Lecture Summary. 7/30/2014 Linus Metzler 1 11

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Lecture Summary. 7/30/2014 Linus Metzler 1 11"

Transcript

1 Lecture Summry Note This document ws written in the following wy (which might explin its structure): First, I copied Prof. Immoglu s non-exmple notes for the review. Then I merged the in-clss exmples from the review nd our ssistnt s (Tim) review. The lnguge is inconsistent. Tle of Contents Integrtion Fcts Properties Mittelwertstz der Integrlrechnung Fundmentl theorem of Clculus How do we clculte integrls? Improper Integrls Exmples Exmples BP Exmple Spring Additionl Wisdom Differentil Equtions Liner differentil equtions with constnt coefficients Finding the homogeneous solution yh of Ly = How to find the specil solution of Ly = x using the method of Anstz Boundry or initil vlue prolems Solving DGL y seprtion of vriles Ansätze Exmples Exmple Spring Exmple Summer Exmple Spring Differentition in Rn Differentition rules Directionl derivtive Higher prtil derivtives The extrem of function f: Ω. R Line integrl div, rot, Tngentileene usrechnen Potentil usrechnen Additionl Wisdom Integrtion in Rn /30/204 Linus Metzler

2 4. Sustitution in Rn Green s theorem Additionl Wisdom... 7/30/204 Linus Metzler 2

3 Integrtion Let f: R R e continuous function, P = { = x o < x x < < x n = } prtition of the intervl [, ] nd ξ k [x k, x k+ ] points in ech suintervl. Then the sum S(f, P, ξ) = n k=0 f(ξ k )(x k+ x k ) is clled the Riemnn sum ttched to f nd to P. For I k = [x k, x k+ ], U(f, P) = n k=0 (inf f) (x k+ x k ) nd O(f, P) = I k n k=0 (sup f) (x k+ x k ) re clled the lower nd upper Riemnn sums. Similrly f dx = sup{u(f, p), p P(I)} I k nd f dx = inf{o(f, p), p P(I)} re clled lower nd upper integrls. f is clled Riemnn integrle if f dx =. f dx. Fcts - Ech continuous function is Riemnn integrle - Ech monotonic function is Riemnn integrle.2 Properties - Let f, g Riemnn integrle on I, α, β R. Then. (αf + βg)dx = α f dx + β g dx 2. If f(x) g(x) x [, ] then f dx 3. f dx f(x) dx 4. (inf I 5. f dx f) ( ) f(x) dx = f(x) dx c 6. f dx = f(x) dx 7. f(x) 0 x D f dμ D 0.3 Mittelwertstz der Integrlrechnung g dx (sup f) ( ) I + f(x) dx,, c R c f: [, ] R continonous. Then ξ [, ] such tht f(x) dx = f(ξ)( )..4 Fundmentl theorem of Clculus 7/30/204 Linus Metzler 3 x. Let f: [, ] R continuous. Define F(x) f(t) dt x [, ]. Then F is differentile nd F = f. F is clled primitive (Stmmfunktion) of f 2. If G is n nohte rpmimirve of f then G = F + c for some constnt c 3. Let F e ny pmirmitve of f, then f(x) dx = F() F().5 How do we clculte integrls? Never forget the constnt!. Prtil integrtion: follows product rule for differentition f(x)g (x) dx = f(x)g(x) f (x)g(x) dx f(x)g (x) dx = f(x)g(x) f (x)g(x) dx 2. Sustitution: follows chin rule for differentition f(x) dx = f(φ(y))φ (y) dy f(x) dx = f(φ(y))φ (y) dy 3. Prtil frctions: to integrtion rtionl functions of the form P(x) φ() φ() P(x) = P(x) Q(x) (x 2 +)(x ) 2 (x+2) Anstz: P(x) = Ax+B + C + D Q(x) x 2 + x Bechte Vielfchheiten, C Nullstellen Bsic types of integrtion of rtionl functions Polynomil: n x n x dx = n+ n + E (x ) 2 x+2 n+ + c Q(x), P, Q re polynomils

4 Inverse powers: dx = { log x x 0, für = (x x 0 ) r r, für 2 r (x x 0 ).6 Improper Integrls The improper integrl of n integrle function f on (, ) which is integrle on ny suintervl [, ]. We define the improper integrl f(x) dx Integrlkriterium Fcts lim lim f(x) dx. - f(x) is defined on [, [ - f(x) 0 x [, [ - f(x) monoton fllend f (x) 0 - n= f(n) konvergiert f(x) dx konvergiert s. s R, > 0, dx = {, s > x s s, s 2. If f is on [, ) continuous nd c nd s > so tht f(x) c/x s x, then f(x) dx converges 3. If f is in [, ) continuous nd c > 0 such tht f(x) c/x, x, then f(x) dx diverges to..7 Exmples.7. Exmples BP ln x x dx - cos x cosh x dx - x2 x+2 x 3 x 2 +x u = + ln x du = dx x 2 + ln x dx x u = cos x u = sin x u I = (cos x) +ln 2 = u /2 du v = cosh x v = sinh x = u3/2 3/2 v cosh x dx = uv vu = (cos x)(cosh x) + (sin x) from to + ln 2 7/30/204 Linus Metzler 4 u v sinh x dx = cos x cosh x + [sin x cosh x cos x cosh x dx] I = [cos x sinh x + sin x cosh x] + C 2 x 3 x 2 + x = x 2 (x ) + (x ) = (x )(x 2 + ) x2 x + 2 x 3 x 2 + x = A Bx + C + x x 2 + A(x 2 + ) + (Bx + C)(x ) = x 2 x + 2 A =, C =, B = 0; x2 x + 2 x 3 x 2 + x = x x 2 + dx = ln x tn x + C.7.2 Exmple Spring 200 Untersuche, o ds untere Integrl x 2 + x dx konvergiert. x 2 + x x 2 x 2 + x x 2 dx converges

5 or lim dx = lim x(x + ) x x + dx = lim[ln x ln x + ] x = lim ln x + = lim ln + ln 2 = ln 2.8 Additionl iisdom From ( f(x) dx ) = f(), ( f(x) dx ) = f() φ(α) f(x, α) dx, dφ = f(x, α) dx + f(, α) f(, α) dα (Leiniz) α α α n! (2πn) ( n e )n (Stirling) Solids of revolution when integrting prllel to the xis of revolution: V = π f 2 (x) dx when integrting perpendiculr to the xis of revolution: V = 2π x f(x) dx Don t forget +C when integrting 2 Differentil Equtions 2. Liner differentil equtions with constnt coefficients To solve liner differentil equtions of the form Ly = (x) where L dn + dx n n + + dx n + dx 0, (x) function, i R.. Find homogenous solutiony H. Nmely solution of Ly = Find specil solution y S of Ly = (x) using the method of Anstz vom Typ der rechten Seite. 3. The generl solution is given y y = y H + y S 2.. Finding the homogeneous solution y H of Ly = 0. Find the chrcteristic polynomil of L. Nmely P L (λ) = λ n + n λ n + + λ Fct: if λ, λ r C re the pirwise distinct roots of p(λ) = 0 with ssocited multiplicities m,, m R, then the functions x x k e λ jx, j r, 0 k m j form system of fundmentl solutions of the homogenous eqution Ly = 0. Note: if L hs rel coffeicients, every pir of cimplex conjugte, non-rl roots λ j = μ λ ± iν j of multiplicity m j give fundmentl solution x k e (μ j±iν j )x = x k e μ j(cos ν j x ± i sin ν j x) for 0 k < m j. So one cn s sis tke x k e μ jx cos ν j x nd x k e μ jx sin ν j x insted of x k e (μ j+iν j )x nd x k e (μ j iν j )x. Then the generl homogenous solutions is of the form y H (x) = c jk x k e λ jx j= with constnts c jk How to find the specil solution of Ly = (x) using the method of Anstz Fcts r m j k=0. Let λ C. If λ is not solution of p L (λ) =??, then the inhomongoues DGL Ly = e λx hs prticulr solution y = p L (λ) eλx 2. Let λ C, m its multiplicity s solution of p L(λ) = 0 (m cn e zero which mens λ is not solution of p L (λ) = 0). Let Q(x) polynomil of degree k. Then prticulr solution of Ly(x) = Q(x)e λx is of the form y(x) = R(x)e λx for polynomil R(x) of degree k + m 3. If L hs rel coefficients. Let μ, ν R, m the multiplicity of μ ± iν s solution of p L (λ) = 0 (m = 0 mens μ ± iν is root of p L ). Let Q(x), R(x) e polynomil of degree k. The prticulr solution of the inhomogeneous DGL Ly = Q(x)e μx cos νx + R(x)e μx sin x is of the form y(x) = s(x)e μx cos νx + T(x)e μx sin x for polynomils S, T of degree k + m d n d 7/30/204 Linus Metzler 5

6 2.2 Boundry or initil vlue prolems y( ) = A y(0) = A y( When we re given DGL Ly = (x) together with either oundry vlues 2 ) = A 2 y or initil vlues (0) = A 2, y( n ) = A n y n (0) = A n we first find the generl solution y = y H + y S. Then we determine the constnts c,, c n in the homogenous solution using the given oundry/initil vlues. 2.3 Solving DGL y seprtion of vriles Fcts - If f: Ω R is differentile in x 0 R, then the prtil derivtives exists nd the differentil df(x 0 ) hs the mtrix representtion ( (x x 0 ) (x x n 0 )) = f the grdient of f. - f diff in x 0 f is continous in x 0 - If ll prtil derivtives of f exists nd continuous, then f is differentile. Using the lst two fcts nd the definition of differentiility, one cn study if given is differentile of not. Recipe - Sei die DG in der Form df(x) = g(x)h(f(x)) dx - Sei nun y = f(x), dnn dy = g(x)h(x) dx - Flls h(y) 0, dnn dy = g(x)dx h(y) dy h(y) - Alterntive Nottion: = g(x) dx - werden nun eide Seiten nch x integriert, dnn - y y dy = ln y 2.4 Ansätze,, c, d R, μ, ν R, n N, X n = Polynomil of degree x Störfunktion q(x) e μx sin νx cos νx e μx sin νx e μx cos νx P n (x)e μx P n (x)e μx sin νx Q n (x)e μx cos νx dy h(y) dx dx = g(x) dx dy = g(x) dx h(y) Anstz für y p (x) 2.5. Exmple Spring 20 ) Bestimme lle Lösungen y = y(x) der DGL y (4) y = 0 welche für x eschränkt leien. Chrcteristic polynomil: x 4 = 0 (x 2 )(x 2 + ) = 0 λ = ± ex, e x λ = ±i cos x, sin x y H (x) = c e x + c x 2 + c 3 cos x + c 4 sin x The solutions tht remin ounded s x re of the form c 3 cos x + c 4 sin x ) Bestimme eine Lösung y = y(x) der DGL y (4) y = e x + x 7/30/204 Linus Metzler 6 e μx c sin νx + d cos νx e μx (c sin νx + d cos νx) R n (x)e μx e μx (R n (x) sin νx + S n (x) cos νx) Bem Liegt eine Linerkomintion der Störfunktionen vor, so ht mn uch ls Anstz eine entsprechende Linerkomintion zu wählen. Bem 2 Flls λ = μ + iν eine m fche Nullstelle des chrkteristischen Polynoms von (H) ist, so muss mn den Anstz für y p (x) mit dem Fktor x m multiplizieren. 2.5 Exmples

7 y 4 y = e x y p y 4 y = x y p2 Superposition: y p = y p + y p2 y = c e x + c 2 e x + + (x) y p = Cxe x nd y p2 = Dx + E Try y p = Cxe x + Dx + E, put this in y 4 y = e x + x y p (4) (x) = C[ 4e x + xe x ] y p (4) (x) y p (x) = C[ 4e x + xe x ] [Cxe x + Dx + E] = e x + x c =, D = Exmple Summer 203 ) Für welche Werte des Prmters R stret die llgemeine Lösung der DGL y + 2y + y = 0 unhängig von den Anfngsedingungen gegen 0 für x? λ 2 2 ± λ + = 0 λ,2 = = ± 2 For < 0: there re 2 complex conjugte roots. Let = 2. Then ± i c e x cos x + c 2 e x sin x 0 s x For = 0: ( ) is doule root. The solution c e x + c 2 e x x 0 independent of the initil conditions. For > 0: then one of the roots will e positive if >. Tht will led to λ = + > 0 which leds to growing solution. We do not wnt > or < 0. If < then λ,2 < 0 ) Finden Sie eine homogene DGL 2. Ordnunug mit konstnten Koeffizienten, deren llgemeine Lösung y(x) = e x + 2xe x ist. Ws sind dnn die Anfngsedingungen ei x = 0? y = e x + 2xe x We re looking for 2 nd DGL. By looking t the eqution, you cn see tht λ = with multiplicity 2 (i. e. doule root of the chr. pol. ). (λ + ) 2 = λ 2 + 2λ + y + 2y + y = 0 + initil vlues c =, c 2 = 2 y GH generl homogenous solution = c e x + c 2 xe x y(0) = e 0 = nd y (0) = e x + 2[e x xe x ] for x = 0 = Exmple Spring 20 Bestimme die Lösung y = y(x) der DGL y = e x y mit y(0) = 0 y = ex e y dyey = e x dx e y dy = e x dx e y = e x + c y = ln e x + c 0 = y(0) = ln e 0 + c = ln + c c = 0 3 Differentition in R n A function f: Ω R n R is differentile in x 0 if there exists liner mp A: R n R such tht f(x) = f(x x 0 ) + A(x x o ) + R(x, x 0 ) where lim x x0 R(x,x 0 ) x x 0 = 0. In this cse A is clled the differentil of f t x 0 nd it is dented y (df)(x 0 ). Let (A, A 2,, A n ) e mtrix representtion of the liner mp A: R n R. The f differentile t x 0 mens f(x) = f(x 0 ) + A (x x 0 ) + A 2 (x 2 x 0 2 ) + + A n (x n x 0 n ) + R(x, x 0 ). A prtil derivtive is defined s f( ( ) lim,.., i, i +h, i+,, n ) f(,, i,, n ) i h 0 h Fct Let h(s, t) e continuously differentile function of two vriles nd (t) differentile function of one (t) vrile. Define u(t) h(s, t) ds. Then u is diffenetle nd u (t) = h((t), t) t(t) + (t) h t (s, t) d?? 7/30/204 Linus Metzler 7

8 In prticulr if u(t) is defined s definite integrl of h(s, t) in the vrile s, u(t) h(s, t) ds, then u is differentile nd one cn interchnge the order of differentition nd integrtion. Tht is d dt u(t) = d dt h(s, t) ds. t 3. Differentition rules Let f, g: Ω R differentile in x 0. Then:. d(f ± g)(x 0 ) = df(x 0 ) + dg(x 0 ) 2. d(fg)(x 0 ) = g(x 0 )df(x 0 ) + f(x 0 )dg(x 0 ) 3. If g(x 0 ) 0 then d(f/g)(x 0 ) = g(x 0 )fd(x 0 ) f(x 0 )dg(x 0 ) (g(x 0 )) 2 4. Let h: R R e differentile in g(x 0 ). Then d(h g)(x 0 ) = h (g(x 0 )) dg(x 0 ) h(s, t) ds = 5. Let H: I R Ω R n e differentile in x 0 I nd f: Ω R differentile in H(t 0 ). Then d dt (f H)(t 0 ) = df(h(t 0 )) H (t 0 ) where H(t) = (H (t), H 2 (t),, H n (t)), H (t) = (H (t), H 2 (t),, H n (t)) d 6. Chin rule: (f g)(t dt 0 ) = df(g(t 0 )) g (t 0 ); d (f(x(t), y(t))) = df(x(t), y(t)) (t) dt (x y (t) ) = (x(t), y(t)) x x (t) + (x(t), y(t)) y y (t) 3.2 Directionl derivtive The directionl derivtive of f is in the direction of unit vector e R n {0} is given y d e f(x 0 ) = f(x 0 ) e. 3.3 Higher prtil derivtives One cn similrly define higher order prtil derivtives for functions f C m (Ω). Fct (Schwrz) If f C 2 (Ω) then 2 f = 2 f x i x j x j x independent of the order of differentition. i nd in generl for f C^m(Ω), ll prtil derivtives of order m re Using higher order derivtives one cn nlogous to the -dimensionl cse define Tylor pproximtion of f. Fct Let f C m (Ω), f: Ω R, Ω R, x 0, x Ω. Then f(x ) = f(x 0 ) + f(x 0 )(x x 0 ) + 2 x 0 i )(x j x 0 j ) + R(f, x, x 0 ) where lim x x 0 R(f,x,x 0 ) x x i,j= x i x j (x 0 )(x i The nlog of the second derivtive is given y the mtrix of prtil derivtives of order 2. The mtrix is clled the Hesse mtrix of f. Hess f 2 f ( 2 f x i x j) i,j= n 3.4 The extrem of function f: Ω. R Definition A point x Ω is clled criticl point if f(x) = 0 Fct If f is differentile nd x 0 is locl extrem of f, then x 0 is criticl point. Fct Let x 0 e criticl point of f. Then we hve. x 0 is locl minimum if 2 f(x 0 ) is positive definite (det Hess f > 0 tr Hess f > 0) 2. x 0 is locl mximum if 2 f(x 0 ) is negtive definite (det Hess f > 0 tr Hess f < 0) 3. Otherwise x 0 is sddle point (det Hess f < 0) To find extrem of f on region Ω.. Find criticl points f = 0, x 0 is criticl point 2. Check the nture of criticl points y Hess(f)(x 0 ) 3. Check the criticl points tht rise from here 7/30/204 Linus Metzler 8

9 H f (x) ( 2 f x i x j (x)) i,j=,,n Flls 2D: H f (x) ( 2 f x y (x)) = i,j=,,n (x) (x) x x x x 2 = (x) (x) x 2 x x 2 x 2 (x) ( x n x x x (x) ( y x (x) x x n (x) x 2 x n (x) x n 2 (x) (x) x n x n )n n x y (x) y y (x) ) 2 2 The Jcoi-Mtrix works similr to the Hesse-Mtrix, ut it only uses the first derivtives. Fct Let f: Ω R e continours nd differentile on n open set Ω R n. Let Ω e the oundry of Ω. Then every glol extrem of f is either criticl point of f in Ω or glol extrml point of f x. 3.5 Line integrl Let v: Ω R n e vector field nd curve with prmeteriztion : [, ] Ω, t (t). Then the line integrl of v long is deinfed s v ds v((t)), (t) dt Fcts.. v ds is independent of the prmeteriztion of the pth 2. v ds = + 2 v ds + v ds 2 3. v ds = v ds, where is the sme pth s in opposite direction 4. If v is the grdient vector field ssocited to function f i.e. v = df, then v ds = f(()) f(()), : [, ] Ω 5. Wir können den Begriff des Wegintegrls uf Wege erweitern, die stückweise C sind. Ein stückweise C -Weg ist eine stetige Aildung : [, ] R n mit einer endlichen Unterteilung des Intervlls = c 0 < c < < c n = so dss [ci,c i+ ]: [c i, c i+ ] R n, (i = 0 n ) in C ist. Dnn definiert mn: λ n i=0 λ ( [ci,c i+ ] ) Equivlent once cn write everything in terms of forms: λ = λ dx + λ 2 dx λ n dx n then λ λ((t)) (t) dt Fcts λ: Ω L(R n R) continuous forms, then the following re equivlent. f C (Ω) st df = λ 2. For every two continuous C pths, 2 with the sme eginning nd end points: λ = λ 2 3. For every closed curve, λ = 0 Definition A vector field v: Ω R n is clled conservtive if v ds = 0 for ll closed curves. Fct For simply connected region Ω, we hve: v conservtive v = f for some function f. 3.6 div, rot, div K K = K + K 2 + K 3 x y z grd f = f = ( (x x 0 ),, x n (x 0 )), in 3D: ( x y z), Richtungsleitung: f r = 7/30/204 Linus Metzler 9

10 rot K K = K 3 K 2 y z K K 3 z x K 2 K x ( y ) div(fk) = f K + f div K div(k L) = L rot K K rot L 0 rot(grd f) = ( 0) 0 div(rot K) = 0 div(f rot K) = grd f rot K 3.7 Tngentileene usrechnen Um die Tngentileene m Grph G(t) uszurechnen, git es drei Möglichkeiten. T(x, y) = f(x 0, y 0 ) + ( )(x x x 0 ) + ( )(y y y 0 ) = df(x, y) -. Möglichkeit: T(x, y) usrechnen f(x, y) - 2. Möglichkeit: Tngentilvektoren; Tngentilvektoren sind immer: ( ) - 3. Möglichkeit: Linerkomintion 3.8 Potentil usrechnen Sei F = (6xy + 4z 2, 3x 2 + 3y 2, 8xz) ein Vektorfeld. Bestimme ds Potentil f =y 3 +h(z) = 6xy + x 4z2 (6xy + 4z 2 )dx = 3x 2 y + 4xz + g(y, z) = f(x, y, z) = y 3x2 + 3y 2 = y 3x2 + g g (y, z) = y y 3y2 3y 2 dy = y 3 + h(z) = 8xz = z z z (3x2 y + 4xz + y 3 + h(z)) = 8xz + g (z) - f(x, y, z) = 3x 2 y + 4xz + y 3 + c 3.9 Additionl iisdom = g z g (z) = 0, 0 dz = c d f(x(t), y(t)) = df(x(t), y(t)) (t) dt (x y (t) ) = (x(t), y(t)) x x (t) + (x(t), y(t)) y y (t) (chin rule) Ein geschlossener Weg in einem konservtiven Vektorfeld ist = 0, E ds = 0. 4 Integrtion in R n The Riemnn integrl in R n is constructed in n nlog wy to the cse n = with Riemnn sums over suintervls replced with sums over surectngles, with dx replced with n-ddimensionl volume element dvol n which we denote either y dvol n or dμ(x ). Fct For rectngle Q = [, ] [c, d] R 2 : f dμ Q d c d. c = f dy dx = f dx dy Fuini F(t)dt = J f(x, y) dxdy = J I f(x, y)dydx = I J f(x, y) d(x, y) I J 4. Sustitution in R n Let u, v R n open, Φ: u v ijective with det Φ 0 u. Then for f = v R continuous we hve f(x )dμ(x ) v = f(φ(y)) det(dφ(y)) dμ(y ) u Theorem 9.7 U, V R open, Φ: U V ijective, continuous, differentile, det dφ(y ) 0 y U, f: V R continuous. f(x )dμ(x ) = f(φ(y )) det dφ(y ) dμ. dφ(y ) is the Jcoi mtrix. V Φ(U)=V 7/30/204 Linus Metzler 0

11 4.2 Green s theorem Let Ω R 2 whose oundry Ω hs C prmeteriztion. Let U Ω nd f = Q P where P, Q x y C (U). Then ( Q P ) dμ = Ω P dx + Q dy x y Ω OR Let V = (P, Q) e vector field then v ds = Ω rot v dμ where rot V = Q Ω P nd the line integrl is tken x y round the oundry of Ω in counter-clockwise direction. 4.3 Additionl iisdom - Prmeterintegrl 2 d dx ( (x) (x) f(x, t) dt (x) ) = f(x, (x)) (x) f(, (x)) (x) + f x (x, t) dt - Mehrdimensionle Integrtion Bei der Koordintentrnsformtion ds r (o.ä.) nicht vergessen (x) 2 Differentition under the integrl sign 7/30/204 Linus Metzler

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Notes on Tobin s. Liquidity Preference as Behavior toward Risk otes on Tobin s Liquidity Preference s Behvior towrd Risk By Richrd McMinn Revised June 987 Revised subsequently Tobin (Tobin 958 considers portfolio model in which there is one sfe nd one risky sset.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Lecture 5: Numerical Integration

Lecture 5: Numerical Integration Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Some definite integrals connected with Gauss s sums

Some definite integrals connected with Gauss s sums Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Hrold s AP Clculus BC Rectngulr Polr Prmetric Chet Sheet 15 Octoer 2017 Point Line Rectngulr Polr Prmetric f(x) = y (x, y) (, ) Slope-Intercept Form: y = mx + Point-Slope Form: y y 0 = m (x x 0 ) Generl

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],* Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems. Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B'' Chpter 7b, orsion τ τ τ ' D' B' C' '' B'' B'' D'' C'' 18 -rottion round xis C'' B'' '' D'' C'' '' 18 -rottion upside-down D'' stright lines in the cross section (cross sectionl projection) remin stright

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13 ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix Hrold s Clculus 3 ulti-cordinte System Chet Sheet 15 Octoer 017 Point Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix -D f(x) y (x, y) (, ) 3-D f(x, y) z (x, y, z) 4-D f(x, y, z) w (x, y, z, w)

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim 9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL

Διαβάστε περισσότερα