Difrakcija svetlosti. θ 1. Slika 2. a/2. a/2. (a/2)sinθ 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Difrakcija svetlosti. θ 1. Slika 2. a/2. a/2. (a/2)sinθ 1"

Transcript

1 Difrkcij svetlosti Difrkcij je pojv skretnj svetlosnih zrk s prvolinijske putnje pri nilsku n prepreke mlih dimenzij red tlsne dužine svetlosti. Postojnje difrkcije je i dokz o tlsnoj prirodi svetlosti. Difrkcij postoji i kod zvučnih tls. Zhvljujući njoj zvuk se čuje iz preprek, jer je tlsn dužin zvučnih tls oko jednog metr, p su prepreke uporedive s njom.. Kod svetlosnih tls, tlsn dužin je red od nm, p se ov pojv teže uočv. Ako se posmtr moohromtsk svetlost koj prolzi kroz prvougoni prorez mlih dimenzij ko n slici 1, iz prorez n nekom ekrnu pojviće se svetle i tmne pruge rzličitog intenzitet. Centrln prug je njjčeg, ostle slbijeg intenzitet. Ako svetlost niđe n mlu prepreku ko što je dlk ili tnk žic, n ekrnu iz prepreke će se pojviti tkodje tmne i svetle pruge i opet će svetl prug biti u sredini. Ovo se može objsniti Hjgensovim principom. Kd tls niđe n mli otvor ili mlu telo sve tčke otvor ko i ivice otvor i tel postju izvori sekundrnih sfernih tls. Pri svom Slik 1 prostirnju ovi tlsi interferirju i n nekim mestim se medjusobno slbe, n nekim pojčvju. Što je otvor ili prepeprek mnji skretnje zrk je veće tj. efekti difrkcije su jče izrženi. Slik n ekrnu koj se sstoji od prvilno rspredjenih tmnih i svetlih prug, ili koncentričnih krugov, koj nstje usled difrkcije nziv se difrkcion slik. Rzlikujemo dve vrste difrkcije: ) Frenelovu difrkcij je on kod koje su svetlosni izvor ili zklon ili ob n končnom rstojnju od prepreke. U ovom slušju zrci koji dolze n prepreku ko i oni koji se iz prepreke prostiru k zklonu nisu prlelni. b) Frunhoferovu kd su zrci koji dolze n prepreku prlelni, ko i zrci koji odlze s prepreke k zklonu prlelni. Uovom slučju i svetlosni izvor i zklon se smtrju d su n efektivno beskončnom rstojnju od prepreke. Smtr se d je rstojnje prepreke od zklon D>> d, gde je d dimenzij prepreke ili dimenzij prorez, ili prečnik otvor i sl.ov prlelnost zrk može se postići i kd su svetlosni izvor ili zklon n končnom rstojnju uz pomoć sbirnog sočiv. 1. Frunhoferov difrkcij Kod Frunhoferove difrkcije rstojnje izvor od prepreke mor biti mnogo veće od širine prepreke, odnosno otvor. N slici je prikzn dolzk prlelnih zrk n otvor širine. Sve tčke n otvoru postju izvori novih tls. Difrkcion slik n ekrnu je simetričn u odnosu n rvn koj prolzi kroz sredinu otvor. Zto ćemo zrke koji dolze n otvor podeliti n dve grupe, one koji su došli n gornju polovinu Slik / / (/) 1 1

2 otvor (4 i 5) i one koji su n došli n donju polovinu otvor (1i )i ove dve grupe zrk su simetrične u odnosu n zrk koji je prolzi kroz sredinu otvor (zrk 3). Posle prolsk kroz otvor zrci skreću i interferirju. Intenzitet rezultujućeg tls u nekoj tčki n ekrnu zvisi od ugl koji zrci po prolsku otvor zklpju s simetrlom sistem (linij crt-tčk-crt n slici ). N osnovu proučvnj interferencije svetlosnih tls poznto je d imumi nstju kd je rzlik predjenih optičkih putev jednk neprnom broju polovin tlsnih dužin. N slici posmtrmo zrke 1 i 3. koji posle skretnj z ugo 1 n otvoru do ekrn prelze rzličite puteve koji se rzlikuju z Δs. gde je Δ s = 1 (1) Kd je putn rzlik Δs izmedju srednjeg i krjnjeg zrk jednk / oni destruktivno interferirju, p se n mestu njihovog slgnj n ekrnu jvlj imum i to prvi imum. Ist putn rzlik postoji i izmedju zrk i 4, ko i izmedju zrk 3i 5. Svi ovi provi zrk koji skreću pod uglom 1 se poništvju, p tko nstje prvi imum u difrkcionoj slici. U ovom slučju vži Δs = 1 = 1 = 1 = () Slik 3 /4 /4 (/4) Sledeći, drugi imum nstje od prov prlelnih zrk koji su n rstojnju /4 došli n ekrn, putn rzlik izmedju njih je tkodje jednk /. D bi ovo pokzli podelićemo širinu otvor n četiri del kko je prikzno n slici 3 i posmtrti zrke koji iz tih delov dolze. Nek tls 1 prelzi duži put od tls z. /. Oni stog n ekrnu destruktivno interferirju. Ako u ovom slučju zrci skreću z ugo ovj ugo ćemo dobiti n osnovu izrz Δs = = = = 4 (3) Svi provi susednih zrk u ovom slučju medjusobno su prešli puteve koji se rzlikuju z /, p se medju njim jvlj destruktivn interferencij.. Ako se nstvi ovj postupk dobijmo z-ti imum kd susedni zrci koji potiču iz tčk n rstojnju /z do ekrn predju puteve koji se rzlikuju z rstojnje /. P se tko može dobiti ugo pod kojim skreću ti zrci odnosno ugo z pod kojim se vidi z-ti imum. U ovom slučju vži d je Δs = z = z = z z (4) sin z = z (5)

3 Intenzitet svetosti n ekrnu u zvisnosti od ugl pod kojim se t tčk vidi n ekrnu je dt izrzom I( ) = I 0 π sin ( ) π (6) I()/I 0 1,0 0,8 gde je I 0 intenzitet centrlnog mksimum, ugo pod kojim se vidi tčk n ekrnu u odnosu n prvc koji prolzi kroz centr otvor. Intenzitet centrlnog mksimum je njveći, ond je intenzitet susednih sismetričnih mksimum sve mnji. kko je prikzno n grfiku n slici 4.. N osnovu izrz z intenzitet (6) dobij se d je intenzitet jednk nuli, što odgovr tmnim prugm, tj imumim, kd je 0,6 0,4 0, 0,0-1,0-0,5 0,0 0,5 1,0 Slik 4 [rd] π z = zπ sin = (7) tj dobij se izrz (5) koji je već izveden. Kd se u izrz (6) zmeni ugo koji odgovr prvom mksimumu, koji se dobij n osnovu uslov d je π π = tj. d je = (8) dobij se d je intenzitet prvog mksimum jednk oko 4,5% intenzitet centrlnog mksimum. D bi se odredil širin prvog mksimum n ekrnu treb nći rstojnje izmedju prvog levog i prvog desnog imum. Ako je udljenost ekrn od otvor jednk D, kko je prikzno n slici 5 dobij se d je širin centrlnog mksimum jednk D Sik D D tg1 D (9) 1 Ako je mli otvor u obliku krug prečnik, td difrkcion slik im oblik koncentričnih tmnih i svetlih prstenov ko n slici 6, p je ugo pod kojim se vidi prvi tmni prsten jednk 1 = 1, (10) Slik 6

4 Uglovi pod kojim se vide imumi višeg red kod difrkcije n kružnom otvoru se odredjuju n osnovu složenijih izrz.. Moć rzlgnj, Rejlijev kriterijum Difrkcij se jvlj i kod posmtrnj udljenih tel optičkim instrumentim, zbog končne širine otvor objektiv tih instrument.tkodje on se jvlj i kd svetlosni tls ne pd normlno n rven otvor ili prepreke već pod nekim uglom. U tom slučju središte centrlnog mksimum nije u preseku simetrle sistem i zklon ve je pomereno. Ako posmtrmo dve udljene zvezde kroz teleskop, svetlost zvezd će pdti n kružni otvor telskop. Ako zmislimo d je zvezd tčksti svetlosni izvor, kd svetlost prolzi kroz otvor u opštem slučju njen lik će imti oblik difrkcione slike n kružnom otvoru. On će imti centrlni mksimum, li i koncentrične svetle i tmne prstenove, tj. mksimume i imume osvetljenosti oko centrlnog mksimum..ako posmtrmo likove dve zvezde koje se vide iz centr objektiv teleskop pod uglom dobiće se dv mksimum okružen imumim i mksiumim u obliku koncentričnih krugov kko je prikzno n slici 7. Ako je ugo dovoljno veliki neće doći do znčjnog preklpnj likov i oni će se rzlikovti kko je prikzno n slici 7c),. Medjutim ko je ugo pod kojim se vide jko mli, td će doći do većeg preklpnj difrkcionih likov i n okulru teleskop se likovi zvezd neće rzlikovti, kko je prikzno n slici 7). Zbog ovog je potrebno nći imlni ugo pod kojim mogu d se vide zvezde d bi se njihovi likovi rzlikovli tj. d bi bili rzloženi prorez S S 1 1 S S S 1 S zklon ) b) c) Slik 7 Ovo se odredjuje n bzi Rejlijevog kriterijum koji glsi: Kd se središte centrlnog mksimum jednog lik ndje n mestu prvog imum drugog lik, kže se d su likovi tek rzloženi. N osnovu proučvnj difrkcije n jednom prorez prvi imum se vidi pod glom 1 koji se odredjuje n osnovu izrz (1)z prvougoni, izrz (10) z kružni otvor. Ako se primeni Rejlijev kriterijum ovj ugo 1 je uprvo jednk imlnom uglu pod kojim

5 treb d se vide dve zvezde iz centr mlog prorez ili otvor d bi im likovi bili tek rzloženi Ako teleskop im kružni otvor td se n osnovu izrz (10) dobij d je sin = 1 = 1, (11) gde je prečnik otvor teleskop. Kko je =1 veom mli ugo zbog velike udljenosti zvezd, može se uvesti proksimcij d je, p izrz z imlni ugo može d se npiše i ko sin = 1, (1) Slučj kd se zvezde vide pod uglom kd su likovi prem Rejlijevom kriterijumu tek rzloženi prikzn je n slici 7b) 3. Difrkcion rešetk Ako svetlost prolzi kroz N prlelnih svetlih otvor difrkcion slik se menj u odnosu onu koj nstje pri prolsku svetlosti kroz jedn otvor. U ovom slučju se jvljju jsno izrženi glvni mksimumi izmedju kojim postoji N- nizmenično postvljen mksimum zntno mnjeg intenzitet.. Sto je broj N veći glvni mksimumi su sve većeg intenzitet i sve uži, tko d je difrkcion slik sve jče izržen. Pločic koj sdrži veliki broj zrez često 1000 ili više po 1 mm dužine zove se difrkcion rešetk i prikzn je n slici 8. Postoje trnsmisione i refleksione difrkcione rešetke. Trnsmisione se prve od providnog mterijl i u njih se posebnim postupcim urezuju žlebovi n jednkim rstojnjim. Mesto gdeje urezn žleb je neprovidno tj. ne propušt svetlost, p je prostor izmedju dv žleb prktično tnk otvor. Slik 8 Refleksione rešetke se prve urezivnjem tnkih linij n refleksionim površinm tj. ogledlim. Rstojnje izmedju dve susedne urzne linije nziv se kork rešetke i njčešće obeležv s d. Kork rešetke se dobij kd se dužin režetke L podeli s brojem zrez N. Konstnt rešetke je jednk broju zrez po jedinici dužine i obeležv se s i njčećče je dt ko broj zrez po 1 mm dužine rešetke. N osnovu ovog je jsno d je konstnt rešetke jednk recipročnoj vrednosti kork rešetke. N slici 9 je predstvljen difrkcij tnkog svetlosnog snop prlelnih zrk n difrkcionoj rešetki. Kd svetlosni snop dođe n difrkcionu rešetku, n ekrnu iz rešetke uočv se difrkcion slik koj im više mksimum simetrično postvljenih oko centrlnog. Intenzitet centrlnog mksimum je njveći, ztim ostli mksimumi imju mnji intenzitet. N osnovu slike 9 je očigledno d dolzi do skretnj svetlosti i d se svki mksimum vidi pod nekim uglom. Uvodi se broj z, tj. redni broj mksimum tko d centrlni mksimum im red z=0, ostli redom z=1,,... N. Svkom rešetk Slik 9 zklon z= z=1 z=0 z=1 z= difrkcion slik rspodel intenzitet svetlosti

6 mksimumu red z pridružujemo ugo z, pod kojim se tj mksimum vidi u odnosu n prvc updnih zrk. N slici 10 su predstvljeni uvećno otvori n rešetki i rvnski tls mnohromtske svetlosti koji dolzi n rešetku pod uglom 0.N zklonu koji je veom udlen od rešetke ( može se smtrti n beskončnom udljenju od rešetke) posmtr se difrkcion slik. Posmtrmo prlelne zrke koji dolze n donju ivicu svkog otvor. Ovi zrci po prolsku kroz rešetku skreću z ugo. Uočimo dv susedn prleln zrk 1 i n slici 10. Ovi zrci su do linije AB prešli isti put, ko i od linije AC ndlje prem ekrnu. Putn rzlik ovih zrk je prem slici 10 jednk Δs = BD + DC = d 0 + d (13) ( Uočiti d je ugo BAD = 0, DAC =,) Ovi zrci interferirju i njihov rezultujući tls će biti mksimlnog intenzitet ko je putn rzlik ovih tls jednk celobrojnom umnošku tlsne dužine svetlosti.tj. ko d je Δs =z. Ako se ovj uslov zmeni u izrz (13) dobij se d 0 + d = z (14) 0 i n osnovu jednčine (14) moguće je odrediti ugo skretnj zrk red z. Ako zrci pdju normlno n difrkcionu rešetku, tj, kd je A 0 jednko 0, dobij se n osnovu (14) izrz z odredjivnje ugl skretnj zrk red z ko z B D C. z = (15) d Jednčin (15) je poznt ko jednčin ili zkon difrkcione rešetke. i n osnovu nje se zključuje d položji difrkcionih linij zvise smo od odnos /d, ne i od broj zrez N. Medjutim, intenzitet centrlnog mksimum je jednk N I 0 gde je I0 intenzitet svetlosti koji prolzi kroz jedn prorez. Tko d broj zrez N ne utiče n rspored prug n zklonu, li d veom utiče n intenzitet mksimum. Difrkcione rečetke se koriste je z odredjivnje tlsne dužine monohromtske svetlosti ko i z rzlgnje složene svetlosti n osnovne boje. Tlsn dužin se odredjuje iz izrz (15) tko što se prethodno izmere uglovi skretnj z mksimume rzličitog red.. Kd bel svetlost ili nek drug svetlost koj sdrži tlse više tlsnih dužin, pd normlno n difrkcionu rešetku, n osnovu izrz (15) svetlost svke boje skreće z posebn ugo z. Ako n difrkcionu rešetku pd bel svetlost, td je centrlni mksimu tkodje bel svetlost, medjutim ostli mksimumi višeg red se vide u obliku spektr tj. duge. Kko u opsegu vidljive svetlosti ljubičst svetlost im njmnju tlsnu dužinu, oko 380 nm, crven njveću oko 760 nm, to u spektru njmnje skreće ljubičst, njviše crven svetlost. Svkoj boji iz spektr, može d se odredi tlsn dužin, ko se prethodno izmere uglovi skretnj z svku boju. Pri korišćenju difrkcione rešetke z odredjivnje tlsne dužine svetlosti i rzlgnje svetlosti definišu se ko krkteristične veličine: disperzij rešetke i moć rzlgnj rešetke. ) disperzij rešetke D bi se difrkcion rešetk koristil z rzlikovnje bliskih tlsnih dužin, linije n zklonu koje odovrju ovim tlsnim dužinm treb d budu medjusobno n što većem rstojnju tj d se vide pod dovoljno velikim uglom. Sposobnost rzlgnj linij se zove (uglovn) disperzij i definiše se ko

7 Δ δ = (16) Δ gde je Δ uglovn rzdvojenost dve linije koje se po tlsnim dužinm rzlikuju z Δ.. Diferencirnjem izrz z difrkcionu rešetku(15) se dobij d je z d d z cos d = δ = = (17) d d d cos Bolju disperziju dobijmo s rečetkom mlog kork i kd posmtrmo viši red zrk z. Disperzij ne zvisi od broj zrez n rešetki N.. b) moć rzlgnj rešetke D bi se rzlikovle linije blisih tlsnih dužin one pored dovoljne rzlike u uglu pod kojim se vide morju biti i uske d bi se što bolje rzlikovle. Zto s definiše i moć rzlgnj difrkcione rečetke R ko R = (18) Δ gde je Δ njmnj rzlik tlsnih dužin koj može d se rzlikuje u okolini tlsne dužine. Pokzuje se d je R = = zn (19) Δ D bi se postigl što već moć rzlgnj potrebno je d rešetk im što više prorez i d se z rzlgnje linij koristi što veći red difrkcije. Primer: Posmtrmo dve zvezde kroz kružni otvor teleskop poluprečnik 5 cm. Tlsn dužin svetlosti koju ove zvezde šlju je 500 nm. Koliki mor d bude imlni ugo zrk koji od zvezd dolze do teleskop d bi njihovi likovi bili tek rzloženi?. Rešenje: N osnovu izrz (1) dobij se d je sin = 1, 500nm = 1, 5cm 9 1, m = cm = rd

IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni

Διαβάστε περισσότερα

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα

SLUČAJNE PROMENLJIVE-FUNKCIJA RASPODELE

SLUČAJNE PROMENLJIVE-FUNKCIJA RASPODELE SLUČAJNE PROMENLJIVE-FUNKCIJA RASPODELE Do sd smo već definisli skup Ω elementrnih dogđj Ako se elementrni dogđji ω mogu predstviti ko relni brojevi, ond se eksperiment može zmisliti ko izbor jedne promenljive

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

Relativno mirovanje tečnosti. Translatorno kretanje suda sa tečnošću

Relativno mirovanje tečnosti. Translatorno kretanje suda sa tečnošću Reltivno irovnje tečnosti Trnsltorno kretnje sud s tečnošću Zdtk Cistern čiji je orečni resek elis oluos i b nunjen je tečnošću ustine i kreće se rvolinijski jednklo ubrzno ubrznje w o orizontlnoj rvni

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

FURIJEOVI REDOVI ZADACI ( II

FURIJEOVI REDOVI ZADACI ( II FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

4. Relacije. Teorijski uvod

4. Relacije. Teorijski uvod VI, VII i VIII dvoqs veжbi Vldimir Blti 4. Relije Teorijski uvod Podsetimo se n neke od pojmov veznih z skupove, koji su nm potrebni z uvođeƭe pojm relije. Dekrtov proizvod skup iniemo n slede i nqin:

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Многоугао, странице и дијагонале. Број дијагонала многоугла. Obele`i svaki mnogougao, a zatim napi{i kojoj vrsti po broju stranica pripada.

Многоугао, странице и дијагонале. Број дијагонала многоугла. Obele`i svaki mnogougao, a zatim napi{i kojoj vrsti po broju stranica pripada. Многоугао Многоугао, странице и дијагонале. Број дијагонала многоугла 1 Obele`i svki mnogougo, ztim npi{i kojoj vrsti po broju strnic pripd. Petougo Ncrtj osmougo FGH. Obele`i wegov temen. ) Npi{i temen

Διαβάστε περισσότερα

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata] Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom

Διαβάστε περισσότερα

α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10.

α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10. Zdtk (Mrij, gimzij) Koliko stric im prvili mogokut ko jed jegov uutrji kut izosi 8? Rješeje Formul z veličiu jedog uutrjeg kut prvilog mogokut je: ( ) 8 α = ( ) 8 8 = / 8 = ( ) 8 8 = 8 6 8 8 = 6 7 = 6

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006. šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

GEOMETRIJSKA VEROVATNOĆA. U slučaju kada se ishod nekog opita definiše slučajnim položajem tačke u nekoj oblasti, pri čemu je proizvoljni položaj

GEOMETRIJSKA VEROVATNOĆA. U slučaju kada se ishod nekog opita definiše slučajnim položajem tačke u nekoj oblasti, pri čemu je proizvoljni položaj GEMETRIJK VERVTNĆ U slučju kd se ishod nekog oi definiše slučjnim oložjem čke u nekoj oblsi, ri čemu je roizvoljni oložj čke u oj oblsi jednko moguć, korisimo geomerijsku verovnoću. ko, recimo, obeležimo

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

PRIMENA INTEGRALA

PRIMENA INTEGRALA www.mtmtinj.com PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nđmo

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac ) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

7 Odreženi integrali. Neka je funkcija f(x) definisana na intervalu [a, b]. Ako ovaj interval podelimo

7 Odreženi integrali. Neka je funkcija f(x) definisana na intervalu [a, b]. Ako ovaj interval podelimo 7 Odreženi integrli 63 7 Odreženi integrli Nek je funkcij f(x) definisn n intervlu [, ]. Ako ovj intervl podeo n n delov tčkm = x < x < x

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni

Διαβάστε περισσότερα

Neodreeni integrali. Glava Teorijski uvod

Neodreeni integrali. Glava Teorijski uvod Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Dodatak B. Furijeovi redovi. Posmatrajmo na intervalu [ l, neku funkciju f (x)

Dodatak B. Furijeovi redovi. Posmatrajmo na intervalu [ l, neku funkciju f (x) Dodtk B Furijeovi redovi Posmtrjmo itervu [, eku fukciju f () i ek je o tom itervu eprekid u deovim (im koč roj prekid prve vrste - prekidi u kojim fukcij im koč skok s eve desu griču vredost (vidi S.

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f

Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f Mte ijug: Rijeseni zdci iz vise mtemtike 8. ODREDJENI INTEGRALI 8. Opcenito o odredjenom integrlu Odredjeni integrl je grnicn vrijednost sume eskoncnog roj clnov svki cln tezi k nuli i ozncv se s : n n

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

Matematička analiza 4

Matematička analiza 4 Mtemtičk nliz 4 Drgn S. Dor dević 14.5.214. 2 Sdržj Predgovor 5 1 Integrcij 7 1.1 Žordnov mer u R n....................... 7 1.1.1 Mer prvougonik u R 2................ 7 1.1.2 Mer n-intervl u R n..................

Διαβάστε περισσότερα

Osnovna škola. b) Koliko prstenova treba objesiti na kukicu s lijeve strane na slici 2 da bi poluga bila u ravnoteži? 1 3 F/N

Osnovna škola. b) Koliko prstenova treba objesiti na kukicu s lijeve strane na slici 2 da bi poluga bila u ravnoteži? 1 3 F/N ŠKOLSKO/OPĆINSKO NTJENJE IZ FIZIKE 2.2.2009. Osnovn škol Uut: U svim zdcim gdje je to otrebno koristiti g = 10 N/kg. 1. zdtk (7 bodov) ) Slik 1 rikzuje olugu u rvnoteži n kojoj se nlze dv rsten i neoznti

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

DINAMIKA. u f. Dinamički sistem - pogon sa motorom jednosmerne struje: N: NELINEARAN. m m

DINAMIKA. u f. Dinamički sistem - pogon sa motorom jednosmerne struje: N: NELINEARAN. m m DINAMIKA Dinmički sistem - pogon s motorom jednosmerne struje: N: u u m m i, [ i ],, U opštem slučju ovj dinmički sistem je U opštem slučju ovj dinmički sistem je NELINEARAN MATEMATIČKI MODEL POGONA SA

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Savijanje elastične linije

Savijanje elastične linije //00 Svijnje estične inije Anitičk metod odreďivnj estične inije Irčunvnje ugi i ngi u pomoć tic Prv jednčin svijnj Normni npon u nekoj tčki poprečnog presek s M moment spreg s M I x I x ksijni moment

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα