. Κτιριακές υποδομές Β. Μεταφορές Γ. Ύ δρευση και διαχείριση λυμάτων Δ. Δ ιαχείριση αστικών στερεών

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΑΝΑΚΛΑΣΤΙΚΩΝ ΥΛΙΚΩΝ

ΘΕΩΡΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΑΝΑΚΛΑΣΤΙΚΩΝ ΥΛΙΚΩΝ ΘΕΩΡΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΝ ΑΠΟΔΟΣΗΣ ΤΩΝ ΑΝΑΚΛΑΣΤΙΚΩΝ ΥΛΙΚΩΝ MONOSTOP THERMO ΚΑΙ MONOSTOP THERMO ROOF ΤΗΣ ΕΤΑΙΡΕΙΑΣ BERLING ΣΤΟΝ ΚΤΙΡΙΑΚΟ ΤΟΜΕΑ Ιούλιος 2015 ΘΕΩΡΗΤΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΝ ΑΠΟΔΟΣΗΣ ΤΩΝ ΑΝΑΚΛΑΣΤΙΚΩΝ

Διαβάστε περισσότερα

Καύση υλικών Ηλιακή ενέργεια Πυρηνική ενέργεια Από τον πυρήνα της γης Ηλεκτρισμό

Καύση υλικών Ηλιακή ενέργεια Πυρηνική ενέργεια Από τον πυρήνα της γης Ηλεκτρισμό Ενεργειακή Μορφή Θερμότητα Φως Ηλεκτρισμός Ραδιοκύματα Μηχανική Ήχος Τι είναι; Ενέργεια κινούμενων σωματιδίων (άτομα, μόρια) υγρής, αέριας ή στερεάς ύλης Ακτινοβολούμενη ενέργεια με μορφή φωτονίων Ενέργεια

Διαβάστε περισσότερα

ΧΡΟΝΟΣ ΑΠΟΠΛΗΡΩΜΗΣ ΣΥΣΤΗΜΑΤΟΣ Φ/Β & Α.Θ.

ΧΡΟΝΟΣ ΑΠΟΠΛΗΡΩΜΗΣ ΣΥΣΤΗΜΑΤΟΣ Φ/Β & Α.Θ. Μετά την θεσμοθέτηση της αυτοπαραγωγής (net metering) με φωτοβολταϊκά συστήματα, δίνεται η δυνατότητα να έχετε ΔΩΡΕΑΝ ΗΛΕΚΤΡΙΚΟ & ΘΕΡΜΑΝΣΗ ΖΝΧ ΓΙΑ ΠΑΝΤΑ ΛΥΣΗ NEW TIMES ΚΟΣΤΟΣ ΟΦΕΛΟΣ ανά έτος Φ/Β ΣΥΣΤΗΜΑ

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Β) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική

Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Β) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00. Αίθουσα: Υδραυλική Ανανεώσιμες Πηγές Ενέργειας ΙΙ ΔΙΑΛΕΞΕΙΣ: ΦΩΤΟΒΟΛΤΑΪΚΑ ΣΥΣΤΗΜΑΤΑ (ΜΕΡΟΣ Β) Ώρες Διδασκαλίας: Τρίτη 9:00 12:00 Αίθουσα: Υδραυλική Διδάσκων: Δρ. Εμμανουήλ Σουλιώτης, Φυσικός Επικοινωνία: msouliot@hotmail.gr

Διαβάστε περισσότερα

οικονομία- Τεχνολογία ΜΑΘΗΜΑ: : OικιακήO : Σχολικό έτος:2011 Β2 Γυμνασίου Νεάπολης Κοζάνης

οικονομία- Τεχνολογία ΜΑΘΗΜΑ: : OικιακήO : Σχολικό έτος:2011 Β2 Γυμνασίου Νεάπολης Κοζάνης ΜΑΘΗΜΑ: : OικιακήO οικονομία- Τεχνολογία Σχολικό έτος:2011 :2011-20122012 Β2 Γυμνασίου Νεάπολης Κοζάνης ΠΕΡΙΕΧΟΜΕΝΟ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΣΥΜΒΑΤΙΚΕΣ ΑΝΑΝΕΩΣΙΜΕΣ ΜΑΘΗΤΕΣ ΠΟΥ ΕΡΓΑΣΤΗΚΑΝ: J ΧΡΗΣΤΟΣ ΣΑΝΤ J ΣΤΕΡΓΙΟΣ

Διαβάστε περισσότερα

Ηλιακή ενέργεια. Φωτοβολταϊκά Συστήματα

Ηλιακή ενέργεια. Φωτοβολταϊκά Συστήματα Ηλιακή ενέργεια Είναι η ενέργεια που προέρχεται από τον ήλιο και αξιοποιείται μέσω τεχνολογιών που εκμεταλλεύονται τη θερμική και ηλεκτρομαγνητική ακτινοβολία του ήλιου με χρήση μηχανικών μέσων για τη

Διαβάστε περισσότερα

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ

1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 1. ΠΗΓΕΣ ΚΑΙ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 1.1. ΕΙΣΑΓΩΓΗ Η ενέργεια είναι κύρια ιδιότητα της ύλης που εκδηλώνεται με διάφορες μορφές (κίνηση, θερμότητα, ηλεκτρισμός, φως, κλπ.) και γίνεται αντιληπτή (α) όταν μεταφέρεται

Διαβάστε περισσότερα

1 ο Λύκειο Ναυπάκτου Έτος: Τμήμα: Α 5 Ομάδα 3 : Σίνης Γιάννης, Τσιλιγιάννη Δήμητρα, Τύπα Ιωάννα, Χριστοφορίδη Αλεξάνδρα, Φράγκος Γιώργος

1 ο Λύκειο Ναυπάκτου Έτος: Τμήμα: Α 5 Ομάδα 3 : Σίνης Γιάννης, Τσιλιγιάννη Δήμητρα, Τύπα Ιωάννα, Χριστοφορίδη Αλεξάνδρα, Φράγκος Γιώργος 1 ο Λύκειο Ναυπάκτου Έτος: 2017-2018 Τμήμα: Α 5 Ομάδα 3 : Σίνης Γιάννης, Τσιλιγιάννη Δήμητρα, Τύπα Ιωάννα, Χριστοφορίδη Αλεξάνδρα, Φράγκος Γιώργος Θέμα : Εξοικονόμηση ενέργειας σε διάφορους τομείς της

Διαβάστε περισσότερα

Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια. Εμμανουήλ Σουλιώτης

Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια. Εμμανουήλ Σουλιώτης Εξοικονόμηση ενέργειας και χρήση συστημάτων ηλιακής ενέργειας στα κτίρια Εμμανουήλ Σουλιώτης Πρόβλεψη για τις ΑΠΕ μέχρι το 2100 ΗΛΙΟΣ ΑΝΕΜΟΣ ΒΙΟΜΑΖΑ ΓΕΩΘΕΡΜΙΑ ΝΕΡΟ ΠΥΡΗΝΙΚΗ ΟΡΥΚΤΑ ΚΑΥΣΙΜΑ Οι προβλέψεις

Διαβάστε περισσότερα

«ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ»

«ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ» ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ «ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ» Φώτης

Διαβάστε περισσότερα

ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ. Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών

ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ. Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών ΕΝΣΩΜΑΤΩΣΗ ΑΠΕ ΣΤΑ ΚΤΗΡΙΑ Ιωάννης Τρυπαναγνωστόπουλος Αναπληρωτής Καθηγητής, Τμήμα Φυσικής Παν/μίου Πατρών Παγκόσμια ενεργειακή κατάσταση Συνολική παγκόσμια κατανάλωση ενέργειας 2009: 135.000 ΤWh (Ελλάδα

Διαβάστε περισσότερα

Οδηγός χρήσης. Φωτοβολταϊκό πάνελ. Συνδεσμολογία. Στήριξη των πάνελ

Οδηγός χρήσης. Φωτοβολταϊκό πάνελ. Συνδεσμολογία. Στήριξη των πάνελ Οδηγός χρήσης Φωτοβολταϊκό πάνελ Πρόκειται για πάνελ υψηλής απόδοσης ισχύος από 10Wp έως 230Wp (ανάλογα με το μοντέλο). Ένα τέτοιο πάνελ παράγει σε μια καλοκαιρινή μέρα, αντίστοιχα από 50 Watt/h (βατώρες)

Διαβάστε περισσότερα

Τεχνολογία Φωτοβολταϊκών Συστημάτων και Δυνατότητες Ανάπτυξης των Εφαρμογών στην Ελλάδα

Τεχνολογία Φωτοβολταϊκών Συστημάτων και Δυνατότητες Ανάπτυξης των Εφαρμογών στην Ελλάδα Τεχνολογία Φωτοβολταϊκών Συστημάτων και Δυνατότητες Ανάπτυξης των Εφαρμογών στην Ελλάδα Ευστράτιος Θωμόπουλος Δρ Ηλεκτρολόγος Μηχανικός Χρήστος Πρωτογερόπουλος Δρ Μηχανολόγος Μηχανικός Εισαγωγή Η ηλιακή

Διαβάστε περισσότερα

ΑΥΤΟΝΟΜΟΣ ΦΩΤΙΣΜΟΣ ΔΡΟΜΟΥ ΚΑΙ ΚΗΠΟΥ

ΑΥΤΟΝΟΜΟΣ ΦΩΤΙΣΜΟΣ ΔΡΟΜΟΥ ΚΑΙ ΚΗΠΟΥ ΑΥΤΟΝΟΜΟΣ ΦΩΤΙΣΜΟΣ ΔΡΟΜΟΥ ΚΑΙ ΚΗΠΟΥ Σε συνεργασία με την OLITER Η NanoDomi σας προσφέρει ολοκληρωμένη σειρά αυτόνομου φωτισμού για δρόμο ή κήπο. Ένα σύστημα ηλιακής ενέργειας για φωτισμό δεν είναι συνδεδεμένο

Διαβάστε περισσότερα

Καινοτόμες Τεχνολογικές Εφαρμογές στονέοπάρκοενεργειακήςαγωγήςτουκαπε

Καινοτόμες Τεχνολογικές Εφαρμογές στονέοπάρκοενεργειακήςαγωγήςτουκαπε ΚΕΝΤΡΟ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ Καινοτόμες Τεχνολογικές Εφαρμογές στονέοπάρκοενεργειακήςαγωγήςτουκαπε Δρ. Γρηγόρης Οικονομίδης Υπεύθυνος Τεχνικής Yποστήριξης ΚΑΠΕ Η χρηματοδότηση Το ΠΕΝΑ υλοποιείται

Διαβάστε περισσότερα

Θέμα : Παραγωγή ενέργειας μέσω του ήλιου

Θέμα : Παραγωγή ενέργειας μέσω του ήλιου 1ο ΓΕ.Λ. Ελευθερίου-Κορδελιού Ερευνητική εργασία Α Λυκείου 2011-2012. Τμήμα PR4 ΠΡΑΣΙΝΗ ΕΝΕΡΓΕΙΑ. ΜΙΑ ΕΥΚΑΙΡΙΑ ΓΙΑ ΤΟΝ ΠΛΑΝΗΤΗ Θέμα : Παραγωγή ενέργειας μέσω του ήλιου Όνομα Ομάδας : Ηλιαχτίδες Σεϊταρίδου

Διαβάστε περισσότερα

Συντακτική Οµάδα: έσποινα Παναγιωτίδου

Συντακτική Οµάδα: έσποινα Παναγιωτίδου ιαθεµατική Εργασία µε Θέµα: Οι Φυσικές Επιστήµες στην Καθηµερινή µας Ζωή Η Ηλιακή Ενέργεια Τµήµα: β2 Γυµνασίου Υπεύθυνος Καθηγητής: Παζούλης Παναγιώτης Συντακτική Οµάδα: έσποινα Παναγιωτίδου ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ

Διαβάστε περισσότερα

ΗλιακοίΣυλλέκτες. Γιάννης Κατσίγιαννης

ΗλιακοίΣυλλέκτες. Γιάννης Κατσίγιαννης ΗλιακοίΣυλλέκτες Γιάννης Κατσίγιαννης Ηλιακοίσυλλέκτες Ο ηλιακός συλλέκτης είναι ένα σύστηµα που ζεσταίνει συνήθως νερό ή αέρα χρησιµοποιώντας την ηλιακή ακτινοβολία Συνήθως εξυπηρετεί ανάγκες θέρµανσης

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ανανεώσιμες Πηγές Ενέργειας Εργασία από παιδιά του Στ 2 2013-2014 Φυσικές Επιστήμες Ηλιακή Ενέργεια Ηλιακή είναι η ενέργεια που προέρχεται από τον ήλιο. Για να μπορέσουμε να την εκμεταλλευτούμε στην παραγωγή

Διαβάστε περισσότερα

Place n Plug. N.S.E Ltd. Hybrid System. Το πιο «εύκολο» υβριδικό σύστημα παραγωγής ηλεκτρικής ενέργειας. Networking System Exellence

Place n Plug. N.S.E Ltd. Hybrid System. Το πιο «εύκολο» υβριδικό σύστημα παραγωγής ηλεκτρικής ενέργειας. Networking System Exellence Hybrid System Place n Plug Το πιο «εύκολο» υβριδικό σύστημα παραγωγής ηλεκτρικής ενέργειας Copyright NSE Ltd. 2011 N.S.E Ltd Networking System Exellence Η εταιρεία μας Pn P Η NSE Ltd (Networking System

Διαβάστε περισσότερα

Γρηγόρης Οικονοµίδης, ρ. Πολιτικός Μηχανικός

Γρηγόρης Οικονοµίδης, ρ. Πολιτικός Μηχανικός Γρηγόρης Οικονοµίδης, ρ. Πολιτικός Μηχανικός ΓΕΩΓΡΑΦΙΚΗ ΘΕΣΗ & ΚΛΙΜΑ Μήκος Πλάτος 23.55 38.01 Ύψος 153 m Μέση θερµοκρασία αέρα περιβάλλοντος (ετήσια) E N 18,7 C Ιανουάριος 9,4 C Ιούλιος 28,7 C Βαθµοηµέρες

Διαβάστε περισσότερα

Περιβαλλοντική Διάσταση των Τεχνολογιών ΑΠΕ

Περιβαλλοντική Διάσταση των Τεχνολογιών ΑΠΕ Περιβαλλοντική Διάσταση των Τεχνολογιών ΑΠΕ Ομιλητές: Ι. Νικολετάτος Σ. Τεντζεράκης, Ε. Τζέν ΚΑΠΕ ΑΠΕ και Περιβάλλον Είναι κοινά αποδεκτό ότι οι ΑΠΕ προκαλούν συγκριτικά τη μικρότερη δυνατή περιβαλλοντική

Διαβάστε περισσότερα

Βιοκλιματικός Σχεδιασμός

Βιοκλιματικός Σχεδιασμός Βιοκλιματικός Σχεδιασμός Αρχές Βιοκλιματικού Σχεδιασμού Η βιοκλιματική αρχιτεκτονική αφορά στο σχεδιασμό κτιρίων και χώρων (εσωτερικών και εξωτερικών-υπαίθριων) με βάση το τοπικό κλίμα, με σκοπό την εξασφάλιση

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3

Ανανεώσιμες πηγές ενέργειας. Project Τμήμα Α 3 Ανανεώσιμες πηγές ενέργειας Project Τμήμα Α 3 Ενότητες εργασίας Η εργασία αναφέρετε στις ΑΠΕ και μη ανανεώσιμες πήγες ενέργειας. Στην 1ενότητα θα μιλήσουμε αναλυτικά τόσο για τις ΑΠΕ όσο και για τις μη

Διαβάστε περισσότερα

ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων

ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων ΔΠΜΣ: «Τεχνοοικονομικά Συστήματα» Διαχείριση Ενεργειακών Πόρων 12. Μελέτη Περίπτωσης: Ενεργειακή Επιθεώρηση σε Ξενοδοχειακή Μονάδα Καθηγητής Ιωάννης Ψαρράς e-mail: john@epu.ntua.gr Εργαστήριο Συστημάτων

Διαβάστε περισσότερα

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ

ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ 1 ο ΕΠΑΛ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2012-13 ΕΙΔΙΚΗ ΘΕΜΑΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΤΑΞΗ Β ΤΜΗΜΑΤΑ: ΗΛΕΚΤΡΟΛΟΓΩΝ, ΜΗΧΑΝΟΛΟΓΩΝ ΥΠΕΥΘΥΝΟΣ ΕΚΠΑΙΔΕΥΤΙΚΟΣ: ΘΕΟΔΩΡΟΣ ΓΚΑΝΑΤΣΟΣ ΦΥΣΙΚΟΣ-ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ: 1.

Διαβάστε περισσότερα

Πίνακας 1. Πίνακας προτεινόμενων πτυχιακών εργασιών για το χειμερινό εξάμηνο 2012-13. Αριθμός σπουδαστών

Πίνακας 1. Πίνακας προτεινόμενων πτυχιακών εργασιών για το χειμερινό εξάμηνο 2012-13. Αριθμός σπουδαστών Πίνακας. Πίνακας προτεινόμενων πτυχιακών εργασιών για το χειμερινό εξάμηνο 0-3 ΤΜΗΜΑ: ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Α/Α Τίτλος θέματος Μέλος Ε.Π Σύντομη περιγραφή Διακόπτες δικτύων ισχύος 3 4 5 Μηχανικά χαρακτηριστικά

Διαβάστε περισσότερα

Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ

Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ Η ΕΞΥΠΝΗ ΕΝΕΡΓΕΙΑ ΓΙΑ ΤΟ ΜΕΛΛΟΝ ΜΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ Για περισσότερες πληροφορίες απευθυνθείτε στα site: ΑΝΕΜΟΓΕΝΝΗΤΡΙΕΣ ΥΔΡΟΗΛΕΚΤΡΙΚΟΙ ΣΤΑΘΜΟΙ ΗΛΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑ

Διαβάστε περισσότερα

Παρούσα κατάσταση και Προοπτικές

Παρούσα κατάσταση και Προοπτικές Ημερίδα: Εφαρμογές Ηλιακών Συστημάτων: Κολυμβητικές Δεξαμενές και Ηλιακός Κλιματισμός Ηράκλειο 4 Νοεμβρίου 2008 Εφαρμογές των Θερμικών Ηλιακών Συστημάτων (ΘΗΣ) στην Περιφέρεια Κρήτης: Παρούσα κατάσταση

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ : ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ

ΕΡΓΑΣΙΑ : ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΕΡΓΑΣΙΑ : ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΤΑΞΗ Ε ΤΜΗΜΑ 2 ΟΜΑ Α PC1 ΣΤΕΦΑΝΙΑ & ΤΖΙΡΑ ΡΑΦΑΗΛΙΑ Η ύπαρξη ζωής στη γη οφείλεται στον ήλιο. Τα φυτά, για τη φωτοσύνθεση, χρειάζονται ηλιακό φως. Τα φυτοφάγα ζώα τρέφονται με

Διαβάστε περισσότερα

Ανανεώσιμες πηγές ενέργειας

Ανανεώσιμες πηγές ενέργειας Ανανεώσιμες πηγές ενέργειας Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2013 Ενέργεια & Περιβάλλον Το ενεργειακό πρόβλημα (Ι) Σε τι συνίσταται το ενεργειακό πρόβλημα; 1. Εξάντληση των συμβατικών ενεργειακών

Διαβάστε περισσότερα

Ήπιες µορφές ενέργειας

Ήπιες µορφές ενέργειας ΕΒ ΟΜΟ ΚΕΦΑΛΑΙΟ Ήπιες µορφές ενέργειας Α. Ερωτήσεις πολλαπλής επιλογής Επιλέξετε τη σωστή από τις παρακάτω προτάσεις, θέτοντάς την σε κύκλο. 1. ΥΣΑΡΕΣΤΗ ΟΙΚΟΝΟΜΙΚΗ ΣΥΝΕΠΕΙΑ ΤΗΣ ΧΡΗΣΗΣ ΤΩΝ ΟΡΥΚΤΩΝ ΚΑΥΣΙΜΩΝ

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ?

ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ? ΕΝΕΡΓΕΙΑ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝ: ΤΙ ΑΛΛΑΖΕΙ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΤΟ ΔΙΚΤΥΟ ΚΑΙ ΤΙΣ ΣΥΝΗΘΕΙΕΣ ΜΑΣ ΜΕ ΤΗ ΜΕΓΑΛΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΠΕ? Αντώνης Θ. Αλεξανδρίδης Καθηγητής Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

ΣΥΛΛΕΚΤΕΣ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ (Φωτοβολταϊκα Στοιχεία)

ΣΥΛΛΕΚΤΕΣ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ (Φωτοβολταϊκα Στοιχεία) ΣΥΛΛΕΚΤΕΣ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ (Φωτοβολταϊκα Στοιχεία) Γεωργίου Παναγιώτης Α.Μ.:135 Τσιαντός Γιώργος Α.Μ.:211 Τμήμα Επιστήμης των Υλικών Τι Είναι Τα Φωτοβολταϊκα Στοιχεία (Φ/Β) Η σύγχρονη τεχνολογία μάς έδωσε

Διαβάστε περισσότερα

13/9/2006 ECO//SUN 1

13/9/2006 ECO//SUN 1 13/9/2006 ECO//SUN 1 ECO//SUN H µεγαλύτερη εταιρία Ανανεώσιµων Πηγών ενέργειας Πάντα µπροστά στην τεχνολογία Ηµεροµηνίες σταθµοί 1996: Έτος ίδρυσης 2002: ECO//SUN ΕΠΕ 2006: 10 χρόνια ECO//SUN Η ECO//SUN

Διαβάστε περισσότερα

1 ΕΠΑΛ Αθηνών. Β` Μηχανολόγοι. Ειδική Θεματική Ενότητα

1 ΕΠΑΛ Αθηνών. Β` Μηχανολόγοι. Ειδική Θεματική Ενότητα 1 ΕΠΑΛ Αθηνών Β` Μηχανολόγοι Ειδική Θεματική Ενότητα ΘΕΜΑ Ανανεώσιμες πήγες ενεργείας ΣΚΟΠΟΣ Η ευαισθητοποίηση των μαθητών για την χρήση ήπιων μορφών ενεργείας. Να αναγνωρίσουν τις βασικές δυνατότητες

Διαβάστε περισσότερα

Παραγωγή ηλεκτρικής ενέργειας από Φωτοβολταϊκά και ανεμογεννήτριες

Παραγωγή ηλεκτρικής ενέργειας από Φωτοβολταϊκά και ανεμογεννήτριες Παραγωγή ηλεκτρικής ενέργειας από Φωτοβολταϊκά και ανεμογεννήτριες 1 Παραγωγή ηλεκτρικής ενέργειας από Φωτοβολταϊκά και ανεμογεννήτριες Συντελεστές 1) Γιάννης κουρνιώτης 2) Κων/νος Αντωνάκος 3) Θεόδωρος

Διαβάστε περισσότερα

6 ο Εργαστήριο Τεχνολογία αερισμού

6 ο Εργαστήριο Τεχνολογία αερισμού 6 ο Εργαστήριο Τεχνολογία αερισμού 1 Στόχος του εργαστηρίου Στόχος του εργαστηρίου είναι να γνωρίσουν οι φοιτητές: - μεθόδους ελέγχου υγρασίας εντός του κτηνοτροφικού κτηρίου - τεχνικές αερισμού - εξοπλισμό

Διαβάστε περισσότερα

Πράσινο & Κοινωνικό Επιχειρείν

Πράσινο & Κοινωνικό Επιχειρείν Πράσινο & Κοινωνικό Επιχειρείν 1 Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) Eίναι οι ενεργειακές πηγές (ο ήλιος, ο άνεμος, η βιομάζα, κλπ.), οι οποίες υπάρχουν σε αφθονία στο φυσικό μας περιβάλλον Το ενδιαφέρον

Διαβάστε περισσότερα

Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/)

Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/) Ιστορία και Κωδικοποίηση Νομοθεσίας ΑΠΕ: (πηγή: http://www.lagie.gr/) Το ελληνικό κράτος το 1994 με τον Ν.2244 (ΦΕΚ.Α 168) κάνει το πρώτο βήμα για τη παραγωγή ηλεκτρικής ενέργειας από τρίτους εκτός της

Διαβάστε περισσότερα

Πακέτα λογισμικού μελέτης Φ/Β συστημάτων

Πακέτα λογισμικού μελέτης Φ/Β συστημάτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ Πακέτα λογισμικού μελέτης Φ/Β συστημάτων Ενότητα Διάλεξης: 4.1 Εισηγητής: Γ. Βισκαδούρος Εργαστήριο

Διαβάστε περισσότερα

Α.Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

Α.Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ Α.Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΝΕΡΓΕΙΑΚΗ ΜΕΛΕΤΗ ΣΥΓΧΡΟΝΟΥ ΣΥΓΚΡΟΤΗΜΑΤΟΣ ΓΡΑΦΕΙΩΝ ΜΕ ΕΦΑΡΜΟΓΗ ΑΡΧΩΝ ΒΙΟΚΛΙΜΑΤΙΚΗΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ & Φ/Β Επιβλέπων Καθηγητής: ΓΕΩΡΓΙΟΣ ΙΩΑΝΝΙΔΗΣ

Διαβάστε περισσότερα

Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE 16.02.

Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE 16.02. Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE 16.02.2012 Μητσάκης Ευάγγελος, Μηχανολόγος Μηχανικός Υπεύθυνος πωλήσεων

Διαβάστε περισσότερα

Επιδεικτικές εφαρμογές συστημάτων Ανανεώσιμων Πηγών Ενέργειας από το Κ.Α.Π.Ε. στη Νοτιοανατολική Αττική

Επιδεικτικές εφαρμογές συστημάτων Ανανεώσιμων Πηγών Ενέργειας από το Κ.Α.Π.Ε. στη Νοτιοανατολική Αττική Γρηγόρης Α. Οικονομίδης Δρ Πολιτικός Μηχανικός Επιδεικτικές εφαρμογές συστημάτων Ανανεώσιμων Πηγών Ενέργειας από το Κ.Α.Π.Ε. στη Νοτιοανατολική Αττική TΟ KΕΝΤΡΟ AΝΑΝΕΩΣΙΜΩΝ Πηγών Eνέργειας (KAΠE) είναι

Διαβάστε περισσότερα

Βαθμός ενημέρωσης και χρήση ανανεώσιμων πηγών ενέργειας και εξοικονόμησης ενέργειας στις Κοινότητες της Κύπρου

Βαθμός ενημέρωσης και χρήση ανανεώσιμων πηγών ενέργειας και εξοικονόμησης ενέργειας στις Κοινότητες της Κύπρου Ένωση Κοινοτήτων Κύπρου Ενεργειακό Γραφείο Κυπρίων Πολιτών Βαθμός ενημέρωσης και χρήση ανανεώσιμων πηγών ενέργειας και εξοικονόμησης ενέργειας στις Κοινότητες της Κύπρου Συνεισφορά της Ένωσης Κοινοτήτων

Διαβάστε περισσότερα

Φωτοβολταϊκά κελιά. «Τεχνολογία, προσδιορισµός της απόδοσής, νοµικό πλαίσιο»

Φωτοβολταϊκά κελιά. «Τεχνολογία, προσδιορισµός της απόδοσής, νοµικό πλαίσιο» Φωτοβολταϊκά κελιά «Τεχνολογία, προσδιορισµός της απόδοσής, νοµικό πλαίσιο» Το ενεργειακό πρόβληµα ιατυπώθηκε πρώτη φορά τη δεκαετία του 1950, και αφορούσε την εξάντληση των ορυκτών πηγών ενέργειας. Παράγοντες

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ 1ο Παράδειγµα κριτηρίου (εξέταση στο µάθηµα της ηµέρας) ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΑΞΗ:... ΤΜΗΜΑ:... ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... Σκοπός της

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 5: Αιολικά Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ανάλυση των βασικών παραμέτρων του Ηλεκτρικού Συστήματος ηλεκτρικής ενεργείας της Κύπρου σε συνάρτηση με τη διείσδυση των ΑΠΕ

Ανάλυση των βασικών παραμέτρων του Ηλεκτρικού Συστήματος ηλεκτρικής ενεργείας της Κύπρου σε συνάρτηση με τη διείσδυση των ΑΠΕ Ανάλυση των βασικών παραμέτρων του Ηλεκτρικού Συστήματος ηλεκτρικής ενεργείας της Κύπρου σε συνάρτηση με τη διείσδυση των ΑΠΕ Δρ. Ρογήρος Ταπάκης ΟΕΒ 09 Μαΐου 2018 Δομή Παρουσίασης Εισαγωγή Ανάλυση Ζήτησης

Διαβάστε περισσότερα

Χριστίνα Αδαλόγλου Βαγγέλης Μαρκούδης Ευαγγελία Σκρέκα Γιώργος Στρακίδης Σωτήρης Τσολακίδης

Χριστίνα Αδαλόγλου Βαγγέλης Μαρκούδης Ευαγγελία Σκρέκα Γιώργος Στρακίδης Σωτήρης Τσολακίδης Χριστίνα Αδαλόγλου Βαγγέλης Μαρκούδης Ευαγγελία Σκρέκα Γιώργος Στρακίδης Σωτήρης Τσολακίδης Οι ανεπανόρθωτες καταστροφές που έχουν πλήξει τον πλανήτη μας, έχουν δημιουργήσει την καθυστερημένη άλλα αδιαμφισβήτητα

Διαβάστε περισσότερα

Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα αβαθούς γεωθερμίας

Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα αβαθούς γεωθερμίας Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα Ενότητες: 1.1 Η παροχή θερμικής ενέργειας στα κτίρια 1.2 Τα συστήματα της σε ευρωπαϊκό & τοπικό επίπεδο 1.3 Το δυναμικό των συστημάτων της 1.1

Διαβάστε περισσότερα

Ανεμογεννήτρια Polaris P15 50 kw

Ανεμογεννήτρια Polaris P15 50 kw Ανεμογεννήτρια Polaris P15 50 kw Τεχνική περιγραφή Μια ανεμογεννήτρια (Α/Γ) 50kW παράγει ενέργεια για να τροφοδοτηθούν αρκετές κατοικίες. Επίσης μπορεί να χρησιμοποιηθεί για να τροφοδοτηθούν με ρεύμα απομονωμένα

Διαβάστε περισσότερα

ΦΥΣΑ ΑΕΡΑΚΙ ΦΥΣΑ ΜΕ!

ΦΥΣΑ ΑΕΡΑΚΙ ΦΥΣΑ ΜΕ! ΦΥΣΑ ΑΕΡΑΚΙ ΦΥΣΑ ΜΕ! Το 2019 θα το θυμόμαστε ως την χρονιά που κάτι άλλαξε. Τα παιδιά βγήκαν στους δρόμους απαιτώντας από τους μεγάλους να δράσουν κατά της κλιματικής αλλαγής. Αυτό το βιβλίο που κρατάτε

Διαβάστε περισσότερα

«Εργαστήριο σε Πακέτα λογισμικού μελέτης Φ/Β συστημάτων»

«Εργαστήριο σε Πακέτα λογισμικού μελέτης Φ/Β συστημάτων» Η ΠΡΑΞΗ ΥΛΟΠΟΙΕΙΤΑΙ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ «Εκπαίδευση και Δια Βίου Μάθηση» ΚΑΙ ΣΥΓΧΡΗΜΑΤΟΔΟΤΕΙΤΑΙ ΑΠΟ ΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (ΕΥΡΩΠΑΪΚΟ ΚΟΙΝΩΝΙΚΟ ΤΑΜΕΙΟ ΕΚΤ) ΚΑΙ ΑΠΟ ΕΘΝΙΚΟΥΣ ΠΟΡΟΥΣ

Διαβάστε περισσότερα

Τ Ε Χ Ν Ο Λ Ο Γ Ι Α Κ Λ Ι Μ Α Τ Ι Σ Μ Ο Υ ( Ε ) - Φ Ο Ρ Τ Ι Α 1

Τ Ε Χ Ν Ο Λ Ο Γ Ι Α Κ Λ Ι Μ Α Τ Ι Σ Μ Ο Υ ( Ε ) - Φ Ο Ρ Τ Ι Α 1 Τ Ε Χ Ν Ο Λ Ο Γ Ι Α Κ Λ Ι Μ Α Τ Ι Σ Μ Ο Υ ( Ε ) - Φ Ο Ρ Τ Ι Α 1 ΦΟΡΤΙΑ Υπό τον όρο φορτίο, ορίζεται ουσιαστικά το πoσό θερµότητας, αισθητό και λανθάνον, που πρέπει να αφαιρεθεί, αντίθετα να προστεθεί κατά

Διαβάστε περισσότερα

New Technologies on Normal Geothermal Energy Applications (in Smart-Social Energy Networks )

New Technologies on Normal Geothermal Energy Applications (in Smart-Social Energy Networks ) ΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ Technological University of Central Hellas New Technologies on Normal Geothermal Energy Applications (in Smart-Social Energy Networks ) ΑΤΕΙ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ Εργαστήριο Ενεργειακών &

Διαβάστε περισσότερα

Σύγχρονες Τάσεις στην Κατασκευή και στον Έλεγχο Περιβάλλοντος των Θερμοκηπίων

Σύγχρονες Τάσεις στην Κατασκευή και στον Έλεγχο Περιβάλλοντος των Θερμοκηπίων 6 o ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ AGROTICA Σύγχρονες Τάσεις στην Κατασκευή και στον Έλεγχο Περιβάλλοντος των Θερμοκηπίων Θωμάς Κωτσόπουλος, Επ. καθηγητής Τμήματος Γεωπονίας Α.Π.Θ. Χρυσούλα Νικήτα-Μαρτζοπούλου, Ομότιμη

Διαβάστε περισσότερα